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ABSTRACT Behavioral models of antipsychotic drug (APD) action in the rat are widely used for the
screening and developing APDs. Valid models are not only required to be selective and specific for APDs,
but also to be able to dissociate between typical and atypical APDs. In recent years, newer models have
been developed that are claimed to model processes impaired in schizophrenic patients. However, these
models depend on previous administration of propsychotic drugs for revealing the effects of APDs, rais-
ing the possibility that the “model” of APD action is not the specific behavior assessed but the administra-
tion of the propsychotic drug. A valid behavioral model of APD action should posses the following
characteristics: 1) The behavior assessed in the model has relevance to the clinical condition; 2) The
behavioral paradigm used to index the action of APDs can be used in rats and humans. 3) The model is
selective and specific to APDs differing in their in vitro and in vivo pharmacology. 4) The model can
dissociate between typical and atypical APDs. and 5) The model does not require previous pharmacologi-
cal manipulations to manifest the behavioral index of antipsychotic activity. In this overview, data are
summarized showing that the latent inhibition (LI) model of APD action, which measures a cognitive
process known to be impaired in schizophrenia, namely, the ability to ignore stimuli that had been incon-
sequential in the past, fulfills all of the above criteria. The utility of the LI model can be further extended
when it is combined with the forced swim test (FST) model, which is sensitive to the antidepressant-like
activity of the atypical APDs, such that the combined LI-FST model can dissociate between typical APDs,
atypical APDs, and antidepressants. Finally, the use of the LI model alone or in combination with FST in
rats that sustain lesions or other physiological manipulations (e.g., stimulation) to specific brain regions
may provide clues as to the relationship between the effects of these drugs and the site of brain damage,
and possibly reveal differential effects of typical and atypical APDs, depending on the site of the damage.
Drug Dev. Res. 50:235–249, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

The common feature of all currently used antipsy-
chotic drugs (APDs) is the blockade of the dopamine (DA)
D2 receptor subfamily. Although this action is apparently
responsible for their antipsychotic activity, it also induces
extrapyramidal side effects (EPS). Based on the clinical
features of clozapine, which produces less or no EPS
without losing antipsychotic efficacy, much effort has been
invested for more than a decade in developing additional
APDs that fulfill these criteria. As a result, APDs are cur-
rently divided into two groups—typical and atypical.
There are several criteria for this distinction, extensively
reviewed elsewhere [Brunello et al., 1995; Kinon and
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Lieberman, 1996; Arnt and Skarsfeldt, 1998]. The most
commonly accepted criteria for atypicality are a reduced
capacity to cause EPS (resulting in a large difference
between the dosages that control psychosis and induce
EPS), superior therapeutic efficacy for negative symp-
toms/treatment-resistant schizophrenic symptoms, and
a reduced capacity to induce catalepsy in rodents.

In addition, atypical APDs can be characterized by
limbic versus nigrostriatal DA selectivity, and most have
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a broad receptor profile, including effects on DA recep-
tors (D1, D2, D3, D4, D5), serotonin receptors (5-HT2A,
5-HT2C), α1-adrenoreceptors, muscarinic receptors, and
histamine receptors. It is largely accepted that although
D2 occupancy is required for antipsychotic activity, mixed
DA2–5-HT2 antagonism is the common feature of atypi-
cal APDs that is responsible for the improved antipsy-
chotic efficacy/EPS ratio of these compounds [e.g.,
Meltzer, 1989; Leysen et al., 1993; Brunello et al., 1995;
Schotte et al., 1996; Arnt and Skarsfeldt, 1998]. How-
ever, the distinction between typical and atypical APDs
is far from clear-cut, because atypical compounds differ
markedly in their receptor affinity patterns and their rela-
tive affinities for the same receptor sites, and some typi-
cal compounds possess a wide receptor profile. The
problem is compounded by the ongoing debate regard-
ing the validity of the positive–negative symptom di-
chotomy in schizophrenia, the definition of negative
symptoms (primary or deficit versus secondary), and the
relative efficacy of typical versus atypical APDs in the
treatment of negative symptoms [e.g., Carpenter et al.,
1988; Kay and Singh, 1989; Tandon et al., 1990; Kane,
1995; Tandon, 1995; King, 1998].

Behavioral models of antipsychotic activity in the
rat are widely used for screening and developing APDs,
as well as for elucidating their mechanism of action. Cur-
rently, valid models are not only required to be selective
and specific for APDs, but also to be able to dissociate
between typical and atypical APDs.

One feature that distinguishes between the differ-
ent models that is commonly disregarded but is of cen-
tral importance is their dependence on pharmacological
means for revealing APD effects. Thus, two major classes
of models can be delineated: those that use APDs in com-
bination with other (usually “propsychotic,” but see be-
low) drugs (pharmacological or drug–drug models), and
those that test the effects of APDs given on their own
(nonpharmacological models). The former category in-
cludes the classic model of the inhibition of hyperactiv-
ity and stereotypy induced by DA agonists/releasers, e.g.,
apomorphine and amphetamine, as well as a more re-
cent version that uses the noncompetitive N-methyl-D-
aspartate (NMDA) antagonists, phencyclidine (PCP) or
dizocilpine (MK-801). These models have allowed a dif-
ferentiation between typical and atypical APDs, e.g., the
former inhibit hyperactivity and stereotypy induced by
DA drugs and induce catalepsy at similar dose levels,
whereas the latter selectively inhibit hyperactivity with-
out affecting stereotypy and catalepsy; however, also in
this model, atypical compounds exhibit different behav-
ioral profiles that apparently depend on their specific
receptor profiles [Arnt and Skarsfeldt, 1998].

In addition to these classic models, newer models
have been developed that are claimed to model processes

impaired in schizophrenic patients, and have the capac-
ity to dissociate between typical and atypical APDs, no-
tably, apomorphine-, PCP-, or MK-801-induced deficits
in prepulse inhibition (PPI) [Hoffman et al., 1993;
Swerdlow and Geyer, 1993; Bakshi et al., 1994; Swerdlow
et al., 1994; Bakshi and Geyer 1995], and PCP- or MK-
801-induced deficits in social interactions [Corbett et al.,
1993, 1995; Sams-Dodd 1996, 1997]. Although the latter
models have an obvious advantage of clinical relevance
and the appeal of face and even construct validity, which
may account for their growing popularity, their depen-
dence on propsychotic drug administration has two re-
lated drawbacks: First, such models are likely to reveal
only antipsychotic action that is mediated via neurotrans-
mitter systems affected by the challenge drug. Second, it
raises the possibility that the “model” of APD action is
not the specific behavior assessed but the administration
of the propsychotic drug. Although this by itself is legiti-
mate, it should alert us to the questionable germaneness
of the behavioral aspect of the models.

For example, in the PPI model, reversal of apomor-
phine-induced disruption does not dissociate between
typical and atypical APDs, but reversal of NMDA an-
tagonist-induced disruption apparently does [although
conflicting results have been reported; Johansson et al.,
1994; Hoffman et al., 1993; Varty and Higgins, 1995],
suggesting that behavioral PCP effects in general rather
than disrupted PPI in particular are selectively sensitive
to atypical APDs. The latter is supported by the findings
that two additional PCP-based behavioral models, namely,
social interaction and forced swim test (FST) [Noda et
al., 1995] dissociate between typical and atypical APDs.
One way to improve such models would be to show that
the behavioral deficit alleviated by atypical APDs is it-
self selective and specific for one class of propsychotic
drugs. This might be the case for the social interaction
model in the rat, in which PCP but not amphetamine
produces social isolation [Corbett et al., 1995; Sams-
Dodd, 1996; although amphetamine was shown to pro-
duce social isolation, reversible by clozapine, in Java
monkeys, Ellenbroek et al., 1996].

Finally, we will comment on an additional aspect of
the “clinically relevant” drug–drug behavioral models that
has not received attention. Because these models aspire
to posses not only predictive validity (e.g., the capacity
to predict drug effects), but also construct validity (e.g.,
commonality of underlying mechanisms in the model and
the modeled disorder) [Willner, 1991], the deficit-induc-
ing drugs must be propsychotic in humans. Apomorphine
does not fulfill this criterion because, as opposed to am-
phetamine and PCP, this drug does not produce psychotic
symptoms in humans. It is therefore surprising that the
most widely used model, PPI disruption, has been based
for years on apomorphine administration, while having
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difficulties in showing disruption by amphetamine (which
is obtained only with high, stereotypy-producing doses).

Purely behavioral models of APD action include
those assessing the unconditioned effects of APDs on be-
havior, such as catalepsy or vacuous chewing movements,
as well as those assessing APD effects on a wide range of
conditioned behaviors such as avoidance, operant respond-
ing, water maze, delayed nonmatch to position, learned
helplessness, conditioned fear responses, etc. [e.g., Iversen
et al., 1980; Janssen et al., 1988; Glenthoj and Hemming-
sen, 1989; Moore et al., 1992; Ogren et al., 1984, 1994;
Wiley et al., 1993; Didriksen, 1995; Sanger and Perrault,
1995; Seeger et al., 1995; Skarsfeldt, 1996]. Although such
models are free of the problems associated with the pre-
requisite of previous drug administration noted above, their
disadvantage lies in the lack of obvious relevance to the
clinical condition [Worms et al., 1983; Arnt and Skarsfeldt,
1998], or at least, the lack of sufficiently rigorous theoreti-
cal attempts to establish such a relevance. Indeed, Arnt
and Skarsfeld [1998] noted that it is not clear which hu-
man cognitive functions correspond to the learning and
cognitive functions assessed in the various behavioral
models. Although such correspondence can be deduced,
undoubtedly the best solution to this problem is to de-
velop rodent models that are based on behavioral para-
digms that can be used in both rats and humans and that
can be shown to behave similarly in both species, as well
as to exhibit parallel abnormalities in the rat model and in
the modeled disorder. If these criteria are fulfilled, specific
and selective effects exerted by APDs in such models offer
an additional advantage, namely, they allow the elucidation
of the neural and cognitive mechanisms that are directly
(e.g., without previous pharmacological manipulation) modi-
fiable by APDs. This in turn may promote the understand-
ing of their clinical action and the development of drugs
that modify critical cognitive processes while not necessar-
ily acting via the same neural mechanisms.

In view of the above, a valid behavioral model of
APD action should possess the following characteristics:

1. The behavior assessed in the model has relevance
to the clinical condition; simply put, a valid ani-
mal model of APD action should be a valid ani-
mal model of schizophrenia, and ideally, one that
possesses face, construct, and predictive validity.

2. The behavioral paradigm used to index the ac-
tion of APDs can be used in rats and humans.

3. The model is selective and specific to APDs dif-
fering in their in vitro and in vivo pharmacology.

4. The model can dissociate between typical and
atypical APDs.

5. The model does not require previous pharmaco-
logical manipulations to manifest the behavioral
index of antipsychotic activity.

6. The model can shed light on the mechanisms of
action of APDs.

The latent inhibition (LI) model of antipsychotic
drug action developed in our laboratory has aimed at ful-
filling the above criteria.

LATENT INHIBITION

Many experiments in the field of animal learning
have demonstrated that conditioning to a stimulus de-
pends not merely on its current relationship with a rein-
forcer, but is affected by an animal’s past experience with
that stimulus. Latent inhibition (LI) is one case of such a
general biasing effect of past experience: it indexes the
deleterious effects of nonreinforced stimulus preexposure
on the subsequent conditioning to that stimulus. LI is
considered to index organisms’ capacity to ignore insig-
nificant stimuli, and as such has become of increasing
interest to neuroscientists studying the neural processes
underlying stimulus selectivity and competition between
conflicting associations as well as modeling disorders in
which such capacity is impaired, such as schizophrenia
[Gray et al., 1991; Lubow, 1973, 1989; Lubow et al., 1981;
Weiner, 1990, in press; Weiner and Feldon, 1997].

Although a variety of behavioral tasks and condi-
tioning procedures are used to demonstrate LI, all of them
share the basic procedure: In the first stage (preexposure),
subjects from one group are repeatedly exposed to a stimu-
lus that has no consequences, whereas the second group
does not receive the stimulus. The preexposed stimulus
is then used as a signal of a target event (e.g., reinforce-
ment) for all subjects in the second stage (conditioning).
LI consists of the fact that previous learning that a stimu-
lus is inconsequential interferes with the expression of
subsequent learning that the same stimulus predicts a sig-
nificant consequence, which is manifested in poorer learn-
ing of the stimulus–target event association of the
preexposed compared to the nonpreexposed group.

LI can be demonstrated in many different behav-
ioral procedures, and in many mammalian species, in-
cluding humans [Lubow, 1973, 1989; Lubow et al., 1981;
Lubow and Gewirtz, 1995]. An extensive review of hu-
man LI data has concluded that LI is similar (e.g., sensi-
tive to the same manipulations) in humans and animals,
and can be viewed as reflecting the operation of analo-
gous processes across species [Lubow and Gewirtz, 1995].

LATENT INHIBITION MODEL OF SCHIZOPHRENIA

The LI model of schizophrenia was introduced by
Solomon et al. [1981] and Weiner et al. [1981, 1984, 1988],
who proposed that disrupted LI may provide an animal
model of the widely described failure of schizophrenic
patients to ignore irrelevant stimuli [e.g., Bleuler, 1911;
Kraepelin, 1919; McGhie and Chapman, 1961; Oades,
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1982; Gjerde, 1983; Nuechterlein and Dawson, 1984;
Venables, 1984; Anscombe, 1987; Cornblatt et al., 1989].
Given that the predominant hypothesis regarding the
pathophysiology of schizophrenia stated that excessive DA
neurotransmission in the forebrain contributes to schizo-
phrenia [Snyder, 1976; Meltzer and Stahl, 1976], these
authors showed that rats treated with the DA releaser
amphetamine, which produces and exacerbates psychotic
symptoms in humans, fail to show LI, i.e., learn about the
preexposed stimulus as if it were novel. Solomon and
Staton [1982] further showed that the locus of amphet-
amine-induced disruption of LI was the nucleus
accumbens (NAC), the target of the mesolimbic DA sys-
tem. This finding established an animal model that com-
bined the most prominent neurochemical dysfunction
implied in schizophrenia, and a widely described cogni-
tive dysfunction of this disorder. The original demonstra-
tion of amphetamine-induced LI disruption has been often
replicated [e.g., De la Casa et al., 1993a; Killcross and
Robbins, 1993; Killcross et al., 1994a; Gosselin et al., 1996;
Moran et al., 1996; Ruob et al., 1997; Weiner et al., 1996b,
1997a, 1997c]. Importantly, LI disruption is restricted to
DA enhancement produced by low doses of amphetamine:
high doses of this drug, as well as direct DA agonists such
as apomorphine, leave LI intact [Weiner et al., 1987c;
Feldon et al., 1991]. The extension of the LI model to the
clinic has shown that LI is disrupted in acutely psychotic
schizophrenic patients tested within the first weeks of the
current episode of illness or being in an acute phase of an
otherwise chronic disorder [Baruch et al., 1988a; Gray et
al., 1992a, 1995a]. The initial study has also shown, using
repeated testing in the same patients, that LI is absent in
the first 2 weeks of a schizophrenic episode and is re-
stored to more or less normal levels after 7–8 weeks of
neuroleptic treatment. Interestingly, normal or even re-
instated LI is found in some subsets of schizophrenic pa-
tients [Gray et al., 1995a; Swerdlow et al., 1996; Williams
et al., 1998]. Second, it was shown that amphetamine-
treated normal humans, like amphetamine-treated rats,
are incapable of ignoring the preexposed stimulus [Gray
et al., 1992b; Thornton et al., 1996]; moreover, as in the
rat, this effect shows an inverse dose dependency in hu-
mans, with low but not high dose abolishing LI. In addi-
tion, it was shown that normal humans scoring high on
questionnaires measuring schizotypy show reduced LI
relatively to subjects with low schizotypy scores [De la
Casa et al., 1993b; De la Casa and Lubow, 1994; Vaitl and
Lipp, 1997; Baruch et al., 1988b; Braunstein-Bercovitz
and Lubow, 1998; Della Casa et al., 1999]. These results
strengthened the likelihood that the LI effect observed in
the two species is indeed functionally and pharmacologi-
cally the same phenomenon.

Subsequent studies using systemic and intracere-
bral drug administration, in vivo microdialysis, c-fos im-

munohistochemistry, and lesions have supported the in-
volvement of the dopaminergic system and in particular
the NAC as well as of two major sources of input to the
NAC, the hippocampus and the entorhinal cortex, in LI
[Solomon and Staton, 1982; Christiansen and Schmajuk,
1993; Young et al., 1993; Honey and Good, 1993; Tai et
al., 1995; Yee et al., 1995; Sotty et al., 1996; Weiner et al.,
1996a, 1999; Gray et al., 1997; Coutureau et al., 1999, in
press; Holt and Maren, 1999; Joseph et al., in press; for
reviews, see Weiner, 1990; Gray et al., 1995b; Weiner
and Feldon, 1997; Weiner, in press]. This has been taken
as further support for the validity of the LI model be-
cause it is consistent with the temporal lobe and
mesolimbic DA pathology implicated in schizophrenia
[e.g., Weinberger, 1987; Csernansky et al., 1991]. Impor-
tantly, lesion studies showed that LI can exhibit two op-
posite poles of abnormality, namely, to be disrupted under
conditions that produce it in normal rats, and to persist
under conditions that disrupt it in normal rats. The two
aberrations, which can be seen as reflecting attentional
overswitching and attentional perseveration, follow le-
sions to the two NAC subregions, shell and core, with
the former disrupting LI and the latter leading to persis-
tent LI [Weiner et al., 1999; Gal, 2000], and the same
dissociation is found between the effects of cell lesions
to the entorhinal cortex [LI disruption; Yee et al., 1995;
Coutureau et al., 1999, in press] and the hippocampus
[LI persistence; Honey and Good, 1993; Holt and Maren,
1999; see Weiner and Feldon, 1997; Weiner, in press]. LI
also had been shown to be sensitive to manipulations of
the serotonergic system [Asin et al., 1980; Solomon et
al., 1978, 1980; Cassaday et al., 1993b], and the interest
in the role of this system in LI has been recently renewed
in the context of research on atypical APDs [Cassaday et
al., 1993a; Hitchcock et al., 1996; Moser et al., 1996]. Fi-
nally, consistent with a neurodevelopmental hypothesis
of schizophrenia [e.g., Weinberger and Lipska, 1995], LI
was shown to be sensitive in an age- and gender-depen-
dent manner to environmental and lesion manipulations
during the vulnerable period of neonatal development
[e.g., Grecksch et al., 1999; Shalev et al., 1998; Weiner et
al., 1987b].

LATENT INHIBITION MODEL OF
ANTIPSYCHOTIC DRUG ACTION

Latent Inhibition Procedure

The Tel-Aviv laboratory measures LI in an off-
baseline conditioned emotional response (CER) proce-
dure using water licking as the operant response. The LI
procedure consists of three stages, each given on a dif-
ferent day: preexposure, in which the stimulus pre-
exposed (PE) group receives a series of tones while the
other, nonpreexposed (NPE) group spends an equivalent
amount of time in the operant chamber without receiv-
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ing the stimuli; conditioning, in which all of the rats re-
ceive a predetermined number of tone-footshock pair-
ings; and test, in which the magnitude of conditioning to
the tone is assessed in all rats by the degree of suppres-
sion of drinking during tone presentation. LI consists of
the fact that the PE rats show a significantly lower sup-
pression of drinking than their NPE counterparts.

Before the beginning of the LI procedure rats are
trained to lick in the experimental chambers (baseline).
Preexposure and conditioning are conducted 24 h apart
and are given “off-baseline”, namely, rats have no access
to water. In addition, we interpolate a day of drinking
(re-baseline) between conditioning and test. Drugs are
administered in preexposure and/or conditioning only.
The advantage of the off-baseline CER procedure is that
the rat is not required to perform an overt response dur-
ing preexposure and conditioning, and this allows eluci-
dation of drug effects on LI unconfounded with their
motor effects. In addition, because the test is removed
from the stages of drug administration and is conducted
without drugs, the effects of drugs are confined to the
preexposure and/or conditioning stages. Most of the stud-
ies investigating the effects of APDs on LI use the CER
procedure, typically very similar to that established at
the Tel-Aviv laboratory, or a two-way active avoidance
procedure, in which LI is reflected in poorer avoidance
learning of the PE as compared to the NPE rats.

Reversal of Amphetamine-Induced Latent
Inhibition Disruption

Both typical and atypical APDs reverse amphet-
amine-induced disruption of LI [Solomon et al., 1981;
Warburton et al., 1994; Weiner et al., 1994; Gosselin et
al., 1996; Moran et al., 1996; Moser et al., 1996]. Indeed,
because LI disruption is obtained with low but not high
doses of amphetamine, it is apparently well suited to pick
up the effects of atypical APDs, which inhibit selectively
the effects of low but not high amphetamine doses [Arnt,
1995; Arnt and Skarsfeldt, 1998]. Although the demon-
stration of such a reversal may be considered as a neces-
sary requirement for the LI model of schizophrenia, and
would be considered by many as a valid model of APD
action, this is a drug–drug model, and as such has all the
disadvantages of such models detailed above. Our aim
was to establish whether the LI model can detect antip-
sychotic potential without requiring previous pharma-
cological manipulations.

Latent Inhibition Potentiation

We were the first to show that haloperidol (0.1 mg/
kg, a dose that selectively blocks D2 receptors), given on
its own, produces in LI a mirror effect of amphetamine,
namely, potentiates the phenomenon. Using 40 tone
preexposures and 2 conditioning trials, we showed that

following haloperidol administration in both the pre-
exposure and conditioning stages, the preexposure effect
was significantly larger in haloperidol-treated compared
to nontreated controls. Moreover, we showed that halo-
peridol potentiated LI also under conditions that did not
yield LI in controls. For this, we reduced the number of
preexposures to a level that did not produce LI in controls
(10), and showed that haloperidol given in both stages pro-
moted the expression of the preexposure effect under this
condition, yielding LI [Weiner and Feldon, 1987].

Further studies showed that haloperidol-induced
potentiation of LI is obtained also with repeated (5, 7,
and 14 days) administration, and that doses of haloperi-
dol that potentiated LI corresponded with their clinical
potency [Christison et al., 1988; Dunn et al., 1993]. More-
over, Dunn et al. [1993] showed that LI enhancement
with low number of preexposures is specific and selec-
tive for structurally diverse drugs with known antipsy-
chotic efficacy and is not produced by a wide range of
nonantipsychotic drugs. These authors concluded that
“there is no animal model that better fulfills the criteria
for predictive validity for antipsychotic effects” (p. 321).
However, the Dunn et al. study yielded one false nega-
tive, namely, clozapine. Although this finding threatened
to undermine the validity of the LI model and to limit
considerably its utility as a screening tool for detecting
antipsychotic potential of drugs, we and others have
shown that clozapine produces in the LI model the two
effects characteristic of typical APDs, namely, antagonizes
amphetamine-induced disruption of LI and potentiates
LI after low number of preexposures [Moran et al., 1996;
Weiner et al., 1996b; Trimble et al., 1998; Shadach et al.,
1999, in press]. LI potentiation with low number of
preexposures has been shown for additional typical and
atypical APDs as well as for putative antipsychotic agents
[Feldon and Weiner, 1991; Weiner et al., 1992, 1994;
Killcross et al., 1994b; Trimble et al., 1997; Gracey et al.,
2000; Millan et al., 2000a, 2000b]. We have designed an
additional LI procedure that reveals APD-induced po-
tentiation, namely, one that uses a conventional number
of preexposures (40) followed by a high number of con-
ditioning trials (5). With these parameters, control rats
do not display LI, whereas rats treated with haloperidol
or clozapine do [Weiner et al., 1997b, Shadach et al., 1999,
in press].

Studies assessing APD potentiation typically use
drug administration in both the preexposure and condi-
tioning stages. However, because LI involves the acqui-
sition of two independent contingencies in preexposure
(stimulus–no event) and conditioning (stimulus–rein-
forcement) [Weiner, 1990], a given drug can affect LI via
preexposure, via conditioning, or via both, and may even
exert opposite effects on LI in each of the stages (see
next section). Consequently, the elucidation of the mecha-
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nism/site of action of the drugs, and more importantly,
the dissociation between the actions of different drugs,
requires drug administration confined to each of the
stages. Guided by this approach, we showed that halo-
peridol-induced potentiation of LI does not occur in the
preexposure stage. Thus, rats preexposed under haloperi-
dol but conditioned without it, showed a normal,
nonpotentiated LI effect [Weiner et al., 1987a]. This was
interpreted by us to imply that haloperidol does not af-
fect the acquisition of the stimulus–no event contingency
in preexposure, but promotes the expression of this con-
tingency in conditioning [Weiner, 1990]. Consistent with
the latter suggestion, Peters and Joseph [1993] showed
that after low number of preexposures that did not pro-
duce LI in controls, administration of haloperidol con-
fined to conditioning, led to the emergence of LI.
Likewise, we showed that with 40 preexposures and 5
conditioning trials, rats treated with haloperidol or
clozapine only in conditioning persisted in showing LI
[Weiner et al., 1997b]. We have recently tested [Shadach
et al., 1999] the effects of clozapine (2.5, 5, and 10 mg/kg)
on LI using the two sets of parameters that do not yield
LI in control rats (10 preexposures and 2 conditioning
trials and 40 preexposures and 5 conditioning trials), and
what we call a “drug–no drug design”, namely, clozapine
administration in either the preexposure stage, the con-
ditioning stage, or in both. As expected, no LI was evi-
dent in vehicle-treated rats under both sets of parameters.
Likewise, no LI was evident in rats that received cloz-
apine only in the preexposure stage. In contrast, with
the exception of the low dose at the 40 PE + 5 trials
condition, clozapine administered in the conditioning
stage, irrespective of drug condition in preexposure, led
to the emergence of LI. These results demonstrated con-
clusively that the site of APD-induced LI potentiation is
the conditioning stage [for theoretical implications, see
Weiner, 1990, in press; Weiner and Feldon, 1997].

The most likely neural mechanism underlying the
LI potentiating effect is blockade of D2 receptors, which
is shared by typical and atypical APDs. However, clozapine
produces weaker D2 blockade compared to typical APDs
[Meltzer, 1989; Brunello et al., 1995; Kinon and Lieberman,
1996; Arnt and Skarsfeldt, 1998], indicating that low D2
receptor occupancy suffices for LI potentiation, as it suf-
fices for an antipsychotic action. As for the neural site of
DA blockade that subserves LI potentiation, Gray et al.
[1997] and Joseph et al. [in press] showed that the LI po-
tentiating effect of haloperidol is mediated via the NAC:
After 10 preexposures, NAC vehicle-injected rats did not
show LI, whereas an intra-accumbens injection of halo-
peridol led to the emergence of LI. Intra-accumbens in-
jection of haloperidol also reversed the disruption of LI
caused by systemic amphetamine administration. Impor-
tantly, both the potentiating and the amphetamine-revers-

ing effects were obtained with haloperidol injection con-
fined to the time of conditioning.

Finally, the extension of this line of research to nor-
mal humans has shown that, like in the rat, LI is potenti-
ated by haloperidol [Williams et al., 1996, 1997],
supporting the commonality of underlying cognitive and
neural mechanisms in the two species.

Dissociation Between Typical and Atypical
Antipsychotic Drugs in the Latent Inhibition Model

Extending our approach of manipulating preex-
posure and conditioning parameters in combination with
drug–no–drug administration regimen, we have recently
demonstrated that the LI model can dissociate between
typical and atypical APDs [Shadach et al., in press]. Our
experiments were based on the following rationale.

While atypical APDs are characterized by a broad
receptor profile, their mixed D2–5-HT2 receptor antago-
nism has been the feature most often suggested to ac-
count for their greater antipsychotic efficacy in general,
and their efficacy in improving negative symptoms in par-
ticular [e.g., Meltzer, 1989; Leysen et al., 1993; Brunello
et al., 1995; Schotte et al., 1996; Arnt and Skarsfeldt,
1998]. The serotonergic component of atypicality is par-
ticularly relevant to LI, because LI is disrupted by brain
serotonin depletion [Asin et al., 1980; Cassaday et al.,
1993b; Lorden et al., 1983; Solomon et al., 1978, 1980],
as well as by systemic administration of the 5-HT2 an-
tagonist, ritanserin [Cassaday et al., 1993a]. In spite of
this, there has been no evidence that atypical APDs dis-
rupt LI. Because serotonergic antagonists disrupt LI
when given in both the preexposure and conditioning
stages [Cassaday et al., 1993a], and atypical APDs poten-
tiate LI when given in conditioning but not when given
in preexposure [Weiner et al., 1997b; Shadach et al., 1999],
it follows that if atypical APDs disrupt LI via serotoner-
gic antagonism, the site of such an effect must be the
preexposure stage; in addition, it is clear that the dem-
onstration of LI disruption requires the use of pre-
exposure and conditioning parameters, which yield LI
in controls.

We therefore tested the effects of haloperidol (0.1
mg/kg) and clozapine (5 mg/kg), as well as of the selec-
tive 5-HT2 antagonist, ritanserin (0.6 mg/kg), on LI, us-
ing two sets of conditions: 40 preexposures and 5
conditioning trials, which do not lead to LI in control
rats, and 40 preexposures and 2 conditioning trials, which
produce LI in normal rats. We predicted and showed that:

1. With parameters that did not yield LI in con-
trols, both haloperidol and clozapine were with-
out an effect when administered in preexposure
and potentiated LI when administered in con-
ditioning and in both stages, whereas ritanserin
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was ineffective in all three administration con-
ditions.

2. With parameters that led to LI in controls, halo-
peridol was without an effect in all three admin-
istration conditions; clozapine had no effect when
administered in conditioning and in both stages
but disrupted LI when administered in pre-
exposure; ritanserin had no effect when admin-
istered in conditioning but disrupted LI when
administered in preexposure and in both stages
[Shadach et al., in press].

These results provided the first demonstration that
clozapine disrupts LI when given in preexposure. As for
the mechanism of this disruptive action, it cannot stem
from DA blockade, because DA mechanisms are not in-
volved in preexposure; because the preexposure-based
disruptive effect was also exerted by the selective 5-HT2
antagonist ritanserin, it is likely that clozapine-induced
disruption is 5-HT2 mediated. In addition, the fact that
clozapine disrupted LI via preexposure but spared LI
when administered in both stages indicates that
clozapine’s action in conditioning overrode its disrup-
tive effect in preexposure, implying that the 5-HT2 and
DA2 antagonistic actions of clozapine compete in LI, and
that the manifestation of such a competition is depen-
dent on the parameters of the LI procedure. In addition,
because the relative potency of the two actions are dose
dependent, with 5-HT2 receptor occupancy predominat-
ing at lower doses and DA2 receptor occupancy occur-
ring at higher doses [Schotte et al., 1996], the effects of
clozapine and other atypical APDs on LI should be dose
dependent. Thus, depending on the parametric condi-
tions and doses of clozapine, the serotonergic compo-
nent should be able to override the dopaminergic
component, or vice versa, leading to either potentiated
LI, intact LI, or disrupted LI. This may explain why
clozapine-induced potentiation of LI is obtained within
a relatively narrow dose range [Moran et al., 1996; Trimble
et al., 1998].

We have now completed experiments with addi-
tional doses of clozapine and haloperidol and with addi-
tional atypical APDs, which replicated the selective
preexposure-based LI-disrupting capacity of atypical
APDs and in addition, supported the notion that the ef-
fects of these drugs when administered in both
preexposure and conditioning depend on their 5-HT2–
DA2 ratio [unpublished data].

LATENT INHIBITION FORCED-SWIM TEST MODEL

Driven by the interest to develop screening tests
that can dissociate between typical and atypical APDs as
well as by our emerging concept that such a dissociation
can be best achieved by determining patterns of behav-

ioral drug action rather than isolated effects on one be-
havioral test, we have recently begun to investigate the
potential of the FST. FST is the most widely used rat
model of depression in which immobility is considered
to reflect a state of despair in the rat [Porsolt et al., 1977].
Our interest in this model has stemmed from several
sources:

1. It has been noted often that negative symptoms
overlap with depressive symptoms [Linden-
mayer and Kay, 1989; Bermanzohn and Siris,
1992; Rao and Moller, 1994; Malla, 1995; Collins
et al., 1996; Sax et al., 1996].

2. Atypical APDs such as clozapine and olanzapine,
which display a superior efficacy in the treatment
of negative symptoms, have an antidepressant
activity [Ranjan and Meltzer, 1996; Tollefson et
al., 1998], suggesting that antidepressant-like
action may distinguish atypical from typical
APDs.

3. This difference between the two classes of drugs
in the clinic appears to be paralleled by their
effects in the FST: thus, the typical APD, halo-
peridol, increases immobility, whereas the atypi-
cal APD clozapine either has no effect or
decreases immobility [Browne, 1979; Borsini et
al., 1984; Gorka and Janus, 1985; Kawashima et
al., 1986].

4. Noda et al. [1995] showed that PCP-induced in-
crease in immobility was reversed by atypical
but not by typical APDs, and suggested that this
can serve as a model of negative symptoms.

The above suggests that the FST model has a ca-
pacity to differentiate between typical and atypical APDs;
however, it cannot dissociate between atypical APDs and
antidepressant drugs, whose ability to decrease the du-
ration of immobility is well established [e.g., Porsolt et
al., 1977; Detke et al., 1995; Noda et al., 1997; Page et al.,
2000]. Because LI potentiation is selective and specific
for APDs, we reasoned that a combined FST–LI model
could provide a tool that can dissociate between typical
APDs, atypical APDs, and antidepressants. After pilot
studies that showed that the FST can, in our experience,
differentiate between clozapine and haloperidol, we
tested haloperidol (0.1 mg/kg), clozapine (2.5 mg/kg), and
the classic antidepressant imipramine (10 mg/kg) in the
FST and in the LI procedure with 40 preexposures and
5 conditioning trials. We predicted and found that:

1. Haloperidol increased immobility in the FST and
potentiated LI.

2. Clozapine decreased immobility in the FST and
potentiated LI
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3. Imipramine decreased immobility in the FST
while having no effect on LI [unpublished data].

These results indicate that the combined LI–FST
model may indeed have the potential to differentiate be-
tween the three classes of drugs. Clearly, this has to be
tested with additional doses and drugs, particularly ad-
ditional antidepressants, because to date only imipramine
has been tested in LI.

LESION-BASED MODELS

Lesion-based models have an advantage over phar-
macological models in that they provide more precise
information (compared to systemic drug administration)
on the site of the damage that leads to the behavioral
aberration alleviated by the APD treatment, although it
should be borne in mind that such models do not pro-
vide information on the site at which the drugs act to
reverse the deficit. To date, LI disruption produced by
different lesions (i.e., conventional hippocampal lesion,
excitotoxic entorhinal cortex lesion, and electrolytic shell
lesion) has been shown to be reversible with haloperidol
[Christiansen and Schmajuk, 1993; Yee et al., 1995;
Weiner et al., 1996a]. Because behavioral deficits that are
blocked by a typical APD are likely to be blocked also by
atypical APDs, one could expect that lesion-induced LI
disruptions would not to be suitable to serve as models
that dissociate between the two classes of drugs. How-
ever, Coutureau et al. [in press] have reported that LI
disruption caused by an excitotoxic entorhinal cortex le-
sion was reversed by olanzapine but not by haloperidol,
suggesting that LI disruption after damage to some re-
gions might be selectively sensitive to atypical APDs.

In view of the findings that perturbations of some
brain regions can lead to LI persistence rather than dis-
ruption (see above), and given our finding that atypical
but not typical APDs disrupt LI via preexposure, we
expected that lesion-induced LI persistence might be
normalized by atypical but not typical APDs. We have
recently tested this possibility using excitotoxic core
NAC lesion. We found that core lesion–induced LI per-
sistence with a high number of conditioning trials was
reversed by clozapine administered in preexposure but
was not affected by its administration in conditioning.
Furthermore, we found that core lesion also increased
immobility in the FST and produced perseveration in
discrimination reversal, and that the latter two deficits
were alleviated by clozapine but not by haloperidol [un-
published data]. These results provide additional sup-
port for the validity of a combined LI–FST model and
suggest that core lesion–induced LI aberrations
coupled with other behavioral deficits produced by this
lesion may serve as a model that dissociates between
typical and atypical APDs.

NEURODEVELOPMENTAL BEHAVIORAL MODELS

An additional approach to the development of be-
havioral models relies on purely behavioral infant ma-
nipulations that lead to the desired deficits at adulthood.
This approach has a double advantage of being nonphar-
macological as well as consistent with the widely accepted
neurodevelopmental hypothesis of schizophrenia
[Weinberger and Lipska, 1995]. Thus, rats reared in iso-
lation show PPI deficits in adulthood that are reversed
by both typical and atypical APDs [Bristow et al., 1995;
Varty and Higgins, 1995]. LI has been shown to be sensi-
tive to various perinatal manipulations, such as prenatal
stress and postnatal nonhandling and isolation [Weiner
et al., 1985, 1987b; Feldon and Weiner, 1988, 1992; Feldon
et al., 1990; Shalev et al., 1998]. These early manipula-
tions can give rise either to LI disruption or persistence.
To date, only one study tested the effects of APD treat-
ment in such neurodevelopmental models. This study
showed that LI disruption in adult male rats that were
nonhandled in infancy is reversed by haloperidol [Feldon
and Weiner, 1988, 1992]. This suggests that this particu-
lar model may not be able to dissociate between typical
and atypical APDs.

Given the often-stressed association of schizophre-
nia with exposure in utero to viral infections and the find-
ings of immune abnormalities in schizophrenic patients
[Mednick et al., 1988; Torrey, 1991; Altamura et al., 1999],
we tested the effects of prenatal administration of the
synthetic double-stranded RNA polyriboinosinic-poly-
ribocytidilic acid (Poly I:C), which simulates an in vivo
viral response (produces cytokines and interferons in
mammalian cells), on LI in the offspring. The male off-
spring of rats that were injected with Poly I:C on days 15
and 17 of pregnancy failed to show LI at 3 months. In
addition to LI disruption, these rats showed decreased
immobility in the FST and facilitated reversal, consis-
tent with our previous pattern of results, in which LI
persistence was paralleled by increased immobility in the
FST and perseveration in reversal. We have some pre-
liminary indication that these deficits may be reversed
by clozapine but not by haloperidol.

SUMMARY

In view of the above, it appears that the LI model
fulfills all of the criteria for a valid behavioral model of
APD action outlined at the outset of this article, as de-
tailed below.

1. LI measures a cognitive process that is known
to be impaired in schizophrenia, namely, the
ability to ignore stimuli that had been inconse-
quential in the past. Indeed, beginning with
Kraepelin’s [1919] observation that a “disorder
of attention” is “conspicuously developed” in
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patients with dementia praecox, and Bleuler’s
[1911] analogous description of schizophrenia as
the loss of “selectivity which normal attention
ordinarily exercises among the sensory impres-
sions,” attentional deficit in schizophrenia, most
often described as an inability to filter out or
ignore irrelevant or unimportant stimuli, has re-
tained its centrality in numerous theoretical for-
mulations, and it has been argued that the major
abnormalities of schizophrenia can be derived
from this single underlying deficit. The findings
of disrupted LI in some subsets of schizophrenic
patients are consistent with this formulation and
lend the LI model construct validity. It should
be pointed out that based on the findings that
lesions to some brain areas (see above), as well
as DA blockade, produce an abnormally persis-
tent LI, we also suggested that spared or rein-
stated LI found in some subsets of schizophrenic
patients reflects an attentional deficit but of an
opposite nature, namely, an inability to dis-ig-
nore an irrelevant stimulus, or attentional per-
severation [Weiner and Feldon, 1997; Weiner,
in press].

2. The LI paradigm can be studied using similar
procedures in rats and humans, and reflects the
operation of analogous processes across the two
species. Moreover, the demonstrations that in
normal humans, as in the rat, LI is disrupted by
amphetamine and potentiated by haloperidol,
support the commonality of underlying neural
mechanisms in the two species.

3. The model predicts antipsychotic activity for both
typical and atypical APDs differing in their in
vitro and in vivo pharmacology and it detects
antipsychotic potential with both acute and re-
peated drug administration.

4. The model dissociates between typical and atypi-
cal APDs, so that a) both classes of drugs potenti-
ate LI via their action at the conditioning stage
under conditions that do not lead to LI in con-
trols, and b) atypical but not typical APDs dis-
rupt LI via action at the preexposure stage under
conditions that lead to LI in controls. In addi-
tion, the results suggest that the LI potentiating
and disrupting effect of atypical APDs may be
due to their D2 and 5-HT2 antagonism, respec-
tively. It should be noted that the nature of the
dissociation in the LI model differs from that in
other behavioral models claimed to model pro-
cesses impaired in schizophrenia (PCP-induced
disruption of PPI and of social interaction). Thus,
the dissociation between typical and atypical
APDs in the above models consists of ineffective-

ness of typical versus effectiveness of atypical
APDs, whereas in the LI model, both classes of
APDs are effective but in a differential manner.

5. APDs-induced potentiation of LI is specific and
selective for APDs and is not produced by a wide
range of nonantipsychotic agents. In addition,
LI is the only model in which APDs produce
improved performance. As pointed out by Arnt
and Skarsfeldt [1998], most behavioral animal
models have little chance to yield such effects
because cognitive performance is near optimal
in normal rats. The advantage of the LI proce-
dure is that solely by means of parametric ma-
nipulations, we can produce “poor performance”
in controls on the background of which the fa-
cilitatory effects of APDs are revealed.

The specificity and selectivity of atypical APD-in-
duced disruption of LI is not known at present.
However, it should be emphasized that our mod-
eling stresses a pattern of drug effects rather than
isolated actions; thus, an atypical APD must dis-
rupt LI via preexposure and potentiate LI via
conditioning. If a given drug disrupts LI via
preexposure but does not potentiate it via con-
ditioning, it will not qualify as an atypical APD,
as was the case with ritanserin in our studies.

6. The LI model does not rely on pharmacological
means to elicit the behavioral index of antipsy-
chotic activity and to differentiate typical from
atypical APDs. Thus, the model does not require
previous administration of DA agonists or other
drugs for the manifestation of both the potenti-
ating and the disruptive actions of APDs, but
detects them with parametric manipulations of
the LI procedure. This implies that LI involves
neural and cognitive processes that are directly
and differentially modifiable by typical and atypi-
cal APDs. It remains to design an LI procedure
that will simultaneously tap both the disruptive
and the potentiating effects of atypical APDs
using the same preexposure and conditioning
parameters.

7. The model has shed light on the mechanism of
the potentiating action of APDs, namely, that this
effect is mediated via DA blockade in the NAC
during conditioning. The mechanisms underly-
ing the recently revealed disruptive effect of
atypical APDs are not yet clear, except that it is
confined to preexposure and is likely to be caused
by 5-HT2 antagonism.

8. Our demonstration of a dissociation between ha-
loperidol, clozapine, and imipramine in the com-
bined LI–FST model indicates that the utility of
the LI model can be further extended when it is
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combined with other models that are sensitive to
different aspects of the atypical APD action, i.e.,
their antidepressant-like activity. It should be
noted that although the effects of each of the drugs
in each of the two models have been shown be-
fore, it is the combined pattern of their effects in
both models that reveals a unique behavioral “fin-
gerprint” that allows the dissociation between
their modes of action. Moreover, also the com-
bined LI–FST model does not require previous
drug administration to obtain the three-way dis-
sociation. The latter is of particular importance
because in previous work, a dissociation between
typical and atypical APDs in the FST was deemed
to require PCP administration [Noda et al., 1995],
and moreover, reversal of PCP-induced increase
in immobility did not differentiate between atypi-
cal APDs and at least some antidepressants [Noda
et al., 1997]. Our results show that a nonpharma-
cological FST behaves like a pharmacological one,
i.e., dissociates between typical and atypical
APDs, but not between the latter and antidepres-
sants, and that addition of a nonpharmacological
model that is specific and selective for APDs may
not only solve the confounding inherent in the
FST but may allow the differentiation between
the three classes of drugs.

9. Finally, the use of the LI model in rats that sus-
tain lesions or other physiological manipulations
(e.g., stimulation) of specific brain regions may
provide clues as to the relationship between the
effects of these drugs and the site of brain dam-
age, and possibly reveal differential effects of
typical and atypical APDs depending on the site
of the damage. Although data on this are sparse
(see Lesion-Based Models above), they raise the
possibility that a) LI disruption caused by dif-
ferent lesions will be reversed by APDs admin-
istered in conditioning (it is not clear at present
whether such reversal will be obtained with both
typical and atypical APDs or selectively with
atypical APDs depending on the damage site),
and b) LI persistence caused by different ma-
nipulations of different brain regions will be se-
lectively reversed by atypical APDs administered
in preexposure.

An additional point is in order here: As evidenced
from our experiments with core-lesioned rats, a lesion that
leads to LI persistence leads to additional behavioral al-
terations (in our case, increased immobility in the FST
and perseveration in reversal) that are also differentially
sensitive to typical and atypical APDs. Although this can
be taken as a strength of a lesion model, it robs the LI

model of its uniqueness as a selective and specific behav-
ioral model. This is not surprising, because “lesion mod-
els” are open to the same criticism we raised above with
regard to “drug models,” namely, that the “model” is the
manipulation rather than the specific behavior assessed.

It is commonly asserted that both typical and atypi-
cal APDs are effective against positive symptoms,
whereas atypical APDs have higher efficacy for negative
symptoms/treatment-resistant schizophrenia, and that
therefore, an animal model that is sensitive to both classes
of APDs may have predictive validity for the former con-
dition, whereas a model that is sensitive to atypical but
not to typical APDs may have predictive validity for the
latter condition(s) [Arnt and Skarsfeldt, 1998; Brunello
et al., 1995; Kinon and Lieberman, 1996]. Viewed in this
light, LI potentiation may have predictive validity for the
treatment of positive symptoms, and LI disruption may
have predictive validity for the treatment of negative
symptoms/treatment-resistant schizophrenia. The latter
is also congruent with the claim that D2 antagonism is
effective for treating positive symptoms and that 5-HT2
antagonism plays a role in the alleviation of negative
symptoms [Leysen et al., 1993; Meltzer, 1989; Schotte et
al., 1996]. Likewise, the differential effects in the com-
bined LI–FST model indicate that LI potentiation com-
bined with increased immobility may have predictive
validity for the treatment of positive symptoms, whereas
LI potentiation combined with decreased immobility may
have predictive validity for the treatment of negative
symptoms/treatment-resistant schizophrenia, while at the
same time allowing the dissociation between atypical
APDs and antidepressants. Finally, if future studies sup-
port our suggestion that LI disruption caused by differ-
ent manipulations (be they lesions, stimulation, perinatal
treatments) is reversed by both typical and atypical APDs
given in conditioning, whereas LI persistence caused by
different manipulations is reversed by atypical APDs
given in preexposure, then the former will have predic-
tive validity for the treatment of positive symptoms and
the latter will have predictive validity for the treatment
of negative symptoms/treatment-resistant schizophrenia.
In addition, such findings may imply that regions whose
perturbations lead to LI disruption may be implicated in
the positive symptoms of schizophrenia, whereas regions
whose perturbations lead to LI persistence may be im-
plicated in the negative symptoms of schizophrenia.
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