
 

 

 

 

1 

 

 

 
 

Deep learning models challenge the prevailing assumption that 
face-like effects for objects of expertise support domain-general 

mechanisms 

 
Galit Yovel1,2, Idan Grosbard1,2 & Naphtali Abudraham1 

 
1School of Psychological Sciences 
2Sagol School of Neuroscience 

Tel Aviv University, Tel Aviv, Israel 

 

 

 

 

 

 

Running head: Domain-specific inversion effect for object of expertise 

 

 

 

 

Keywords: Expertise, Face Recognition, Computational modelling, Level of 
Categorization 

 



 

 

 

 

2 

 

Abstract 

The question of whether task performance is best achieved by domain-specific, or domain-

general processing mechanisms is prevalent in both artificial and biological systems. This 

question has generated a fierce debate in the study of expert object recognition. Because 

humans are experts in face recognition, face-like neural and cognitive effects for objects 

of expertise were considered support for domain-general mechanisms. However, effects 

of domain, experience, and level of categorization, are confounded in human studies, 

which may lead to erroneous inferences. To overcome these limitations, we trained deep 

learning algorithms on different domains (objects, faces, birds) and levels of categorization 

(basic, sub-ordinate, individual), matched for amount of experience. Like humans, the 

models generated a larger inversion effect for faces than for objects. Importantly, a face-

like inversion effect was found for individual-based categorization of non-faces (birds) but 

only in a network specialized for that domain. Thus, contrary to prevalent assumptions, 

face-like effects for objects of expertise do not support domain-general mechanisms but 

may originate from domain-specific mechanisms. More generally, we show how deep 

learning algorithms can be used to dissociate factors that are inherently confounded in the 

natural environment of biological organisms to test hypotheses about their isolated 

contributions to cognition and behavior.  

Keywords: Perceptual expertise, Deep learning, Face recognition, Categorization 
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1. Introduction 

 
Perceptual expertise is an acquired skill to classify members of a homogenous category 

at the subordinate- or individual-level of categorization [1]–[4]. Faces are the only category 

for which most humans are experts. Humans’ superb ability to classify faces of different 

individuals is acquired thorough the extensive social and perceptual experience that 

humans have with people. This ability for individual face recognition has also been shown 

in several non-human species [5]. Thus, a major question that has been hotly debated for 

over three and a half decades [6], is whether perceptual expertise is mediated by domain-

specific or domain-general mechanisms [7]–[9]. According to the domain-specific 

hypothesis, expertise for faces is mediated by face-specific mechanisms that are not used 

for other domains, such as birds or cars [8], [10]–[13]. Conversely, according to the 

general-expertise hypothesis, classification of objects of expertise, including faces, is 

mediated by a general processing mechanism for subordinate or individual-level 

classification [14]–[16].  

To decide between these two hypotheses, previous studies examined whether real-life or 

lab-based experts show the same behavioral and neural face-selective markers for their 

objects of expertise [11], [17], [18]. One well-established, face-selective marker is the face 

inversion effect, which was the focus of the first study that initiated the debate [6] and 

many other studies that followed [10], [19], [20][14]. The face inversion effect refers to the 

large drop in performance for inverted than upright stimuli in recognition or perceptual 

matching tasks. This effect is larger for faces than for any non-face objects [21]–[26], which 

led to the suggestion that faces are special [12], [13], [21]. Diamond and Carey (1986) 

were the first to report a face-sized inversion effect for dogs in dog experts, suggesting 

that the inversion effect is not a face-specific effect, but is found for all objects of expertise 
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that are individuated based on second order configurations. Later studies that examined 

the inversion effect with other objects of expertise such as birds or cars, in experts that 

could classify them at the sub-ordinate level of categorization, revealed mixed findings 

with most of them still reporting a larger inversion effect for faces than objects of expertise 

[10], [22], [27]–[29]. A recent study that did replicate Carey and Diamond’s findings 

revealed a face-sized inversion effect in bird experts who can identify individual birds of 

one specific bird species [19]. This study concluded that faces and objects of expertise 

are processed by the same mechanism. 

Here we propose that conclusions made by human studies of perceptual expertise are 

based on presumptions that are hard to evaluate in humans and may lead to the erroneous 

conclusions. First, a larger inversion effect for faces than non-face stimuli may not 

necessarily support a domain-specific account but may reflect the much greater 

experience humans have with faces than any other objects of expertise. Even extensive 

real-world expertise with dogs, birds or cars does not start on the first year of life, as does 

humans' expertise with faces. Recent studies indicate that during the first year of life, infant 

spend 25% of waking time looking at foveated, frontal faces [30], [31]. This gap is even 

greater when expertise is acquired in the lab for novel objects [2], [32]. Second, previous 

studies of perceptual expertise considered similar inversion effects for faces and objects 

of expertise as evidence for general-expert processing mechanisms [6], [7], [19], [20], [25]. 

This prevalent assumption was accepted by both sides of the debate. However, similar 

inversion effects for dogs, birds and faces may still originate from distinct expert systems, 

each specializes for its own domain, rather than a single, general-expert processing 

mechanism for all objects of expertise. These alternative accounts cannot be tested in 
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human experts, where effects of experience, domain, and level of categorization are often 

confounded. 

In the current study, we used deep convolutional neural networks as computational 

models of perceptual expertise. Deep convolutional neural networks (DCNNs) are brain-

inspired algorithms that reach human-level performance and generate human-like 

representations for objects and faces [33]–[38]. These models can be trained to classify 

images from different domains at different levels of categorization. This provides us with 

an unprecedented opportunity to directly compare between different expert and non-

expert systems that are matched for the amount of training, in a way that cannot be 

achieved in humans. Accordingly, in the current experiment we compared the magnitude 

of the inversion effect in DCNNs that were trained to classify images at different levels of 

categorization including: objects (basic level), bird-species (subordinate level), faces 

(individual level) and individual birds (individual level) (Figure 1). Bird species [39]–[42] 

and individual birds [19] were both used to study perceptual expertise in humans. These 

models enable us to measure the magnitude of the inversion effect for different domains 

and levels of categorization in networks that were trained on the same number of 

classes/images across different domains. Importantly, we can examine whether similar 

inversion effects may originate from distinct,. z specialized, domain-specific mechanisms 

rather than a single general expert processing mechanism, as was presumed by all 

previous human studies of objects of expertise [6]–[8], [10], [19]. 



 

 

 

 

6 

 

2. Methods  

2.1 Stimuli: Training sets 

We used four different data sets (Figure 1): Objects that are labeled at the basic-level of 

categorization (e.g., cars, chairs, bikes); Bird species that are labeled at the subordinate-

level of categorization. Faces that are labeled at the individual-level of categorization and 

individual birds that are labeled at the individual level of categorization. To match the 

training of the different categories we used the number of classes of the category with the 

least number of classes. Because the bird species dataset included only 260 classes and 

the individual bird dataset included only 30 classes, we first compared the bird species 

DCNN to face and object DCNNs that are trained on 260 classes each. In this analysis, 

we used the maximum number of images per class in the bird species, which was still 

Figure 1: Examples of upright and inverted images for objects that were classified at the basic-
level of categorization, bird species that were classified at the subordinate level of 
categorization and faces and birds that were classified at the individual-level categorization.  
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smaller than the object and face datasets. We then ran a second analysis in which we 

added a DCNN trained on the 30 classes of individual birds and compared its performance 

to object, bird species and face DCNNs that were trained on 30 classes. In this training, 

the categories were fully matched for the number of images per class. The same stimulus 

categories were used to measure the inversion effect, with images that were not included 

in the training set. In a supplemental material we also report a face and object networks 

that were trained on 1000 classes and 300 images per class of faces and objects, for 

which we had enough images in the datasets to train from scratch on the same number of 

classes and images per class. 

2.2 Training protocols 

Because of the small number of classes in the tested domains, to create the different 

DCNNs we took a pre-trained object classification DCNN as a base-DCNN, and fine-tuned 

it from layer Conv1 and up (i.e. fine-tuning the whole network) to classify stimuli in the 

different domains. The object-trained base-DCNN was a randomly initialized VGG-16 

DCNNs [43], that we trained to classify 500 classes of inanimate objects (basic-level 

categorization) from the ImageNet dataset [44], each class consisted of 300 training 

images, and 50 validation images. We then fine-tuned it from layer Conv1 and up (i.e. fine-

tuning the whole network) to classify stimuli from the different categories at different levels 

of categorization.  

To assure that fine-tuning a base-object model generates similar findings to a model 

trained from scratch, in supplementary material we report analysis for a model trained from 

scratch on 1000 classes and 300 images per class of objects and faces, for which we 

have enough images to train a network from scratch and examined their performance to 

upright and inverted faces and objects. 
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2.3 Fine-tuning protocol: 

Fine-tuning was done using cross-entropy loss. The networks were optimized using 

Stochastic Gradient Descent with a learning rate of 0.01 and with PyTorch default 

parameters [45] for 60 full epochs, with batch size of 128. After 50 epochs the learning 

rate was reduced to 1e-3. Training images were normalized using the pixel means and 

standard-deviations of each training dataset, and we used the same image augmentations 

that were used for the pre-trained object DCNN, with an addition of random rotations of 

up to +/- 40 degrees (which was found to improve performance in [46]). 

DCNNs trained on 260 classes of Objects, Bird Species & Faces 

To create an object-DCNN we took the base-DCNN (pre-trained on 500 inanimate objects) 

and fine-tuned it to classify 260 inanimate objects, randomly selected from the training set 

of the base-DCNN. Each class included 300 images per class. To create a face-DCNN, 

we fine-tuned the base-DCNN on 260 face identities randomly selected from the 

VGGFace2 dataset. Each class included 300 images per class. For the bird-species 

DCNN, we fine-tuned the base-DCNN to classify 260 classes of bird-species. We used all 

the images that were included in each class of bird species: average 151 images per class 

(range: 105-310 images).  

2.4 DCNNs trained on 30 classes of Objects, Bird Species, Faces & Individual birds 

We used the same procedure to fine-tune the base-DCNN to create four DCNNs. The 

number of classes and number of images per class was fully matched across the different 

categories: an object-DCNN trained on 30 inanimate objects with 100 images per class, 

randomly selected from the 260 classes used above with 100 images per class, a face-

DCNN trained on 30 face identities with 100 images per class, a bird-species-DCNN 
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trained on the 30 classes with 100 images per class. The individual-bird-DCNN was 

created by fine-tuning the base-DCNN on 30 classes of individual birds. 

2.5 Measuring performance for upright and inverted images: 

To test performance on the same/different classification task, we randomly selected 50 

distinct image pairs from the validation images of each of the 30 classes, that were not 

included in the training set, making 1500 (30x50) same-class pairs and 1500 distinct 

different-class pairs. We randomly divided the 1500 same-class image pairs, and the 1500 

different-class image pairs, to 30 batches, each with 50 same identity and 50 different 

identity pairs. Then, for each batch, we measured the cosine similarity between the 

embeddings of the images in the penultimate layer for each image-pair, and calculated 

based on these similarity scores the Receiver Operator Curves (ROCs) and Areas Under 

Curves (AUCs) for true and false same-class classification. The Python scikit-learn 

package was used to calculate ROC and AUC. We repeated these calculations for each 

one of the 30 batches and calculated the mean and std of AUCs. This procedure was used 

to measure performance for upright and inverted images in each of the fine-tuned 

networks.  

3. Results 

Figure 2 shows the ROCs for upright (red) and inverted (blue) images for different types 

of images (columns) for the object, face and bird species DCNNs (rows), which were each 

trained on 260 classes, based on the maximal number of classes of bird species (see 

Methods). The descriptive statistics of the AUCs are reported in supplementary Table 1. 

A mixed ANOVA with DCNN domain (Objects, Faces, Bird Species) as a between factor 

and image domain (Objects, Faces, Bird Species) and orientation (Upright, Inverted) as 
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within factors revealed a main effect of orientation (F(1,87) = 397.18, p< .001, h2p = 0.82) 

indicating better performance for upright than inverted stimuli. An interaction between 

orientation, image domain and DCNN domain (F(2,174) = 246.39, p< .001, h2p = 0.85)  

indicates that the inversion effect was found for each stimulus domain only in the network 

that was trained for that domain. That is, performance was better for upright than inverted 

inanimate objects only in the object network, for bird species only in the bird species 

network and for faces only in the face network. Furthermore, the inversion effect for faces 

in the face network (t(29) = 43.02, p < .001, Cohen’s d = 5.94) was much larger than the 

inversion effect for objects in the object network (t(29) = 8.30, p < .001, Cohen’s d = 2.53) 

and for bird species in the bird species network (t(29) = 7.13, p < .001, Cohen’s d = 2.67) 

(See Figure 2 diagonal & Figure 4A). 

 
Figure 2: Performance (ROC) for upright (red) and inverted (blue) images from different 
domains (columns) across DCNNs optimized to classify 260 classes of objects (basic 
level), birds (sub-ordinate level) and faces (individual level) (rows). An inversion effect is 
found for each domain only in DCNNs optimized for that domain (diagonal). The inversion 
effect for faces is much larger than for objects and bird species.  
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Figure 3 shows the ROCs for upright and inverted stimuli for different types of stimuli 

(columns) for the four DCNNs that were trained on 30 classes (rows), which was the 

maximal number of classes of individual birds in the database. This enabled us to compare 

the face inversion effect with another category that is classified at the individual level of 

categorization – individual birds. Results show an inversion effect for faces in the face 

network and an inversion effect for individual birds in the individual bird network, which 

were larger than the inversion effect for objects in the object networks and for bird species 

in the bird species network (see Figure 3). The descriptive statistics is reported in 

supplementary Table 2. A mixed ANOVA with DCNN domain as a between factor 

(Objects, Faces, Bird Species, Bird individuals), image domain (Objects, Faces, Bird 

Species, Bird individuals) and orientation (Upright, Inverted) as within factors revealed a 

main effect of orientation (F(1,116) = 634,72, p< .001, h2p = 0.85) indicating better 

performance for upright than inverted stimuli. An interaction between orientation, image 

domain and DCNN domain (F(1,348) = 234.06 p< .001, h2p = 0.86) indicated that the 

inversion effect was found for each stimulus domain only in the network that was 

specialized for that domain. Post hoc analysis revealed that the inversion effect was much 

larger for faces in the face network (t(29) = 24.95, p < .001, Cohen’s d = 7.34) and 

individual birds in the individual bird network  (t(29) = 17.13, p < .001, Cohen’s d = 4.79), 

and smaller for objects in the object network (t(29) = 2.57, p = .07, Cohen’s d = 1.84) and 

for bird species in the bird species network (t(29) = 5.88, p < .001, Cohen’s d = 2.93).  
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Figure 4 displays performance for upright and inverted stimuli of each stimulus domain 

only in the network that was trained for that domain. We first examined the networks that 

were trained on 260 classes of objects, faces and bird species (Figure 4A). An ANOVA 

with image domain as a between factor and orientation as a within factor revealed a 

significant effect of orientation (F(1,87) = 1460.38 p< .001, h2p = 0.94) and a significant 

interaction of image domain and orientation (F(2,87) = 533.44, p< .001, h2p = 0.93), 

indicating a much larger inversion effect for faces than for bird species and for objects. 

We confirmed this observation with an interaction for each pair of image domains. The 

orientation by image domain interaction was significant for faces and objects F(1,58) = 

Figure 3: Performance (ROC) for upright (blue) and inverted (red) stimuli across DCNNs 
optimized to classify 30 classes of objects, bird species, faces and individual birds at different 
levels of classification. An inversion effect is found for each domain only in DCNNs optimized 
for that domain. An inversion effect is found for each domain only in DCNNs optimized for 
that domain (diagonal). The inversion effects for faces and individual birds are much larger 
than for objects and bird species.  
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1252.53, p < .001, h2p = .96 and for faces and bird species F(1,58) = 1268.40, p < .001, 

h2p = .96, but not for bird species and objects, which showed a significant inversion effect 

(F(1,58) = 401.35, p < .001, h2p = .87), but no significant interaction of domain and 

orientation (F(1,58) = 2.29, p = .13, h2p = .04). 

We then performed a similar analysis for the four image domains including the individual 

birds (Figure 4B). An ANOVA with image domain (Objects, Faces, Bird Species, Individual 

birds) as a between factor and orientation as a within factor revealed a significant effect 

of orientation (F(1,116) = 2293.22 p< .001, h2p = 0.95) and a significant interaction of 

image domain and orientation (F(3,116) = 460.19, p< .001, h2p = 0.92, indicating a much 

larger inversion effect for faces and individual birds than for bird species and objects. A 

similar ANOVA which included only faces and individual birds revealed a main effect of 

orientation (F(1,58) = 1977.8, p< .001, h2p = 0.97) but no significant interaction between 

orientation and stimulus domain (F(1,58) = 1.39, p= .24, h2p = 0.02). An ANOVA which 

included only objects and bird species revealed a main effect of orientation (F(1,58) = 

317.59, p < .001, h2p = 0.85) and no significant interaction between orientation and 

stimulus domain (F(1,58) = 3.29, p= .08, h2p = 0.05), replicating results we found in the 

networks that were trained on 260 classes. In supplementary results we report similar 

findings of a larger inversion effect for faces than objects in a face-trained and an object-

trained DCNN, respectively that were trained from scratch on these categories. Thus, our 

findings are not limited to object DCNNs that are fine-tuned for these different categories. 
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Taken together, results of both sets of networks trained on different number of classes 

between experiments (30, 260 or 1000), show a significantly larger inversion effect for 

networks that are optimized for classification at the individual level than the basic or 

subordinate level of categorization, but only for the images that the network was optimized 

to classify. This pattern of results were similar across different sizes of training sets, which 

indicates that they are found for different amounts of experience.  

4. Discussion 

The purpose of the present study was to reevaluate the theoretical assumptions of the 

domain-specific and domain-general hypotheses of expert object recognition. Because 

domain, experience and level of categorization cannot be dissociated in humans, we 

designed computational models of perceptual expertise, by training DCNNs to classify 

images at different levels of categorization, matched for amount of experience. Our 

findings reveal that, similar to humans, DCNNs showed a larger inversion effect for faces 

that are classified at the individual-level of categorization than objects that are classified 

Figure 4: Performance (AUC) for upright and inverted stimuli in DCNNs that are optimized for 
their domain. The inversion effect is substantially larger for faces and birds that are classified 
at the individual level of categorization than bird species and objects. A: DCNNs that were 
trained on 260 classes (diagonal of Fig. 2). B: DCNNs that were trained on 30 classes (diagonal 
of Fig. 3). * < .01, ** < .001 
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at the basic-level of categorization. Interestingly, we found a face-like inversion effect for 

individual-level classification of birds. Importantly, this face-like inversion effect for 

individual birds was found only in a system that was trained for classification of individual 

birds. We therefore conclude that face-like effects in objects of expertise may not 

necessarily reflect a general-expert processing mechanism, as was presumed in all 

previous human studies of perceptual expertise. Instead, they may originate from separate 

distinct systems that are specialized for their own domain, consistent with a domain-

specific account of perceptual expertise.  

Results of our computational models are consistent with human studies that revealed a 

face-sized inversion effects for individual dogs in dog experts [6],but see [10] and for 

individual birds in bird experts [19]. Most other studies of perceptual expertise examined 

expertise at the subordinate-level of categorization (e.g., car types, bird species) and 

similar to our models, revealed an inversion effect that was smaller for objects of expertise 

than faces [10], [22], [27]–[29]. One inherent difference between individual-level and sub-

ordinate level of categorization is the degree of variance between classes, which is much 

smaller in the former. We therefore suggest that a disproportionally large inversion effect 

reflects poor generalization to untrained inverted images in a system that is highly 

specialized for fine-grained discrimination of the upright orientation of a specific domain. 

This suggestion is in line with recent findings that show that individual or subordinate-level 

classification required deeper retraining of additional layers in a face than an object DCNN 

to reach similar levels of performance [47], [48]. Thus, expertise in one domain does not 

transfer well to other domains.  

It is noteworthy that the amount of experience (i., number of classes/images per category 

in the training sets) did not influence the magnitude of the inversion effect. We found the 
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same pattern of findings for models that were trained to classify 260 classes or only 30 

classes (see Figure 4 and supplementary data for 1000 classes). This finding is important 

for the interpretation of results of human studies of perceptual expertise where experience 

with objects of expertise can be never matched with faces. It indicates that the smaller 

inversion effect for objects of expertise than faces that were reported in previous studies 

may not be due to the greater experience that human experts have with faces than any 

other object of expertise. Thus, it is the level of categorization rather than the amount of 

experience that determines the magnitude of the inversion effect.  

The expert processing mechanisms proposed by our computational models may in fact 

offer a possible resolution to the debate between the domain-specific and domain-general 

accounts of perceptual expertise. Consistent with the domain-specific account, we 

propose that the fine-grained discrimination that is required for classification of the within-

category perceptually similar images is best achieved by a domain-specific mechanism 

that is optimized for its specific critical features[49]. These domain-specific mechanisms 

are over-fitted to a certain category and therefore show poor generalization to untrained 

images. This overfitting may generate similar patterns of behavior in different expert 

systems, such as a disproportionally large inversion effect. However, these similar 

patterns of behavior may not necessarily reflect similar types of processing (e.g. configural 

processing), but the outcome of specialization to within-category discrimination which is 

similarly required for different experts system.   

In the seminal study that first proposed the domain-general expertise hypothesis, Carey 

and Diamond suggested that because within-category members share first order 

configuration, objects of expertise can be discriminated only by their second order 

configuration (i.e., distance between features)[6]. Because configural processing is found 
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for upright but not inverted faces [24], [50], this led many studies to treat face processing, 

the face inversion effect and configural processing almost as synonyms [6], [16], [19], [51]. 

Later studies have questioned this prevalent assumption [52] showing that a face inversion 

effect is found also for faces that differ in face parts not only face configuration [53], [54], 

that face recognition is intact despite configural distortions [55], [56] but impaired for non-

configural distortions [57], that effects of configural processing are not correlated with face 

recognition [58] and that distance between facial features are not useful for generalization 

across head-views of the same identity [59]. Our findings also suggest that perceptual 

expertise may not necessarily rely on configural processing. Inspection of the individual 

bird images (see Figure 1) indicates that even stimuli that do not have a clear first or 

second order configuration of their parts may generate a face-sized inversion effect. Thus, 

perceptual expertise and inversion effects may simply reflect fine-grained discrimination 

between perceptually similar classes of stimuli.   

Unlike behavioral studies that cannot indicate whether an inversion effect or a holistic 

effect, originates from a face-selective or other domain-selective mechanisms, 

neuroimaging studies do enable to separately examine the response of face-selective 

mechanisms to objects of expertise.  Whereas many studies of objects of expertise only 

focused on the response of the FFA [60], other studies examined the response of 

additional areas within and outside the occipital temporal lobe [17], [61]–[63]. These 

studies suggest that attentional effects may account for increased response to objects of 

expertise in multiple areas including the FFA. The current findings are consistent with 

studies that show that expertise for non-face objects is mediated by brain regions in the 

occipital-temporal cortex that do not overlap with face-selective regions [62]. Such a brain 

region was recently reported in Pokemon experts [63]. The word-form area [64] may be 
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another example for such a dedicated processing mechanism for a specific domain. 

Accordingly, we predict that human expertise for individual bird stimuli will be mediated by 

dedicated a category-selective brain region for individual birds. 

Our models were specifically trained on different domains at different levels of 

categorization, which is different from the biological system that is exposed to all 

categories. This enabled us to dissociate effects of domain and experience that are 

inherently confounded in humans, but generated an artificial system that cannot be directly 

compared to humans. Importantly, however, a recent study that trained a DCNN on both 

faces and objects, revealed that the dual-trained network spontaneously segregated to 

face and object units each specialized for its own domain [65]. Despite dissimilarities 

between the architecture and computations of the artificial and biological systems, the 

generation of human-like behavior in these DCNNs provides us with a powerful tool to ask 

about the origins and possible mechanisms of this behavior in ways that cannot be tested 

in humans [66], [67].  

In summary, the present study used computational models of expert and non-expert 

recognition to reevaluate long-standing assumptions of previous studies that tested the 

general and domain-specific accounts of perceptual expertise. Notably, computational 

models cannot provide direct evidence for the type of operation of a biological/cognitive 

system, which may still use a general expert processing mechanism for objects of 

expertise. Importantly, our study does show the computational plausibility of an alternative 

account, which was not considered by the many previous human studies that compared 

the magnitude of face-like effects for objects of expertise. This approach can be used to 

dissociate the effects of factors that are inherently confounded in the natural environment 
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of biological organisms to reevaluate prevalent assumptions on animal cognition and 

behavior.  
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