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Abstract 

 
Deep neural networks (DNNs) are powerful computational models, which generate 
complex, high-level representations that were missing in previous models of human 
cognition. By studying these high-level representations, psychologists can now gain new 
insights into the nature and origin of human high-level vision, which was not possible 
with traditional handcrafted models. Abandoning DNNs would be a huge oversight for 
Psychological Sciences.  
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Computational modeling has long been used by psychologists to test hypotheses about 
human cognition and behavior. Prior to the recent rise of deep neural networks (DNNs), 
most computational models were handcrafted by scientists who determined their 
parameters and features. In vision sciences, these models were used to test hypotheses 
about the mechanisms that enable human object recognition. However, these handcrafted 
models used simple, engineered-designed features (e.g., Gabors), which produced low-
level representations that did not account for human-level, view-invariant object 
recognition (Biederman & Kalocsai, 1997; Turk & Pentland, 1991). The main advantage of 
DNNs over these traditional models is not only that they reach human-level performance 
in object recognition, but that they do so through hierarchical processing of the visual 
input that generates high-level, view-invariant visual features. These high-level features 
are the “missing link” between the low-level and output representations of the 
handcrafted models of object recognition. They therefore offer psychologists an 
unprecedented opportunity to test hypotheses about the origin and nature of these high-
level representations, which were not available for exploration so far.  

In this issue of BBS, Bowers and colleagues propose that psychologists should abandon 
DNNs as models of human vision, because they do not produce some of the perceptual 
effects that are found in humans. However, many of the listed perceptual effects that 
DNNs fail to produce are also not produced by the traditional handcrafted computational 
vision models, which have been prevalently used to model human vision. Furthermore, 
although current DNNs are primarily developed for engineering purposes (i.e., best 
performance), there are myriad of ways in which they can and should be modified to 
better resemble the human mind. For example, current DNNs that are often used to 
model human face and object recognition (Khaligh-Razavi et al., 2016; O’Toole & Castillo, 
2021; Yamins & DiCarlo, 2016) are trained on static images (Cao et al., 2018; Jia Deng et al., 
2009), whereas human face and object recognition are performed on continuous 
streaming of dynamic, multi-modal information. One way that was recently suggested to 
close this gap is to train DNNs on movies that are generated by head-mounted cameras 
attached to infants’ forehead (Fausey et al., 2016), to better model the development of 
human visual system (Smith & Slone, 2017). Training DNNs initially on blurred images 
also provided insights about the potential advantage of the initial low acuity of infants’ 
vision (Vogelsang et al., 2018). Such and many other modifications (e.g., Parisi et al., 2019)  
in the way DNNs are built and trained may generate perceptual effects that are more 
human-like. Yet, even current DNNs can advance our understanding of the mechanisms 
that enable the generation of the complex high-level representations that are required for 
face and object recognition (Abudarham et al., 2021; Hill et al., 2019) but are still undefined 
in current neural and cognitive models. This significant computational achievement 
should not be dismissed.  
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Bowers and colleagues further claim that DNNs should be used to test hypotheses rather 
than to solely make predictions. We fully agree and further propose that psychologists 
are best suited to apply this approach by utilizing the same procedures they have used 
for decades to test hypotheses about the hidden representations of the human mind. Since 
the early days of psychological sciences, psychologists have developed a range of elegant 
experimental and stimulus manipulations to study human vision. The same procedures 
can now be used to explore the nature of DNNs' high-level hidden representations as 
potential models of the human mind (Ma & Peters, 2020). For example, the face inversion 
effect is a robust, extensively studied, and well-established effect in human vision, which 
refers to the disproportionally large drop in performance that humans show for upside-
down compared to upright faces (Cashon & Holt, 2015; Farah et al., 1995; Yin, 1969). 
Because the low-level features extracted by traditional, handcrafted algorithms are 
similar for upright and inverted faces, these traditional models do not reproduce this 
effect. Interestingly, a human-like face inversion effect that is larger than an object 
inversion effect is found in DNNs (Dobs et al., 2022; Jacob et al., 2021; Tian et al., 2022; Yovel 
et al., 2022). Thus, we can now use the same stimulus and task manipulations that were 
used to study this effect in numerous human studies, to test hypotheses about the 
mechanism that may underlie this perceptual effect. Moreover, by manipulating DNNs’ 
training diet, we can examine what type of experience is needed to generate this human-
like perceptual effect, which is impossible to test in humans where we have no control 
over their perceptual experience. Such an approach was recently used to address a long-
lasting debate in cognitive sciences about the domain-specific vs. the expertise hypothesis 
in face recognition (Kanwisher et al., 2023; Yovel et al., 2022).  

It was psychologists, not engineers, who first designed these neural networks to model 
human intelligence (McClelland et al., 1995; Rosenblatt, 1958; Rumelhart et al., 1986). It 
took more than 60 years since the psychologist, Frank Rosenblatt published his report 
about the Perceptron, for technology to reach its present state where these hierarchically 
structured algorithms can be used to study the complexity of human vision. Abandoning 
DNNs would be a huge oversight for cognitive scientists, who can contribute 
considerably to the development of more human-like DNNs. It is therefore pertinent that 
psychologists join the AI research community and study these models in collaboration 
with engineers and computer scientists. This is a unique time in the history of cognitive 
sciences, where scientists from these different disciplines have shared interests in the 
same type of computational models that can advance our understanding of human 
cognition. This opportunity should not be missed by psychological sciences.  
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