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Abstract 

Mental representations of familiar categories are composed of visual and semantic information. 

Disentangling the contributions of visual and semantic information is challenging as they are 

intermixed in human mental representations. Deep neural networks (DNNs) that are trained either 

on images or on text or by pairing images and text enable us now to disentangle human mental 

representations into their visual, visual-semantic and semantic components. Here we used these 

DNNs to uncover the content of human mental representations of familiar faces and objects when 

they are viewed or recalled from memory. Results show a larger visual than semantic contribution 

when images are viewed and a reversed pattern when they are recalled. We further revealed a 

previously unknown unique contribution of an integrated visual-semantic representation in both 

perception and memory. We propose a new framework in which visual and semantic information 

contribute independently and interactively to mental representations in perception and memory. 
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Introduction 

An essential function of the human mind is to generate mental representations that enable 

recognition of people and objects in our environment, so we can effectively interact with them1,2. 

Successful recognition relies on the ability to match the representations that are generated by the 

perceptual system when stimuli are viewed to their stored representations in memory. These 

mental representations, however, are not exact replicas of the external world but are 

reconstructions of the mind. Unravelling how the external world is reconstructed by the mind, is a 

long standing, challenging quest in Cognitive Sciences, as we have no direct access to the content 

of these mental representations3.  

Prominent theories in cognitive sciences have debated for decades whether mental 

representations of stimuli in the external world are primarily perceptual4–7, semantic 8,9,  or both 10. 

Despite numerous behavioral and neuroimaging studies that have explored the contribution of 

perceptual and semantic information to mental representations 11–22, fundamental questions about 

the content of these representations have remained unanswered: what is the relative contribution 

of perceptual and semantic information to these mental representations, do they contribute 

independently or interactively, and how are they manifested when images are viewed or recalled 

from memory? These questions are hard to answer with current cognitive and neural measures, 

as perceptual and semantic information are typically intermixed in these measures and therefore 

difficult to disentangle.  

One way to disentangle these different types of information is by using computational models that 

can generate pure visual or semantic representations. The success of this approach depends on 

the extent to which these algorithms can represent complex, naturalistic visual and semantic 

information that is similar to the human mind. Recent deep neural networks (DNNs) that are 

trained either on images or text offer a way to address this challenge, by generating distinct visual 

and semantic representations for the same stimuli (Figure 1). Although DNNs differ from the 

human mind in many ways, including architecture, computational operations and training 

experience23–26, many recent studies have shown that these algorithms account for a significant 

proportion of variance in human representations of faces and objects and are by far better than 

any previous computational models 25,27–32. In addition, a multi-modal algorithm that learns to 

classify images by pairing images and their semantically meaningful captions from webpages 

(CLIP-contrastive image-language pre-training)33 enables us now to explore the existence of an 

integrated visual-semantic representation that has not been explored previously in humans’ 
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mental representations. Current models of face and object recognition presume that visual and 

semantic information are processed by distinct systems and are linked in long-term memory34–38. 

However, semantic information is naturally associated with familiar stimuli during the process of 

learning already in infancy39–41. This learning may shape the visual representation of faces and 

objects, generating an integrated visual-semantic representation that we can now explore with 

multi-modal DNNs.  

Accordingly, in the current study we used these DNNs to disentangle the unique contributions of 

visual, visual-semantic and semantic information to the representations generated by humans for 

the same visual stimuli when they are viewed or recalled from memory. This was possible by 

measuring the representational geometry of the same stimuli based on their DNNs embeddings 

and using them as predictors of human visual similarity ratings of the same images when they are 

viewed (perception) or recalled based on their names (memory). Recent studies that have 

examined the similarity between the representations generated by humans and DNNs for faces 

and objects have focused on visual DNNs and on human representations during perception when 

the images are viewed (e.g. 42–48). The contribution of visual-semantic and semantic DNNs to these 

mental representations and the nature of the representations during recall, have not been 

explored so far.  

To quantitatively assess the contributions of visual, visual-semantic and semantic 

information to the mental representations of familiar stimuli, we used visual (VGG-16)49,  

visual-semantic (CLIP)33 and semantic (SGPT)50 DNNs to model human representations 

of familiar faces in perception and memory. To study human face representations, human 

participants were asked to rate the visual similarity of famous faces when presented with 

their images or when presented with their names, and therefore had to reconstruct their 

visual appearance from memory (Figure 2A). These similarity measures were used to 

construct the representational geometry of familiar faces in perception and memory 

(Figure 2B-C). We used the representational geometries of the same identities based on 

visual (VGG-16), visual-semantic (CLIP) and semantic (SGPT) DNNs (see Figure 1) to 

predict human representations in perception and memory. This enabled us to assess 

whether visual-semantic and semantic DNNs improve predictions of human visual 

representations beyond the commonly used visual DNN (e.g. 42–48) and quantify their unique 

contributions in perception and memory. The same method was used to assess human 



 5 

semantic representations. Finally, we used the same approach to extend our findings 

from faces to the representation of objects.  

 

Figure 1: The representational geometry of familiar faces based on visual, visual-semantic and semantic DNNs.  

A t-SNE visualization of the representational geometry of familiar faces based on the RDMs of their embeddings in 

visual (VGGft-20: face pre-trained VGG fine-tuned to the 20 familiar identities), visual-semantic (CLIP) and semantic 

(SGPT) DNNs. VGGft-20 and CLIP representations are based on images and SGPT representation is based on the 

first paragraph from Wikipedia of the same familiar identities. The CLIP visual-semantic RDM was correlated with both 

the pure visual (VGGft-20) (r(188) = 0.49, p < 001, two-sided, CI= 0.37, 0.59) and pure semantic (SGPT) 

representations (r(188)=0.52, p < .001, two-sided, CI = 0.4, 0.61), whereas the visual (VGGft-20) and semantic (SGPT) 

representations were not significantly correlated (r(188)=0.09, p=0.300, two-sided CI = -.07, 0.22) (N=190).  

 

Results 

Experiment 1A: Representations of familiar faces in perception and memory 

We examined the representational geometry of 20 internationally famous identities, 9 

politicians and 11 entertainers. We selected identities that were included in the training 

set of CLIP (see methods section and Extended data Figure 1). We then fine-tuned a 

visual, face-trained DNN (VGG-16) to classify these 20 identities. This DNN is named, 

VGGft-20, ft= fine tuned; 20: for the 20 familiar identities. The results reported here are 

based on the representations in the penultimate layer that is used for the classification. 
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We measured the cosine distance between the embeddings of the face images in the 

visual (VGGft-20) and visual-semantic (CLIP) DNNs and the semantic (SGPT) DNN’s 

embeddings of the first paragraph of their Wikipedia text (see Supplementary Table 1 for 

the Wikipedia text of each identity). Figure 1 shows the representational dissimilarity 

matrices (RDMs) and a t-SNE visualization 51  of the geometry of the identities according 

to each of the three DNNs. The representations of the identities are clustered by 

occupation by the semantic DNN (SGPT), and the visual-semantic DNN (CLIP), but not 

by the visual DNN (VGGft-20).  

We computed the correlations between the RDMs of the three DNNs (N = 190). To test 

the significance of each correlation, we performed a two-sided, one sample t-test. The 

correlations between the RDMs of the different algorithms show that the pure visual 

(VGGft-20) and pure semantic (SGPT) representations were not correlated (r(188)=0.09, 

p=0.300, CI = -.07, 0.22). The RDM of the visual-semantic DNN (CLIP) was correlated 

with the RDMs of both the pure visual representation of VGGft-20 (r(188) = 0.49, p < 001, 

CI= 0.37, 0.59) and the pure semantic representation of SGPT (r(188)=0.52, p < .001, CI 

= 0.4, 0.61), which reflects the visual-semantic nature of CLIP’s representation (see 

supplementary results of Experiment 1A and Extended data Figure 2 for the correlations 

of each of the DNNs with Gender, Occupation and Age). 

To assess the nature of the representations of familiar faces in perception and memory, 

human participants were asked to rate the visual similarity of the same 20 familiar 

identities when presented with their images (perception) or by recalling their facial  

 

appearance from memory when presented with their names (memory) (Figure 2A). We 

first computed the correlation between the RDM of each participant with the average RDM 

across all other participants (lower bound noise ceiling). The lower bound noise ceiling 

were r=0.51 for the Perception task and r= 0.51 for the Memory task (see Figure 2D). We 

then computed the correlation between the RDMs of the visual similarity ratings in  
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Figure 2: The contribution of visual, visual-semantic and semantic DNNs to human representations of familiar 

faces in perception and memory: A. Participants rated the visual similarity of face images (perception) or the 

reconstruction of their appearance from memory based on their names (memory). B. RDMs based on human visual 

ratings in perception (left) (N=20) and memory (right) (N=19). The representations of familiar faces in perception and 

memory were highly correlated (r(188) = 0.77, p < .001). C. A t-SNE visualization of the representational geometry of 

familiar faces in perception (left) and memory (right). The labels indicate the last name of each familiar identity. The full 

name can be found in Supplementary Table 1. D. The mean values +/- SEM of the correlations between the RDMs of 

the same identities in visual (VGG-16ft-20), visual-semantic (CLIP) and semantic (SGPT) DNNs with human 

representations in perception and memory across participants. Horizontal lines indicate the lower bound noise ceiling. 

A one-sample two-sided t-test was used on Fisher’s z transformed values to test the statistical significance of each of 

the correlations. ANOVA and post-hoc comparisons (FDR corrected) were used on Fisher’s z transformed correlations 

to compare the contribution of the DNNs to human representations in perception and memory. E. The mean values +/- 

SEM of the partial correlations of each DNN with human representations in perception and memory across participants 

when the other two DNNs are held out. A one-sample two-sided t-test was used on Fisher’s z transformed values to 

test the statistical significance of each partial correlation.  

 

perception and memory averaged across participants (Figure 2B). The correlation  

between the average visual similarity ratings in perception and memory was very high 

(r(188) = 0.77, p < .001, CI = 0.7, 0.82, two-sided), indicating that participants generated 

a visual image of the familiar faces in memory. We used t-SNE to visualize the 

representational geometry of the faces in perception and memory based on their RDMs. 
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As can be seen in Figure 2C, the identities are clustered based on their occupation 

(politicians or entertainers) in memory, but not in perception. Thus, although the visual 

representations in perception and memory are highly correlated, they appear to differ in 

the relative contribution of visual and semantic information.  

Visual and semantic contributions to face representations: To quantify the contribution of 

visual and semantic information to humans’ representations of familiar faces, we 

examined whether the representations of familiar faces in human perception and memory 

are correlated with the representations of the same identities in visual (VGG-16), visual-

semantic (CLIP), and semantic (SGPT) DNNs (in the penultimate layer; see Extended 

data Figure 3 for VGG and CLIP across all the layers). We calculated the correlation 

between the RDM of each of the participants and each of the three DNNs (see Figure 2D 

for raw Pearson correlations and reliabilities of human similarity ratings). To test the 

statistical significance of the correlations they were Fisher’s z transformed. To test the 

significance of each correlation we performed a one sample, two-sided t-test, and FDR 

corrected for multiple comparisons. Results show that all DNNs were significantly 

correlated with human mental representations in perception and memory (The values 

reported in the text are the mean of the Fisher’s z transformed correlations).  Perception: 

VGGft-20 (r= 0.37, t(19) = 11.5, p < .001, CI =0.30,0.43, Cohen’s d = 2.57) ; CLIP (r = 

0.39, t(19) = 9.4, p < .001, CI = 0.30,0.47, Cohen’s d = 2.12); SGPT (r= 0.20, t(19) = 4.6, 

p < .001, CI =0.11,0.30, Cohen’s d = 1.04). Memory:  VGGft-20 (r = 0.28, t(18) = 7.3, p < 

.001, CI: 0.20,0.36, Cohen’s d = 1.68); CLIP (r= 0.43, t(18) = 15.0, p < .001, CI =0.37,0.49, 

Cohen’s d = 3.44) and SGPT (r= 0.41, t(18)= 6.42, p < .001, CI = 0.55,0.28, Cohen’s d = 

1.47). However, they showed different patterns, with higher correlation with visual than 

semantic DNN in perception and a reversed pattern in memory. A mixed ANOVA with 

DNN (visual, visual-semantic, semantic) and Task (Perception, Memory) on the Fisher’s 

z transformed correlations across participants revealed a significant interaction of DNN 

and Task F(1.12,41.27) = 7.72, p= 0.007, p
2 =0.17. The Greenhouse-Geisser correction 

was used to adjust for lack of sphericity. Post-hoc comparison (two-sided, FDR corrected) 

revealed a lower correlation of the semantic DNN than the visual-semantic DNN t(111) 

=3.04, p = 0.008) and the visual DNN t(111) =2.71, p = .011) in visual perception and a 



 9 

lower correlation of the visual DNN than the visual-semantic t(111) =2.55, p = .036) and 

the semantic DNN t(111) =2.21, p = .043) in visual memory. 

Given that the visual-semantic DNN is correlated with both the visual and the semantic 

DNNs (see Figure 1), we next assessed whether the visual-semantic DNN accounts for 

any unique variance in human representations in perception and memory beyond the 

pure visual and semantic DNNs. To that end, we calculated for each participant the partial 

correlations of each DNN with human similarity ratings of faces in perception or memory, 

when the two other DNNs are held out.  To test the significance of each partial correlation, 

the correlations with Fisher’s z transformed. We then performed a one sample two-sided, 

t-test, FDR corrected for multiple comparisons. The values reported in the text are the 

mean of the Fisher’s z transformed partial correlations (see Figure 2E for the raw 

correlation values). Results show a significantly unique contribution to visual perception 

of the visual DNN (VGGft-20: r = 0.22, t(19)=7.9, p < .001. CI= 0.17,0.28, Cohen’s d = 

1.77) and visual-semantic DNN (CLIP: r= 0.17, t(19)= 6.7, p < .001. CI= 0.12,0.23, 

Cohen’s d = 1.51) but not the semantic DNN (SGPT: r = 0.07, t(19) = 1.99, p = 0.061. CI= 

-0.003,0.14, Cohen’s d = 0.44). Results show a significant unique contribution to visual 

memory of each of the three DNNs- VGGft-20 (r = 0.13, t(18) = 2.91, p =0.011. CI: 0.04, 

0.22, Cohen’s d = 0.67); CLIP (r = 0.18, t(18) = 7.9, p < .001. CI: 0.13, 0.23, Cohen’s d = 

1.82); SGPT (r = 0.25, t(18) = 4.58, p < .001. CI: 0.14, 0.37, Cohen’s d = 1.05) (Figure 

2E). See Extended Data Figure 4 and Extended Data Table 1, for the contributions of the 

DNNs to human similarity ratings, when the variance of gender, age and occupation is 

held out. 

Finally, to compute the proportion of variance that visual-semantic and semantic DNNs 

explain beyond the visual DNN in human representations in perception and in memory, 

we performed a linear regression with the three models as predictors of the average 

similarity ratings in perception and memory. Given that previous studies used only visual 

DNNs to model face representations46,52,53, we first used only the visual model as 

predictor of the behavioral data, then we used both the visual and visual-semantic as 

predictors, and finally we included all three models as predictors (See Table 1 for the 

regression analysis). We found that the proportion of variance increased from 35% to 

51% when a visual-semantic DNN was added to the visual DNN, but no further 
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improvement when the semantic DNN was added. With respect to human memory, the 

visual DNN accounted for 16% of the variance. The proportion of variance increased to 

51% of variance when the visual-semantic DNN was added and to 67% when the 

semantic DNN was added to the regression analysis.  

Taken together, our findings show that visual-semantic and semantic DNNs significantly 

improve the prediction of human representations of familiar faces, beyond the pure visual 

algorithm that has been so far used to model human face representations 27,31,45,46,54–59.  

They also reveal a reversed contribution of visual and semantic information to perception 

and memory with a stronger visual contribution in perception and a stronger semantic 

contribution in memory. 

 

Table 1: A linear regression model comparison in which only pre-trained face-VGG-ft20 was used as a predictor 

(top), when CLIP was added as an additional predictor (middle) and when SGPT was added as a third predictor 

(bottom) of the representations of faces in human perception (left) and human memory (right). Statistical significance 

was estimated with two-sided tests. 

  Perception Memory 

Model VGG  VGG  

Predictors 
Estimates 

(Standardized) 
CI t-value p 

Estimates 
(Standardized) 

CI t-value p 

(Intercept) 0.57 -0.25 – 1.39 1.36 0.174 1.36 0.29 – 2.43 2.5 0.013 

VGG 5.00 (0.38) 4.03 – 5.98 10.14 <0.001 3.99 (0.30) 2.71 – 5.26 6.18 <0.001 

R2 / R2 adjusted: 0.353 / 0.350, F(1,188) = 102.8, p < 0.001 0.168 / 0.164, F(1,188) = 38.2, p < 0.001 

Model VGG and CLIP VGG and CLIP 

Predictors 
Estimates 

(Standardized) 
CI t-value p 

Estimates 
(Standardized) 

CI t-value p 

(Intercept) 0.99 0.27 – 1.72 2.71 0.007 2.09 1.26-2.92 4.97 <0.001 

VGG 3.15 (0.24) 2.18 – 4.12 6.4 <0.001 0.82 (0.06) 0.30 – 1.93  1.45 0.149 

CLIP 3.01 (0.29) 2.25 – 3.78 7.78 <0.001 5.15 (0.50) 4.27 – 6.03 11.58 <0.001 

R2 / R2 adjusted: 0.511 / 0.506, F(2,187) = 97.93, p < 0.001 0.516 / 0.511, F(2,187) = 99.74, p < 0.001 

Model VGG, CLIP and SGPT VGG, CLIP and SGPT 

Predictors 
Estimates 

(Standardized) 
CI t-value p 

Estimates 
(Standardized) 

CI t-value p 

(Intercept) 0.74 -0.02 – 1.49 1.92 0.056 1.01 0.28 – 1.74 2.17 0.031 

VGG 3.37 (0.26) 2.39 – 4.35 6.76 <0.001 1.74 (0.13) 0.79 – 2.69 3.61 <0.001 

CLIP 2.49 (0.24) 1.59 – 3.39 5.45 <0.001 2.97 (0.29) 2.10 – 3.84 6.73 <0.001 

SGPT 0.56 (0.08) 0.04 – 1.08 2.11 0.036 2.32 (0.34) 1.81 – 2.82 9.08 <0.001 

R2 / R2 adjusted: 0.523 / 0.515, F(3,186) = 67.97, p < 0.001 0.664 / 0.659, F(3,186) = 123, p < 0.001 
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Experiment 1B: AI-generated faces are similar to human face representations. 

Results so far show correlations between human similarity ratings and the similarity of the 

embeddings of the face images with VGG and CLIP. This method has been commonly 

used to assess the correspondence between DNNs and human mental/neural 

representations 31,44,56,60. Generative adversarial networks (GANs) can generate a visual 

image for each of these identities based on their VGG or CLIP embeddings. This offers 

us a more direct way to assess the similarity between humans and DNNs by asking 

human participants to rate the similarity of the DNN generated images and assess their 

correlations with human similarity ratings of the original faces.  We used StyleGAN, a 

generative adversarial network 61,62, to generate faces based on their embeddings in VGG 

and CLIP (see Methods and supplementary methods of Experiment 1B for the procedure 

 

Figure 3: Human similarity ratings of AI-generated faces. A. RDMs of human similarity ratings of VGG-generated 

faces (top) and CLIP-generated faces (bottom). The AI-generated faces are not copyrighted and can be obtained by 

contacting the authors. The mean values +/- SEM of the correlations between averaged human similarity ratings of 

VGG-generated and CLIP-generated faces with the similarity rating of the original faces of the same identities in 

perception (N = 20) or memory (N = 19) across participants. B. The RDM of VGG (top) and CLIP (bottom) based on 

the embeddings of the original images. The mean values +/- SEM of the correlations with the RDMs of the embeddings 

of VGG and CLIP. ANOVA and post-hoc comparisons (FDR corrected) were used to compare the results shown in 

panels A and B. 
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used to generate the faces; See supplementary results of Experiment 1B for human 

recognition level of VGG and CLIP-generated faces). These AI-generated images offer   

us a way to assess the similarity between human perception and memory and the 

representations generated by VGG and CLIP.  To that effect, we asked a new group of 

human participants to rate the visual similarity of the VGG- or CLIP-generated faces. We 

averaged human similarity ratings for VGG-generated and CLIP-generated faces and 

computed their RDMs (Figure 3A). We computed the correlations between these RDMs 

and the RDMs of human similarity ratings in perception and memory for each participant. 

Because the VGG-generated faces were created with a VGG algorithm that was not fine-   

tuned to the 20 famous faces, in this analysis we correlated human behavior RDMs with 

the RDM that is based on the embeddings of the original VGG, which yielded correlations 

that were slightly lower (Figure 3B) than the correlations in Experiment 1A that were 

computed with VGGft-20 (Figure 2D).  

To test the similarity between these patterns of results we performed a 3-way mixed 

ANOVA with Task (Perception, Memory) as a between participants factor and DNN Type 

(VGG, CLIP) and Similarity Type (DNN embedding, GAN-image similarity) as repeated 

measures on the correlations. The similarity data based on DNN embeddings are the data 

collected for Experiment 1A. The interaction between the three factors was not significant 

(F(1,37) = 2.77, p = 0.105, p
2 = .070), indicating that the similarity rating of the AI-

generated faces yielded a similar pattern of correlations with human similarity ratings of  

the original images in perception and memory as the correlations with the DNN 

embeddings of the original faces we examined in Experiment 1 (see Extended data Figure 

5 for RDM and t-SNE of human similarity ratings and additional analysis). Overall, these 

findings further support the similarity between the representations of humans and DNNs 

and offer a complementary way to investigate the correspondence between human and 

DNNs representations.  

 

Experiment 2: Visual-semantic representation of unfamiliar faces.  

Our findings so far show that the visual-semantic DNN (CLIP) was a strong predictor of 

human mental representations of familiar faces in both visual perception and visual 

memory.  But what is the origin of this visual-semantic representation? One possibility is 
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that it is generated from the semantic information that is associated with familiar faces. 

Another possibility is that visual-semantic learning of familiar faces shapes the visual 

features that are used for face perception beyond the information that is learned from 

pure visual experience. In that case, we expect that the visual-semantic DNN will be 

correlated also with human representations of unfamiliar faces. To test this possibility, we 

ran the same perception task we described above, with 20 faces that were unfamiliar to 

both humans and the DNNs. Similar to the analysis reported in Experiment 1, we 

computed the correlations and partial correlations between the RDM of human visual 

similarity ratings of unfamiliar faces with the RDMs of their embeddings of visual (VGG) 

and visual-semantic (CLIP) DNNs. For this analysis we used the pretrained VGG without 

fine-tuning to the 20 familiar faces. For statistical analysis the correlations were Fisher’s 

z transformed. A two-sided, one sample t-test was used to test the significance of the 

correlations, FDR corrected for multiple comparisons. Raw correlations are reported in 

Figure 4 and the Fisher’s z transformed correlations in the text. Results show that both 

the visual (VGG: r = 0.23, t(19) = 6.82, p < .001, CI= 0.16,0.30, Cohen’s d = 1.52) and 

visual-semantic (CLIP: r = 0.31, t(19) = 5.49 p < .001, CI=0.19,0.42, Cohen’s d = 1.23) 

DNNs were significantly correlated with the representation of unfamiliar faces in human  

perception (Figure 4B).  Partial correlations further revealed that the visual (VGG: r = 

0.09, t(19) = 5.3 p < .001 CI= 0.05,0.12, Cohen’s d = 1.19) and visual-semantic (CLIP: r= 

0.21, t(19) = 4.63 p < .001 CI= 0.12,0.31, Cohen’s d = 1.03) representations uniquely 

contributed to human visual representation of unfamiliar faces (Figure 4C).  

We next assessed whether the pattern of correlations that we found for unfamiliar faces 

is different from the results that we found for familiar faces reported in Experiment 1A 

(Figure 4B). We performed a mixed ANOVA with DNN (VGG, CLIP) as a repeated 

measure factor and face familiarity (Unfamiliar, Familiar) as a between-participants factor 

on the Fisher’s z transformed correlations. The analysis revealed a main effect of DNN 

(F(1,38) = 10.52, p  = 0.002, p
2 = .217) indicating that CLIP was a better predictor than 

VGG of human perceptual representations. We found no effect of face familiarity (F(1,38) 

= 2.64, p = 0.112, p
2 = .07) and no significant interaction between DNN and Face 

familiarity (F(1,38) = 0.04, p = 0.835, p
2 = .001).  
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Figure 4: The contribution of visual and visual-

semantic information to the perceptual 

representation of unfamiliar faces A. Human 

participants rated the visual similarity of unfamiliar faces 

using the same procedure we used for familiar faces in 

Experiment 1. The original familiar face images used in 

the experiment are not copyrighted. The face images 

shown are licensed drawings of famous and unfamiliar 

identities from freepik.com. These images were not 

used in the experiment. B. Data are presented as mean 

values +/- SEM of the correlations between visual 

(VGG) and visual-semantic (CLIP) with visual similarity 

ratings of familiar (N = 20) and with unfamiliar (N = 20) 

faces. C. The mean values +/- SEM of the partial 

correlations between visual (VGG) and visual-semantic 

(CLIP) with visual similarity ratings of familiar and with 

unfamiliar faces. ANOVA and post-hoc comparisons 

(FDR corrected) on the Fisher’s Z transformed 

correlations were used to assess the contribution of 

each DNN to human representations of familiar and 

unfamiliar faces. 

 

These findings suggest that the visual-

semantic DNN was a better predictor than 

the purely visual DNN for both familiar 

and unfamiliar faces (Figure 4). Note that 

the correlations of the visual DNN (VGG) with familiar faces are lower than in the results 

reported in Experiment 1, because in Experiment 1 we used VGGft-20, which was fine-

tuned to the familiar identities and therefore a better fit of their representations.  

Taken together, our findings show that visual-semantic learning of familiar faces 

generates a visual representation that uniquely contributes to the representations of both 

familiar and unfamiliar faces beyond the contribution of pure visual information. See also 

supplementary results of Experiment 2 and supplementary Figure 1 for CLIP and VGG 

classification performance for familiar and unfamiliar faces. We will discuss the 

implications of these findings on current models of face recognition in the Discussion 

section. 
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Experiment 3: Visual and semantic contribution to semantic representations 
 
Human mental representations of familiar stimuli can be also represented by their 

semantic meaning. We can therefore apply the same approach to assess the extent to 

which visual, visual-semantic and semantic DNNs account for these semantic 

representations (see methods). This can also further validate the extent to which DNNs’ 

semantic representations are similar to human semantic representations. To that effect, 

participants were asked to ignore the visual appearance of the identities and judge them 

only based on their biographical information. A new group of participants made semantic 

similarity judgments when presented with the images or the names of the identities 

(Figure 5A). Given that the semantic information about the identities is retrieved from 

memory both in the image and the name tasks, we expected that the two tasks would 

generate similar findings. The correlations between the rating of each participant with the 

average ratings of all other participants (lower bound noise ceiling) of the image task was 

r = 0.55 and for name task was r = 0.74. Indeed, the correlation between the RDMs of 

semantic similarity judgments of images and names (averaged across participants) was 

very high (r=0.94, p < .001, CI=0.92,0.95, two-sided) (Figure 5B). Figure 5C shows that 

in both tasks the identities were clustered by their occupation. We then computed for each 

participant the correlations (Figure 5D) and the partial correlations (Figure 5E) with the  

three DNNs. Correlations were converted to Fisher’s z transformed for statistical analysis. 

We performed a one sample, two-sided, t-test, FDR corrected for multiple comparisons. 

The values reported in the text are the mean of the Fisher’s z transformed correlations 

(see Figure 5D for the raw correlation values). Results reveal significant correlations 

between the visual, visual-semantic and semantic DNNs with semantic similarity 

judgments when images were presented (VGGft-20: r = 0.22, t(18) = 5.9, p < .001. CI= 

0.14,0.30, Cohen’s d = 1.36; CLIP: r = 0.46, t(18) = 10.4, p < .001. CI= 0.37,0.55, Cohen’s 

d = 2.39: SGPT r = 0.54, t(18) = 5.6, p < .001. CI= 0.34,0.75, Cohen’s d = 1.29) and when 

names were presented (visual VGGft-20: r = 0.2, t(19) = 7.1, p < .001. CI= 0.14,0.27, 

Cohen’s d = 1.59; visual-semantic CLIP: r = 0.60, t(19) = 17.8, p < .001. CI= 0.53,0.67, 

Cohen’s d = 3.98: semantic SGPT r = 0.81, t(19) = 11.89, p < .001. CI=0.67,0.95, Cohen’s 

d = 2.66) (Figure 5D). A 2-way ANOVA of DNN (VGGft-20, CLIP, SGPT) and Task 
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Figure 5: The contribution of visual, visual-semantic and semantic DNNs to human semantic representations. 

A. Participants rated the semantic similarity between familiar identities when they were presented with pictures (N=19) 

or their names (N=20). The original familiar face images used in the experiment are not copyrighted. The face images 

shown are licensed drawings of famous identities from freepik.com that were not used in the experiment. B. The RDMs 

based on human semantic similarity ratings were highly correlated. C. A t-SNE visualization of the RDMs, showing the 

clustering of the identities based on their occupations. The labels indicate the last name of each familiar identity. The 

full name can be found in Supplementary Table 1. D. The mean values +/- SEM of the correlations between the RDMs 

based on embeddings of the same identities in visual (VGG), visual-semantic (CLIP) and semantic (SGPT) DNNs with 

human semantic representations. A one-sample two-sided t-test was used on Fisher’s z transformed values to test the 

statistical significance of each of the correlations. ANOVA and post-hoc comparisons (FDR corrected) were used on 

Fisher’s z transformed correlations to assess the contribution of each DNN to human representations in perception and 

memory. E. The mean values and +/- SEM of partial correlations for each DNN with semantic rating based on images 

or names when the other two DNNs are held constant. A one-sample, two-sided t-test was used on Fisher’s z 

transformed correlations to test the statistical significance of each of the partial correlations.  

 

(Perception, Memory) (Greenhouse-Geisser corrected) revealed a main effect of DNN 

F(1.06,39.2) = 42.98, p < 001, p
2 = 0.53 and a marginally significant interaction between 

DNN and task (F(1.06,39.2) = 3.84, p = 0.055, p
2 = 0.09). Post-hoc comparisons (two-

sided, FDR corrected) revealed a significantly larger correlation of human semantic 

representations with the semantic DNN than the visual-semantic DNN (t(114) = 2.57, p = 

0.011) and the visual DNN (t(114) = 7.91, p < .001) and a larger correlation with the visual-

semantic DNN than the visual DNN (t(114) = 5.33, p < .001).  
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To test the unique contribution of each type of information we measured the significance 

of each partial correlation, using a two-sided, one sample t-test, FDR corrected for 

multiple comparisons. The partial correlations with semantic judgements when images 

were presented, were significant for visual-semantic DNN (CLIP: r = 0.19, t(19) = 8.59, p 

< .001. CI: 0.15-0.24, Cohen’s d = 1.97) and semantic DNN (SGPT: r = 0.38, t(19) = 4.51, 

p < .001. CI: 0.2,0.56, Cohen’s d = 1.04) but not with visual DNN (VGGft-20: r = 0.08, 

t(19) = 2.08, p = 0.052, Cohen’s d = 0.48). The same pattern was found for semantic 

judgements when names were presented: a high correlation with visual-semantic DNN 

(CLIP: r = 0.25, t(19) = 10.13, p < .001. CI: 0.2,0.31, Cohen’s d = 10.13) and with semantic 

DNN (SGPT r = 0.6, t(19) = 10.45, p < .001. CI: 0.48,0.6, Cohen’s d = 2.34) but not with 

visual DNN (VGGft-20: r = 0.04, t(19) = 0.96, p = 0.350, Cohen’s d = 0.96). Thus, both 

semantic and visual-semantic DNNs uniquely contribute to semantic ratings of familiar 

faces. These findings show a strong correspondence between humans and large 

language model representations of semantic information. They also indicate that human 

semantic judgements are not purely semantic but also include a visual-semantic 

component. 

Experiment 4: Representations of objects in perception and memory. 

In a final experiment, we extended our findings on familiar faces to familiar objects using 

the same approach. We measured the distance between the embeddings of 20 images  

of familiar objects (see Extended Data Figure 6 for the images and names) based on 

VGG-16 pre-trained on ImageNet, CLIP and the embedding of their Wikipedia definition 

based on SGPT (see Supplementary Table 3). Because visual and semantic information 

are correlated for some categories of objects (e.g. animals tend to be curvier than man-

made objects), to assess the isolated contributions of visual and semantic information, 

we pre-selected a subset of 20 objects from different categories that showed the lowest 

correlation between their visual DNN (VGG-objects) and semantic DNN (SPGT) 

representations (r = 0.17, p = .013, two-sided, CI=0.036,0.31) (see Methods). We then 

measured the correlations between the RDMs of the embeddings of the visual, visual-

semantic, and semantic DNNs (see Extended Data Figure 7 for RDMs and t-SNE 

visualization). The RDM of the visual-semantic (CLIP) DNN was correlated with the RDMs 

of both the visual DNN (VGG-objects, r = 0.56, p < .001, two-sided, CI=0.45,0.65) and 
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Figure 6: The contribution of visual, visual-semantic and semantic DNNs to human representations of objects 

in perception and memory A. An example of two objects that were used in the visual similarity task, when images are 

viewed (Perception, N=20) or recalled based on their names (Memory, N=20). B. The correlations between visual 

(object-VGG), visual-semantic (CLIP) and semantic (SGPT) DNNs and human perception and memory of objects. C. 

The t-SNE visualization shows the representational geometry of objects based their representations in perception and 

memory. D. The mean values +/- SEM of the correlations between the RDMs based on embeddings of the same objects 

in visual (object VGG), visual-semantic (CLIP) and semantic (SGPT) DNNs with human representations in perception 

and memory across participants. A one-sample, two-sided t-test was used on Fisher’s z transformed values to test the 

statistical significance of each of the correlations. ANOVA and post-hoc comparisons (FDR corrected) were used on 

Fisher’s z transformed correlations to assess the contribution of each DNN to human representations in perception and 

memory. E. The mean values and +/- SEM of the partial correlations of each DNN with human representations in 

perception and memory across participants while the other two DNNs are held out. A one-sample two-sided t-test was 

used on Fisher’s z transformed values to test the statistical significance of each of the partial correlations. 

 

semantic DNN (SGPT, r= 0.29, p < .001, two-sided, CI=0.15,0.41), consistent with the 

visual-semantic nature of its representation.  

We then asked human participants to judge the visual similarity of the objects when 

presented with their images (perception) or to recall their visual appearance from memory 

(Figure 6A). The correlation of the ratings of each participant with the average ratings of 

all other participants (lower bound noise ceiling) was r= 0.60 for the image task and r= 

0.66, for the name task. Similar to the findings with familiar faces, the correlations  
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Table 2: A linear regression model comparison in which only pre-trained face-VGG-ft20 was used as a predictor (top), 

when CLIP was added as an additional predictor (middle) and when SGPT was added as a third predictor (bottom) of 

the representations of objects in human perception (left) and human memory (right). Statistical significance was 

estimated with two-sided tests. 

 

between the representations of the images when they were viewed or recalled from 

memory, averaged across participants, was very high (r = 0.78, p < 0.001, two-sided, CI= 

0.72,0.83).  

Visual and semantic contributions to object representations: We then examined the 

correlations of the three DNNs with human similarity ratings of objects and their recall 

from memory (Figure 6D). To test the significance of each correlation we performed a 

one sample t-test (two-tailed) on Fisher’s z transformed correlations, FDR corrected for 

multiple comparisons. Figure 6 displays the raw correlations and the lower bound noise 

ceiling. In the text we report the Fisher’s z transformed correlations. The representation 

in perception was correlated with visual (VGG-objects: r= 0.42, t(19) = 9.73, p < .001. CI= 

0.33,0.51, Cohen’s d = 2.18), visual-semantic (CLIP: r = 0.37, t(19) =  11.11, p < .001. 

  Perception Memory 

Model VGG    VGG 

Predictors 
Estimates 

(Standardized) 
CI t-value p 

Estimates 
(Standardized) 

CI t-value p 

(Intercept) 1.99 (4.97) 1.44 – 2.55 7.05 <0.001 3.12 (5.33) 2.51 – 3.72 10.11 <0.001 

VGG 4.22 (0.50) 3.44 – 4.99 10.68 <0.001 3.13 (0.37) 2.28 – 3.98 7.28 <0.001 

R2 / R2 adjusted: 0.38/ 0.37, F(1,188) = 114.17, p < 0.001 0.22 / 0..22, F(1,188) = 52.92, p < 0.001 

Model VGG and CLIP VGG and CLIP  

Predictors 

Estimates 
(Standardized) 

CI t-value p 
Estimates 

(Standardized) 
CI t-value p 

(Intercept) 1.69 (4.97) 1.14 – 2.25 6.05 <0.001 2.65 (5.33) 2.08 – 3.23 9.14 <0.001 

VGG 3.13 (0.37) 2.23 – 4.03 6.84 <0.001 1.46 (0.17) 0.52 – 2.40 3.07 0.002 

CLIP 3.58 (0.23) 1.90 – 5.25 4.22 <0.001 5.51 (0.35) 3.77 – 7.25 6.25 <0.001 

R2 / R2 adjusted: 0.43 / 0.43, F(2,187) = 71.06, p < 0.001 0.35 / 0.35, F(2,187) =51.38, p < 0.001 

Model VGG, CLIP and SGPT VGG, CLIP and SGPT  

Predictors 
Estimates 

(Standardized) 
CI t-value p 

Estimates 
(Standardized) 

CI t-value p 

(Intercept) 0.88 (4.97) 0.32 – 1.45 3.07 0.002 1.21 (5.33) 0.76 – 1.67 5.26 <0.001 

VGG 3.09 2.27 – 3.91 7.4 <0.001 1.39  (0.16) 0.73 – 2.05 4.14 <0.001 

CLIP 2.4 0.82 – 3.97 3 0.003 3.41 (0.22) 2.14 – 4.67 5.32 <0.001 

SGPT 1.68 1.15 – 2.21 6.21 <0.001 2.99  (0.47) 2.56 – 3.42 13.76 <0.001 

R2 / R2 adjusted: 0.53 / 0.52, F(3,186) =69.77 p < 0.001 0.68 / 0.67, F(3,186) = 131.8, p < 0.001 
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CI= 0.30,0.44, Cohen’s d = 2.48) and semantic (SGPT: r = 0.35, t(19) =  5.3, p < .001. CI: 

0.21-0.49, Cohen’s d = 1.19) DNNs. The representation in memory was correlated with 

visual (VGG-objects: r = 0.36, t(19) =  7.6, p < .001. CI: 0.26-0.46, Cohen’s d = 1.71), 

visual-semantic (CLIP: r = 0.42, t(19) =  17.14, p < .001. CI= 0.37,0.48, Cohen’s d = 3.83) 

and semantic (SGPT: r = 0.56, t(19) =  8.81, p < .001. CI: 0.43-0.70, Cohen’s d = 1.97) 

DNNs. To examine whether the contributions of the three DNNs were different in 

perception and memory, we performed a mixed ANOVA with DNN (visual, visual-

semantic, semantic) as repeated measures and Task (Perception, Memory) as a 

between-subjects factor on the Fisher’s z transformed correlations across participants. 

The Greenhouse-Geisser correction was used to adjust for the lack of sphericity. Results 

revealed a marginally significant interaction of DNN and Task F(1.06, 40.23) = 3.9, p= 

0.053, 2=0.09. Post hoc comparison (two-sided, FDR corrected) revealed a lower 

correlation of the visual DNN relative to the semantic DNN with human representation in 

memory (t(114) = 2.91, p =.031), but no difference between the three DNNs in perception. 

To examine the unique contribution of each DNN, we computed the partial correlations of 

each DNN with visual perception and visual memory when holding the other two DNNs 

constant for each participant. All partial correlations were Fisher’s z transformed and 

statistical significance was assessed with a two-sided, one sample t-test, FDR corrected 

for multiple comparisons. Results show a significant unique contribution of each of the 

three DNNs in perception and memory. Visual Perception: visual DNN (r = 0.24, t(19) =  

5.25, p < .001. CI=0.15,0.34, Cohen’s d = 1.17), visual-semantic DNN, CLIP (r = 0.13, 

t(19) =  4.12, p < .001. CI= 0.07,0.2, Cohen’s d = 0.92) and semantic DNN, SGPT (r = 

0.24, t(19) =  4.17, p < .001. CI= 0.12,0.37, Cohen’s d = 0.93).  Visual memory: VGG (r = 

0.15, t(19) =  3.01, p < .007. CI= 0.05,0.27, Cohen’s d = 0.67); CLIP (r = 0.21, t(19) =  

10.9, p < .001. CI= 0.17,0.24, Cohen’s d = 2.46); SGPT (r = 0.43, t(19) =  7.43, p < .001, 

CI=. 0.31,0.54, Cohen’s d = 1.66).  

Finally, to measure the proportion of variance that the visual-semantic and the semantic 

DNNs accounted for beyond the typically used visual DNN, we performed a linear 

regression with the three models as predictors of the average similarity ratings in 

perception and memory. Results for the representation in perception show that the visual 

DNN alone accounts for 38% of variance, together with the visual-semantic DNN they 
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accounted for 43% of the total variance and all three algorithms accounted for 53% of the 

variance. Results for the representation in memory show that the visual DNN alone 

accounts for 22% of variance, together with the visual-semantic DNN they accounted for 

35% of the total variance and all three algorithms accounted for 68% of the variance (see 

Table 2 for regression analysis). Overall, these findings show that by adding the visual-

semantic and semantic DNNs to the pure visual DNN, we can better account for human 

representations of objects in perception and memory. In supplementary results of 

Experiment 4 and Supplementary Figure 2, we report the correlations of the DNNs with 

human semantic similarity ratings of objects, which overall showed high correlations with 

semantic and visual-semantic DNNs as was also the case for faces. 

 

Discussion 

The goal of the current study was to uncover the content of human mental representations 

in perception and memory by quantitatively assess the independent as well as integrated 

contributions of visual and semantic information. This was enabled by using the 

representations that are generated for the images of the same stimuli in visual (VGG) and 

visual-semantic (CLIP) DNNs and for their textual description by language (SGPT) DNNs, 

to model their representations when images are presented (perception) or when they are 

recalled from memory. Our findings reveal that the integration of visual, visual-semantic, 

and semantic DNNs explains a considerable amount of variance (>60%) in human mental 

representations of faces and objects. Moreover, their relative contributions to mental 

representations in perception and memory were reversed. We found a larger visual 

contribution in perception and a larger semantic contribution during recall. Notably, an 

integrated visual-semantic representation accounted for additional unique variance in 

both perception and memory beyond the pure contributions of perceptual and semantic 

information.   

The representation that is generated by the visual-semantic DNN (CLIP) offers us a way 

to explore a distinct, integrated visual-semantic representation in perception and memory 

that has not been considered so far. Current models of face and object recognition posit 

that perceptual and semantic information are processed by separate cognitive and neural 

mechanisms 12,34,38. However, during the process of learning and interacting with faces 
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and objects, visual and semantic information are naturally associated 39,41,63. Our findings 

show that a visual-semantic algorithm (CLIP), which learns to classify images by linking 

them to meaningful semantic information, generates a distinct visual representation that 

accounts for unique variance in the representations of faces and objects in human 

perception and memory. Moreover, the visual-semantic DNN uniquely contributed to the 

representation of unfamiliar faces, for which humans and DNNs do not have semantic 

information, beyond the visual DNN. These findings imply that contrary to current models 

of face and object recognition that regard semantic information as a mere supplement 

that is linked to visual information in long-term memory 17,34,36,38,64, our findings propose 

a framework in which semantic information actively shapes the perceptual representation 

during the learning process. It further suggests that the recognition advantage that is 

reported in humans for familiar than unfamiliar faces 65–68 is not only due to the extensive 

visual experience with familiar faces 66,69,70 but may be also due to the contribution of 

visual-semantic experience to the representation of face identity, which is biased for 

familiar identities (see supplementary results of Experiment 1B and supplementary Figure 

1 for CLIP’s performance for familiar and unfamiliar faces).  

The many recent studies that have examined the similarity between human and DNNs 

representations of faces and objects have focused on visual DNNs and the 

representations of faces and objects in human perception 25,27,32,56,71,72. Our study goes 

beyond these studies by examining how semantic algorithms may account for face and 

object representations37. Moreover, we examined their contributions to the nature of the 

representation that is generated during recall. Our findings show that even pure semantic 

information, extracted by NLP algorithms, accounts for the representation of familiar faces 

and objects in memory, beyond visual and visual-semantic information. These non-visual, 

semantic representations were based on textual descriptions of non-visual, semantic 

information about the familiar identities in Wikipedia and were indeed uncorrelated with 

their visual representations generated by the visual DNN. The correlations between these 

semantic representations and human semantic ratings of the same stimuli were very high, 

indicating their validity as measures of human semantic judgements (Figure 5). It is 

noteworthy, that the semantic definitions of objects often include visual descriptions about 

the color and shape of the object. In addition, different object categories often inherently 
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differ not only in their semantics but also in their visual appearance and are therefore 

difficult to dissociate14. Nevertheless, this is not the case for faces, where the textual 

description included no information on their visual appearance. Still, even for faces, 

semantic information influenced visual similarity judgments of faces recalled from 

memory. Thus, even though participants were instructed to judge the visual similarity of 

the faces or objects, pure semantic information still dominated the representation in 

memory. Overall, these findings show how DNNs enable us to uncover concealed 

semantic biases in the representation of familiar stimuli in memory.  

The similarity between human mental representations and DNN’s representations is 

typically measured by the distance between the embeddings of the images 29,44,72–74. 

Current face generator algorithms (StyleGAN) enable us to visualize these embeddings. 

This procedure offers us a way to assess the correspondence between humans’ and 

DNNs’ representations, by asking human participants to rate the similarity between AI-

generated faces and using these similarity ratings as predictors of human representations 

of the original identities in perception and memory. The results of this analysis were 

remarkably similar to the predictions based on VGG and CLIP embeddings of the original 

images (Figure 3). Furthermore, the pattern of correlations of age, gender and occupation 

with similarity ratings of the generated images (Extended data Figure 5) was similar to 

the pattern that was found with the embedding of the original images (Extended data 

Figure 2). These findings further demonstrate the close correspondence between human 

and DNNs representational geometries, indicating that they can be used as valid models 

of human face representations.  

Our findings show that by combining visual, visual-semantic and semantic DNNs we can 

account for 50-60% of the variance in human mental representations in perception and 

memory, suggesting the usefulness of these algorithms to model human representations. 

Nevertheless, several limitations should be acknowledged. First, the visual-semantic 

(CLIP) and semantic DNNs used in our study were pre-trained on a massive amount of 

data, the content of which we had neither access to nor knowledge about. Still, the 

visualization of their representations and the correlations among them (Figure 1) enabled 

us to validate their visual, visual-semantic and semantic content. In addition, the high 

correlation between human semantic rating and the SGPT embeddings, indicates that it 
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is a valid computational model of human semantic representations (Figure 5, 

Supplementary Figure 2). Second, our findings show that the visual-semantic information 

accounts for additional variance beyond the pure visual and pure semantic information. 

However, it is not clear how this distinct visual-semantic representation is generated 

during learning, how early in visual processing it emerges and what is its functional 

significance. Finally, when using behavioral judgments to measure perceptual and/or 

semantic similarity, we cannot tell the extent to which they reflect a pure representation 

or are also affected decision processes4. In addition, our approach should be used in 

future neuroimaging studies, which solve this possible effect of response bias, by 

measuring the representational geometry based on the distance between the neural 

response to the stimuli, eliminating the need for an explicit similarity judgment. These 

neuroimaging studies can also reveal at what stage of processing and by which neural 

systems these different representations emerge. 

The reversed contributions of visual and semantic information in perception and memory 

are consistent with a recent study that measured reaction time and EEG during visual 

and semantic judgments of objects while they were presented or recalled from memory21. 

Their findings showed reverse information flow between perception and memory with 

semantic to visual processing in memory and vice versa in perception. These and our 

findings are in line with studies that showed that reconstruction of information in memory 

prioritizes the semantic meaning of the stimulus75. These reconstructions account for 

recognition errors that are based on the meaning rather than the perceptual features of 

the recalled events76,77. The dominance of semantic information in the representation in 

memory is also in line with the benefit of semantic relative to visual information during 

encoding for recognition memory 78–80. The high correlation between semantic DNN and 

human memory indicates that NLP algorithms can be used to predict the way semantic 

information may enhance12 or interfere77 with performance on recognition tasks. 

Our findings are also relevant to studies that investigated the degree of similarity between 

the representations generated for the same stimuli in perception and memory. Many 

studies have revealed that the neural representations generated during recall elicit similar 

neural responses to the representations that are generated in perception 81–83. Here we 

addressed this central question by measuring the correlations between the 
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representational geometries of the same stimuli when they are viewed or recalled from 

memory. Consistent with findings that emphasize the similarity between perception and 

recall/imagery, we reveal high correlations between the representational geometries 

when images are viewed and when they are recalled from memory. However, by 

decomposing these representations into their visual and semantic components, we also 

revealed significant differences between them as reflected by the reversed dominance of 

perceptual and semantic information in perception and memory.  

In conclusion, human intelligence relies on cognitive operations that integrate different 

codes into a unified representation. Our findings show that even face recognition, which 

has been traditionally perceived as a task resolved by the visual system, is best predicted 

by a combination of visual, visual-semantic and semantic representations. Moreover, the 

semantic information that is naturally associated with visual categories during learning 

may play an even greater role than previously considered in human perception, by 

shaping the visual features of learned and unlearned categories. Deep learning 

algorithms enable us to examine the nature of these visual, visual-semantic, and semantic 

representations and their unique contributions to perception and memory. The approach 

we used here is not limited to faces or objects and can be similarly applied to model 

human representations of other categories and domains such as familiar places as well 

as sounds and voices. It can be similarly applied to study other measures of human 

mental representations as well as in populations who suffer from perceptual and memory 

disorders. Our findings also inform machine intelligence in that they highlight the 

contribution of multi-model systems that integrate sensory and semantic information. 

Future AI models of human cognition may also integrate emotional, and motor 

representations as well as attentional and motivational factors that select behaviorally 

relevant information. This type of multi-system operation may underlie the efficient 

learning and adaptive behavior that is required to further close the gap between computer 

and human general intelligence. Overall, our findings show how human and machine 

intelligence may inform and advance each other by offering theoretical insights and 

methodological approaches that are less evident when each system is studied alone. 

Methods 
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The study confirms with the ethical regulations and was approved by the ethics committee 

of Tel Aviv University (Approval no. 0005357_2).  

Pre-registration of the familiar face experiments is available here 

https://aspredicted.org/N3T_M3N. 04/25/2022. Pre-registration of the object experiments 

is available here https://aspredicted.org/5F1_BVG. 01/23/2023. 

As we indicated in the pre-registration, prior to collecting data for the experiments 

reported here, we performed a pilot study in which we ran visual and semantic similarity 

judgements tasks for all possible pairs of 26 celebrity faces and examined the reliability 

of these tasks and the correlations between the visual and semantic DNNs with visual 

and semantic judgements. Analysis of these data across different image samples 

indicated that similar results and reliability measures can be obtained with 20 images (190 

pairs), which is the number of images we used in the experiments reported in this article. 

The data reported in this paper were collected after the study was pre-registered and do 

not include the data collected in the pilot study.  

  

Familiar Face images: We selected 20 identities of international celebrities, 9 politicians 

and 11 entertainers, that were included in the CLIP training set (see Extended Data Figure 

1 for a complete list of the identities) and generate a visual-semantic representations of 

their face images. To select identities that CLIP was trained with, we examined whether 

face images of the selected identities could be correctly classified by CLIP. We measured 

the cosine similarity between the embeddings of names and images of these identities 

based on CLIP and selected only identities that the similarity between their image and 

their name was the highest relative to any of the other names (see Extended data Figure 

1).  

We then selected face images of these identities from a Google images search. The face 

images were colored images that included the face of each identity. The background of 

the images was removed, and all images were aligned to the same size. The name stimuli 

were printed names of the identities in black font on a white background (see Figure 2A).  

DNN generated faces: To generate faces, we used a generator for human faces – 

StyleGAN 61,62. Our goal was to transform VGG and CLIP embeddings to StyleGAN's 

embeddings. To do so, we first trained a model to generate StyleGAN's embeddings 

https://aspredicted.org/N3T_M3N
https://aspredicted.org/5F1_BVG
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based on the DNN's embeddings; the full training procedure is described in the 

supplementary methods of Experiment 1B. We used this model to generate images of the 

identities used in the experiment based on VGG and CLIP representations. To reduce the 

effect of noise found in the DNNs' embeddings of a single image, which can be transferred 

to the generated images, we used the DNNs' representations of 20 different images of 

each identity and calculated their mean StyleGAN's embedding. Using this mean we 

generated each image. 

Unfamiliar faces: We selected a set of 20 faces from an in-house face database that we 

created by taking photos of Tel Aviv University students and their friends in a studio by a 

professional photographer. Since their face images do not appear on webpages in 

English, they are unlikely to be familiar to CLIP. 

Object images: Twenty familiar objects were downloaded from Google images. We first 

measured the embeddings of a set of 80 images based on VGG-16 and their textual 

definition based on SGPT. We selected 20 objects that had the lowest correlations 

between the visual and semantic embeddings with all other images, so we can measure 

their independent contributions.  

Deep neural networks: 

Face-trained VGG-16: To obtain a pure visual representation of the face images we used 

the VGG-16 algorithm 49 and trained it to classify 8749 identities of faces from the 

VGGFace2 dataset 84. All images were first aligned using the MTCNN algorithm 85. 

Training and image preprocessing followed the procedure from 86 with the following 

changes: Images were normalized according to μ = [0.5,0.5,0.5], σ = [0.5,0.5,0.5], the 

training was done on batches of 128 images, for 120 epochs of 1000 batches and after 

100 epochs, the learning rate was reduced to 1e-3. The network’s performance was 

measured on a face verification task consisting of 6000 pairs of face images from the 

Labeled Faces in the Wild benchmark 87. The network’s verification performance was 

97%.  

To familiarize VGG with the face stimuli, we finetuned the pre-trained VGG-16 on the 

same 20 identities used during the test (VGGft-20). We collected 20 face images for each 

of the 20 identities from Google images. 75% of images (15) were used to train the 

network, and the other 25% of images (5) were used to validate its classification 
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performance. All face images were preprocessed using the same methodology used for 

pre-training. To fit the network, we replaced its classification layer (FC8) with a new 

classification layer of 20 units only. To reduce the forgetting of the identity distinguishing 

facial features, and overfitting the specific features of these specific images, we froze the 

weights of all convolutional layers, and only trained the fully connected layers. 

Optimization was done during 10 epochs, using the Adam optimization algorithm (Kingma 

& Ba, 2014) with a batch size of 1, a learning rate of 1e-5, with all other parameters having 

the default values offered by the PyTorch framework 88. The model reached 100% 

classification accuracy on the validation set. The correlation between the penultimate 

layer representation of the pre-trained and the fine-tuned VGG was 0.95.  

To extract the representation of each face image of the study stimuli, the images were 

first aligned using the MTCNN algorithm 85. We then extracted the embeddings based on 

the feature vector representation in the penultimate (fc7) layer of the network and 

computed the similarity between each face pair based on the cosine distance between 

these feature vectors. In Extended data Figure 3 we also show these correlations with all 

other layers of the network.  

Object-trained VGG-16: To examine the similarities between the objects’ images, we 

used the VGG16 architecture49 trained on the ImageNet classification dataset 89. We used 

the implementation and pre-trained weights provided by the PyTorch framework 88.  

CLIP (Contrastive Language-Image pre-training): CLIP is trained to create similar 

representations for images and their text caption based on 400M images from the internet 

33.  We extracted the embeddings of each face image based on the output layer of trained 

ViT-B/32 architecture.  In Extended data Figure 3 we show these correlations with the 

RDMs of all layers of the network. We computed the similarity between each face pair 

based on the cosine distance between these representations. All face images were 

aligned using the MTCNN algorithm 85, and then pre-processed according to the values 

supplied by OpenAI’s implementation 33. 

SGPT: GPT Sentence Embeddings for Semantic Search is a recent natural language 

processing (NLP) algorithm that is first pre-trained to predict the next word in a sentence 

similar to other NLP algorithms and use contrastive fine-tuning to create similar 

representations for pairs of sentences that describe the same content50. We extracted the 
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embeddings of the text of the first paragraph in Wikipedia of each identity based on the 

1.3B parameters bi-encoder's output layer and computed the similarity between each 

identity pair based on the cosine distance between these representations. Supplementary 

Table 1 shows the first paragraph in Wikipedia that was used for each identity.  

Human similarity ratings: 

Participants 

Familiar Face tasks: A total of 80 participants were recruited for this study from the Prolific 

platform. 20 participants were assigned to each of the four experimental conditions: Visual 

similarity based on images (mean age 30, 19 females) or names (mean age 29, 14 

females) and semantic similarity based on images (mean age 30, 13 females) or names 

(mean age 29, 16 females). Two participants were excluded from the analysis (1 

participant from the visual memory condition, and 1 participant from the semantic 

(images) condition) because they were not familiar with 30% or more of the presented 

identities, which resulted in a total of 78 participants. The participants were paid 4 GBP 

for their participation in the experiment (8 GBP/hour). They gave informed consent prior 

to the experiment. The study was approved by the ethics committee of Tel Aviv University. 

AI-generated face tasks: A total of 40 participants were recruited from the prolific platform. 

20 participants were assigned to each of the two experimental conditions: visual similarity 

ratings according to VGG generated images (mean age 31, 15 females) or CLIP 

generated images (mean age 30, 17 females). The participants were paid 4 GBP for their 

participation in the experiment (8 GBP/hour). They gave informed consent prior to the 

experiment. The study was approved by the ethics committee of Tel Aviv University. 

Unfamiliar faces: A total of 20 participants were recruited (mean age = 29.5,13 females) 

from the prolific platform to rate the visual similarity of a set of unfamiliar faces. The 

participants were paid 4 GBP for their participation in the experiment (8 GBP/hour). They 

gave informed consent prior to the experiment. The study was approved by the ethics 

committee of Tel Aviv University. 

Object tasks: 80 participants were recruited for this study from the Prolific platform 20 

participants were assigned to each of the four experimental conditions: Visual similarity 

based on images (mean age 31, 11 females) or names (mean age 32, 8 females) and 

semantic similarity based on images (mean age 30, 13 females) or names (mean age 31, 
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15 females). The participants were paid 4 GBP for their participation in the experiment (8 

GBP/hour). They gave informed consent prior to the experiment. The study was approved 

by the ethics committee of Tel Aviv University. 

Procedure  

Participants rated the visual or semantic similarity of all possible pairs of the 20 identities 

(190 pairs). 

Visual similarity rating: Each trial presented one pair of images or names of two different 

identities, and the participants were asked to rate the visual similarity of their faces either 

based on the images (perception condition) or the reconstruction of their faces from 

memory, based on their name (memory condition). In the memory condition, we 

emphasized in the instructions that similarity should be based on the visual appearance 

of the face based on their memory. The image/name pairs were presented on the screen 

one at a time, above a similarity scale (1 (very similar) - 6 (very dissimilar)) until response. 

The participants selected the similarity score with the mouse. The next pair was presented 

1 second after their response. The participants had a forced break for a minimum of 10 

seconds after 80 pairs were presented, and again after 160 pairs were presented. After 

the completion of the ratings of all 190 pairs, the participants were asked to indicate for 

each face/name whether they were familiar with it before the experiment. The experiment 

lasted about 30 minutes. 

The same procedure was used to collect human similarity ratings of the DNN-generated 

faces and unfamiliar faces. 

Semantic similarity rating: Participants were asked to rate the similarity of the identities 

based on biographical or any other semantic information they know about them. We 

emphasized that the similarity should not be based on visual appearance but only on 

semantic information.  

The same procedures were used to collect visual and semantic similarity ratings with 

object images and object names (see Extended Data Figure 6 for the list of images and 

names). 

Data analysis: 

Representational similarity matrices (RDMs)  
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Human RDMs: We generated RDMs for the 190 pairs of faces/objects (all paired 

combinations of 20 stimuli) based on human similarity ratings for each participant. We 

also generated RDMs based on human similarity ratings averaged across all participants 

of the VGG and CLIP-generated images. For familiar faces and objects, we generated 

RDMs based on visual or semantic similarity of the images and their names. For 

unfamiliar faces, we generated RDMs based on visual similarity ratings of images.  

We computed the inter-rater reliability of each task, by the correlations of each participant 

rating with the average similarity rating of the other participants in that task, which is the 

lower bound noise ceiling. 

Trials’ exclusion: We excluded trials if the participant was unfamiliar with one of the 

familiar identities. Participants who were unfamiliar with 30% (or more) of the identities 

were excluded from the analysis. We excluded trials with similarity rating response that 

were shorter than 200 ms and longer than 30,000 ms (30 seconds), based on the 

assumption that participants did not perform the task well on such trials. In the face tasks, 

5.8% of the trials were excluded (3 trials due to RT longer than 30 sec and the rest based 

on the familiarity criterion). In the object tasks, 0.4% trials were excluded (due to RT 

longer than 30 sec).  

Deep neural network (DNN) RDMs: We measured the cosine similarity between the 

embedding of the same identities/objects in the penultimate layer of VGG and in the 

output layer of CLIP, based on their images and in the output layer of SGPT based on 

the first paragraph of their Wikipedia textual description/dictionary definition respectively. 

Correlation and regression analyses 

We computed the correlations between human similarity ratings and DNN distance 

scores. To assess the unique contribution of the different algorithms to the variance in 

human similarity ratings we computed the partial correlations of each DNN while holding 

the other two DNNs constant. ANOVA, post hoc comparisons and one-sample t-tests 

were performed on the Fisher’s z transformed correlations using two-sided null-

hypothesis tests. FDR was applied to correct for multiple comparisons. 

To assess the proportion of variance that the DNN explained in the averaged human 

similarity ratings of faces and objects in perception and memory we performed a multiple 

linear regression in which VGG was the first predictor. We then added CLIP and then also 
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SGPT to assess the additional proportion of variance that each algorithm explained in the 

human data.  

To assess the similarity of human visual representations of the original stimuli and the AI-

generated images, we used the average human visual similarity ratings of VGG- and 

CLIP-generated images as the predictors of human visual similarity ratings of the original 

face stimuli. We calculated the correlations of each participant's ratings based on memory 

and perception with RDMs of human visual similarity ratings of VGG- and CLIP-generated 

images. Then we performed ANOVA to compare this pattern of correlations with the 

pattern found when using the DNNs embeddings of the original faces as predictors of the 

humans' ratings.  

Representational geometry visualization: We used t-SNE, a nonlinear dimensionality 

reduction technique 90 for visualization purposes only. The correlation and regression 

analyses were based on the similarity measures (RDMs). 
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The datasets are available in this link  
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Extended data: 

 
Extended Data Fig. 1 A distance matrix of CLIP embeddings of face images and their 
names. Only identities that were familiar to CLIP were selected to the study. An identity 
is considered familiar if the distance between the embedding of its name (rows) and the 
embedding of its corresponding face image (columns) is closest relative to all other 
identities. This is indicated by the dark diagonal of the matrix. 
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Extended Data Fig. 2 A. The mean partial correlations of the RDMs of visual (VGG-
ft20), visual-semantic (CLIP) and semantic (SGPT) DNNs with RDMs of human 
perception (N = 20) and memory (N = 19) of the same identities, when B. gender, C. 
gender and occupation and D. gender, occupation and age are held out. Error bars 
indicate the standard error of the mean. See statistical analysis in Extended data Table 
1. 
 

 
Extended Data Fig. 3 The mean correlations between RDMs of faces based on the 
embeddings of each layer of VGG-ft20 (left) and each layer of CLIP (right) with human 
visual similarity ratings in perception (left; N = 20) and memory (right; N = 19). Error bars 
indicate the standard error of the mean. Each dot indicates a participant.  
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Extended Data Fig. 4 A. The mean partial correlations of the RDMs of visual (VGG-
ft20), visual-semantic (CLIP) and semantic (SGPT) DNNs with RDMs of human 
perception (N = 20) and memory (N = 19) of the same identities, when B. gender, C. 
gender and occupation and D. gender, occupation and age are held out. Error bars 
indicate the standard error of the mean. See statistical analysis in Extended data Table 
1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 42 

Extended Data Fig. 5 A. RDMs of human similarity rating of VGG-generated (left) and 
CLIP-generated (right) images of the celebrity faces. B. A t-SNE visualization of human 
RDMs of VGG-generated (left) and CLIP-generated (right) faces C. High correlations 
between human similarity ratings of VGG and CLIP-generated faces and RDMs of VGG 
and CLIP’s embeddings of the original faces: D. The mean correlations between the 
RDM of human similarity ratings of VGG-generated (N = 20) and CLIP-generated faces 
(N = 20) with Gender, Occupation and Age. Error bars represent the standard error of 
mean correlations. VGG: VGG embeddings of original faces; VGG-gen: human 
similarity ratings of the VGG-generated faces. CLIP: CLIP embeddings of original faces; 
CLIP-gen: human similarity ratings of the CLIP-generated faces. The AI-generated 
faces cannot be copyrighted and are not shown in the figure. The images can be 
obtained by contacting the authors. 
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Extended Data Fig. 6 The 20 objects that were selected for Experiment 4. For display 
purpose, all images were replaced by licensed images with similar appearance from 
Freepik.com. A license certificate was obtained from Freepik for each of the images shown in 
the Figure.  
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Extended Data Fig. 7 The RDMs, the correlations between them and t-SNE 
visualization for objects based on embeddings of the images by VGG trained on 
ImageNet and CLIP and SGPT embeddings of their dictionary definitions (see 
supplementary Table 3). 
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Extended Data Table. 1 The table reports the mean partial correlations of the RDMs of 
visual (VGG-ft20), visual-semantic (CLIP) and semantic (SGPT) DNNs with the RDMs 
of human perception (N = 20) and memory (N = 19) of the same identities, when gender 
(left), gender and occupation (middle) and gender, occupation, and age (right) are held 
out. Statistical significance of partial correlations was tested with one-sample, two-
sided, t-tests (FDR corrected). See Extended Data Figure 4. 
 

 

 

Supplementary Methods and Results 

Supplementary results of Experiment 1A: 

The correlations between the representations of VGG, CLIP and SGPT with gender, 

occupation, and age  

To further examine the contents of the representations generated by the three algorithms 

for faces, we generated RDMs for the age (difference in years), gender and occupation 

of the different identities and examined their correlations with each of the DNN’s 
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representations. Results show that different DNNs capture different aspects of 

information from the faces (Extended data Figure 2). The visual DNN (VGG) was 

moderately correlated with age (r = 0.27, p < .001, two-sided, CI: 0.13-0.40) and gender 

(r = 0.43, p < .001, CI: 0.30-0.54), but not occupation (r = 0.03, p = .650, two-sided, CI: -

0.01-0.17). Age (r = 0.23, p = .001, CI: 0.09-0.36), gender (r = 0.33, p < .001, two-sided, 

CI: 0.2-0.45) and occupation (r = 0.50, p < .001, two-sided, CI: 0.13-0.4), were all similarly 

correlated with the visual-semantic DNN (CLIP). The semantic DNN (SGPT) was not 

correlated with Age (0.03, p = .691, two-sided, CI: -0.11-0.17), moderately correlated with 

Gender (r=0.27, p < .001, two-sided, CI: 0.13-0.4) and highly correlated with Occupation 

(r = 0.76, p < .001, two-sided, CI: 0.69-0.81). These results show that the different 

algorithms capture different types of information about the familiar identities.  

We also assessed the additional variance of gender, occupation and age add beyond the 

three algorithms by computing the partial correlations between the algorithms and human 

mental representations and adding each of these RDMs serially (Extended data Figure 

4). We first included gender and found that the contributions of the three algorithms 

remained roughly the same. When adding occupation, the contribution of SGPT 

decreased, indicating that it primarily reflects information about the identities’ occupation. 

Further adding age did not change this pattern of results. The statistical tests of the partial 

correlations of each of the DNNs are reported in Extended data Table 1. Thus, the 

information that the visual and visual-semantic algorithms account for in the 

representations in perception and memory goes beyond age and gender, whereas the 

representation of the semantic DNN (SGPT) is primarily accounted for by the identities’ 

occupation. 

 

 

 

 

Supplementary methods of Experiment 1B 

Training a model to generate StyleGAN's embeddings: 

To train this model, we used a subset of images from the CelebA-HQ dataset 1, all of 

which were identities familiar to CLIP (tested with zero-shot classification of name-face 
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images described in the methods section), and none of them depict identities used in the 

main experiment. We mapped the embeddings of these images according to VGG and 

CLIP to StyleGAN's embeddings. To obtain this mapping we trained this model in the 

following steps: 

- Each image embedding was paired with the StyleGAN embedding describing the same 

image, which was calculated in a process termed StyleGAN inversion 2 by using the e4e 

algorithm 3. 

- These image pairs were used to train the model to transform a DNN (VGG or CLIP) 

embedding to a StyleGAN embedding. We trained 18 independent normalizing flows using 

the RealNVP architecture 4, mapping between the 512-dimensional latent variable of each 

input layer of StyleGAN 5 , conditioned on the image’s representation according to each DNN, 

to the 512-dimensional multivariate normal distribution.  

- All RealNVP models were optimized using the Adam optimization algorithm 6 with a learning 

rate of 1e-5 and default PyTorch 7 parameters for 400,000 iterations with batch size of 12 

images. Learning rate reduced by a factor of 10 after 200,000 iterations. Image reconstruction 

from CLIP embeddings was done with representations from the ViT-B/32 architecture 8. 

We ran a similar procedure with a model that was trained on different datasets. We used 

CelebAHQ full dataset, VGGFace2 dataset (familiar to CLIP) or CelebA full dataset. We trained 

the model between StyleGAN and CLIP using each of these datasets and the procedure 

described above. To test if the different trained models generated similar images we generated 

an RDM using VGG-16 for each set and calculated the correlations between these RDMs. The 

correlations were very high (r = 0.89-95), indicating that the models generated similar 

representations. Extended data Figure 5 shows the generated images based on CLIP and VGG 

models.  

 

 

 

Supplementary results of Experiment 1B 

Recognition of VGG and CLIP-generated faces: 
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To test if the generated images can be recognized by humans, we performed a two-stage face 

recognition task: Participants either were assigned to recognize VGG-generated faces or CLIP-

generate faces. The task included two stages: a free recall recognition and a face-name matching 

from a list of names. All the participants conducted the free recall task prior to the face-name 

matching task. In the free-recall task, the participants were presented with a set of face images 

and for each image, they had to indicate to which familiar person the face is mostly similar. The 

participants could also write a description of this person if they could not remember their name or 

to indicate that they do not recognize the face. Following the free recall, the participants performed 

face name matching. In this task, they were presented with the same set of face images, and 

each image was presented with a list of names of highly famous identities. They were asked to 

indicate for each face, to which of the identities in the list, the face is most similar. All female faces 

were presented with the same 18 names (9 names of faces that were included in our task and 9 

names of novel identities) and all male faces were presented with the same 22 names (11 names 

of faces that were included in our task and 11 names of novel identities). The full list of names in 

shown in Supplementary Table 2. After they completed both recognition tasks, the participants 

were asked to indicate for the original 20 identity images whether they were familiar with them 

before the experiment. The experiment lasted about 15 minutes.  

We excluded from the analysis trials that included generated images that are based on identities 

that the participants were not familiar with. In addition, in a few cases participants indicated that 

they are not familiar with an identity based on its original image but did match the face to the 

correct name or recognize them correctly based on the DNN-generated image. In such cases we 

marked them as a correct response and included these trials in the analysis. 

We first assessed whether the VGG- and CLIP-generated faces can be recognized as the original 

identities by humans. Participants were presented with each VGG- or CLIP-generated face and 

were asked to write their name or if they do not recall the name to write any unique semantic 

information that they know about them. We computed the proportion of participants who correctly 

recognized each face image. The VGG-generated faces were recognized by an average of 51% 

(median: 59%; range: 0-90%) of the participants across the 20 face images, and CLIP-generated 

faces were recognized by an average of 31% (median: 28%; range: 0-60%) of the participants 

across the 20 face images. To assess whether performance is improved in a face-name matching 

task, in a second phase of the experiment participants were presented with a list of different 

names of celebrities from the same gender (18 females and 22 males) and were asked to match 

the face image to the name of the person that is most similar to them. The correct name was 
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selected by the majority of the participants for 18/20 images in VGG-generated set and for 19/20 

in CLIP-generated set. The VGG-generated faces were correctly matched to their names by an 

average of 76% (median: 84%; range: 5-100%) of the participants across the 20 face images, 

and CLIP-generated faces were correctly matched to their names by an average of 57% (median: 

57%; range: 0-95%) of the participants across the 20 face images. These results show that the 

VGG-generated faces were recognized better than CLIP-generated faces. 

Supplementary results of Experiment 2:  

CLIP classification performance for familiar and unfamiliar faces 

One limitation of the visual-semantic DNN (CLIP) is that we have no knowledge about the face 

images that it was trained with. We therefore assessed whether this larger training set of CLIP 

indeed generates a better representation of face identity than the face-trained face DNN, that we 

trained on 8749 identities of faces from the VGGFace2 dataset.  Face-trained DNN are often 

tested on benchmarks of faces that are outside of their training set, such as Labeled faces in the 

Wild9. These images are downloaded from the internet and we therefore assessed whether they 

were included in the training set of CLIP by measuring the distance between the embeddings of 

their images and the embeddings of their names. We selected a subset of faces that the 

embedding of their names was closest to (relative to 499 other names) as a set of 200 faces that 

are familiar to CLIP, and another set of 200 faces for which they were farther away, and there 

were other names that were closer to the images, as faces that were unfamiliar to CLIP. All the 

faces were not included in the training set of VGG. We then created a verification test using all the 

images of each of the selected identities to create same identity pairs and the same number of different 

identity pairs (a total of 1400 pairs). We then measured the verification performance of CLIP and VGG 

on each of the tests by measuring the cosine distance between each pair of images and calculate the 

accuracy of the best threshold for the verification test. Supplementary Figure 1 shows that VGG 

performance was better than CLIP for faces that they were both unfamiliar with CLIP reached 

VGG performance for unfamiliar faces only for faces it was familiar with. Thus, CLIP extensive 

training does not generate a representation that is better for face classification than VGG. These 

findings suggest that VGG generates a representation of face identity that better generalizes to 

unfamiliar identities. The visual-semantic representation that CLIP generates is better for the 

classes it is trained with than for classes that it is not trained with.  
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We conclude that CLIP, like humans, generates a visual-semantic representation that may not 

generalize well to unfamiliar faces. Given that the goal of human face recognition is to recognize 

socially relevant familiar faces, this representation suffices for the purpose of human’s social 

interaction with people.  

Supplementary Figure 1: Verification performance for Labeled faces in the wild (LFW) 

faces that were familiar or unfamiliar to CLIP, based on their face-name embedding 

distance. Both sets of images were unfamiliar to VGG. 

Supplementary results of Experiment 4:  

Semantic similarity judgements of objects 

For each participant we computed the correlations and the partial correlations of the three 

DNNs with semantic similarity ratings of objects images or names. The correlations were 

Fisher’s z transformed. Results show significant correlations between the three DNNs 

and semantic similarity judgements based on images (VGG: r = 0.25, t(19) = 10.82, p < 

.001. two-sided, CI= 0.2,0.29, Cohen’s d = 2.42; CLIP: r = 0.39, t(19) = 19.84, p < .001. 

two-sided, CI= 0.35, 0.39, Cohen’s d = 4.44: SGPT r = 0.56, t(19) = 14.4, p < .001. two-

sided, CI= 0.48,0.64, Cohen’s d = 3.22) and semantic judgement similarity based on 

names (VGG: r = 0.24, t(19) = 7.95 p < .001. two-sided, CI= 0.18,0.31, Cohen’s d = 1.78; 

CLIP: r = 0.37, t(19) =0.37, p < .001. two-sided, CI= 0.13,0.43, Cohen’s d = 3.01, Cohen’s 

d = 3.01: SGPT r = 0.55, t(19) = 14.55, p < .001. two-sided, CI=0.47,0.63, Cohen’s d = 
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3.25. A 2-way ANOVA of DNN and Task (Perception, Memory) reveal a main effect of 

DNN F(1.12,42,43) = 94.75, p < .001, two-sided, p
2 = 0.71. Post hoc comparisons reveal 

a significant larger correlation with the semantic DNN than the visual semantic DNN t(117) 

= 6.72, p < .001, two-sided,  and the visual DNN t(117) = 10.6, p < .001 two-sided,  and 

between the visual-semantic and visual DNN t(117) = 4.16, p < .001, two-sided. 

Supplementary Figure 2 shows the raw correlations. 

To assess the unique contribution of each DNN, we computed the partial correlations. 

The partial correlations with semantic judgements based on names were significant with 

CLIP: r = 0.24, t(19) = 12.9, p < .001. two-sided, CI: 0.2,0.28, Cohen’s d = 2.89: and SGPT 

r = 0.51, t(19) = 12.2, p < .0001. two-sided, CI: 0.43,0.6, Cohen’s d = 2.75, but not with 

VGG: r = 0.03, t(19) = 1.07, p = 0.296, two-sided, CI = -.03,0.09, Cohen’s d = 0.24. The 

same pattern was found for semantic judgement based on images: CLIP: r = 0.22, t(19) 

= 12.23, p < .001. two-sided, CI: 0.18,0.25, Cohen’s d = 2.74: SGPT r = 0.51, t(19) = 

13.53, p < .001. two-sided, CI: 0.43,0.59, Cohen’s d = 3.03 but not with VGG r = 0.04, 

t(19) = 1.46, p = 0.193, two-sided, CI: -.02,0.1, Cohen’s d = 0.33). Thus, both semantic 

and visual-semantic DNNs uniquely contribute to semantic ratings of familiar objects 

based on their images or names. Supplementary Figure 2 shows the raw partial 

correlations. 
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Supplementary Figure 2: The mean correlations and partial correlations between RDMs 

of human semantic similarity ratings for objects based on their images (N = 19) or their 

names (N = 20) and the visual, visual-semantic and semantic representations of the 

DNNs, show very high correlations between human semantic similarity and SGPT and to 

a lesser extent CLIP similarity ratings. Error bars indicate the standard error of the mean.  
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Supplementary Table 1: The first paragraph in Wikipedia of each identity was used to 
extract embeddings of the semantic representations of the 20 identities from SGPT: 

Text Identity 

Angelina Jolie[3] DCMG (born Angelina Jolie Voight,[4] June 4, 1975; 
later Angelina Jolie Pitt[5]) is an American actress, filmmaker, and 
humanitarian. The recipient of numerous accolades, including an 
Academy Award and three Golden Globe Awards, she has been 
named Hollywood's highest-paid actress multiple times. 

Angelina Jolie 

Jennifer Joanna Aniston (born February 11, 1969) is an American 
actress and producer. The daughter of actors John Aniston and 
Nancy Dow, she began working as an actress at an early age with an 
uncredited role in the 1988 film Mac and Me; her first major film role 
came in the 1993 horror comedy Leprechaun. Since her career 
progressed in the 1990s, she has become one of the worlds highest-
paid actresses. 

Jennifer 
Aniston 

Dame Judith Olivia Dench CH DBE FRSA (born 9 December 1934) is 
an English actress. Regarded as one of Britain's best 
actresses,[1][2][3] she is noted for her versatile work in various films 
and television programmes encompassing several genres, as well as 
for her numerous roles on the stage.[4] Dench has garnered various 
accolades throughout her career spanning over six decades, 
including an Academy Award, a Tony Award, two Golden Globe 
Awards, four British Academy Television Awards, six British Academy 
Film Awards and seven Olivier Awards. 

Judi Dench 

Kate Elizabeth Winslet CBE (born 5 October 1975) is an English 
actress.[3] Known for her work in independent films, particularly 
period dramas, and for her portrayals of headstrong and complicated 
women, she has received numerous accolades, including an 
Academy Award, a Grammy Award, two Primetime Emmy Awards, 
three British Academy Film Awards, and five Golden Globe Awards. 
Time magazine named Winslet one of the 100 most influential people 
in the world in 2009 and 2021, and in 2012, she was appointed 
Commander of the Order of the British Empire (CBE). 

Kate Winslet 

Keira Christina Righton[1] OBE  Knightley, born 26 March 1985) is an 
English actress.[2] She has starred in both independent films and big-
budget blockbusters, and is particularly noted for her roles in period 
dramas. Her accolades include two Empire Awards and nominations 
for two Academy Awards, three British Academy Film Awards, three 
Golden Globe Awards, one Screen Actors Guild Award and one 
Laurence Olivier Award. Knightley was appointed an OBE in the 2018 
Birthday Honours for services to drama and charity.[3] 

Keira Knightley 

Sandra Annette Bullock ( born July 26, 1964) is an American actress 
and producer. The recipient of various accolades, including an 
Academy Award and a Golden Globe Award, she was the world's Sandra Bullock 



 54 

highest-paid actress in both 2010 and 2014.[1][2][3] In 2010, she was 
named one of Time's 100 most influential people in the world. 

Hugh John Mungo Grant[2] (born 9 September 1960) is an English 
actor. His awards include a Golden Globe Award, a BAFTA Award, 
Volpi Cup and an Honorary C?sar. As of 2018, his films have grossed 
a total of nearly US$3 billion worldwide from 29 theatrical releases.[3] 

Hugh Grant 

Sir Michael Caine CBE (born Maurice Joseph Micklewhite; 14 March 
1933) is an English actor. Known for his distinctive South London 
accent, he has appeared in more than 160 films in a career spanning 
seven decades, and is considered a British film icon.[2][3] He has 
received various awards including two Academy Awards, a BAFTA 
Award, three Golden Globe Awards, and a Screen Actors Guild 
Award. As of February 2017, the films in which Caine has appeared 
have grossed over $7.8 billion worldwide.[4] Caine is one of only five 
male actors to be nominated for an Academy Award for acting in five 
different decades.[nb 1] He has appeared in seven films that featured 
in the British Film Institute's 100 greatest British films of the 20th 
century. In 2000, he received a BAFTA Fellowship and was knighted 
by Queen Elizabeth II for his contribution to cinema. 

Michael Caine 

Nicolas Kim Coppola (born January 7, 1964),[2][3] known 
professionally as Nicolas Cage, is an American actor and filmmaker. 
Born into the Coppola family, Cage is the recipient of various 
accolades, including an Academy Award, a Screen Actors Guild 
Award, and a Golden Globe Award. 

Nicolas Cage 

Robert Anthony De Niro Jr. (/d? ?n??ro?/ d? NEER-oh, Italian: [de 
?ni?ro]; born August 17, 1943) is an American actor, producer, and 
director. He is particularly known for his nine collaborations with 
filmmaker Martin Scorsese, and is the recipient of various accolades, 
including two Academy Awards, a Golden Globe Award, the Cecil B. 
DeMille Award, and a Screen Actors Guild Life Achievement Award. 
In 2009, De Niro received the Kennedy Center Honor, and received a 
Presidential Medal of Freedom from U.S. President Barack Obama in 
2016. 

Robert De Niro 

Thomas Jeffrey Hanks (born July 9, 1956) is an American actor and 
filmmaker. Known for both his comedic and dramatic roles, he is one 
of the most popular and recognizable film stars worldwide, and is 
regarded as an American cultural icon.[2] Hanks's films have grossed 
more than $4.9 billion in North America and more than $9.96 billion 
worldwide,[3] making him the fourth-highest-grossing actor in North 
America.[4] 

Tom Hankes 
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Hillary Diane Rodham Clinton (born October 26, 1947) is an American 
politician, diplomat, lawyer, writer, and public speaker who served as 
the 67th United States secretary of state from 2009 to 2013, as a 
United States senator representing New York from 2001 to 2009, and 
as first lady of the United States from 1993 to 2001 as the wife of 
President Bill Clinton. A member of the Democratic Party, she was 
the party's nominee for president in the 2016 presidential election, 
which she lost to Donald Trump. 

Hillary Clinton 

Nicola Ferguson Sturgeon (born 19 July 1970) is a Scottish lawyer 
and politician serving as First Minister of Scotland and Leader of the 
Scottish National Party (SNP) since 2014. She is the first woman to 
hold either position. She has been a member of the Scottish 
Parliament (MSP) since 1999, first as an additional member for the 
Glasgow electoral region, and as the member for Glasgow Southside 
(formerly Glasgow Govan) from 2007. 

Nicola 
Sturgeon 

Theresa Mary, Lady May[1] (Brasier; born 1 October 1956) is a British 
politician who served as Prime Minister of the United Kingdom and 
Leader of the Conservative Party from 2016 to 2019. She served as 
Home Secretary from 2010 to 2016 in the Cameron government and 
has been the Member of Parliament (MP) for Maidenhead in 
Berkshire since 1997. Ideologically, May identifies herself as a one-
nation conservative.[3] 

Theresa May 

William Jefferson Clinton ( Blythe III; born August 19, 1946) is an 
American politician who served as the 42nd president of the United 
States from 1993 to 2001. He previously served as governor of 
Arkansas from 1979 to 1981 and again from 1983 to 1992, and as 
attorney general of Arkansas from 1977 to 1979. A member of the 
Democratic Party, Clinton became known as a New Democrat, as 
many of his policies reflected a centrist "Third Way" political 
philosophy. He is the husband of Hillary Clinton, who was a senator 
from New York from 2001 to 2009, secretary of state from 2009 to 
2013 and the Democratic nominee for president in the 2016 
presidential election. 

Bill Clinton 

Alexander Boris de Pfeffel Johnson (born 19 June 1964) is a British 
politician serving as Prime Minister of the United Kingdom and Leader 
of the Conservative Party since 2019. He was Secretary of State for 
Foreign and Commonwealth Affairs from 2016 to 2018 and Mayor of 
London from 2008 to 2016. Johnson has been Member of Parliament 
(MP) for Uxbridge and South Ruislip since 2015 and was previously 
MP for Henley from 2001 to 2008. 

Boris Johnson 

David William Donald Cameron (born 9 October 1966) is a British 
politician, businessman, lobbyist, and author who served as Prime 
Minister of the United Kingdom from 2010 to 2016. He was Member 
of Parliament (MP) for Witney from 2001 to 2016 and leader of the 
Conservative Party from 2005 to 2016. He identifies as a one-nation 

David 
Cameron 
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conservative, and has been associated with both economically liberal 
and socially liberal policies. 

Donald John Trump (born June 14, 1946) is an American politician, 
media personality, and businessman who served as the 45th 
president of the United States from 2017 to 2021. 

Donald Trump 

George Walker Bush (born July 6, 1946) is an American politician who 
served as the 43rd president of the United States from 2001 to 2009. 
A member of the Bush family and son of former president George H. 
W. Bush, he previously served as the 46th governor of Texas from 
1995 to 2000 as part of the Republican Party. 

George Bush 

Sir Anthony Charles Lynton Blair KG (born 6 May 1953) is a British 
politician who served as Prime Minister of the United Kingdom from 
1997 to 2007 and Leader of the Labour Party from 1994 to 2007. On 
his resignation he was appointed Special Envoy of the Quartet on the 
Middle East, a diplomatic post which he held until 2015. He has been 
the executive chairman of the Tony Blair Institute for Global Change 
since 2016. As prime minister, many of his policies reflected a centrist 
"Third Way" political philosophy.[b] He is the only living former Labour 
leader to have led the party to a general election victory; and one of 
only two in history to form three majority governments, the other being 
Harold Wilson. 

Tony Blair 
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Supplementary Table 2:  The face-name matching task was performed against this list of 
names. 

Female names: Male names: 

Angela Merkel Arnold Schwarzenegger 

Angelina Jolie Bill Clinton 

Hillary Clinton Boris Johnson 

Jennifer Aniston Clint Eastwood 

Judi Dench David Cameron 

Julia Roberts Donald Trump 

Kate Middleton George Clooney 

Kate Winslet George WBush 

Keira Knightley Hugh Grant 

Meryl Streep Joe Biden 

Nicola Sturgeon Leonardo Dicaprio 

Nicole Kidman Michael Caine 

Penelope Cruise Nicola Sarkozy 

Queen Elizabeth Nicolas Cage 

Reese Witherspoon Prince William 

Sandra Bullock Richard Gere 

Sarah Jessica Parker Robert De Niro 

Theresa May Sylvester Stallone 

  Tom Cruise 

  Tom Hanks 

  Tony Blair 
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Supplementary Table 3: The semantic representations from SGPT are based on the 
following definitions of each object. 

Object Text 

Apple 
A round fruit with shiny red or green skin that is fairly hard and white 
inside 

Ball 
A round object used for throwing, hitting or kicking in games and 
sports 

Banana 
A long-curved fruit with a thick yellow skin and that is soft inside, which 
grows on trees in hot countries 

Baseball 
Bat 

A baseball bat is a smooth wooden or metal club used in the sport of 
baseball to hit the ball after it is thrown by the pitcher. 

Book 
A set of printed pages that are fastened inside a cover so that you can 
turn them and read them 

Chopsticks 
A pair of thin sticks that are used for eating with, especially in some 
Asian countries 

Clock 
An instrument for measuring and showing time, in a room, on the wall 
of a building or on a computer screen (not worn or carried like a watch) 

Comb 

A flat piece of plastic or metal with a row of thin teeth along one side, 
used for making your hair neat; a smaller version of this worn by 
women in their hair to hold it in place or as a decoration 

Cucumber 
A long vegetable with dark green skin that is light green inside, usually 
eaten raw 

Cup 
A small container that is like a bowl in shape, usually with a handle, 
used for drinking tea, coffee, etc. 

Drum 
Sticks A stick used for playing a drum 

Drum 

A musical instrument made of a hollow round frame with plastic or skin 
stretched tightly across one or both ends. You play it by hitting it with 
sticks or with your hands. 

Flute 

A musical instrument of the woodwind group, like a thin pipe in shape. 
The player holds it to the side of his or her face and blows across a 
hole at one end. 

Hairdryer A small machine used for drying your hair by blowing hot air over it 

Orange 
A round citrus fruit with thick skin of a colour between red and yellow 
and a lot of sweet juice 

Pen An instrument made of plastic or metal used for writing with ink  

Plate A flat, usually round, dish that you put food on 

Spoon 
A tool that has a handle with a shallow bowl at the end, used for 
mixing, serving and eating food 
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Tennis 
Racket The racket that you use when you play tennis 

Violin 
a musical instrument with strings, which you hold under your chin and 
play with a bow 
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