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Abstract

Latent inhibition (LI) consists of a decrement in conditioning to a stimulus as a result of its prior nonreinforced preexposure.
Based on evidence pointing to the involvement of the hippocampus and the nucleus accumbens (NAC) in LI disruption, it has
been proposed that LI depends on the integrity of the subicular input to the NAC. Since fibers originating in the subiculum and
destined for the NAC run through the fimbria-fornix, we assessed the effects of fimbria-fornix lesion, made using a knife cut, on
LI. In addition, we assessed the effects of the fimbria-fornix cut in three tests known to be sensitive to lesions to the hippocampal
region, namely, spontaneous activity, two-way active avoidance and delayed-non-matching-to-sample. In accord with previously
documented effects of lesions to the hippocampus and related structures, the fimbria-fornix cut increased spontaneous activity
(Experiment 1), facilitated the acquisition of two-way active avoidance (Experiment 3), and produced a delay-dependent deficit in
the delayed-non-match-to-sample task (Experiment 4), demonstrating that it disrupted hippocampal functioning. In contrast, LI
remained unaffected by the fimbria-fornix cut (Experiment 2), indicating that disruption of subicular input to the NAC is not
responsible for the attenuation of LI following non-selective hippocampal lesions. The implications of these results for the neural
circuitry of LI are discussed. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, there has been increasing interest in the
modeling of cognitive deficits in schizophrenia by
paradigms that can be used in both humans and exper-
imental animals. One such model is based on the
paradigm of latent inhibition (LI) [28,35,39,62,65,
83,95,116,120], in which repeated nonreinforced preex-
posure to a stimulus retards subsequent associations
with that stimulus [60,61,63].

LI is disrupted in rats and humans by the psychoto-
mimetic dopamine releaser, amphetamine [37,54,55,95,
103,111–113,115], and in rats, this disruption is pre-
vented by dopamine antagonists [109,119]. Neuroleptic
treatment on its own potentiates LI in rats and humans
[16,19,27,57,68,75,114,117,119,122]. The relevance of
these findings to the behavioral impairments of
schizophrenia has been demonstrated by findings that
LI is disrupted in some subsets of schizophrenic pa-
tients, mainly in the acute stages of the disorder
[5,6,20,36,38,106] but see [98], as well as in normal
humans scoring high on questionnaires measuring
schizotypy [7,18,59,64].
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Studies of the neural substrates of LI disruption in
the rat have pointed to the involvement of the nucleus
accumbens (NAC) [40,96,99,118,127] as well as the
hippocampal formation and adjacent cortical areas
[1,14,43,51,52,93,94,104,121,126], consistent with the
central role attributed to medial temporal lobe and
mesolimbic dopamine abnormality in schizophrenia
(e.g., [10,11,13,15,17,50]). Since the hippocampal for-
mation provides a major input to the NAC, which
originates in the subiculum and runs through the
fimbria-fornix [41,42,53,76,125,128], Weiner [116] pro-
posed that LI depends on the subicular input to the
NAC. According to this view, the abolition of LI by
hippocampal lesions stems from the disruption of the
subicular projection. In support of this suggestion,
Honey and Good [47] found that excitotoxic lesion of
the hippocampus, which did not damage the subicu-
lum, preserved LI. These authors also concluded that
the critical projections subserving LI are those from
the subiculum via the fimbria-fornix to the NAC. The
present study sought to test this possibility more di-
rectly by assessing the effects of a knife cut lesion of
the fimbria-fornix on LI (Experiment 2). In addition to
LI, we assessed the effects of the fimbria-fornix cut in
three tests known to be sensitive to lesions to the
hippocampus and related structures, namely, sponta-
neous activity (Experiment 1), two-way active avoid-
ance (Experiment 3) and an operant
delayed-non-match-to-sample (DNMS) task modeled
after Dunnett [21] (Experiment 4)
[4,21,24,34,45,48,49,79,80,86,87,98].

2. Materials and methods

2.1. Subjects

Forty eight male Wistar rats (Tel Aviv University
Medical School, Israel) :4 months old, weighing
300–420 g, were housed four to a cage under reversed
cycle lighting (lights on: 1900–0700). They were main-
tained on ad lib food and water except for 1 week
prior to and throughout the LI and DNMS experi-
ments (see below).

2.2. Surgery

Rats were anaesthetized by intraperitoneal injection
of equithesine (3 ml/kg). They were placed in a
stereotaxic headholder, and an incision was made in
the scalp to expose the skull. Bregma and lambda were
measured in order to align them in the same (head
level) plane. A small square of bone was removed
(about 3 mm wide and 5 mm long), beginning about 1
mm posterior to bregma, to expose the dura and sagit-
tal sinus at the point where the knives were to be

inserted. The transections were made using a pair of
syringe needles (25-gauge) mounted in a brass jig that
was fitted onto an electrode carrier. The needles were
bent through 90 degrees close to the tip, to give a
cutting blade length of 1.2 mm. The jig was designed
so as to maintain the separation between the knife
shafts at 2.4 mm, center to center, and to permit the
knives to be rotated 180 degrees. Measurements for the
stereotaxic coordinates were taken from the posterior
limit of the blades.

The knives were positioned so that they laid symmet-
rically on either side of the sinus, oriented parasagit-
tally, at a location 1.2 mm posterior to bregma. A
small slit was made in the dura, and the knives were
lowered slowly into the brain. In rats allocated to the
sham operated group the blades were lowered to a
depth of 3 mm below dura and then removed. In rats
allocated to the fimbria-fornix cut group the blades
were lowered to two different dorso-ventral positions:
1. at a depth of 5.5 mm from dura, the blades were

rotated inwards to align them in the coronal plane,
moved up 2.5 mm, lowered again and rotated out-
wards to align them in the saggital plane. This
procedure was repeated twice. Then the same steps
were repeated, but the blades were rotated
outwards.

2. At a depth of 3 mm from dura, the blades were
rotated inwards to align them in the coronal plane,
moved down 3 more mm, moved up again and
rotated outwards to align them in the saggital plane.
This procedure was repeated twice. Then the same
steps were repeated, but the blades were rotated
outwards, and then removed.

Sterispon was used to cover the hole in the bone,
the scalp incisions were sutured by Michel clips, and
Sulphonamide powder was sprinkled on the wound.
Rats were allowed to recover for 4 weeks before the
initiation of behavioral testing. Three rats (2 sham
and 1 fimbria-fornix) did not survive surgery, leav-
ing 23 fimbria-fornix-lesioned and 22 sham-operated
rats.

2.3. Histology

After the completion of behavioral testing lesioned
rats were anaesthetized with an overdose of Nembutal
and perfused intracardially with physiological saline,
followed by 10% formalin. Their brains were removed
from the skulls and stored in 20% formalin-10% su-
crose solution before being sectioned in the coronal
plane at 40 microns thickness. Every section through
the lesion was retained and mounted; sections were
stained alternately with cresyl violet and with Gallyas
silver stain [30] for histological examination. Verifica-
tion of placements used the atlas of Paxinos and Wat-
son [73].



I. Weiner et al. / Beha6ioural Brain Research 96 (1998) 59–70 61

2.4. Apparatus and procedure

2.4.1. Spontaneous acti6ity
The apparatus consisted of eight plastic chambers

that were located in a darkened and air-conditioned
room. The internal dimensions of each chamber were
46×57×37 cm, as measured from the raised grid
floor. A Coulbourn Instruments infrared sensor unit
(model E61-02) was installed in the center of the front
wall 22 cm from the side walls, and 12 cm above the
grid floor. The sensor was protected by a wire fence
measuring 10×13×6 cm to prevent animals’ access.
Blind areas of the sensor (the two corners of the
triangles adjacent to the sensor, measuring 17×17×
25) were blocked by two 25×57 cm clear Perspex
walls. The chambers were covered by 50×50 cm clear
Perspex lids. The movements detected by the sensor
were transmitted through a Coulbourn Instruments 8-
channel infrared motion interface (model E61-08), to a
Coulbourn Instruments infrared motion activity moni-
tor controller/analyzer (model E61-01). Data recording
was computer controlled.

Rats were individually placed in the activity cham-
bers and allowed 60 min of free exploration. The
duration of the movements performed by each rat was
recorded in 6 min blocks.

2.4.2. Latent inhibition
The apparatus consisted of four Campden Instru-

ments rodent test chambers (model 410), each set in a
ventilated sound-attenuating Campden Instruments
chest (model 412). A drinking bottle could be inserted
into the chamber through a 0.5-cm diameter hole lo-
cated at the center of the left wall 2.5 cm above the grid
floor. When the bottle was not present, the hole was
covered by a metal lid. Licks were detected by a Camp-
den Instruments drinkometer circuit (model 453). The
preexposed to-be-conditioned stimulus was a 5-s, 2.8
kHz, 80 dB tone produced by a Sonalert module
(model SC 628). Shock was supplied through the floor
by a Campden Instruments shock generator (model
521/C) and a shock scrambler (model 521/S) set at 0.5
mA, 1 s duration. Equipment programming and data
recording were computer controlled.

Prior to the beginning of the LI experiment, rats were
handled for about 2 min daily for 6 days. A 23-h water
restriction schedule was initiated simultaneously with
handling and continued throughout the behavioral test-
ing. Water in the test apparatus was given in addition
to the daily ration of 1 h given in the home cages.

LI was assessed in an off-baseline conditioned emo-
tional response (CER) procedure consisting of the fol-
lowing stages:

2.4.2.1. Baseline. On each of 5 days, each rat was placed
into the experimental chamber and allowed to drink for
15 min.

2.4.2.2. Preexposure. With the water bottle removed,
each rat was placed into the experimental chamber. The
preexposed rats received forty 5-s tone presentations
with a variable inter-stimulus interval of 50 s. The
nonpreexposed rats were confined to the chamber for
an identical period of time without receiving the tones.

2.4.2.3. Conditioning. With the water bottle removed,
each rat was given two tone-shock pairings 5 and 10
min after the start of the session. Tone parameters were
identical to those used in preexposure. The 0.5 mA, 1 s
shock immediately followed tone termination. After the
second pairing, rats were left in the experimental cham-
ber for an additional 5 min.

2.4.2.4. Rebaseline. Each rat was given a drinking ses-
sion identical to the baseline sessions.

2.4.2.5. Test. Each rat was placed into the chamber and
allowed to drink from the bottle. When the rat com-
pleted 75 licks, the tone was presented, and lasted 5
min. The following times were recorded: Time to first
lick, time to complete licks 1–50, time to complete licks
51–75 (pre-tone) and time to complete licks 76–100
(tone-on). The times to complete licks 76–100 were
subjected to logarithmic transformation in order to
allow analysis of variance.

The stages of preexposure, conditioning, rebaseline
and test were given 24 h apart. Each rat was run
throughout the experiment in the same chamber.

2.4.3. Two-way acti6e a6oidance
The apparatus consisted of four identical Campden

Instruments shuttle boxes, measuring 48.5×23×20
cm. The barrier between the two compartments of the
box consisted of an aluminum wall with a central
inverted U-shaped gate (12 cm high, 10 cm wide). Each
box was set in a ventilated, sound-attenuating chest.
The conditioned stimulus was a light flashing at a rate
of 1.3 Hz for 10 s. Shock was supplied to the grid floor
by a Campden Instruments scrambled shock generator
(model 521C) set at 0.5 mA intensity. Equipment pro-
gramming and data recording were computer
controlled.

Prior to avoidance training, rats were given a 30-min
session of exposure to the shuttle box during which the
number of crossings between the two compartments
was recorded in blocks of 5 min. On the next day, each
rat was placed into the experimental chamber and
received 100 avoidance trials, presented on a variable
interval 60 s schedule ranging from 10 to 110 s. Each
avoidance trial began with a 10-s flashing light followed
by a 5-s shock, the flashing light remaining on with the
shock. If the rat crossed the barrier to the opposite
compartment during the flashing light, the stimulus was
terminated and no shock was delivered (avoidance re-
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sponse). A crossing response during shock terminated
the flashing light and the shock. If the rat failed to cross
during the entire light-shock trial, the light and the
shock terminated after 15 s. The number of avoidance
responses was recorded in ten trial blocks.

2.4.4. Delayed-non-match-to-sample
The apparatus consisted of eight Campden Instru-

ments operant chambers, located four in a room, under
on-line computer control. Each chamber was equipped
with two retractable levers spaced 7.5 cm on either side
of a central food tray that was accessed by a hinged
Perspex panel lighted from behind. A houselight was
located at the center of the chamber ceiling and a food
dispenser delivered 45 mg P.U. Noyes precision For-
mula pellets.

One week before the beginning of behavioral testing
rats were fed approximately 1.5 h daily until their body
weights were reduced to 85%. This weight level was
maintained throughout the experiment. Water was
freely available. The DNMS task consisted of the fol-
lowing stages:

2.4.4.1. Adaptation to reward. During the 3 days preced-
ing the beginning of lever press training, rats were
adapted to the food pellets in their home cages.

2.4.4.2. Le6er press training. On the first 2 days, rats
were trained to collect food pellets from the food tray
in the operant chamber. Each session lasted 10 min,
and every 20 s a food pellet was delivered into the food
tray, signaled by the panel light. Collection of the pellet
extinguished the panel light, which was otherwise
turned off after 10 s. The rats were then trained to
lever-press on a continuous reinforcement schedule for
five daily sessions. On days 1–3, each trial began with
the insertion of both levers into the chamber which
were retracted immediately after the rat made a re-
sponse on one of them. Each response delivered a
pellet, signaled by the panel light. Collection of the
pellet started an inter-trial interval of 15 s and extin-
guished the panel light, which was otherwise turned off
after 10 s. A trial was defined as a ‘finished’ trial if the
rat pressed a lever and collected the food within 10 s.
All other trials were recorded as ‘unfinished’. Each
session terminated after the rat completed 30 finished
trials. On days 4–5, training continued as on days 1–3,
but the levers were inserted one at a time, and remained
until 15 finished trials were completed. This was done
in order to prevent the establishment of side preference.

2.4.4.3. Delayed-non-match to sample training. Follow-
ing lever press training rats were trained in the non-
match to sample (NMS) procedure, consisting of 48
daily trials. Each trial included three components: sam-
ple response, delay interval, and choice response. At the

start of each trial the houselight was turned on and 2 s
later the sample lever was inserted. The side of the
sample (left or right) was determined in a pseudo-ran-
dom order. As soon as the rat made a lever press
response, the lever was retracted, the food-tray light
was turned on and a food pellet delivered, and the
delay interval began. The food-tray light was turned off
when the rat collected the food. The delay component
was terminated by the rat’s first nose poke at the
food-tray door after the completion of the delay inter-
val. In the choice component both levers were inserted
into the chamber. A correct non-match response, i.e., to
the lever not presented in the sample component, re-
sulted in the levers being retracted, the houselight extin-
guished, a food pellet delivered, and the food-tray light
switched on until a further nose poke was made, indi-
cating that the pellet was collected. An incorrect re-
sponse, i.e., to the lever presented in the sample
component, resulted in the levers being retracted, the
houselight switched off for 5 s (punishment), and no
delivery of food. Following collection of the pellet on
correct trials or punishment on incorrect trials, a 10-s
inter-trial interval preceded the next trial. A trial was
defined as a ‘finished’ trial if the rat made a choice
response (correct or incorrect). All other trials were
recorded as ‘unfinished’. In the first stage of training
rats were trained with no delay between the sample and
choice components. Each rat was trained until it
reached a criterion of at least 42 correct out of 48
finished trials on three consecutive days. Once all rats
had reached criterion at the NMS stage, they were run
for an additional 2 days, and on the subsequent day a
variable delay interval schedule was introduced. On
each trial the delay was chosen at random from a range
of delays. The range of delays was increased over a
period of days from a range of 0 and 4 s delays, via a
range of 0, 4, 8 and 16 s delays, to a range of 0, 4, 16
and 32 s delays. Training with each delay range contin-
ued until all rats performed less than ten unfinished
trials in a session and then the next delay range was
introduced. The delays were introduced consecutively,
with one exception. Due to constraints of the DNMS
program, when the 32 s delay was introduced, the 8 s
delay was removed. Training on the final range of
delays (0, 4, 16, and 32 s) continued for 7 days.

2.4.4.4. Match to sample training. After completion of
DNMS training, rats were run for two additional days
with no delay. On the third day match to sample (MS)
training began. Training was identical to that of NMS,
but the correct response consisted of pressing the lever
that was presented in the sample stage. Each rat was
trained until it reached a criterion of at least 42 correct
out of 48 finished trials on three consecutive days. The
two experimental rooms were counterbalanced between
the groups.
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Fig. 1. Photomicrographs of Gallyas silver-stained coronal sections of brains bearing knife-cut induced lesions of the fimbria-fornix, at the level
where the knives were inserted. Left side: a complete lesion; Right side: an incomplete lesion.

The percent of correct choices per daily session in the
NMS and MS stages, and in each delay on each day
during the DNMS stage was recorded. Arcsinus trans-
formation of the square root of the percent of correct
choices was carried out on the raw data to allow
analysis of variance. The acquisition of the NMS and
MS rules was assessed using two-way ANOVAs with
main factors of room and lesion and a repeated mea-
surements factor of 3 day blocks conducted on the
transformed correct choices. Performance on the final
range of delays was assessed using a two-way ANOVA
with main factors of room and lesion and repeated
measurements factors of delays and days.

2.5. Experimental design

2.5.1. Experiment 1: spontaneous acti6ity
Forty five rats (23 fimbria-fornix-lesioned and 22

sham-operated) were tested in spontaneous activity.
Data of three fimbria-fornix rats were discarded from
statistical analysis after histological confirmation of the
lesioned sites. Thus, the final analysis included 42 rats,
20 fimbria-fornix and 22 sham.

2.5.2. Experiment 2: latent inhibition
The 45 rats from Experiment 1 were tested 1 week

after the completion of the spontaneous activity proce-
dure. They were allocated to four experimental groups
in a 2×2-factorial design with main factors of preexpo-
sure (0, 40) and operation (sham, lesion). Data of three
fimbria-fornix rats were discarded from statistical anal-
ysis after histological examination. Thus, the final anal-
ysis included 42 rats, with the following number of rats
in each condition: NPE-sham 11, PE-sham 11, NPE-
fimbria-fornix 8, PE-fimbria-fornix 12.

2.5.3. Experiment 3: two-way acti6e a6oidance
Forty rats (20 fimbria-fornix and 20 sham) which

participated in Experiments 1 and 2 were tested 2 weeks
after the completion of the LI procedure. Data of two
sham rats were lost due to apparatus failure and data

of two fimbria-fornix rats were discarded from statisti-
cal analysis after histological examination. Thus, the
final analysis included 36 rats, 18 fimbria-fornix and 18
sham.

2.5.4. Experiment 4: delayed-non-match-to-sample
Twenty eight rats (14 fimbria-fornix and 14 sham)

were chosen randomly from the animals which partici-
pated in Experiments 1, 2 and 3, and tested :3 weeks
after the completion of the avoidance procedure. One
fimbria-fornix rat fell ill during training and the data of
two fimbria-fornix rats were discarded from statistical
analysis after histological examination. Thus, the final
analysis included 25 rats, 11 fimbria-fornix and 14
sham.

3. Results

3.1. Anatomical

Fig. 1 shows representative histology in Gallyas sil-
ver-stained coronal sections of knife-cut induced lesions
of the fimbria-fornix, at the level where the knives were
inserted (left side: a complete lesion; right side: an
incomplete lesion). In most lesioned brains, the lesion
to the fimbria-fornix complex was complete; however,
in some cases, there were sections in which the medial
and most ventrolateral parts of the fimbria-fornix were
spared. The most extensive damage to the fimbria-
fornix was seen at the level where the knives were
inserted into the brain, just posterior to the most caudal
level of the anterior commissure. At this level some
damage to the triangular septal nucleus could also be
observed. In addition, damage to the bed nucleus of the
stria terminalis just dorsal to the anterior commissure
was also common. Caudal to the bed nucleus of the
stria terminalis, dorsal parts of the thalamus including
midline, mediodorsal, intralaminar, and anteroventral
thalamic nuclei were frequently damaged. Fiber damage
additional to that of the fimbria-fornix included the
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corpus callosum and the dorsal hippocampal commis-
sure just ventral to the corpus callosum. The cingulum
was typically damaged at the insertion tracks of the
knives. Three animals had the medial part of the
fimbria-fornix intact and were excluded from the final
analyses.

3.2. Beha6ioral

3.2.1. Experiment 1: spontaneous acti6ity
Fig. 2 presents the mean duration of movements in

the fimbria-fornix and sham groups. As can be seen,
activity level declined in both groups as the session
progressed, but the fimbria-fornix animals were more
active than shams throughout the session. One-way
ANOVA with a repeated measurements factor of 6 min
blocks yielded significant effects of blocks F(9,360)=
60.34, PB0.0001 and of the linear, quadratic and cubic
trends of this factor (all PsB0.0001), as well as a
significant main effect of lesion F(1,40)=53.52, PB
0.0001.

3.2.2. Experiment 2: latent inhibition
2×2 ANOVAs conducted on the times to complete

licks 1–50 and 51–75 in the absence of the stimulus,
yielded no significant results. The mean log times to
complete licks 76–100 in the presence of the tone in the
preexposed and nonpreexposed fimbria-fornix and
sham rats are shown in Fig. 3. As can be seen, LI, i.e.,
shorter time to complete licks 76–100 in the preexposed
as compared to the nonpreexposed rats, was evident in
both conditions. This was supported by a 2×2-
ANOVA with main factors of preexposure and lesion,
which yielded only a significant main effect of preexpo-
sure F(1,38)=13.50, PB0.001.

Fig. 3. Means and standard errors of log time to complete licks
76-100 in the presence of the tone in the fimbria-fornix (FF) and
sham-operated preexposed (PE) and nonpreexposed (NPE) groups.

3.2.3. Experiment 3: two-way acti6e a6oidance
There was no difference between the two groups in

the number of crossings during the 30 min session of
exposure to the shuttle box. One-way ANOVA with a
main factor of lesion and a repeated measurements
factor of 5 min blocks yielded only a significant effect
of blocks F(11,374)=32.67, PB0.0001.

Fig. 4 presents the mean number of avoidance re-
sponses in ten trial blocks of the fimbria-fornix and
sham rats. As can be seen, both groups improved with
training but the fimbria-fornix rats showed superior
avoidance performance throughout. One-way ANOVA
with a main factor of lesion and a repeated measure-

Fig. 4. Mean number of avoidance responses in 10 trial blocks of the
fimbria-fornix (FF) and sham-operated rats.

Fig. 2. Mean duration of movement performed by the fimbria-fornix
(FF) and sham-operated rats, presented in 6 min blocks.



I. Weiner et al. / Beha6ioural Brain Research 96 (1998) 59–70 65

Fig. 5. The transformed percent correct choices, in three day blocks,
of the fimbria-fornix (FF) and sham-operated groups during the
acquisition of the NMS (left side) and MS (right side) rules. The
corresponding percent correct choices are presented to the left of the
transformation.

338.23, PB0.0001 and F(1,23)=27.97, PB0.0001, re-
spectively, as well as a nearly significant delay× lesion
interaction F(3,69)=2.66, P=0.055, and a significant
linear trend of this interaction F(1,23)=5.04, PB0.05.

Fig. 5 (right side) presents the transformed percent
correct choices, in 3 day blocks, of the fimbria-fornix
and sham groups during the acquisition of the MS rule
following reversal. As can be seen, fimbria-fornix rats
made less errors than shams in the first block of
training, but as training progressed the two groups
reached similar levels of performance. This was sup-
ported by one-way ANOVA which revealed significant
effects of blocks F(6,138)=151.87, PB0.0001, and of
the linear, quadratic and qubic trends of this factor (all
PsB0.05), as well as a significant blocks× lesion inter-
action F(6,138)=2.95, PB0.01 and a significant linear
trend of this interaction F(1,23)=5.41, PB0.05.

4. Discussion

Fimbria-fornix cut increased spontaneous activity,
facilitated the acquisition of two-way active avoidance,
and produced a delay-dependent deficit in the DNMS
task. These results are in accord with previous studies
of lesions to the hippocampus and related structures

ments factor of ten trial blocks yielded a significant
effect of blocks F(9,306)=45.88, PB0.0001, a signifi-
cant main effect of lesion F(1,34)=56.15, PB0.0001,
and a significant block× lesion interaction F(9,306)=
5.93, PB0.0001.

3.2.4. Experiment 4: delayed-non-match-to-sample
There was no main effect of room nor significant

interactions of this factor with any of the other factors.
Consequently, the data from the two rooms were com-
bined for statistical analyses.

Fig. 5 (left side) presents the transformed percent
correct choices, in 3 day blocks, of the fimbria-fornix
and sham groups during the acquisition of the NMS
rule. As can be seen, both groups improved similarly
with training and reached criterion level of performance
by the end of training. This was supported by one-way
ANOVA which yielded only significant effects of blocks
F(10,230)=69.83, PB0.0001, and of the linear and
qubic trends of this factor F(1,23)=352.53, PB0.0001
and F(1,23)=6.41, PB0.05, respectively.

Fig. 6 presents the transformed percent correct
choices of the fimbria-fornix and sham groups during
the 7 days of training with the final set of delays (0, 4,
16 and 32 s). As can be seen, the performance of both
groups deteriorated as a function of delay, and was at
chance level with the 32 s delay; however, the delay
effect was stronger for the fimbria-fornix group, partic-
ularly at the 4 s delay. These observations were sup-
ported by one-way ANOVA, which revealed significant
effects of delay F(3,69)=141.10, PB0.0001 and of the
linear and quadratic trends of this factor F(1,23)=

Fig. 6. The transformed percent correct choices of the fimbria-fornix
(FF) and sham-operated groups during the 7 days of training with the
final set of delays (0, 4, 16 and 32 s). The corresponding percent
correct choices are presented to the left of the transformation.
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which found increased spontaneous activity [24,44,45,
79,80,86,87,102], but see [107,108], facilitated acquisi-
tion of two-way active avoidance [34,48,49], and a
delay-dependent deficit in DNMS tasks [2–4,21,22,
25,67,70,74,80,84,91,97,102,123,124]. The hippocampal-
like effects exerted by the fimbria-fornix cut in these
three tests indicate that the cut disrupted hippocampal
function.

Enhanced spontaneous activity following hippocam-
pal lesions has been typically attributed to retarded
habituation to the context [24,45,79,80]. Impaired con-
text learning has been also suggested to underlie facili-
tated acquisition of two-way avoidance following
hippocampal lesions [33,72]. Since in two-way avoid-
ance, an animal receives shock in both compartments
of the shuttle box, it can only avoid shock by approach-
ing cues that had been previously associated with
shock. Impaired contextual learning would therefore be
expected to reduce the impact of such cues, thereby
facilitating avoidance acquisition [33,72]. Delay-depen-
dent deficits in DNMS tasks are considered to reflect
impaired working memory, i.e., the capacity to hold
information temporarily ‘on line’ until a behavior is
produced (although the contribution of non-mnemonic
factors to such deficit is not always easily ruled out; see
[21,44,77,102,110]). Thus, the fimbria-fornix cut ap-
pears to have disrupted two main behavioral functions
attributed to the hippocampus, namely, context learn-
ing and working memory.

In addition, the fimbria-fornix cut facilitated reversal
from the NMS to the MS rule. While lesions to the
hippocampus or related structures typically retard re-
versal learning [8,26,46,66,70,71,85,92], but see [22],
there is an important distinction between these tasks
and the present one. Whereas most tasks use reversal of
a specific solution (e.g., reversing the correct and incor-
rect stimuli in discrimination learning tasks), the
present task used reversal of a general rule (i.e., from
the NMS to the MS rule). Reversal deficits exhibited by
hippocampal animals seem to be particularly evident in
the former type of tasks, whereas the ability to acquire
and shift general rules remains relatively intact (e.g.,
[8,22,23,26,66,101], but see [85]). The normal acquisi-
tion of the NMS rule by the fimbria-fornix rats found
in the present study is consistent with this pattern.

In contrast to the clear behavioral effects of the
fimbria-fornix cut in the above tasks, the cut had no
effect on LI, i.e., stimulus preexposed fimbria-fornix
rats, like sham rats, exhibited lower suppression of
drinking than their nonpreexposed counterparts. This
contrasts with the bulk of extant results on the effects
of conventional lesions to the hippocampus and related
structures, which have been found to abolish LI
[1,14,43,51,52,93,94,100,104,121,126]. It should be
pointed out that several studies using conventional
hippocampal lesion found preserved [29] or even facili-

tated [81,82] LI. These results, however, were obtained
using conditioned taste aversion paradigm which differs
from other classical conditioning paradigms. The
present results suggest that disruption of hippocampal
efferents and afferents traversing the fimbria-fornix are
not responsible for the attenuation of LI following
non-selective hippocampal lesions. In particular, given
the evidence pointing to the involvement of the
hippocampal region and the NAC in LI disruption (see
Introduction), it has been suggested that the critical
projections subserving LI are those from the subiculum
through the fimbria-fornix to NAC. Intact LI following
the fimbria-fornix cut is inconsistent with this sugges-
tion. However, there remains a possibility that subicu-
lar output could reach the NAC via a disynaptic
pathway, from the subiculum to the entorhinal cortex
and from the latter to the NAC [56,107,125]. Recent
studies have shown that LI is disrupted by exitotoxic
lesions of the entorhinal cortex and ventral subiculum
[126], as well as by lesions of the shell but not core
subterritory of the NAC [99,118], suggesting that LI
depends on inputs to the NAC shell from the entorhi-
nal cortex and/or ventral subiculum. Since a large
portion of entorhinal projections to the NAC do not
traverse the fimbria-fornix [105] the present results sug-
gest that the critical pathway underlying LI disruption
may be that from the entorhinal cortex to the NAC
shell. Whether subicular output to the entorhinal cortex
plays a role in LI, remains an open question. Interest-
ingly, two recent neural network models of LI have also
suggested that the entorhinal cortex is the critical
hippocampal substructure for LI [32,69,89].

In this context, the possibility that fimbria-fornix cut
disrupts context learning may have interesting implica-
tions for the functional role of the entorhinal and
hippocampal inputs to the NAC in LI. During recent
years, theoretical accounts of LI have stressed its con-
text dependency, namely, dependence on the similarity
of context between preexposure and conditioning (e.g.,
[12,32,63,65,90]). Thus, it is assumed that during preex-
posure, there is learning about the stimulus (accounting
for stimulus specificity of LI) as well as about the
context (accounting for context specificity of LI), and
both types of learning are considered to be subserved
by the hippocampal region [31,32,47,88]. Honey and
Good [47] have provided evidence for the involvement
of the hippocampus proper in the context- but not
stimulus-dependence of LI: they showed that excito-
toxic lesion limited to the major cellular components of
the hippocampus (CA1-CA4) and dentate gyrus spared
LI, while at the same time eliminating its normal con-
text dependence. Thus, whereas in normal animals, LI
is disrupted by context change between preexposure
and conditioning, in lesioned animals LI was resistant
to such context-change. Recently we have obtained
similar results with electrolytic NAC lesion, that is, this
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lesion spared LI but eliminated its context dependence
(unpublished observations). This leads us to speculate
that information about the context in LI encoded by
the hippocampus is transmitted to the NAC via the
fimbria-fornix, whereas the information about the stim-
ulus reaches the NAC (shell) via a different pathway.
Given the evidence that LI is dependent on the entorhi-
nal cortex and the NAC shell, the pathway likely to
carry stimulus information in LI is that from the en-
torhinal cortex to the NAC shell. This possibility is
consistent with a recent finding that lesion to the
fimbria-fornix but not the entorhinal cortex, disrupted
contextual conditioning [78]. It follows from the above
that spared LI following fimbria-fornix lesion should be
context-independent, i.e., resistant to context shift, sim-
ilarly to spared LI following axon sparing lesion to the
hippocampus.

The above suggestion may be of interest given the
fact that disrupted LI is considered to provide an
animal model of schizophrenia. There is increasing
evidence that pathology in temporolimbic structures is
an essential feature of schizophrenia (e.g., [5,9–
11,13,15,17,58]), and this pathology has been suggested
to underlie LI disruption observed in schizophrenic
patients [35,116]. However, the fact that LI is appar-
ently disrupted following damage to some limbic struc-
tures (excitotoxic lesion of entorhinal cortex), but not
to others (excitotoxic lesion of the hippocampus,
fimbria-fornix damage), suggests that the relationship
between limbic pathology and LI disruption is not
simple, and that such pathology may result in disrupted
or in potentiated (context-independent) LI. This may
explain the inconsistent findings which have emerged
with regard to LI (disruption versus lack of thereof) in
different studies testing this phenomenon in
schizophrenic patients [6,20,36,38,98,106].
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