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Abstract 

Faces and bodies are processed in separate but adjacent regions in primate visual cortex. Yet, 

the functional significance of dividing the whole person into areas dedicated to its face and body 

components and their neighboring locations remains unknown. Here we hypothesized that this 

separation and proximity together with a normalization mechanism generate clutter-tolerant 

representations of the face, body and whole person when presented in complex multi-category 

scenes. To test this hypothesis, we conducted a fMRI study, presenting images of a person within 

a multi-category scene to human male and female participants and assessed the contribution of 

each component to the response to the scene. Our results revealed a clutter-tolerant 

representation of the whole person in areas selective for both faces and bodies, typically located 

at the border between the two category-selective regions. Regions exclusively selective for faces 

or bodies demonstrated clutter-tolerant representations of their preferred category, corroborating 

earlier findings. Thus, the adjacent locations of face- and body-selective areas enable a hardwired 

machinery for decluttering of the whole person, without the need for a dedicated population of 

person-selective neurons. Thus, the distinct yet proximal functional organization of category-

selective brain regions enhances the representation of the socially significant whole person, along 

with its face and body components, within multi-category scenes.  
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Significance statement 

It is well established that faces and bodies are processed by dedicated brain areas that reside in 

nearby locations in primates’ high-level visual cortex. However, the functional significance of the 

division of the whole person to its face and body components, their neighboring locations and the 

absence of a distinct neuronal population selective for the meaningful whole person remained 

puzzling. Here we proposed a unified solution to these fundamental open questions. We show 

that consistent with predictions of a normalization mechanism, this functional organization 

enables a hardwired machinery for decluttering the face, body and the whole person. This 

generates enhanced processing for the socially meaningful whole person and its significant face 

and body components in multi-category scenes.  
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Introduction 

Intact processing of faces and bodies is critical for effective social interactions. The functional 

separation and the anatomical proximity of face and body-selective brain areas in human and 

monkey high-level visual cortex is well-established (Foster et al., 2021; Harry et al., 2016; Pinsk 

et al., 2005, 2009; Premereur et al., 2016; Schwarzlose et al., 2005; Weiner & Grill-Spector, 2013; 

Zafirova et al., 2022). Yet the functional significance of this anatomical organization remained 

unclear (for recent reviews see (Hu et al., 2020; Taubert et al., 2022). Why are faces and bodies 

processed by dedicated distinct mechanisms, despite their natural co-occurrence in the whole 

person? Why despite the significance of the whole-person for social perception, a distinct 

population of person-selective neurons/brain areas has not been reported so far? Why do face 

and body-selective regions reside in nearby locations? Here we propose a unified account for 

these questions. In particular, we test the hypothesis that this division of the whole person into 

distinct but proximally located face and body-selective areas supports the generation of clutter-

tolerant representations for the face alone, the body alone or the whole person when presented 

in multi-category scenes (Error! Reference source not found.). An advantage of this 

mechanism is that it eliminates the need for an additional population of person-selective neurons.  

A central challenge of the visual system is to generate a veridical representation of objects in 

multi-category scenes. This effect of clutter is reflected in a reduced neural response to an object 

when presented with other objects than when presented alone (Bao & Tsao, 2018; MacEvoy & 

Epstein, 2009, 2011; Miller et al., 1993; Rolls & Tovee, 1995; Zoccolan et al., 2005). Interestingly, 

this reduced response was not found in category-selective areas, where the response to the 

preferred category remained unaffected when presented with other categories (Bao & Tsao, 2018; 

Reddy & Kanwisher, 2007). A normalization mechanism was suggested to account for these 
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findings (Bao & Tsao, 2018; Carandini & Heeger, 2012; Heeger, 2011; Reynolds & Heeger, 2009). 

This mechanism posits that the response of a neuron is normalized by the response of its 

neighboring neurons (i.e., the normalization pool, Error! Reference source not found.b-c). 

Therefore, when a neuron is surrounded by neurons that are selective for its non-preferred 

categories, its response to simultaneous presentation of the two categories is reduced relative to 

the response to each object alone (Zoccolan et al., 2005). However, when the surrounding 

neurons are selective to the same category (i.e., a homogeneous normalization pool), as typically 

found in category-selective regions, the response to a preferred and a non-preferred stimuli 

presented together is similar to the response to the preferred stimulus presented alone (i.e., a 

max response). This essentially generates a clutter-tolerant representation of the preferred 

category (Error! Reference source not found.d-e) (Bao & Tsao, 2018; Kliger & Yovel, 2020, 

Reddy & Kanwisher, 2007). These findings offer a mechanistic account for the advantage of 

clustering neurons that are selective for significant categories, such as faces or bodies.  

Here we propose that the proximity of clusters of face- and body-selective neurons together with 

the same normalization mechanism further enables a hardwired clutter-tolerant representation of 

the whole person (Error! Reference source not found.f). This is enabled by the presence of 

both face-selective neurons and body-selective neurons in the normalization pool (see derivations 

of the normalization equations in Appendix), as typically found in the border between face and 

body-selective areas (Kliger & Yovel, 2020). To test this prediction, we presented the whole person 

in a multi-category scene and assessed whether the representations of the multi-category scene 

is biased to the whole person in areas that are selective to both the face and the body (Figure 1f). 

These findings would indicate that the adjacent locations of face and body-selective clusters of 

neurons generate a clutter-tolerant representation for the face alone, the body alone or the whole 

person when presented in multi-category scenes.  
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Materials and Methods 

Participants: 

Fifteen healthy volunteers (3 women, ages 21-31, 1 left-handed) with normal or corrected-to-

normal vision participated in both experiments. Participants were paid $15/hr. All participants 

provided written informed consent to take part in the study, which was approved by the ethics 

committees of the Sheba Medical Center and Tel Aviv University and performed in accordance 

with relevant guidelines and regulations. The sample size for each experiment (N = 15) chosen 

for this study was similar to the sample size of other fMRI studies that examined the representation 

of multiple objects in high-level visual cortex (10-15 subjects per experiment) (Baeck et al., 2013; 

Baldassano et al., 2016; Kaiser et al., 2014; Kaiser & Peelen, 2018; Kliger & Yovel, 2020; MacEvoy 

& Epstein, 2009, 2011; Reddy et al., 2009; Song et al., 2013) 

Figure 1: Predicted response of single neurons to a multi-category scene in face and body-
selective cortex. (a) The functional organization of face- and body-selective areas in the ventral 
temporal cortex in a representative subject in MNI space. Colors indicate category-selective voxels: 
voxels selective only to faces (red), only to bodies (blue) or to both faces and bodies in the border 
between them (purple). (b) A multi-category scene composed of a face, a body, a chair and a room, 
and the normalization equation representing the response of a single neuron to that scene. (c) A 
mathematical equivalent of (b), which shows the predicted contribution (weight, 𝛽) of each category 
to the response to the multi-category scene. According to this, the contribution of each category is 
determined by the sum of responses of the surrounding neurons (i.e., the normalization pool) to that 
category relative to the sum of responses of the surrounding neurons to all categories. Equation is 
shown for 𝛽!"#$. See Appendix for detailed mathematical derivations and for the complete formulas 
for each of the 𝛽’s. (d) A pictorial illustration of the predicted representations of the multi-category 
scene in voxels that contain a homogenous population of face-selective neurons. The normalization 
equation predicts that the response of a neuron to the scene will be biased to the response of the 
face. (e) Same as (c) for body-selective voxels. (f) A pictorial illustration of the predicted response to 
the multi-category scene in voxels that contain adjacent populations of face-selective and body-
selective neurons. The normalization equation predicts a biased response to the face and the body, 
essentially filtering-out non-person stimuli. Predictions are made for the neuronal response but can 
also be estimated with fMRI (see Appendix). 
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Stimuli 

Main experiment. The stimulus set consisted of grey-scale images of a multi-category scene as 

well as its isolated parts: Face, Body, Chair and Room (Figure 2a). The face and body stimuli 

were created by using 7 grey-scale images of a whole person standing in a straight frontal posture 

with the background removed, downloaded from the internet (Kliger & Yovel, 2020). Each image 

of a person was cut into two parts in the neck area resulting in a face stimulus and a headless-

body stimulus for each identity. The chair stimuli included 7 images of chairs downloaded from 

the internet and scaled to a size that fits common proportions between a standing person and a 

chair. The face, body and chair stimuli were presented with a grey background. The room stimuli 

Figure 2: Example of the stimuli used in the experiment. (a) Stimuli of the main 
experiment, including isolated faces, bodies, chairs and rooms and multi-category scenes 
composed of all of the isolated categories. The isolated categories were placed in the 
same location in the visual field as they appeared in the multi-category scene, and 
subjects were instructed to maintain fixation on the blue fixation dot throughout the 
experiment. These stimuli were used to estimate the contribution of each of the isolated 
categories to the response to the multi-category scene. (b) Stimuli of the functional 
localizer. Stimuli included images of faces, bodies, outdoor scenes, non-living objects and 
scrambled objects. These stimuli were used to assess the magnitude of category 
selectivity of each voxel to each category. 
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included 7 empty rooms created using the website https://roomstyler.com/3dplanner and 

converted to greyscale. The contrast and luminance of the rooms were scaled such that they had 

the same contrast and luminance of a chair including its grey background. The complex scene 

stimuli included 7 images of a person inside a room, with the person standing behind a chair 

(preserving real-life proportion and composition between the person and the chair) at the center 

of the room. The single-category stimuli were presented at the exact same locations on the screen 

as they were presented within the multi-category scene. A fixation point was presented in the 

upper central part of all stimuli, at a location corresponding to the lower part of the neck of the 

standing person.  The size of the multi-category scene images was 13.6X13.6 degrees of visual 

angle.  

Functional localizer stimuli. Functional localizer stimuli were grey-scale images of faces, headless 

bodies, outdoor scenes, non-living objects and scrambled images of these objects (Figure 2b). 

Each category consisted of 80 different images. The size of the stimuli was approximately 5.5X5.5 

degrees of visual angle.  

Apparatus and Procedure 

fMRI acquisition parameters. fMRI data were acquired in a 3T Siemens MAGNETOM Prisma MRI 

scanner in Tel Aviv University, using a 64-channel head coil. Echo-planar volumes were acquired 

with the following parameters: repetition time (TR) = 1 s, echo time = 34 ms, flip angle = 60°, 66 

slices per TR, multi-band acceleration factor = 6, slice thickness = 2 mm, field of view = 20 cm and 

100 × 100 matrix, resulting in a voxel size of 2 × 2 × 2 mm. Stimuli were presented with Matlab 

(The MathWorks Inc.) and Psychtoolbox (Brainard, 1997; Kleiner et al., 2007) and displayed on a 

32” high-definition LCD screen (NordicNeuroLab) viewed by the participants at a distance of 155 

cm through a mirror located in the scanner. Anatomical MPRAGE images were collected with 

1 × 1 × 1 mm resolution, echo time = 2.45 ms, TR = 2.53 s.  
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Experimental procedure. The study included a single recording session with six runs of the main 

experiment and three runs of the functional localizer. Each of the six main-experiment runs 

included fifteen pseudo-randomized mini-blocks, three of each of the following experimental 

conditions: Face, Body, Chair, Room and the multi-category stimulus, as described in the stimuli 

section (see also Figure 2a). Each mini-block included eight stimuli, of which seven were of 

different images and one image repeated for the 1-back task. Each mini-block lasted 6 seconds 

and was followed by 12 seconds of fixation. A single stimulus display time was 0.375 seconds, 

and inter-stimulus-interval was 0.375 seconds. Subjects performed a 1-back task (one repeated 

stimulus in each block). Each run began with a six seconds (6 TRs) fixation (dummy scan) and 

lasted a total of 276 seconds (276 TRs). Subjects were instructed to maintain fixation throughout 

the run and their eye movements were recorded with an Eye tracker (EyeLink®).  

Each functional localizer run included 21 blocks: 5 baseline fixation blocks and 4 blocks for each 

of the five experimental conditions: faces, bodies, nature-scenes, objects and scrambled objects. 

Each block presented 20 stimuli of 18 different images of which two were repeated for a 1-back 

task. Each stimulus was presented for 0.4 sec with 0.4-sec inter-stimulus interval. Each block 

lasted 16 seconds. Each run began with a 6-seconds fixation (6 TRs) and lasted a total of 342 

seconds (342 TRs).  

Data analyses 

fMRI data analysis and preprocessing. fMRI analysis was performed using SPM12 software, 

Matlab (The MathWorks Inc.) and R (R Development Core Team, 2011) costumed scripts, 

Freesurfer (Dale et al., 1999), pysurfer (https://pysurfer.github.io) and Python 

(http://www.python.org) costumed scripts for the surface generation and presentation. The code 

that was used for data analyses is available at https://github.com/gylab-

TAU/Multi_Category_Scenes_fMRI_analysis. The first six volumes in each run were acquired 

during a blank-screen display and were discarded from the analysis as “dummy scans”. The data 
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were then preprocessed using realignment to the mean of the functional volumes and co-

registration to the anatomical image (rigid body transformation), followed by spatial normalization 

to MNI space. Spatial smoothing was performed for the localizer data only (5 mm). A GLM was 

performed with separate regressors for each run and each condition, including 24 nuisance-

motion regressors for each run (6 rigid body motion transformation, 6 motion derivatives, 6 square 

of motion and 6 derivatives of the square of motion) and a baseline regressor for each run. In 

addition, a "scrubbing" method (Power et al., 2012) was applied for every volume with frame-

displacement (FD) > 0.9 by adding a nuisance regressor with a value of 1 for that specific volume 

and zeros for all other volumes. Percent signal change (PSC) for each voxel was calculated for 

each experimental condition in each run by dividing the beta weight for that regressor by the beta 

weight of the baseline for that run. 

Linear model fitting. Mean percent signal change (PSC) across runs to the face, the body, the 

room, the chair and the multi-category scene conditions from the main experiment data was 

extracted for each voxel of each subject. For each subject, we defined a moving mask of a sphere 

of 27 voxels (i.e., a 3x3x3 grid). We used a relatively small sphere of 27 voxels to assure that 

voxels within each sphere are homogenous in terms of their category selectivity. For each sphere, 

we fitted a linear model with its voxel data as features (i.e., the percent signal change, PSC, in 

each of these voxels) to predict the response to the multi-category scene based on the response 

to the isolated categories: 

MultiCategory	𝑆𝑐𝑒𝑛𝑒 = 𝛽!"#$ ∙ 𝐹𝑎𝑐𝑒 + 𝛽%&'( ∙ 𝐵𝑜𝑑𝑦 + 𝛽)&&* ∙ 𝑅𝑜𝑜𝑚 + 𝛽+,"-. ∙ 𝐶ℎ𝑎𝑖𝑟 + ε (1) 

The beta coefficients of these models represent the contribution of each of the isolated categories 

to the response to the multi-category scene of each sphere of each subject. Note that the beta 

coefficients of the multi-category response model are not the same as the betas derived from the 

standard fMRI GLM analysis. The betas from the latter analysis are used to determine the percent 
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signal change (PSC) to each of the single- and multi-category stimuli as a measure of the fMRI 

response to these stimuli.  

Anatomical regions of interest (anatomical ROI) definition. We defined voxels that belong to 

the ventro-temporal cortex (VTC) and lateral-occipital cortex in the right hemisphere by using a 

mask based on the Harvard-Oxford Atlas (Desikan et al., 2006; Frazier et al., 2005; Goldstein et 

al., 2007; Makris et al., 2006). We used the max-probability mask (threshold=0) with voxel size of 

2x2x2 mm. The ventro-temporal mask included the following areas from the Harvard-Oxford Atlas: 

Inferior Temporal Gyrus, posterior division, Inferior Temporal Gyrus, temporooccipital part, 

Parahippocampal Gyrus, anterior division, Parahippocampal Gyrus, posterior division, Temporal 

Fusiform Cortex, anterior division, Temporal Fusiform Cortex, posterior division, Temporal 

Occipital Fusiform Cortex, Occipital Fusiform Gyrus (labels 14-15, 33-34, 36-39, respectively). 

The lateral-occipital mask included the following areas from the Harvard-Oxford Atlas: Middle 

Temporal Gyrus, temporooccipital part, Lateral Occipital Cortex, superior division, Lateral 

Occipital Cortex, inferior division (labels 12, 21-22, respectively). 

We selected the area labeled Frontal Pole (label 0) as a control non-visual area. The number of 

spheres that was randomly selected to be included in this control area was the average number of 

spheres of the category-selective areas for each participant.  

Voxels definition by category-selectivity. Based on the functional localizer data, we estimated 

the selectivity of each voxel of individual subjects for the face and the body by using contrast t-

maps of Face > Object, Body > object and Outdoor-scenes > Object, respectively. We used only 

these three categories since their definition shares the same baseline (i.e., they are all compared 

to Object). We excluded the general object-selective region since the common definition of these 

areas (Objects > Scrambled objects) will result in areas that are not category-specific but are 

similarly responsive to all object categories. Within each anatomical ROI (i.e., ventro-temporal 

cortex and lateral-occipital cortex) we defined several types of voxels based on their selectivity 
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for these three categories. Face-selective voxels were defined as voxels that are selective only 

for faces over objects (p < .0001) and to faces over bodies (p < .0001) and not selective for bodies 

and places (p > .01). These criteria assured that the majority of the neurons within these voxels 

are face-selective. One subject did not have face selective voxels (i.e., selective only for faces 

and not for other categories). Similarly, we defined body-selective voxels as voxels selective only 

for bodies over objects (p < .0001) and to bodies over faces (p < .0001) but not selective for faces 

or places over objects (p > .01). In addition, we defined face and body-selective voxels, by 

selecting voxels that are selective for both faces and bodies (but not for places). These voxels 

contain clusters of face-selective neurons and body-selective neurons. All participants showed 

voxels that were selective to both the face and the body In the ventral-temporal cortex. In the 

lateral-occipital cortex only 5 out of 15 participants showed voxels that are selective to both the 

face and the body. Because the main novel contribution of this work is the response of the ROI 

selective to both faces and bodies, we focused only on the ventral-temporal ROIs and did not 

include lateral-occipital ROIs in our analyses. 

The contribution of each category to the multi-category scene representation. For each subject, 

we calculated the betas of the model from Equation 1 for spheres of 27 voxels in the category-

selective areas described above (see model fitting description above). To reduce statistical 

dependency as a result of the overlapping moving mask, we calculated the mean using an 

interleaved mask, taking only spheres that their centers are not immediately adjacent to one 

another.  We computed the mean beta across all spheres in an ROI for each participant and 

across participants. We calculated the variance inflation factor (VIF), which provides a measure 

of multicollinearity of the beta coefficients, and removed spheres in which the VIF was larger than 

10. We then performed repeated measure ANOVAs to examine the contribution of the isolated 

categories to the multi-category scene for voxels selective for pairs of categories within the ventro-

temporal cortex. We used Category (Face, Body, Room and Chair) and ROI selectivity (face-

selective, body-selective and face and body selective) as within-subject factors and the beta 
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coefficients of the multi-category response model as a dependent variable. To test our specific 

hypothesis with respect to the representation of faces and bodies relative to the other categories 

in the different ROIs, we used paired t-test. One subject did not have face-selective voxels (i.e., 

selective only for faces and not for other categories) and one subject did not have body-selective 

voxels (i.e., selective only for bodies and not for other categories) based on the above-mentioned 

criteria and therefor was not included in statistical analysis that compared between  these ROIs. 

The subjects were included in analysis of other category-selective areas.  

Defining non-saturated voxels. To test whether the BOLD response to the multi-category scene 

was saturated, we conducted the following analysis. For each voxel, we compared the maximum 

response (PSC) to a single category and to the response to the multi-category scene: 

Non-saturated	voxels:	max{𝐹𝑎𝑐𝑒/0+ , 𝐵𝑜𝑑𝑦/0+ , 𝐶ℎ𝑎𝑖𝑟/0+ , 𝑅𝑜𝑜𝑚/0+} > 𝑀𝑢𝑙𝑡𝑖𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦	𝑆𝑐𝑒𝑛𝑒/0+ 	

A non-saturated response to the multi-category scene is evident in voxels that show higher 

response to a single category than to a multi-category stimulus. 

Predictions 

We measured the fMRI response to a multi-category scene of a person in a room with a chair and 

to each of its isolated categories (see Figure 2 and Methods). The predictions of the response to 

the multi-category scene according to the normalization model in the different category-selective 

voxels are specified in Figure 1 (see Appendix for complete mathematical derivations and 

predictions). The normalization model predicts that voxels that are selective for either the face or 

the body - therefore containing one homogenous population of face or body-selective neurons -  

the representation of multi-category scenes will be biased to the preferred category, decluttering 

non-preferred stimuli in the scene. In addition, in voxels that are selective to both the face and the 

body - therefore containing two homogenous populations of face and body-selective neurons, the 



 15 

representation of multi-category scenes will be biased to both preferred face and body categories, 

decluttering non-person stimuli (chair and room) within the scene.  

Results  

A clutter-tolerant representation of the whole person in face- and body-selective areas 

We defined three types of voxels in the ventro-temporal area based on their selectivity for the 

isolated categories (see methods): (1) face voxels: voxels selective for faces but not for bodies, 

non-living objects or places; (2) body voxels: voxels selective for bodies but not for faces, non-

living objects or places; and (3) face-body selective voxels: voxels selective for both faces and 

bodies but not for non-living objects and places (usually located at the border between face and 

body areas) (see Methods and Figure 1). To assess the contribution of each category to the 

representation of the multi-category scene, subjects viewed a different, independent set of stimuli 

containing a multi-category visual scene of a whole person standing next to a chair located inside 

a room, as well as stimuli of each of the components of the scene shown separately (Figure 2a). 

We extracted the mean percent signal change (PSC) response from each voxel for each of the 

isolated-component stimuli. We then used these voxel-level PSCs of each component of the multi-

scene as predictors for a linear model, and the PSC response for the multi-category scene as the 

predicted variable:  

Scene!"# = 𝛽$%&' ∙ 𝐹𝑎𝑐𝑒()* + 𝛽+,-. ∙ 𝐵𝑜𝑑𝑦()* + 𝛽/,,0 ∙ 𝑅𝑜𝑜𝑚()* + 𝛽*1%23 ∙ 𝐶ℎ𝑎𝑖𝑟()* + ε (1) 

The beta coefficients of the above model represent the contribution of each of the isolated 

categories to the response to the multi-category scene. For each subject, we defined a moving 

mask of a sphere of 27 (3x3x3) voxels. For each sphere, we fitted a linear model with its voxel 

data as features to predict the response to multi-category scene from the response to each its 

component. We included only interleaved spheres to avoid high overlap and statistical 
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dependency between overlapping spheres. Note that the beta coefficients of the multi-category 

response model indicate the predicted contribution of each category to the fMRI response to the 

multi-category scene, not the betas derived from the standard fMRI GLM analysis.  

Figure 3a-c depicts the contribution of each of the isolated categories to the response of the multi-

category scene (i.e., the beta coefficients of the above linear model in (1) for the face-selective, 

body-selective and face-body selective voxels of each participant and averaged across 

participants. We performed a repeated measure ANOVA with category (face, body, chair and 

room) and voxel selectivity (face-selective voxels, body-selective voxels and face and body 

selective voxels) as within-subject factors and the contribution to the complex scene 

representation (i.e., the beta coefficients of the linear model) as the dependent variable. We found 

a significant effect for Category [F(3,36) = 35.363, p < 0.0001, 𝜂12  = 0.526] as well as a significant 

category x voxel selectivity interaction [F(6,72) = 8.625, p < 0.0001, 𝜂12 	= 0.275].  

We performed paired t-tests to compare the contribution of the preferred relative to the non-

preferred categories. In line with the predictions of the normalization model (Figure 1), the 

contribution of the face to the representation of the multi-category scene in face-selective voxels 

was higher than the contribution of each of the other categories [𝛽!"#$ − 𝛽%&'(: mean = 0.264, 

t(12) = 3.274, p = 0.0200, Cohen’s d = 0.908, 95% C.I. (0.088, 0.440); 𝛽!"#$ − 𝛽)&&*:	 mean = 

0.452, t(12) = 6.707, p < 0.0001, Cohen’s d = 1.860, 95% C.I. (0.305, 0.598); 𝛽!"#$ − 𝛽+,"-.:	 

mean = 0.588, t(12) = 6.347, p = 0.0001, Cohen’s d = 1.760, 95% C.I. (0.386, 0.790); all p values 

are corrected for multiple comparisons] (Figure 3a). Similarly the contribution of the body was 

higher than the contribution of each of the other categories in the body-selective voxels categories 

[𝛽%&'( − 𝛽!"#$: mean = 0.366, t(12) = 5.443, p = 0.0004, Cohen’s d = 1.510, 95% C.I. (0.220, 

0.513); 𝛽%&'( − 𝛽)&&*:	 mean = 0.422, t(12) = 5.226, p = 0.0006, Cohen’s d = 1.450, 95% C.I. 
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(0.246, 0.598); 𝛽%&'( − 𝛽+,"-.:	 mean = 0.421, t(12) = 4.979, p = 0.0010, Cohen’s d = 1.381, 95% 

C.I. (0.237, 0.606); all p values are corrected for multiple comparisons] (Figure 3b). Finally, the 

contribution of the preferred face and body was higher than the contribution of each of the non-

preferred categories in the face and body selective voxels [(𝛽!"#$ + 𝛽%&'()/2	 − β3445: mean = 

0.516, t(12) = 8.729, p < 0.0001, Cohen’s d = 2.421, 95% C.I. (0.387, 0.645); (𝛽!"#$ + 𝛽%&'()/2	 −

β6789:: mean = 0.447, t(12) = 5.789, p = 0.0003, Cohen’s d = 1.605, 95% C.I. (0.279, 0.615) ; all 

p values are corrected for multiple comparisons] (Figure 3c). The difference between the 

contribution of the face and the body in these voxels was not statistically significant [𝛽!"#$ − 𝛽%&'(: 

mean = -0.012, t(12) = -0.164, p = 0.872 (not corrected), Cohen’s d = -0.046, 95% C.I. (-0.1707, 

0.146)]. When comparing the null model against the alternative using Bayesian t-test, the null 

model is preferred over the alternative [BF =0.282]. In addition, the sum of betas within each type 

Figure 3: The contribution of single categories to the representation of a multi-category 
scene in face- and body-selective voxels. (a-c) The contribution of each isolated category to the 
representation of the multi-category scene in the right ventro-temporal face- and body-selective 
voxels as depicted by the β coefficients of the linear model (Equation 1) in (a) face-selective voxels, 
(b) body-selective voxels, (c) face- and body-selective voxels. Each dot indicates the mean β of a 
single subject. Gray lines connect the β’s of the same subject. Diamonds and error bars indicate 
the group mean and s.e.m., respectively. Note that the β’s of the linear model are not the betas 
extracted from the GLM that evaluates the correspondence between the fMRI hemodynamic 
response and stimulus presentation but indicate the contribution of each category to the response 
to the multi-category scene.  
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of voxels is a little over 1, as predicted by the mathematical model (see Appendix 1) [𝛽!"#$ +

𝛽%&'( + 𝛽.&&* + 𝛽+,"-.: Face only: mean = 1.302, sd = 0.301; Body only: mean = 1.012, sd = 

0.128; Face-body: mean = 1.268; sd = 0.222].  

To assess goodness of fit of the normalization model to the response to the multi-category scene, 

we computed the R2 for each sphere. Figure 4a-c shows the distribution of the R2 values in face- 

and body-selective areas. The overall median R2 = 0.817 indicates a good fit of the proposed 

model to the data from these areas. For comparison, we defined a control area in the frontal lobe 

that does not show visual category-selectivity (the frontal pole, see Methods). The R2 in this region 

was much lower median R2 = 0.333 (Figure 4d), indicating that, consistent with our predictions, 

the normalization model accounts for the response in visual category-selective cortex.  

Results reported so far show that the response of voxels that are selective to both faces and 

bodies show a different pattern of response than voxels that are either face or body selective. To 

further demonstrate that the three ROIs show distinct response characteristics, we plotted a 

scatterplot of the difference between 𝛽!"#$ and 𝛽%&'( (i.e., difference in contribution of the face 

and the body to the response to the multi-category scene) over the relative selectivity for faces 

Figure 4: The distribution and median of 𝐑𝟐 values of all linear models (Equation 1) 
calculated for each sphere and subject for (a) face-selective voxels, (b) body-selective voxels, 
(c) face- and body-selective voxels (d) control non-visual area in the frontal pole. 
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and for bodies, which was measured independently by the functional localizer, for all spheres of 

all subjects (Figure 5). This scatterplot demonstrates that the bias towards either face or body in 

the response to the multi-category scene is associated with the selectivity to these categories. 

Moreover, it shows the equal contribution of the face and the body to the response to the multi-

category scene is a feature of a sub-population of voxels that are selective to both the face and 

the body. 

We performed a mixed-model linear regression with a random intercept for subjects and found a 

positive association between 𝛽!"#$ − 𝛽%&'( and the relative selectivity of Face>Body [𝜒2=68.372 

when comparing to the null model, p<0.0001; Fixed effect estimates: slope=0.041, s.d.=0.005, 

t=8.697, p<0.0001; intercept=-0.059, s.d.=0.040, t=-1.481, p=0.158]. Similar finding were 

reported by Kliger & Yovel (2020) who presented the face, body and whole person in isolation 

 

 

Figure 5: The contribution of face and body to multi-category scene co-varies with face-
body selectivity. The scatterplot shows the co-variability of the difference in the contribution of
the face and the body to the multi-category scene (y-axis), and the difference between face and
body-selectivity that was independently measured by the functional localizer (x-axis) for each
sphere of all subjects.
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Taken together, these findings are consistent with predictions of the normalization model (Error! 

Reference source not found.), indicating that voxels that are selective for both the face and the 

body generate a representation that is biased to the whole person, while voxels that are selective 

for either of the single categories generate a representation that is biased to their preferred 

category. 

Testing an alternative account to the normalization model: A summation model 

An alternative summation account for our findings, which does not rely on the assumption of 

normalization, suggests that if a mixture of category-selective neurons responds independently, 

their combined response would be the sum of their individual responses to their preferred 

categories. This would lead to each beta values in the model (Equation 1) to be equal to 1. Our 

results do not support this summation prediction (Figure 3). Still, a lower than the sum response 

to the multi-category scene may be due to saturation of the BOLD signal, rather than lack of 

support for a summation model. However, under the summation model, the response to the single 

categories would never be higher than the response to the multi-category scene. We therefore 

examined whether such a pattern of activation exists. A voxel-wise analysis reveals a large 

proportion of voxels that show this pattern of response. We found that, in contrast to the 

summation account, 65.74% of the voxels in VTC that are selective to faces or bodies [face-

selective: 61.76%; body selective: 77.95%; face-body selective: 55.81%] showed a higher 

response to a single-category relative to the response to the multi-category scene (Figure 6a-c). 

Subjects who did not have enough voxels in specific areas were excluded from  Anova that 

examined all ROIs,  but whenever available, their data are shown in Figure 6d-i and tested for 

planned t-test (two additional subjects with no  face-only voxels, one additional subject with no  

body-only voxels, three subjects with no  face-body voxels). 
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Figure 6: The contribution of single categories to the representation of a multi-category 
scene in non-saturated face- and body-selective voxels. (a-c) The proportion of voxels that 
show a higher response to single category than multi-category scenes (non-saturated voxels) in 
(a) face-selective, (b) body-selective and (c) face and body-selective areas. (d-f) The 
contribution of each isolated category to the representation of the multi-category scene in face- 
and body-selective voxels as depicted by the 𝛽’s of the linear model (equation 1) in (a) non-
saturated face-selective voxels, (b) non-saturated body-selective voxels, (c) non-saturated face 
and body selective voxels. Each dot indicates the mean 𝛽 of a single subject. Gray lines 
connect the 𝛽’s of the same subject. Diamonds and error bars indicate the group mean and 
s.e.m., respectively. (g-i) The distribution and median of R2 values of all models (equation 1) for 
all spheres and all subjects for (g) face-selective voxels, (h) face-selective voxels, (i) face and 
body-selective voxels 
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We performed a similar analysis to the one described above (Figure 3), only for the non-saturated 

voxels – voxels that showed higher response to a single category than multi-category stimuli. 

Figure 6d-f depicts the contribution of each of the isolated categories to the response of the multi-

category scene (i.e., the beta coefficients of the above linear model in (1) for only non-saturated 

voxels that are face-selective, body-selective and face-body selective of each participant and 

averaged across participants. Results are similar to the previous analysis (Figure 3). Figure 6g-i 

depicts the distribution of 𝑅2	values of all models calculated for all spheres centered in non-

saturated voxels for all subjects. The 𝑅2	 values (median = 0.790) were as high as those reported 

above for all voxels. Statistical analysis yielded similar results as well. A repeated measure 

ANOVA showed a significant effect for category [F(3,21) = 13.176, p < 0.0001, 𝜂12  = 0.422] as well 

as a significant category x voxel selectivity interaction [F(6,42) = 5.699, p <=0.0002, 𝜂12 	= 0.277]. 

Additionally, the contribution of preferred categories was also significantly higher than the 

contribution of non-preferred categories. We performed paired t-tests to compare the contribution 

of the preferred relative to the non-preferred categories. In line with the predictions of the 

normalization model (Figure 1), the contribution of the face to the representation of the multi-

category scene was higher than the contribution of all other categories in face-selective voxels,  

[𝛽!"#$ − 𝛽%&'(: mean = 0.293, t(11) = 2.83, p = 0.0491, Cohen’s d = 0.817, 95% C.I. (0.065, 

0.522); 𝛽!"#$ − 𝛽)&&*:	 mean = 0.445, t(11) = 4.337, p = 0.0035, Cohen’s d = 1.252, 95% C.I. 

(0.219, 0.670); 𝛽!"#$ − 𝛽+,"-.:	 mean = 0.533, t(11) = 4.70, p = 0.0019, Cohen’s d = 1.357, 95% 

C.I. (0.283, 0.782); all p values are corrected for multiple comparisons] (Figure 6d). Similarly, the 

contribution of the body was higher than the contribution of all other categories in the body-

selective voxels  [𝛽%&'( − 𝛽!"#$: mean = 0.352, t(12) = 4.875, p = 0.0011, Cohen’s d = 1.351, 95% 

C.I. (0.194, 0.509); 𝛽%&'( − 𝛽)&&*:	 mean = 0.357, t(12) = 5.363, p = 0.0005, Cohen’s d = 1.487, 

95% C.I. (0.212, 0.503); [𝛽%&'( − 𝛽+,"-.:	 mean = 0.299, t(12) = 5.593, p = 0.0004, Cohen’s d = 

1.551, 95% C.I. (0.182, 0.415); all p values are corrected for multiple comparisons] (Figure 6e). 
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For the face and body selective voxels, the contribution of the preferred face and body was higher 

than the contribution of the non-preferred categories [(𝛽!"#$ + 𝛽%&'()/2	 − β3445: mean = 0.511, 

t(11) = 6.081, p = 0.0002, Cohen’s d = 1.755, 95% C.I. (0.326, 0.696); (𝛽!"#$ + 𝛽%&'()/2	 − β6789:: 

mean = 0.422, t(11) = 5.485, p = 0.0006, Cohen’s d = 1.583, 95% C.I. (0.253, 0.591) ; all p values 

are corrected for multiple comparisons] (Figure 6f). The difference between the contribution of the 

face and the body in these voxels was not statistically significant [𝛽!"#$ − 𝛽%&'(: mean = 0.069, 

t(11) = 0.783, p = 0.450 (not corrected), Cohen’s d = 0.226, 95% C.I. (-0.124, 0.261)]. When 

comparing the null model against the alternative using Bayesian t-test, the null model is preferred 

over the alternative [BF =0.373]. These findings are consistent with prediction of the normalization 

model (Error! Reference source not found.) and results reported above that include all data 

(Figure 3), indicating that a simple summation account does not support the observed findings.  

Finally, we examined behavioral measures during the fMRI scanning for the different stimulus 

categories. We measured performance on the 1-back task across the different categories. 

Performance was at ceiling for all categories. The mean accuracy was: Multi-category scene=0.99 

(sd=0.010); Face = 0.98 (sd=0.018); Body=0.98 (sd=0.014); Room 0.97 (sd=0.019); Chair=0.98 

(sd=0.015).  In addition, we displayed the eye fixation patterns for each category. Figure 7 shows 

an overall similar pattern of fixations across the different stimuli, indicating that participants 

followed the instructions to focus on the fixation dot that was presented in the same location on 

screen across the different conditions during the experiment. 
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Discussion 

The functional properties of face and body-selective areas have been extensively investigated in 

numerous neuroimaging and neurophysiological studies in humans and monkeys in the past two 

and a half decades. Still, the functional significance of their separation and adjacent locations 

remained unclear (for recent reviews see, Hu et al., 2020; Taubert et al., 2022). Our study 

Figure 7: Eye tracker fixation patterns. Hit map of fixations duration along all experiment 
trials of all subjects. Background image is the picture with original location, size and fixation 
point as was presented in the experiment. The data is displayed for the different 
experimental conditions: (a) Face, (b) Body, (c) Room, (d) Chair, (e) Multi-category scene. 
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provides a mechanistic account for this long-standing puzzle by considering the operation of a 

well-established normalization model on distinct face and body-selective regions that reside in 

proximal anatomical locations. Consistent with predictions of the normalization model (see Error! 

Reference source not found. and mathematical derivations in the Appendix), we found that the 

representation of the multi-category scene was dominated by the face in face-selective areas, by 

the body in body-selective areas, and by both the face and body (i.e., the whole person) in the 

border between the face-selective and body-selective areas that is selective to both categories, 

filtering out non-preferred categories. To reveal this pattern of response our study presented the 

whole person within a multi-category scene (see Figure 1), unlike previous studies that presented 

an isolated face, body or whole person (Bernstein et al., 2014; Fisher & Freiwald, 2015; Kaiser et 

al., 2014; Kliger & Yovel, 2020; Song et al., 2013; Zafirova et al., 2022). This enabled us to measure 

the relative contribution of both preferred face and body categories and non-preferred categories 

to the multi-category scene.  

Consistent with predications of the normalization model (Figure 1), we found that the proximal 

location of face and body-selective areas enables the generation of a clutter-tolerant 

representation of the meaningful combination of the face and body (the whole person). This 

machinery eliminates the need for a dedicated population of neurons that are selective to the 

combined whole-person stimulus. The generation of a clutter-tolerant representation of the whole 

person in neighboring face and body areas is accomplished through the same normalization 

mechanism that declutters preferred single categories within their category-selective cortex (see 

for example: Bao & Tsao, 2018; Kliger & Yovel, 2020; Reddy et al., 2009). According to the 

normalization model, when the normalization pool of a face-selective neuron is selective to bodies 

(or when the normalization pool of a body-selective neuron is selective to faces), the response to 

the multi-category scene will be a weighted mean of the response to the two categories, and 

reduced response to the non-preferred categories (see Appendix for mathematical derivations), 
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essentially generating a clutter-tolerant representation of the whole person. Furthermore, we 

demonstrated that an alternative model, which predicts summation instead of normalization, was 

not supported by the data. 

Voxels that are selective to both the face and body typically reside in the border between the face 

and body-selective areas. Whereas our design does not allow us to determine whether these 

voxels contain two populations of face and body-selective neurons or one population of person-

selective neurons, previous studies suggest that the former might be the case. Kaiser and 

colleagues (2014) used multi-voxel pattern analysis to ask if a person-selective region (a region 

that shows higher response to person than object stimuli) is composed of one population of 

person-selective neurons or nearby face-selective and body-selective neurons. Their results 

support the latter conclusion, though as noted by the authors, they do not provide conclusive 

evidence for the absence of person-selective neurons in this region. It should be noted that 

neurons responsive to the whole person were reported in the upper bank of the STS (Wachsmuth 

et al., 1994, see also fMRI findings by Fisher & Freiwald, 2015). This upper bank of the monkey 

STS may be the homologue of human STS (Yovel & Freiwald, 2013), which is known to show 

selectivity to biological motion of the whole person (Thompson et al., 2005). Another recent study 

found neurons responding to the face and body in a patch that is selective to whole person natural 

configuration in anterior IT (Zafirova et al., 2024). Our findings specifically focus on the border 

between the face and body-selective areas in the posterior ventral temporal cortex, where to the 

best of our knowledge such person-selective neurons were not reported. Still, future studies that 

will record neurons that reside in the border between face- and body-selective regions are 

required to further support this claim.  

In a recent extensive review of the literature on the response of visual cortex to faces, bodies and 

the whole person, Taubert and colleagues (2022) have proposed four hypotheses regarding the 

organization of face and body-selective regions including separate networks, weakly-integrated 
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networks, strongly integrated networks or a single network. They concluded that current data do 

not fully support any of these hypotheses and called for future studies that will combine the face 

and body to address these open questions. Our study goes beyond this suggestion by predicting 

that the significance of this functional organization will be evident when the whole person is 

presented in multi-category scenes. Thus, our findings show the benefit of processing faces and 

bodies by both separated networks for enhancing the representations of the face or the body as 

well as integrated networks for enhancing the representation of the whole person. 

The question of whether faces and bodies are processed by separated or integrated systems was 

also discussed in a recent review by Hu and Colleagues (Hu et al., 2020). According to their 

suggested model, faces and bodies are processed separately in posterior brain areas (OFA and 

EBA) but are integrated to the whole person in more anterior regions, the FFA and FBA (Bernstein 

et al., 2014; Fisher & Freiwald, 2015; Song et al., 2013). This model is consistent with our findings 

as the face and body adjacent voxels are primarily located in the fusiform gyrus (Figure 1), 

whereas more lateral and posterior face- and body-selective voxels (i.e., OFA and EBA) are 

located more distant from each other. Indeed, we found that the face and body selective regions 

were proximal only in third of the participants in the lateral-occipital cortex, whereas in ventral 

temporal cortex face and body regions reside adjacently in all our participants (see also Weiner & 

Grill-Spector, 2010, 2013). We suggest that functional organization enables such independent and 

integrated processing of the face and body, either by clusters of neurons that are located more 

remotely from one another (mostly posteriorly) or by nearby face and body regions (mostly 

ventrally), respectively.  

The well-established organization of category-selective visual cortex has generated different 

hypotheses with respect to their emergence in particular locations in the high-level visual cortex 

(Deen et al., 2017; Saygin et al., 2016; van den Hurk et al., 2017). Recently, Op de Beeck and 

colleagues (2019) proposed three main factors that determine where category-selective areas 
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emerge in the visual cortex: (1) pre-existing feature selectivity; (2) computational hierarchy; and 

(3) domain-specific connectivity to areas outside the visual stream. The current study goes 

beyond the representation of single categories and highlights the benefit of positioning different 

category-selective regions in proximity, in particular to the representation of multi-category 

scenes. Theories that attempt to account for the pre-determined locations of category-selective 

areas should also consider the functional significance of their relative proximity for resolving the 

computational challenges of representing multi-category scenes.  

The present study proposes a bottom-up mechanism that can bias the response to certain, 

significant categories by clustering homogenous category-selective neurons. Yet, other 

mechanisms have been suggested to bias the response to specific stimuli. For example, bottom-

up, stimulus-driven mechanisms based on stimulus saliency can allocate resources toward a 

specific target (Beck & Kastner, 2005). Furthermore, a normalization operation was also shown to 

account for top-down mechanisms of selective attention that resolves competition among multiple 

stimuli (Desimone & Duncan, 1995; Reddy et al., 2009; Reynolds & Heeger, 2009)  Thus, the 

proposed hardwired mechanism acts in concordance with other bottom-up and top-down 

mechanisms to resolve the challenge of processing rich, multi-category scenes (McMains & 

Kastner, 2011; Pessoa et al., 2003).  

The biased representation to the whole person that we revealed is in line with behavioral studies 

that reported evidence for preferred processing of the whole person. For example, Mayer and 

colleagues (2015) showed that stimuli of the whole person pop out in cluttered scenes relative to 

other non-human stimuli. Downing et al. (2004) showed that they capture attention even when 

they are unattended; Privileged detection for whole person and faces relative to objects was also 

found in continuous flash suppression tasks (Stein et al., 2012). The clutter-tolerant 

representation that we revealed here for the whole-person may underlie these behavioral effects. 
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To summarize, our study offers a unified mechanistic account for long-standing questions about 

the neural representations of the face, the body and the whole person in high-level visual cortex. 

We explain how the same normalization mechanism enables the generation of a clutter-tolerant 

representation of each socially significant component (face or body) and their meaningful 

combination (whole person), thanks to the neighboring cortical locations of distinct clusters of face 

and body-selective neurons. More generally, our study reveals a new mechanism that is used by 

the visual system to resolve the challenging task of processing socially meaningful stimuli in 

cluttered scenes.  

Appendix: Mathematical derivations of a model predicting the representation of 

a multi-category scene composed of four categories 

According to the normalization model (Reynolds & Heeger, 2009), the measured neuronal 

response of a specific neuron (i.e., neuron j) to multi-category stimuli is divided by the sum of the 

responses of the surrounding neurons. This can be described by the following equation for a multi-

category stimulus composed of four categories, denoted by A-D, such as the stimulus shown in 

Figure 1b, given by the following equation: 

𝑅<(𝐴 + 𝐵 + 𝐶 + 𝐷) = 𝛾
𝐴< + 𝐵< + 𝐶< + 𝐷<

𝜎 + Σ=𝐴= + Σ=𝐵= + Σ=𝐶= + Σ=𝐷=
	, 

where the measured response of a specific neuron (i.e., neuron 𝑗) to the stimuli presented 

together, 𝑅<(𝐴 + 𝐵 + 𝐶 + 𝐷), equals the response of the neuron to the sum of the stimuli, 𝐴< +

𝐵< + 𝐶< + 𝐷<, divided by the sum of the responses of the surrounding neurons (the normalization 

pool) to the stimuli, Σ=𝐴= + Σ=𝐵= + Σ=𝐶= + Σ=𝐷=, and a constant, 𝜎. The constants 𝛾 and 𝜎 are 

free parameters that are fitted to the data  
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We apply this equation to the multi-category scene that we used in our study, which is composed 

of a person, a chair and a room. Therefore, we have four categories presented in this multi-

category scene, denoted as follows: a face (F), a body (B), a chair (C) and a room (i.e., a place, 

P):  

𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) = 𝛾
𝐹< + 𝐵< + 𝐶< + 𝑃<

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
	. 

We can rewrite the normalization equation to express the response to a multi-category scene as 

a linear combination of the responses to each of the isolated categories composing the scene 

(Figure 1c).  

We can separate the right side of the equation into two parts, yielding 

𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) =
𝛾𝐹<

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
+

𝛾(𝐵< + 𝐶< + 𝑃<)
𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=

		. 

Next, we multiply the face part by a term equal to 1: 

𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) = 

=
𝜎 + Σ=𝐹=
𝜎 + Σ=𝐹=

∙
𝛾𝐹<

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
+

𝛾(𝐵< + 𝐶< + 𝑃<)
𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=

		. 

Rewriting the equation, it becomes: 

𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) = 

=
𝜎 + Σ=𝐹=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
∙

𝛾𝐹<
𝜎 + Σ=𝐹=

+
𝛾(𝐵< + 𝐶< + 𝑃<)

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
		. 

Since the response to the isolated face according to the normalization model is given by: 
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𝑅<(𝐹) =
𝛾𝐹<

𝜎 + Σ=𝐹=
 

the response to the multi-category scene becomes: 

𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) =
𝜎 + Σ=𝐹=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
∙ 𝑅<(𝐹) +

𝛾(𝐵< + 𝐶< + 𝑃<)
𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=

. 

We can write this equation as 

𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) = 𝛽!"#$ ∙ 𝑅<(𝐹) +
𝛾(𝐵< + 𝐶< + 𝑃<)

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
, 

where 

𝛽!"#$ =
𝜎 + Σ=𝐹=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
 

is the coefficient of the face in this linear combination. Note that the coefficient depends only on 

the selectivity of the surrounding neurons (i.e., the normalization pool) for the multi-category 

scene that was presented, and not on the selectivity of neuron j itself. 

For simplicity we showed only the derivations for the face weight, but similar derivations can be 

performed for all other categories, yielding: 

𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) = 𝛽!"#$ ∙ 𝑅<(𝐹) + 𝛽%&'( ∙ 𝑅<(𝐹) + 𝛽+,"-. ∙ 𝑅<(𝐶) + 𝛽/>"#$ ∙ 𝑅<(𝑃), 

𝛽!"#$ =
𝜎 + Σ=𝐹=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
	 

𝛽%&'( =
𝜎 + Σ=𝐵=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
 

𝛽+,"-. =
𝜎 + Σ=𝐶=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
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𝛽/>"#$ =
𝜎 + Σ=𝑃=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
 

where the coefficient of each category depends only on the ratio between the selectivity of the 

normalization pool for each of the categories and the selectivity for the other categories. 

A face-selective neuron that resides in a face-selective area responds more to faces than each 

of the other categories, i.e., 

𝐹< ≫ 𝐵< , 𝐶< , 𝑃< 

 and is surrounded by neurons that are mostly face-selective, i.e., 

∑ 𝐹== ≫ ∑ 𝐵= , ∑ 𝐶== , ∑ 𝑃=== . 

Based on the normalization equation, we can predict that the response to the multi-category 

scene will be dominated by the response to the face (Figure 1d): 

𝛽!"#$ > 𝛽%&'( , 	𝛽+,"-. , 	𝛽)&&*	

In addition, some category-selective areas reside in neighboring locations, and the border 

between them contains two populations of neighboring neurons that are selective for either one 

of the two categories – for example, an area with a similar proportion of neurons that are selective 

for faces and bodies but not for chairs and places, such as in the border between the face and 

body areas, i.e., 

Σ=𝐹= ≈ Σ=𝐵= 

Σ=𝐹= , Σ=𝐵= ≫ Σ=𝐶= , Σ=𝑃= 

Based on the normalization equation, we can predict that the response to the multi-category 

scene will be dominated by the responses both to the face and to the body (Figure 1f): 
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𝛽!"#$ , 𝛽%&'( > 	𝛽+,"-. , 	𝛽)&&* 

𝛽!"#$ ≈	𝛽%&'( 

In other words, in an area that is selective for faces and bodies (but not places or chairs), the 

response to the multi-category scene would be biased to the whole person, while filtering out the 

other categories presented in the multi-category scene, i.e., the chair and the room. 

We can further see that the difference between the coefficients of two categories, for example, 

the face and the body, is given by: 

𝛽!"#$ − 𝛽%&'( =
𝜎 +∑ 𝐹==

𝜎 + ∑ 𝐹== + ∑ 𝐵== + Σ=𝐶= + Σ=𝑃=
−

𝜎 + ∑ 𝐵==

𝜎 + ∑ 𝐹== +∑ 𝐵== + Σ=𝐶= + Σ=𝑃=
 

=
∑ 𝐹= − ∑ 𝐵===

𝜎 + ∑ 𝐹== + ∑ 𝐵== + Σ=𝐶= + Σ=𝑃=
, 

i.e., the difference between the coefficients is determined by the difference in the selectivity of the 

normalization pool for the two categories. Thus, as shown before, for areas that contain proximal 

face- and body-selective clusters of neurons, the response to the multi-category scene is equally 

biased to the two categories (i.e., the face and the body), while the chair and the room are filtered 

out with coefficients close to zero,  

𝛽+,"-. , 	𝛽)&&* 	≈ 0, 

Σ=𝐶= 	, Σ=𝑃= ≈ 0. 

Finally, the sum of the coefficients is given by:  

𝛽!"#$ + 𝛽%&'( + 𝛽+,"-. + 𝛽/>"#$ = 
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=
4𝜎 + ∑ 𝐹== +∑ 𝐵== + Σ=𝐶= + Σ=𝑃=
𝜎 + ∑ 𝐹== + ∑ 𝐵== + Σ=𝐶= + Σ=𝑃=

 

=
𝜎 + ∑ 𝐹== +∑ 𝐵== + Σ=𝐶= + Σ=𝑃=
𝜎 + ∑ 𝐹== +∑ 𝐵== + Σ=𝐶= + Σ=𝑃=

+
4𝜎

𝜎 + ∑ 𝐹== +∑ 𝐵== + Σ=𝐶= + Σ=𝑃=
 

= 1 +
4𝜎

𝜎 + ∑ 𝐹== + ∑ 𝐵== + Σ=𝐶= + Σ=𝑃=
 

i.e., the sum of the coefficients is slightly higher than 1, being equal to 1 plus a small positive term. 

𝜎 is usually a small positive number (Reynolds & Heeger, 2009). 

When using fMRI to measure the response to a multi-category stimulus, we measure the BOLD 

signal, which is an estimate of the response of thousands of neurons in a small patch of cortex 

(e.g., a 2x2x2 mm3 voxel). The response of all the neurons in a voxel can be written as:  

Σ<𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) = Σ< m𝛾
𝐹< + 𝐵< + 𝐶< + 𝑃<

𝜎 + Σ=(<)𝐹=(<) + Σ=(<)𝐵=(<) + Σ=(<)𝐶=(<) + Σ=(<)𝑃=(<)
n, 

where k(j) indicates the k’th neuron in the normalization pool of neuron j. 

Assuming that all neurons in a given voxel have a similar normalization pool, i.e., a similar 

surrounding, we can rewrite the equation such that k is no longer a function of j:      

Σ<𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) ≈ Σ< o𝛾
𝐹< + 𝐵< + 𝐶< + 𝑃<

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
p. 

Now, following the exact same derivations made for a single neuron, we can rewrite the equation 

of the expected response as a linear combination of the sum of responses of the neurons with 

the same coefficients used for a single neuron: 

Σ<𝑅<(𝐹 + 𝐵 + 𝐶 + 𝑃) = 𝛽!"#$ ∙ Σ<𝑅<(𝐹) + 𝛽%&'( ∙ Σ<𝑅<(𝐹) + 𝛽+,"-. ∙ Σ<𝑅<(𝐶) + 𝛽)&&* ∙ Σ<𝑅<(𝑃), 
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𝛽!"#$ =
𝜎 + Σ=𝐹=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
	 

𝛽%&'( =
𝜎 + Σ=𝐵=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
 

𝛽+,"-. =
𝜎 + Σ=𝐶=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
 

𝛽)&&* =
𝜎 + Σ=𝑃=

𝜎 + Σ=𝐹= + Σ=𝐵= + Σ=𝐶= + Σ=𝑃=
 

These coefficients are dependent on the local selectivity for each of the isolated categories, which 

can be measured effectively by fMRI. 
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Data Availability 

Data that was collected in this study will be available at https://openneuro.org after publication. 

Tables of preprocessed data as well as the code that was used to generate the analysis, figures 

and statistics are available at https://github.com/gylab-

TAU/Multi_Category_Scenes_fMRI_analysis. 
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