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Confidence judgments are pivotal in the performance of daily tasks
and in many domains of scientific research including the behavioral
sciences, psychology and neuroscience. Positive resolution i.e., the
positive correlation between choice-correctness and choice-confi-
dence is a critical property of confidence judgments, which justifies
their ubiquity. In the current paper, we study the mechanism
underlying confidence judgments and their resolution by
investigating the source of the inputs for the confidence-calcula-
tion. We focus on the intriguing debate between two families of
confidence theories. According to single stage theories, confidence
is based on the same information that underlies the decision (or
on some other aspect of the decision process), whereas according
to dual stage theories, confidence is affected by novel information
that is collected after the decision was made. In three experiments,
we support the case for dual stage theories by showing that post-
choice perceptual availability manipulations exert a causal effect
on confidence-resolution in the decision followed by confidence
paradigm. These finding establish the role of RT2, the duration of
the post-choice information-integration stage, as a prime depen-
dent variable that theories of confidence should account for. We
then present a novel list of robust empirical patterns (‘hurdles’)
involving RT2 to guide further theorizing about confidence judg-
ments. Finally, we present a unified computational dual stage
model for choice, confidence and their latencies namely, the
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collapsing confidence boundary model (CCB). According to CCB, a
diffusion-process choice is followed by a second evidence-integra-
tion stage towards a stochastic collapsing confidence boundary.
Despite its simplicity, CCB clears the entire list of hurdles.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Decision confidence is a metacognitive judgment, which enjoys a unique, dual status in the cogni-
tive sciences. First, confidence judgments and their properties attract wide interest in their own right.
For example, confidence judgments have been used to measure the calibration of subjective probabili-
ties (i.e., the degree of correspondence between inner beliefs and objective probabilities of an event’s
occurrence; Lichtenstein, Fischhoff, & Phillips, 1982) and their resolution (i.e., the degree to which
inner beliefs discriminate between an event’s occurrence and nonoccurrence; Baranski & Petrusic,
1994). Second, confidence judgments constitute an important means for studying additional cognitive
processes in a variety of fields including decision making (Koriat, 2012), psychophysical judgments
(Peirce, 1877; Peirce & Jastrow, 1884), memory (e.g. Squire, Wixted, & Clark, 2007) adaptive control
(Vickers, 1979), conflict (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and social interactions
(Shea et al., 2014). Appropriately, the neural mechanism underlying confidence is a subject of recent
investigations in neuroscience (Kepecs, Uchida, Zariwala, & Mainen, 2008; Kiani & Shadlen, 2009).

This extensive study of confidence is motivated by its fundamental role in daily life situations. For
example, the operation of control mechanisms in goal-driven behavior relies on decision-confidence,
which serves as an internal, subjective form of feedback signal that can help assess progress towards
one’s goals. Consider a student taking a multiple-questions exam: The confidence level the student
feels in the correctness of her answer will determine whether she should spend more thought on that
particular item or proceed to the next one. Self-reports of confidence also play a crucial role in social
interactions, where they affect the reliability attributed to information reported by others (Shea et al.,
2014). The ubiquity of confidence judgments, in both daily life and the cognitive sciences, attests to
the significance of understanding the psychological mechanisms that underlie them.

The critical property of decision-confidence that enables and justifies this broad usage of
confidence judgments is their positive resolution i.e., the positive correlation between confidence
and decision correctness: the higher the confidence, the more likely the decider is to be correct in
his or her decision. In the current paper we examine a fundamental attribute of the mechanism under-
lying confidence judgments and their positive resolution. Specifically, we focus on the source of infor-
mation used to calculate confidence and ask when is this information collected. According to one
influential family of theories, the single information-collection stage theories (henceforth, single-stage
theories), confidence is based on aspects of the decision process such as its duration, a feeling of effort
or simply a different calculation involving the same evidence that was used to determine the decision.
Importantly, such theories maintain that even if confidence is calculated ‘offline’ i.e., after the decision
has been made, its calculation is confined by the aspects of the process that led to the decision. An
opposing family of theories, the dual information-collection stage theories (henceforth dual-stage theo-
ries) stresses the importance of novel evidence, which is collected only after the decision has been
made, as an input to the confidence-calculation process. Such theories thus deny that confidence is
determined based solely on aspects of the decision process.

Our experiments were carried out to distinguish between these families of confidence theories by
testing the effects of post-choice perceptual availability manipulations on the resolution of confidence
judgments. To anticipate, our results provide support for dual-stage theories. We find that during the
time lag between the decision and confidence responses, participants continue to collect information
about the choice alternatives from the environment and this information affects the calculation of
confidence judgments.
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Because a post-choice (information-integration) stage exerts a causal influence on confidence,
theories of confidence need to consider the duration of this stage and how it operates. Thus, the sec-
ond main goal of the current paper was to identify robust empirical relations between the duration of
the post-choice stage (RT2) and additional variables in our paradigm. Such empirical pattern will
guide future theorizing and hence shed light on how confidence judgments are formed.

These robust empirical patterns led to the third main goal of the paper: to present a novel dual
stage model that meets the challenge of accounting for the diversity of these patterns. The core
assumption of our model is that confidence is generated by a collapsing boundary mechanism, which
is set once the decision is met. We show that this model provides a relatively straightforward account
for how confidence judgments and their latencies are determined.

We begin by describing the choice followed by confidence paradigm and the set of typical empirical
patterns (‘Hurdles’) that it yields. We follow with a high level description of the debate between single
and dual information-collection stage theories of confidence. We then discuss specific extant single
and dual stage models of confidence, which are grounded in the sequential sampling framework,
and we examine how they fare vis. a vis. the hurdles. With this background, we describe three variants
of perceptual availability manipulations, which were designed to probe different aspects and bound-
ary conditions of the post-choice integration hypothesis. Having found support for dual-stage theories,
we extend the set of empirical hurdles with respect to the duration of the post-decision stage. Finally,
we describe our novel Collapsing Confidence Boundary (CCB) model and show how it accounts for the
augmented set of empirical hurdles.
1.1. The choice followed by confidence paradigm

In the current paper we focus on the choice-followed-by-confidence paradigm, in which the obser-
ver is first shown a stimulus and asked to decide which of two alternatives (A or B) it matches best. For
example, in a perceptual Two-Alternative-Forced-Choice (2AFC) task, the observer may be asked
whether the predominant movement direction of a cloud of dots is left or right.1 After making the deci-
sion, the observer is asked to rate his or her confidence in the decision. This procedure allows the collec-
tion of four performance measures: (1) choice-correctness, (2) choice reaction time (RT), (3) confidence
level and (4) confidence judgment reaction time (RT2).

The choice followed by confidence paradigm yields a dataset rich with dependent variables, which
combine and interact to form a complex manifold of empirical relationships. This richness was sum-
marized recently in the list of ‘Empirical Hurdles’ facing any quantitative confidence theory (Pleskac &
Busemeyer, 2010) and provided here in the top part of Table 1 (Hurdles 1–7, see Pleskac & Busemeyer
for detailed discussion. Note that Hurdles 8–10 which augment the list of hurdles are described in a
later Section 3, ‘RT2 in the spotlight’). We next describe the hurdles most relevant for our study (6 and
7) in more detail.
1.2. Resolution of confidence

Resolution of confidence pertains to the relationship between choice correctness and confidence.
The simplest definition for Resolution of confidence is the difference between the mean confidence in
correct choices and error choices. Hurdle 6 states that confidence judgments display a positive
resolution to the effect that confidence in correct responses is generally higher than confidence in
incorrect responses (Ariely et al., 2000; Baranski & Petrusic, 1998; Dougherty, 2001; Garrett, 1922;
Johnson, 1939; Nelson & Narens, 1990; Vickers, 1979). On first thought, the finding of a positive res-
olution of confidence might give pause. Indeed, how can observers be more confident when they are
correct rather than mistaken? Doesn’t this mean that the cognitive system ‘knows’ that it has made an
error? And if so, why did it err in the first place? As we show below, theories of confidence judgment
1 Such tasks can be carried out in two variants: Whereas in the free-RT variant the response time is under the full control of the
participants, in the interrogation variant the experimenter controls the choice response time (RT) typically by issuing a response
signal.



Table 1
The ‘Empirical Manifold’ of relationships between the variables in the choice followed by confidence paradigm.

Empirical hurdle Description Models

Hurdles pertaining to choice and choice latency
1. Speed–accuracy trade-

off1,2,3
Decision time and error rate are negatively
related

BOE, pipeline, 2DSD, CCB

2. Slow/fast errors Decision times for erroneous choices can be
slower or faster than for correct choices

BOE, pipeline, 2DSD, CCB

Hurdles pertaining to confidence and confidence latency
3. Negative relationship

between confidence
and difficulty1,2,3

Confidence decreases monotonically as the
difficulty level increases

BOE, pipeline, 2DSD, CCB

4. Negative relationship
between confidence
and decision time1,2,3

During free response tasks and within
experimental conditions there is a
monotonically decreasing relationship
between the decision time and confidence

BOE, pipeline, 2DSD, CCB

5. Positive relationship
between confidence
and decision time1,2,3

There is a monotonically increasing
relationship between confidence and decision
time when decision time is manipulated (e.g.,
different stopping points in an interrogation
paradigm or between speed and accuracy
conditions in free response tasks)

BOE, pipeline, 2DSD, CCB

6. Resolution of
confidence1,2,3

Choice correctness and confidence are
positively correlated

BOE, pipeline, 2DSD, CCB

7. Increased resolution in
confidence with time
pressure on choice1,2,3

When choice is made under conditions that
stress speed rather than accuracy, resolution of
confidence increases

pipeline, 2DSD, CCB; BOE predicts a
decreased resolution with TP (but see
Section 1.4.1.2)

8. RT2 correlations1,3 RT2 is negatively correlated with (1) stimulus
discriminability, (2) choice correctness and (3)
confidence. RT2 is positively correlated with
choice-RT

CCB; BOE and the pipeline model are mute
with respect to RT2; The interrogation 2DSD
predicts a positive correlation between RT2
and confidence

9. Difficulty and choice
accuracy interaction on
confidence1,2,3

As the difficulty level increases confidence
decreases for correct choices and increases for
error choices. Thus, the overall resolution
decreases.

CCB, BOE, pipeline, 2DSD

10. Difficulty and choice
accuracy interaction on
RT21,3

As the difficulty level increases RT2 increases
for correct choices and decreases for error
choices

CCB; BOE, the pipeline model and the
interrogation 2DSD are mute with respect to
RT2

Note. Hurdles 1–7 are the original list of empirical hurdles described by Pleskac and Busemeyer (2010). Here they are
rearranged to facilitate the presentation. Empirical Hurdles 8–10 consist of the set of RT2 correlations, and the novel interaction
findings reported here and described in Section 3. Superscripts in the ‘Hurdle name’ column indicate the Experiments in which
each hurdle was tested. The ‘Models’ column lists the models (among BOE, the pipeline model, the interrogation 2DSD and CCB)
that can account for each hurdle. The bold italicized text in the Models column describes problems the models face in
accounting for a hurdle. It remains to be seen whether the optional-stopping 2DSD can account for the entire empirical
manifold (see Footnote 11).
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can account for the finding of a positive resolution while avoiding the apparent ‘paradox’, whereby the
‘system’ knows it is going to err and nevertheless still does so.

Hurdle 7 describes an additional important property of confidence-resolution: Time pressure (TP,
henceforth) on choice has a beneficiary effect on resolution (Baranski & Petrusic, 1994; Pleskac &
Busemeyer, 2010). In other words, resolution of confidence increases when the decision is made under
instructions that stress speed rather than accuracy. As we describe below, the beneficiary TP effect on
resolution is diagnostic in its ability to tease apart the two important families of single vs. dual
(information-integration) stage theories of confidence (Pleskac & Busemeyer).

1.3. Single vs. dual information-collection stage theories of confidence

Many theories of confidence assume that confidence is a ‘single stage’ process in the sense that the
information underlying both the decision and the confidence judgment is collected in a single,
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choice-preceding, stage. According to such theories, in order to form a decision observers must collect
relevant information, but once a representation of that information is available, it also contains a ‘con-
fidence signal’ on which confidence is based. For example, a common conceptualization of confidence
within the context of signal-detection theories (SDT) states that decision and confidence emerge
simultaneously through the scaling of the distance between the perceptual sample and the decision cri-
terion or through the setting of multiple confidence criteria along the decision axis (e.g. Egan, Schulman,
& Greenberg, 1959; Kepecs et al., 2008). The Balance of Evidence (BOE; Vickers, 1979) model comprises a
second example. According to BOE, observers collect evidence in support of both choice alternatives.
The decision is determined by the alternative that is the first to amass a criterion level of support,
whereas confidence is determined by the difference between the amounts of evidence supporting the
chosen vs. the non-chosen alternatives at the time the decision was made. (See the self-consistency
model, Koriat, 2012, for a similar model.) Below, we survey additional single stage theories that are
rooted in the sequential sampling framework. Remarkably, while many of these theories have been suc-
cessful in accounting for some of the empirical hurdles (1–7), none of the extant single stage theories can
clear all the hurdles, with the resolution hurdles comprising an especially tough challenge.

An alternative view posits that, in order to form confidence judgments, observers do not suffice
with the information collected during the decisions but rather keep collecting additional information.
(The Two-Stage Dynamic Signal Detection model, 2DSD, Pleskac & Busemeyer, 2010; the response-
reversals model, Van Zandt & Maldonado-Molina, 2004.) According to these theories, observers take
advantage of the inter-judgment time (the time between the decision and confidence responses) to
continue accruing decision relevant evidence in a post-decisional stage. This continued evidence
accrual builds on the evidence that is accumulated during the choice-stage and confidence is
determined according to the evidence that was collected during both stages.

Importantly, evidence which is collected after the decision reflects the true identity of the stimulus.
Thus, on error trials, post-choice evidence tends to be incongruent with the decision, whereas on cor-
rect trials it tends to be congruent with the decision. Consequently, post-choice evidence-integration
provides a natural mechanism for the emergence of positive resolution. Any calculation that is
sensitive to the congruency between the pre- and post-decision evidence would produce lower con-
fidence in error responses compared to correct responses. Furthermore, below we will show that some
dual stage theories can also account for the beneficiary TP effect on resolution, allowing such models
to clear all the empirical Hurdles 1–7.

1.3.1. Alternative taxonomies of confidence theories and their relationship with the single vs. dual stage
typology

An additional important classification-scheme of confidence theories focuses on the timing of
confidence processing, specifically, whether confidence is processed during the decision (decision
locus) or following the decision (post-decision locus). In a series of studies, Baranski and Petrusic found
that confidence is being processed both during and after the decision (i.e., it is of dual loci) and that the
relative proportion of decisional processing is a function of whether choice-speed or choice-accuracy
is stressed, such that under accuracy stress decisional confidence processing is more substantial
(Baranski & Petrusic, 1998, 2001, Petrusic & Baranski, 2003).

In contrasting the locus of confidence and the number of stages taxonomies, we note that there are
types of post-choice confidence processing, which do not involve post-choice information-collection—
the form of post-choice confidence processing that is assumed by dual stage-models. For example,
according to BOE, the calculation of the balance (of evidence), which takes place following the choice
(Vickers & Packer, 1982), merely interrogates the information that was collected by the time that the
decision was made but does not involve the post-decisional collection of novel information. Single
stage information collection theories can thus posit that confidence is processed only during the deci-
sion (pure decision locus), only after the decision (pure post-decision locus) or both during and after
the decision. On the other hand, since dual stage theories assume post-decisional accumulation of
novel information, they also necessarily assume that at least some portion of the confidence
processing is of post-decisional locus. Importantly, dual stage models go beyond asserting that confi-
dence is processed (also) after the choice in that they specify a particular form of stimulus processing
(we revisit this issue in the General discussion Section 5.2).
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There are additional important typologies of confidence theories, which for the purpose of the cur-
rent paper, we subordinate to the single vs. dual-stage classification. One such typology of confidence
theories pertains to the distinction between ‘computational’ and ‘heuristic’ theories. BOE, which was
described above, is an example of a computational theory as confidence is computed directly from the
perceptual information extracted from the stimulus. The time-based hypothesis (Audley, 1960;
Ratcliff, 1978; Volkman, 1934; Zakay & Tuvia, 1998) on the other hand, constitutes an example of a
heuristic theory. According to this hypothesis, higher decision times yield lower confidence ratings.
Such a heuristic is based on the general regularities that hard decisions are both more time consuming
than easy decisions and are made with lower degrees of confidence. In the heuristic approach confi-
dence is not computed from the evidence that is extracted during the decision. Still, it is a function of
some other property (in this case duration) of the decision process. Thus we can interpret the time-
heuristic as a single-stage theory, in the sense that it relies on an aspect of the decision process and
does not require the observer to draw novel information from the external environment after the
choice has already been made, in order to determine confidence.

1.3.2. The pipeline: a minimal theory of post-choice integration
The pipeline theory (Resulaj, Kiani, Wolpert, & Shadlen, 2009) was presented in the

neuroscience literature in the context of changes of mind in perceptual decisions but has not
yet been applied to confidence research. According to this theory, there is a lag between the time
a decision is reached and the time the response is executed due to response processing and motor
execution latencies. During this interval, perceptual information continues to be available, because
experimental settings involving free responses terminate stimulus presentation only once a
response has been executed. This information continues to feed information-accumulation units
resulting in different states at the time of the decision and the time of the response.
Nonetheless, once the response is executed the perceptual gate closes and the flow of additional
novel external information into the perceptual channel terminates. Thus, post decisional accumu-
lation of novel information is strictly limited to the pipeline and hence, confidence judgments will
reflect in addition to the total evidence that guided the decision, a short term (e.g. 200–300 ms)
component of pipeline information.

Theoretically, the pipeline model suggests an intermediate possibility between the single and dual
stage theories of confidence. In compliance with the fundamental second stage principle, in the
pipeline theory confidence is determined by post decisional integration of information. On the other
hand, in the spirit of single stage theories, once the decision is formed observers cease to actively seek
novel external (perceptual) information. Thus, the pipeline theory could be construed as ‘a minimal
dual-stage theory’ and can serve as an important benchmark in gauging the boundary conditions
and the extent of post-choice integration. Specifically, when empirical evidence in support of post-
choice integration is found, one should ask whether a pipeline theory can account for such evidence.
An affirmative answer suggests that the extent of post-choice integration might have been very lim-
ited, perhaps even involuntary. A negative answer, on the other hand, implies that the post-choice
stage was more extended and deliberate. In the current paper, the pipeline theory will thus serve
as a yardstick, which will allow us to transcend beyond the binary yes/no question of whether
post-choice integration has occurred and to probe the extent to which it has occurred.

Is confidence a single or a dual-stage process? In the following section we examine in more detail
extant confidence theories and show how the empirical hurdles and especially, the positive resolution
property of confidence judgments and the TP effect (Hurdles 6–7), can shed light on the single vs. dual
stage debate and help to tease these families apart.

1.4. Extant models of confidence

The sequential sampling framework has been highly successful and influential in modeling choice.
Naturally, most theories of the choice followed by confidence paradigm are grounded in this frame-
work. In Appendix A, we provide a brief summary of the sequential sampling framework for binary
choice, focusing on the differences between the diffusion and accumulator models (we refer readers
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to more extensive presentations of sequential sampling theory for additional details e.g. Gold &
Shadlen, 2007; Ratcliff & McKoon, 2008; Teodorescu & Usher, 2013). We next describe some prior
attempts to model confidence within this framework.

1.4.1. Single information-integration stage confidence theories
Because diffusion and accumulator based theories have offered different avenues for modeling

confidence, we describe each of these paths in turn.

1.4.1.1. Diffusion based single stage confidence theories. Diffusion models accumulate evidence
differences towards a threshold value h (see Fig. 1). Thus, all decisions terminate when one alternative
has an advantage of h over the other. Importantly, any attempt to base confidence solely on the
difference in evidence in favor of the chosen alternative is bound to fail, because it leads to the false
prediction that all trials should have identical confidence. Such a theory could obviously not account
for the increase in confidence with increase in stimulus discriminability (Hurdle 3) and for the positive
resolution of confidence (Hurdle 6).

A more normative assumption is that confidence corresponds to the posterior probability of the
decision, given the stream of evidence. Such a theory was proposed by Kiani and Shadlen (2009),
for a task in which trials of different difficulty were intermixed within an experimental block.
Importantly, when drift rate varies across trials, the diffusion mechanism accommodates for differ-
ences in posterior probability of decisions that are executed for the same threshold level of evidence.
Indeed, Kiani & Shadlen showed that the likelihood ratio is a monotonically decreasing deterministic
function of the accumulation time. However, when a single difficulty level exists within an experimen-
tal block the model predicts that all trials terminate with the same posterior probability for the chosen
alternative and hence, it is subject to all the criticism described above.2 Furthermore, even when diffi-
culty levels are mixed, this model cannot account for confidence effects that survive control for RT,
because confidence is a deterministic function of RT (for a given choice threshold). One such example
is the ‘RT-difficulty effect’ (Baranski & Petrusic, 1994; Kiani, Corthell, & Shadlen, 2014) according to
which easier stimuli generate higher levels of confidence than hard stimuli even when decision RT is
controlled for.

1.4.1.2. Accumulator based single stage confidence theories. Accumulator models offer an alternative
route to model confidence. This approach relies on the fact that unlike diffusion models, in which,
at the time of choice, the amount of evidence favoring the chosen over the non-chosen alternative is
constant, in accumulator models, it is variable. Capitalizing on this principle, Vickers (1979, 2001) pro-
posed the Balance of Evidence hypothesis (BOE), according to which confidence is a monotonically
increasing function of the difference between the amounts of evidence each counter has accumulated
by the time of the decision. Paired with the BOE hypothesis, accumulator models can account for
empirical Hurdles 1–6. However, in violation of Hurdle 7, BOE predicts decreased resolution with
increased time pressure (Pleskac & Busemeyer, 2010). According to BOE, lower choice thresholds,
induced by increased time pressure, lead to lower accumulated values at decision and thus to lower
balances of evidence. Consequently, balances become similarly low for both correct and error choices,
leading to a low resolution. Importantly, this conclusion should be qualified as its supportive argu-
ment assumes that TP manipulations on choice selectively influence choice thresholds. However, TP
manipulation can additionally influence the balance-to-confidence mapping (Baranski & Petrusic,
1998; Pleskac & Busemeyer, 2010). Furthermore, it has recently been shown that TP manipulations
can affect evidence accumulation rates (Rae, Heathcote, Donkin, Averell, & Brown, 2014). Finally,
Kiani et al. (2014) have recently introduced a ‘bounded accumulation model’ according to which,
2 When the diffusion model consists of a single difficulty level and there is no across trial variability in drift rate and starting
point, the model for decision is equivalent to the normative sequential ratio probability test (SPRT; Gold & Shadlen, 2007; Moran,
2014; Wald & Wolfowitz, 1948). In SPRT the decision variable corresponds to the posterior log likelihood ratio between the choice
alternatives, conditional on the observed stream of evidence, and evidence is integrated until this likelihood ratio reaches a
criterion level. Thus, if confidence is based on the likelihood ratio, this normative single-difficulty model faces the same problem
that we described above for diffusion to boundary.
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Fig. 1. The causal locus of positive resolution in 2DSD. The black trajectory, reaching the higher threshold, corresponds to a trial
terminating in choice of alternative A. At this point the trial splits: If ‘A’ is the correct answer then during the second stage the
diffuser will, on average, continue to grow (blue trace), whereas if ‘A’ is the wrong answer—it will tend to decline (red trace). By
the end of the second stage the blue correct trace has accrued more support; hence confidence in favor of choice A will be higher
than for the red erroneous choice. Positive resolution ensues. The vectors vcorrect and verror illustrate the mean post-choice drift
rates for correct and erroneous trials, when A is chosen. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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confidence is a function of not only the balance of evidence, but also choice RT. Revisiting in future
research the question of whether the balance of evidence (in itself or together with the decision time)
can account for the beneficiary TP effect on confidence thus seems advisable.
1.4.2. Dual information-collection stages theories of confidence
Unlike single stage theories, according to dual-stage theories, people can base their confidence on

additional sources of information besides the one that lead to the actual decision. This allows dual
stage theories to easily account for the positive confidence-resolution. Specifically, as explained above,
any information about the stimulus that is collected following the decision, correlates positively with
the true stimulus and hence either supports correct decisions or counteracts erroneous ones. Thus
positive resolution would be generated by any process that is sensitive to the congruency between
post-decision evidence and the choice itself. In the current section we describe how specific dual-stage
confidence models can account for the empirical results, particularly the resolution hurdles.
1.4.2.1. The interrogation two-stage dynamic signal detection model. Unlike the single-stage models, in
the 2DSD model, the decision, formulated as a diffusion process, is only the first stage of a dual-stage
process. In the second, post-decisional stage, judges continue to accumulate evidence about the alter-
natives. The total amount of evidence collected from the onset of the stimulus, before and after the
choice, is compared with confidence criteria to determine the confidence level. In the interrogation
2DSD variant, post-decision evidence accumulation is modeled by continuing evidence accumulation
for a fixed period of time, dubbed inter-judgment time and denoted by s (see Fig. 1). The time of the
confidence judgment, denoted tC , is the sum of the time of the decision tD and the inter-judgment time
s. This model further assumes that judges map the total amount of evidence LðtCÞ ¼ LðtD þ sÞ into a
confidence scale by setting confidence criteria at specific values of evidence, in a manner that is
analogous to signal detection theory (e.g., Macmillan & Creelman, 2005). The basic idea underlying
this evidence-to-confidence mapping is that higher amounts of evidence exceed higher confidence cri-
teria and hence result in higher levels of confidence. Pleskac and Busemeyer (2010) demonstrated that
the 2DSD model can account for Hurdles 1–7.
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Why does 2DSD avoid the pitfalls that thwart the single stage diffusion attempts to model confi-
dence? The crux of the answer is that whereas the amount of evidence accrued by the end of the first
stage is constant (across all decisions given a decision threshold), by the end of the second post-decision
stage, it is variable. 2DSD capitalizes on this property. For example, stimuli with different discriminabil-
ity are indistinguishable with respect to the total relative amount of supporting evidence at the time of
decision. Nevertheless, during the second stage the more discriminable stimuli will generally recruit
higher amounts of evidence due to their higher drift rates. Thus, by the end of the second stage, more
evidence will be accrued the more discriminable the stimulus, leading to higher confidence (Hurdle 3).

How does 2DSD account for a positive resolution and for the beneficiary TP effect? During the sec-
ond information-collection stage, the post-decisional drift is congruent with correct choices and
incongruent with erroneous ones, hence a positive resolution ensues (Hurdle 6, see Fig. 1). In account-
ing for the beneficiary time pressure effect (Hurdle 7), Pleskac and Busemeyer (2010) relied on the
empirical finding that RT2 was longer under conditions that stress choice speed rather than accuracy.
In 2DSD resolution emerges due to the systematic difference in second stage support for correct and
error trials and hence, the longer this stage (RT2), the higher the resolution.

1.4.2.2. The pipeline model. The pipeline model (Resulaj et al., 2009) is similar to 2DSD in that it fea-
tures a diffusion-like decision process.3 However, unlike the 2DSD, in the pipeline model the post-
choice stage is limited to the integration of perceptual information that is sampled in the temporal
lag spanning between the formation and the execution of the choice. Importantly, this model can account
qualitatively for Hurdles 1–6 in the same way as 2DSD can and can also account for the beneficiary TP
effect on resolution (Hurdle 7; This is shown in Appendix B). As explained above, this model served us as
a benchmark for gauging the extent of post-choice information-integration.

1.4.2.3. The optional stopping 2DSD model. In the 2DSD interrogation model inter-judgment time is
treated as an exogenous variable. This means that rather than accounting for RT2, this model accounts
for confidence and its relations with the other variables (in the choice followed by confidence para-
digm) based on the observed empirical RT2. The optional stopping 2DSD (Pleskac & Busemeyer,
2010) is a second and more sophisticated 2DSD variant wherein, RT2 is an endogenous variable i.e.,
it is governed by the model mechanism, rather than fed extrinsically into the model.

In the optional stopping 2DSD, the first choice stage is identical to that of the interrogation 2DSD, a
standard diffusion process, which is formulated as a Markov chain. The second stage is different
though: Markers jj are placed along the evidence state space representing the different confidence
ratings (j = .50, .60, . . . ,1.00), one for each rating. As the second-stage unfolds, this Markovian-diffuser
occasionally meets the markers. The ‘extreme’ markers corresponding to confidence .50 or 1.00 are
absorbing i.e., the second stage integration is terminated and the corresponding confidence judgment
is issued as soon as either of these markers is reached. When evidence passes one of the other inter-
mediary markers (.60, .70, .80, and .90) there is a probability wj that the judge exits and gives the
corresponding confidence rating. Both the markers and the exit probabilities are free model parame-
ters (see Pleskac & Busemeyer, 2010 for further details). Due to its ability to account for RT2, the
optional stopping rule 2DSD is a promising model for all four dependent variables in the choice fol-
lowed by confidence paradigm (we discuss this model further in Section 3.2).

1.5. Single vs. dual stage confidence theories: an intermediate summary

The upshot of our survey of extant confidence-theories is that presently, only dual stage theories
are able account for the entire set of hurdles. This fact in itself, however, lends only indirect support
for dual over single stage theories because it remains possible that a future single stage theory (or
perhaps even an extant theory with relaxed assumptions, see our presentation of the BOE in
Section 1.4.1.2) would be able to clear all hurdles. This consideration begs the necessity to conduct
direct empirical tests of the principal assumption of dual-stage theories, i.e. post-choice informa-
tion-integration.
3 Note that the idea of a pipeline could also be implemented in the framework of accumulator models.
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2. Experimental investigations of post-choice information collection

2.1. Overview of the experiments

The main purpose of our experiments was to test directly the fundamental principle distinguishing
single from dual stage theories of confidence: Do people use post decision information towards form-
ing confidence judgments? If the answer is affirmative, then is the post decisional integration short
and limited to a pipeline or is it more extended in time? And if post-choice integration extends beyond
a pipeline, does the duration of this stage exert a causal role on confidence?

An additional goal of the experiments was to examine in more detail the beneficiary TP effect on
resolution (Hurdle 7). This finding is particularly important because it was pivotal in favoring dual
over extant single stage theories and it could constrain future theories. Does the beneficiary TP effect
on resolution depend on the perceptual availability of the stimulus following the decision? Does this
effect empirically depend on longer RT2 in speed vs. accuracy condition (Pleskac & Busemeyer, 2010)
or is the effect found even when RT2 is not longer in the speeded condition? Puzzlingly, and anticipat-
ing our results, we replicated the beneficiary TP effect even when the speeded-choice condition was
not associated with a higher RT2. We thus examined whether in principle, 2DSD can predict a
beneficiary TP effect even when RT2 is not shorter in the speeded choice condition. In Appendix B
we present a simulation study in which we found that longer RT2 in the speed condition is not a
necessary condition for the beneficiary TP effect and that a beneficiary TP effect ensues if RT2 is equal
or even moderately lower in the speeded choice condition. This finding is a subtle consequence of drift
rate variability and the fact that the distributions of drift rates conditional on correct and erroneous
responses vary as a function of the choice threshold.

Finally, having found direct evidence supporting post-choice integration, we set out to explore
additional robust relationships between RT2 and the other variables in the choice followed by
confidence paradigm. Our purpose was to augment the empirical manifold with additional empirical
patterns, which can provide further constraints on future theorizing of confidence.

To test these issues, we build on the decision followed by confidence paradigm and introduce a novel
manipulation designed to experimentally control the perceptual availability of post-decisional stimu-
lus information. As soon as the participant executed their choice (i.e. overt response), the stimulus
either remained or vanished from the visual display (remain and vanish conditions respectively).
Presumably, the remain condition should provide more favorable conditions for post-choice
integration than the vanish condition. Granted, even when the stimulus disappears from the display,
participants may be able to collect additional information by relying on their visual memory (Pleskac
& Busemeyer, 2010) and/or on the information flowing through the pipeline. We assume, however,
that the perceptual channel is both a more reliable (less noisy) and durable source of novel informa-
tion (Sperling, 1960). Thus, by continuing to integrate evidence from the visual display (rather than
from memory) participants should achieve higher levels of resolution.

Our basic philosophy in trying to distinguish empirically between single and dual-stage theories of
confidence is as follows: If confidence relies on a single stage process or even on a pipeline to that
effect, then all the external confidence-relevant perceptual information is available in the visual
display and feeds into the perceptual channel prior to the response. Thus, the single stage and pipeline
theories predict no sensitivity to a post-decision perceptual availability manipulation. More specifi-
cally, no difference is predicted with respect to resolution and the TP effect on resolution between
a condition where the stimulus remains available on the screen (the remain condition) and a condition
where, after the execution of a choice response, the stimulus disappears and thus is made unavailable
(the vanish condition). Unlike single stage and pipeline theories, dual stage theories, which assume a
post-choice integration stage that extends beyond the pipeline, predict a higher resolution and a
stronger beneficiary TP effect for the remain than for the vanish condition, due to the improved oppor-
tunity for post-decisional integration. Thus, the perceptual availability manipulation constitutes a
direct test of whether evidence is integrated following the decision (beyond a pipeline).

In addition, controlling the duration of the post-choice interval allows a direct test of whether
post-choice integration has a flexible or constant time course and whether the duration of this stage
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exerts a causal influence on confidence. If post-choice integration is flexible (unlike a pipeline) then
resolution and the beneficiary TP effect should increase with longer post decision intervals in the
remain condition more than in the vanish condition.

Next, we describe our experiments in detail. To simplify the presentation, we report the results of
the experiments in two ‘waves’. In the following sections (Wave-1) we describe each of the
experiments in turn, with a focus on analyses that are most directly related to the questions of
whether post-choice integration occurs and to what extent. We defer the discussion of additional
analyses pertaining to the inter-judgment time and its relations with the other variables, to a later
section, ‘RT2 in the spotlight’ (Wave-2). This later section (Section 3) is focused on extending the
empirical manifold with robust RT2 related empirical hurdles.

2.2. Experiment 1

In Exp. 1, six participants were asked to choose which of two black and white arrays, contained a
larger number of black squares (Ratcliff & Smith, 2010). One array contained an equal number of black
and white squares whereas the other, target array, contained a majority of black squares. To manipu-
late choice difficulty, the proportion of black squares in the target array varied randomly across trials
between three levels. Following the choice, participants rated their confidence in the correctness of
their choice on a scale between 50% and 100%. Time pressure on choice was manipulated by stressing
either choice-speed or choice-accuracy across different blocks of trials. Confidence judgments though,
were given under no time pressure, and feedback was given at the end of each trial using a normative
measure that depends on both the accuracy of the choice and the confidence judgments (Brier, 1950).
Critically, Exp. 1 contained the novel perceptual availability manipulation. As soon as the participant
made a choice, these arrays either remained or vanished in a random manner from the visual display
(the detailed experimental methods for all experiments are described in Appendix C).

2.2.1. Results
As a first step in the data analyses we removed trials that were likely the result of ‘contaminating’

processes (Ratcliff & Tuerlinckx, 2002). To minimize fast outliers, we excluded trials for which either
the decision times were less than 0.2 s or the observed inter-judgment times were less than 0.15 s. To
minimize slow outliers, we excluded trials where either the decision time or observed inter-judgment
time was greater than 3 SDs from the mean. Finally we excluded trials that were aborted due to press-
ing a non-eligible key during the trial. These cutoffs eliminated on average 5.2% (min 4.1%; max 6% per
participant) of the data.

Throughout the article we report statistics both at the level of individual participants and for the
entire group. In some of the following analyses, standard errors for individual participants were
calculated based on 10,000 nonparametric bootstrap samples and significance was examined using per-
mutation tests with 10,001 random permutations (the use of these randomization methods is indicated
in table captions). Group statistics were always based a meta-analysis, where each participant’s data
were treated as a separate experiment and the average statistic is calculated by weighting each partici-
pant’s respective statistic by the inverse of the variance of the statistic, assuming a random effects
model (Borenstein, Hedges, Higgins, & Rothstein, 2011, chap. 12; Shadish & Haddock, 1994). Broadly
speaking, when given as input a series of effect estimates and standard errors of these estimates for each
participant, this method outputs a group-level effect estimate, a corresponding group-level standard
error, a z-statistic to test the hypothesis that the group-level effect is non-zero and a p-value.

The time pressure manipulation on choice was effective in generating a speed accuracy tradeoff.
For all participants as well as for the group as a whole, both the accuracy rate and the mean decision
time were smaller for the speed vs. the accuracy condition (group Accuracy: Mspeed ¼ :69;Maccuracy

¼ :83; z ¼ 6:66; p < :001; Group RT: Mspeed ¼ 0:51 s;Maccuracy ¼ 1:02 s; z ¼ 7:06; p < :001; the results
for the individual participants are reported in Table G1). Additionally, for all participants and for
the entire group the mean confidence was higher in the accuracy ðM ¼ :89Þ than in the speed condi-
tion ðM ¼ :85; z ¼ 7:09; p < :001Þ. This finding supports Hurdle 5 according to which, confidence and
decision time are positively correlated. Finally, the mean inter-judgment time (RT2) was higher for the
speed ðM ¼ 0:70 sÞ than the accuracy condition ðM ¼ 0:62 s; z ¼ �2:00; p < :05Þ. While this difference
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was significant for the group as a whole, it was significant for only two of the individuals (Participants
4 and 5; see Table G1). Interestingly, Participant 3 showed the opposite effect, as her RT2 was higher
for accuracy trials, and for the remaining three participants no significant difference was found. The
four participants for whom RT2 was not significantly larger in the accuracy condition, allowed us to
examine whether the higher speed vs. accuracy RT2 is a necessary condition for the beneficial effect
of time pressure on resolution (see discussion Section 2.2.2).

Next, we examined the effects of the perceptual availability manipulation: With respect to confi-
dence, there was no significant difference between the remain and the vanish conditions ðM ¼ :87
for both conditions, z ¼ �0:71Þ. Additionally, RT2 was significantly larger for the remain
ðM ¼ 0:73 sÞ than the vanish condition for the entire group ðM ¼ 0:60 s;z ¼ �3:21; p < :01Þ and for five
of the individuals. This finding offers preliminary support for the dual stage theories, if one assumes
that when the stimulus remains perceptually available, participants take more time for the execution
of the post-choice integration stage in an attempt to take advantage of the better post-choice integra-
tion condition. We now turn to the focal set of analyses that pertain to resolution of confidence.4

There are many different definitions for resolution of confidence. We thus begin with a brief descrip-
tion of the main measure that was used in our analyses (c.f. Nelson, 1984, for a detailed analysis and
discussion about the differences between measures of resolution). To recapitulate, resolution of confi-
dence pertains to the relation between confidence level and choice-correctness. Perhaps the simplest
operative definition of this relation is given by the slope score (Yates, 1990), which is the difference
between mean confidence for correct and incorrect decisions. Importantly, this measure assumes that
the values of the confidence judgments emerge from the use of an interval scale. However, this assump-
tion may be problematic in the current paradigm due to the special status of the ‘50%’ confidence cate-
gory. Because participants are not given the opportunity to report errors, they may use the 50%
confidence category when they think they most likely erred. Therefore the 50% confidence category
confounds ‘real’, 50% confidence judgments (i.e. guesses) with ‘false’ 50% judgments (i.e. higher than
50% confidence in an error or vice versa, lower than 50% confidence in a correct response). To mitigate
such concerns, we measured resolution using an ordinal regression analysis which minimally postu-
lates an ordinal structure of the confidence scale. To verify the robustness of our results, we also con-
ducted analyses with additional measures, including slope, DI0, the Gamma correlation and Ag (see
Appendix E for further details and analyses results). By and large, all measures yield similar results.

We calculated several effects involving resolution for each participant with a multiple probit-
ordinal regression (Dobson & Barnett, 2008; Long, 1997; McCullagh & Nelder, 1990), using Matlab’s
‘mnrfit’ function. We coded for each trial the confidence response in a variable ‘CONF’ with labels
1–6, corresponding to decreasing levels of confidence (from 100% to 50%). We coded the speed-
accuracy tradeoff (henceforth SAT) condition (for each trial) in a variable ‘TP’ as 0.5 (speed) and
�0.5 (accuracy) and the Perceptual Availability condition in a variable ‘PA’ as �0.5 (vanish) and 0.5
(remain). Finally, we defined a trial choice-correctness indicator, ‘CORRECT’, with values 0-error and
1-correct. We then regressed CONF on TP, PA and CORRECT (as main effects), the three double inter-
actions and the triple interaction between these variables. We also examined the separate ‘simple’
effects of CORRECT, TP and their interaction for the different values of PA i.e., for vanish and remain
trials. This was achieved by repeating the regression but with the variable PA0 = PA + 0.5 (vanish) or
with PA 0 = PA � 0.5 (remain) replacing PA.

Table 2 displays the regression coefficients for the effects involving choice-correctness. The first
data column presents the main effect of choice-correctness on confidence, i.e., the resolution. In accor-
dance with Hurdle 6, all of the participants and the group exhibited a positive resolution. Furthermore,
a positive correlation was found for the group and for all of the participants separately for vanish trials
ðbgroup ¼ 0:94; z ¼ 9:70; p < :001Þ and for remain trials ðbgroup ¼ 1:26; z ¼ 6:01; p < :001Þ. The second
data column of Table 2 lists the perceptual availability effect on resolution (i.e., the PA�CORRECT inter-
action). At the group level, as well as for Participants 2 and 4, resolution was larger for the remain vs.
the vanish condition.
4 We also confirmed that the additional confidence-related hurdles (3–4) where replicated in our data. Because these analyses
are not our main interest here, they are reported in Appendix F.1.



Table 2
Resolution of confidence effects (regression slopes) for Exp. 1.

Par CORRECT PA�CORRECT TP�CORRECT PA�TP�CORRECT

1 0.58(0.05)⁄⁄⁄ 0.07(0.10) �0.22(0.10)⁄ 0.02(0.21)
2 1.54(0.07)⁄⁄⁄ 0.78(0.13)⁄⁄⁄ 0.56(0.13)⁄⁄⁄ 0.55(0.25)⁄

3 0.96(0.06)⁄⁄⁄ 0.17(0.12) 0.50(0.12)⁄⁄⁄ 0.08(0.24)
4 1.58(0.09)⁄⁄⁄ 0.79(0.18)⁄⁄⁄ 1.53(0.18)⁄⁄⁄ 0.81(0.35)⁄

5 1.11(0.05)⁄⁄⁄ 0.20(0.10) 0.23(0.10)⁄ 0.22(0.20)
6 0.88(0.05)⁄⁄⁄ �0.09(0.11) 0.23(0.11)⁄ 0.14(0.22)
Group 1.10(0.15)⁄⁄⁄ 0.30(0.14)⁄ 0.46(0.19)⁄ 0.23(0.10)⁄

Note. Values in parentheses are standard errors. �, ��, � � � indicate p < .05, .01, .001, respectively according to t-test for the
participants and a meta-analysis for the group.
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The third data column of Table 2 presents the TP effect on confidence (the TP�CORRECT interac-
tion). In accordance with Hurdle 7, for the group and for Participants 2–6, time pressure had a positive
effect on resolution, whereby resolution was higher in the speed than in the accuracy condition.
Interestingly, Participant 1 showed a negative TP effect, that is, time pressure on choice decreased
her resolution (we return to this finding in the discussion below). When we examined the TP effect
separately for vanish trials we found a significantly positive effect for Participants 3 and 4. For the
group the trend was positive but was significant only according to a one-sided test
ðbgroup ¼ 0:28; z ¼ 1:87; p ¼ :03Þ. For remain trials, the TP effect was positive at the group level
ðbgroup ¼ 0:60; z ¼ 2:43; p < :05Þ and for Participants 2–5. Finally, the fourth data column in Table 2 dis-
plays the perceptual availability effect on the TP effect on resolution (the triple interaction). For the
group and for Participant 2 and 4, the TP effect was larger for the remain than for the vanish condition.

2.2.2. Discussion of results
The current findings replicated all the empirical hurdles (1–7) and in particular the beneficial effect

of choice-TP on resolution of confidence. Furthermore, the inclusion of the novel post-choice-
perceptual availability manipulation demonstrated that perceptual events that occur following the
choice affect confidence. We found an increased resolution of confidence and an increased TP effect
on resolution when, following the decision, the stimulus remained on the screen rather than vanished.
Notably, these findings are compatible with, and indeed are predicted, by dual stage theories such as
2DSD, which assume that confidence is based on a second evidence integration stage. When the
stimulus remains on the screen rather than vanishes, the conditions for post-choice integration are
more favorable since stimulus perception is not subject to decay as are mnemonic representations.
Hence, both resolution and the TP effect on resolution are predicted to be larger in the remain condi-
tion. Furthermore, the results of Exp. 1 suggest that participants can capitalize on the better available
information by increasing their post-decision integration times (RT2 was larger in the remain than in
the vanish condition). In contrast, both single stage theories and the pipeline model generate
confidence based only on information that flows into the ‘perceptual channel’ prior to the motor
choice-response. These approaches are thus mute with respect to the effects of the post-decisional
perceptual availability manipulation on resolution (and the TP effect) and on RT2.

Participant 1 constitutes an interesting exception to this rule. For her, the positive resolution effect
did not differ for the remain vs. the vanish conditions. Furthermore, her resolution was higher for the
accuracy than for the speed condition. Whereas this pattern of findings is not predicted by 2DSD it is
predicted by BOE. Conclusions that are based on a single participant should be interpreted with cau-
tion but nonetheless, Participant 1 may indicate that there are important individual differences with
respect to the number of information collection stages.

One possible interpretation of the differences between the remain and the vanish conditions is that
a post-choice integration stage occurs only in the remain but not in the vanish condition. According to
this explanation, when the stimulus remains available for perception following the choice,
participants seize on the opportunity to collect additional information and hence, confidence is based
on a dual-stage integration process. However, when the stimulus vanishes—confidence is based on a
single-stage process such as BOE. Can we also infer that some form of post-choice integration is
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operative in the vanish condition? Interestingly, for all individuals and the group, resolution was sig-
nificantly positive in the vanish condition, a finding that is consistent with BOE but also with the pipe-
line model and with the assumption that additional, beyond-pipeline information, may be extracted
from visual memory. These models make different predictions with respect to the TP effect though.
Whereas BOE predicts a negative TP effect, the pipeline and dual stage theories predict positive effects.
With respect to the TP effect on resolution in the vanish condition, we found a significantly positive TP
effect for Participants 3 and 4 but not at the group level. We revisit this question in Exp. 3, where we
present more conclusive evidence for post-choice integration even under stricter, masking, conditions.

Finally, the results of Exp. 1 contribute to our understanding of the TP effect and the role that RT2
plays in generating this effect. Recall that prior accounts for the beneficial TP effect on resolution relied
on the increased RT2 under choice-time pressure (Pleskac & Busemeyer, 2010). While for the entire
group in our experiment, RT2 was longer for the speed condition, for four of the individuals the effect
was slight (and consequentially non-significant) or even significantly opposite in direction
(Participant 3). Still, for three of these individuals (Participants 2, 3 and 6) a positive TP effect emerged.
The upshot is that an increased RT2 under choice-TP seems to be unnecessary for TP to have a ben-
eficiary effect on resolution. Indeed, as we show in Appendix B, a beneficial TP effect on resolution
could ensue from the different drift rate distribution conditional on choice correctness under TP.

2.3. Experiment 2

Exp. 2 was similar to Exp. 1 but differed in one fundamental respect (the detailed experimental
methods are provided in Appendix C.2). In Exp. 2, time pressure on confidence rather than on choice
was manipulated across experimental blocks. For all trials, choice was made under time pressure (we
stressed choice-speed rather than accuracy to obtain higher levels of resolution). Confidence, on the
other hand, was made under varying degrees of time pressure. Following their choice, the six
participants were instructed to wait for an auditory signal (a short beep) before giving their confidence
judgment. As soon as the auditory signal was played, participants were asked to rate their confidence
quickly. Critically, across blocks the beep was issued either 300 ms (‘early-confidence’ condition) or
1300 ms (‘late-confidence’ condition) after the choice.

According to dual-stage theories, which extend accumulation of information beyond the pipeline,
resolution should increase with longer inter-judgment intervals (see Fig. 1 for illustration). Thus,
resolution is predicted to decrease with shorter time windows for forming confidence judgment, a
prediction which we dub the harmful confidence-TP effect on resolution. Importantly, such a finding
would also demonstrate that the duration of the inter-judgment interval exerts a causal influence
on confidence. Furthermore, since conditions for post-choice integration are more favorable in the
remain condition, both resolution of confidence and the harmful confidence-TP effect on resolution
are predicted to be more pronounced when the stimulus remains available for the duration of the
inter-judgment interval. Single stage and pipeline theories of confidence, on the other hand are again
mute with respect to the perceptual availability manipulation.

2.3.1. Results
We examined the effect of the confidence delay manipulation on confidence and on RT2. Here, RT2

denotes the confidence judgment response time from the response signal (the beep). Thus RT2 is not
identical to the total inter-judgment time as the latter includes also the duration between the decision
and the arrival of the confidence response signal. At the group level confidence was lower for the late
confidence condition (Mearly ¼ :84;Mlate ¼ :83, z = �3.36, p < .001) and there was no significant differ-
ence in RT2 ðMearly ¼ 0:34s;Mlate ¼ 0:31; z ¼ �1:19; p ¼ :23Þ.5 Additionally, we examined the effect of
the perceptual availability manipulation on confidence and RT2. At the group level, there was no
5 The confidence delay manipulation had no significant effect either on choice accuracy or on choice RT (See Table G2, which also
reports individual participant-results). As in Exp. 1, in a preliminary step in the data analyses, we removed trials that were likely
contaminant trials. We used the same cutoffs as in Exp. 1, which resulted in the elimination of an average 3.7% (min 3.3%; max
4.4%) of the data. Additionally, we confirmed that the other confidence-related hurdles (3–4) where replicated in our data and
these results are reported in Appendix F.2.



Table 3
Resolution of confidence effects (regression slopes) for Exp. 2.

Par Correct PA�Correct TP�Correct PA�TP�Correct

2 1.94(0.06)⁄⁄⁄ 0.35(0.11)⁄⁄ �0.2(0.11) �0.35(0.22)
3 1.61(0.05)⁄⁄⁄ 0.27(0.09)⁄⁄ �0.25(0.09)⁄⁄ �0.31(0.19)
4 2.04(0.06)⁄⁄⁄ 1.01(0.12)⁄⁄⁄ 0.15(0.11) �0.38(0.23)
6 1.47(0.05)⁄⁄⁄ 0.37(0.09)⁄⁄⁄ �0.41(0.09)⁄⁄⁄ �0.45(0.18)⁄

7 1.33(0.05)⁄⁄⁄ 0.28(0.09)⁄⁄ �0.04(0.09) �0.09(0.18)
9 1.18(0.05)⁄⁄⁄ 0.24(0.09)⁄⁄ �0.16(0.09) �0.10(0.18)
Group 1.59(0.13)⁄⁄⁄ 0.41(0.10)⁄⁄⁄ �0.16(0.08)⁄ �0.27(0.08)⁄⁄⁄

Note. Values in parentheses are standard errors. �, ��, � � � indicate p < .05, .01, .001 respectively according to t-test for the
participants and a meta-analysis for the group.
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significant difference in the mean confidence level between the remain and the vanish conditions
(M ¼ :84 for both conditions, z = 0.004, p = .997) but RT2 was longer in the remain vs. the vanish condi-
tions ðMremain ¼ 0:33 s;Mvanish ¼ 0:32 s;z ¼ �2:15;p ¼ :03Þ. We discuss this RT2 effect below.

Next, we turned to the focal set of resolution analyses. We performed an ordinal probit-regression
analysis similar to Exp. 1 with a single change. Here, the variable TP coded whether the confidence
beep sounded early (coded as 0.5) or late (coded as �0.5) after the choice. The first data column in
Table 3 shows that in accordance with Hurdle 6, all the participants and the group displayed a positive
resolution (CORRECT main effect). Notably, a positive resolution was found for the group and for all of
the participants separately for vanish trials ðbgroup ¼ 1:38; z ¼ 13:69; p < :001Þ and for remain trials
ðbgroup ¼ 1:80; z ¼ 10:66; p < :001Þ. Furthermore, the second data column in Table 3, shows that for
all participants as well as for the group, resolution was higher for the remain than for the vanish con-
dition (a positive PA�CORRECT interaction). The third data column of Table 3 shows that for the group
(and Participants 3 and 6) resolution was lower in the early compared to the late confidence condition
(a negative TP�CORRECT interaction effect). Thus, TP on confidence is generally harmful with respect to
resolution of confidence, supporting a causal role for RT2 in the formation of confidence judgments.
However, when we examined vanish and remain trials we found that the harmful confidence-TP effect
was confined to remain trials: for vanish trials the effect was virtually nil ðbgroup ¼ �0:03;
z ¼ �0:38; p ¼ :71Þ, whereas for remain trials, the TP effect was negative at the group level
ðbgroup ¼ �0:30; z ¼ �3:19; p < :01Þ and for Participants 2, 3 and 6. The fourth data column in
Table 3 confirms that at the group level and for Participant 6, the confidence-TP effect was more harm-
ful for the remain condition (a negative triple interaction effect).

2.3.2. Discussion of results
The results of Exp. 2 illuminate several aspects of the relationship between resolution of confidence

and inter-judgment times. First, we found that unlike the beneficial effect of time pressure on choice,
time pressure on confidence is harmful with respect to resolution. This was evident in the higher res-
olution exhibited in the late vs. early confidence conditions. Since the duration of the post-choice
integration stage was manipulated in the current experiment, this finding shows that this variable
exerts a causal influence on confidence judgments (and their resolution). Second, as in Exp. 1, we
found that the perceptual availability manipulation had an effect on confidence responses. The
resolution of confidence and the harmful influence of TP on resolution were all higher in the remain
than in the vanish condition. These effects can only be accounted for, indeed predicted by, dual stage
post-decisional integration theories. If resolution and the harmful confidence-TP effect on resolution
result from the shorter temporal window for post decision integration in the early vs. late confidence
condition, then these effects should be more pronounced when post-decisional conditions are more
supportive of such integration i.e. in the remain condition. Interestingly, RT2 was also higher in the
remain relative to the vanish condition. One speculation, which is consistent with the operation of a
post-decisional integration stage, is that if participants are still perceptually engaged in extracting evi-
dence from the stimuli when the confidence signal is issued, then disengaging from the stimulus will
slowdown responding.
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Admittedly, some of the effects of Experiment 2 were moderate, especially when evaluated
at the level of individual participants. Note however, that the total inter-judgment times in the
early-confidence condition, which consist of the sum of the 300 ms interval (between the
choice and the response signal) and of RT2 are comparable to the spontaneous inter-judgment
times of Exp. 1. Furthermore, we had no means to force participants to engage in thoughts
about confidence for the entire duration up to the arrival of the beep, especially in the late
condition, for which the total inter-judgment duration is much higher than the spontaneous
durations of Exp. 1. Thus, it is likely the participants actually decided about their confidence
earlier than the late beep and that they simply delayed their report until the cue.
Consequentially, we find that the effects exerted on resolution of confidence by the confi-
dence-TP manipulation, however moderate, are remarkable in demonstrating that participants
did capitalize, to some extent, on the additional time that was provided in the late confidence
condition. Critically, post-choice evidence-integration theories can account for the current
results as long as the post choice integration time is at least moderately larger in the late con-
fidence condition.

Finally, as in Exp. 1, we asked to what extent is post-choice integration operative in the vanish con-
dition? First, resolution was positive in the vanish condition. These findings are consistent both with
the pipeline model and with a more extended post-choice integration from visual memory. However,
the pipeline model predicts no confidence-TP effect on resolution, whereas the more temporally
extended assumption of information extraction from a visual mnemonic representation predicts a
negative confidence-TP effect. At the group-level, the confidence-TP effect was close to zero. Thus,
we cannot rule out the possibility that in the vanish condition post-choice integration was limited
to the perceptual pipeline.

2.4. Experiment 3

In Exp. 3 we aimed to probe the boundary conditions of post-choice integration, by masking the
stimulus once the decision was made. The design of the experiment, which included nine partici-
pants, was identical to that of Exp. 1 with a single difference. Rather than alternating between
the remain and vanish conditions, the stimulus always vanished and was additionally masked
immediately after the choice. (The full experimental methods are described in Appendix C.) The goal
of the masking was to try and interfere with the post-decision integration stage. We reasoned that
the mask will abolish, or at least severely degrade, the quality of the visual memory representation
of the stimuli and the perceptual pipeline. Thus, there would be less opportunity for post-choice
integration. Consequently, participants must base their confidence on evidence that was collected
by the time the decision was made. Put differently, it could be argued that BOE (the only extant sin-
gle-stage theory that could account for Hurdles 1–6, which were replicated in the previous experi-
ments), only applies in situations where, following the decision, neither the stimulus nor any
representations thereof are available. Thus, by masking the stimulus we aimed to provide BOE with
favorable conditions to manifest. Recall, that BOE bumps into Hurdle 7 as it predicts a negative TP
effect. Thus, if participants adopt a BOE strategy for forming their confidence-judgment when the
stimulus is masked, we expect to find an inverted TP effect on resolution. Alternatively, finding of
a beneficial TP effect under masking conditions will provide compelling evidence for the operation
of post-choice integration even with minimal (post-choice) resources. Is the beneficiary TP effect
resistant to masking?

2.4.1. Results
The time pressure manipulation was effective in generating a speed accuracy tradeoff. For the

group, both the accuracy rate and the mean decision time were lower for the speed vs. the accuracy
condition (Accuracy: Mspeed ¼ :74, Maccuracy ¼ :85, z ¼ 5:46; p < :0001; RT: Mspeed ¼ 0:53s;Maccuracy

¼ 0:92s; z ¼ 5:91; p < :0001). Additionally, in support of Hurdle 5, the mean confidence was higher
in the accuracy ðM ¼ :89Þ than in the speed condition ðM ¼ :86; z ¼ 3:33; p < :001Þ. Finally, the SAT



Table 4
Resolution of confidence effects (regression slopes) for Exp. 3.

Par CORRECT TP�CORRECT

2 1.56(0.10)⁄⁄⁄ 0.22(0.19)
4 1.61(0.13)⁄⁄⁄ 0.81(0.24)⁄⁄⁄

6 1.00(0.08)⁄⁄⁄ 0.17(0.15)
7 0.82(0.10)⁄⁄⁄ �0.06(0.19)
8 0.39(0.07)⁄⁄⁄ 0.25(0.15)

11 0.54(0.11)⁄⁄⁄ 0.06(0.22)
12 1.33(0.10)⁄⁄⁄ 0.03(0.20)
15 0.93(0.08)⁄⁄⁄ 0.60(0.17)⁄⁄⁄

16 1.30(0.08)⁄⁄⁄ 0.69(0.15)⁄⁄⁄

Group 1.05(0.14)⁄⁄⁄ 0.31(0.10)⁄⁄

Note. Values in parentheses are standard errors. �, ��, � � � indicate p < .05, .01, .001, respectively
according to t-test for the participants and a meta-analysis for the group.
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manipulation exerted no significant effect on RT2 ðMspeed ¼ 0:54s;Maccuracy ¼ 0:54 s;z ¼ �1:21;
p ¼ :23Þ.6

Turning next to the focal resolution analyses, we conducted an ordinal probit-regression analysis
as in Exp. 1 but without the PA variable because here, all trials were masked (so CONF was
regressed only on TP, CORRECT and their interaction). Table 4 display the resolution of confidence
effects. First, in accordance with Hurdle 6, the resolution was positive for all participants and for the
group (a positive main effect for CORRECT). Furthermore, resolution was positive for the group and
for all participants in both the speed ðbgroup ¼ 1:21; z ¼ 7:27; p < :001Þ and accuracy ðbgroup ¼ 0:89;
z ¼ 6:60; p < :001Þ conditions. The second data column of Table 4 confirms that in accordance with
Hurdle 7, for the group and for three of the Participants, the time pressure had a positive effect on
resolution.

2.4.2. Discussion of results
The results of Exp. 3 replicated all the empirical hurdles (1–7) and in particular the beneficial effect

of choice-TP on resolution of confidence (that was found in Exp. 1), under a more strictly reduced
availability condition featuring post-choice backward masking. If masking interferes with people’s
ability to perform post-choice integration, we should have found a decreased TP effect, perhaps even
an opposite, harmful choice-TP effect on resolution, in the case that participants had reverted to a BOE
strategy. In spite of this hypothesis, we obtained a positive beneficial TP effect on resolution. These
conclusions should be qualified, however, as they are based on the inability of the BOE model to pre-
dict the TP effect (see Section 1.4.1.2).

Interestingly, the TP effect in the vanish condition of Exp. 1 ðbgroup ¼ 0:28; SE ¼ 0:15Þ was nearly
identical to the TP effect in the masking condition of Exp. 3 ðbgroup ¼ 0:31; SE ¼ 0:10; p ¼ 0:89Þ. A
possible interpretation of this finding is that the perceptual pipeline survived our masking manip-
ulation and that this pipeline feeds the post-choice integrations process to comparable extents in both
the vanish (Exp. 1) and the masking conditions (Exp. 3). These results, nevertheless, attest for the
robustness of post choice integration.

Finally, the results of Exp. 3 contribute to our understanding of the time pressure effect on
resolution and the role that RT2 plays in generating this effect. Note that the TP effect emerged even
when RT2 was not significantly larger in the speed condition. This finding converges with the find-
ings of Exp. 1 to the conclusion that a longer RT2s is not a necessary condition for a beneficial TP
effect.
6 The results for the individual participants are reported in Appendix G (Table G3). As before, prior to conducting these analyses
we removed trials that were likely the result of ‘contaminating’ processes using the same cutoffs as in Exp. 1 and 2, which resulted
in the elimination of an average 4.7% (min 2.5%; max 7.5%) of the data. Additionally, we report replications of Hurdles (3–4) in
Appendix F.3.
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3. Further analyses: RT2 in the spotlight

The most important conclusion from our investigation thus far is that post choice integration and
its duration (RT2) are causal determinants of confidence and that post-choice integration is extremely
persistent and resistant to interference. In addition, our analyses revealed some interesting patterns
involving RT2 and its relation to other variables in the choice followed by confidence paradigm. For
example, we found higher RT2 in the remain compared with the vanish condition, consistent with
the hypothesis that perceptual availability provides a more durable opportunity for post-choice
integration.

The upshot of these results is that RT2 conveys an abundance of information with respect to the
confidence formation process. In the current section we aim to confirm existing, and explore addi-
tional relations between RT2 and other variables. Extending the empirical manifold with novel, robust
empirical findings involving RT2 will guide and constrain both the interpretation of the current results
and future confidence theories and modeling attempts, thus extending our understanding of the con-
fidence-forming mechanism. First, we present additional correlations of RT2 with the variables of the
choice followed by confidence paradigm. Second, we present novel interaction effects on confidence
and RT2. The robustness of these effects secures RT2’s position as a prime dependent variable that
theories of confidence should be able to account for.

3.1. Extending the empirical manifold

3.1.1. RT2 correlations
Pleskac and Busemeyer (2010) found that RT2 correlated with the choice-variables, negatively with

accuracy and positively with RT. Additionally, RT2 correlated negatively with the discriminability level
of the stimulus. Finally, within SAT blocks RT2 correlated negatively with confidence. These ‘RT2
correlations’ are summarized in Hurdle 8 (Table 1). We examined whether these correlations were
replicated in our Exp. 1 and 3. First, in both experiments, for all individuals as well as for the group,
RT2 was significantly shorter for correct than for error decisions (Exp1, Group: Mcorrect ¼ 0:62s;
Merror ¼ 0:83s; z ¼ �4:56; p < :001; Exp3, Group: Mcorrect ¼ 0:51s;Merror ¼ 0:62s; z ¼ �5:03; p < :001;
Results for the individuals are given in Table D1). Second, the RT2-discriminability Gamma correlation
(Goodman & Kruskal, 1954; henceforth denoted C) was significantly negative for the group and for four
(out of six) and eight (out of nine) of the individuals respectively, in Exp. 1 (Group:
C ¼ �:1; z ¼ �2:71; p < :01) and Exp. 3 (Group: C ¼ �:12; z ¼ �4:47; p < :001; for participants are
see Table D2). Third, Pearson’s correlation between RT and RT2 was significantly positive for the group
in both Exp. 1 ðr ¼ :13; z ¼ 3:86; p < :001Þ and Exp. 3 ðr ¼ :14; z ¼ 2:64; p < :01Þ. This was also the case
for all the participants in Exp. 1 and for six (out of 9) participants in Exp. 3 (see Table D2). Fourth, within
SAT blocks, RT2 correlated negatively with confidence for all participants and for the group in both Exp.
1 (Group: C ¼ �:43; z ¼ �6:00; p < :001) and Exp. 3 (Group: C ¼ �:53; z ¼ �7:25; p < :001; for individ-
ual participants see Table D2).7,8

3.1.2. Novel interaction effects on RT2 and confidence
The finding of a causal effect of RT2 on confidence provided ample motivation for exploring the

empirical manifold around confidence and RT2. We found novel interaction effects between difficulty
and choice-accuracy on RT2 and confidence. These findings, which are summarized in the bottom part
of Table 1, will pose additional stringent constraints on confidence-theories. To verify their robustness,
we also re-analyzed the line length task of Pleskac and Busemeyer (2010).

The top and bottom panels of Fig. 2 display the mean confidence and mean RT2 respectively as
functions of the discriminability level and choice accuracy. The left, middle and right panels corre-
spond to our Exp. 1 and 3 and to the line-length task respectively. The top panels show that confidence
7 Note that, in Exp. 1, RT2 was larger in the speed than the accuracy condition (Section 3.1). This finding however, failed to reach
significance in Experiment 3, so we did not include it as part of the Hurdle list (Table 1).

8 In Appendix H, we present RT2 results from a practice task and discuss the possibility that the findings reported in Section 3,
result from difference in motor production times across confidence responses.



Fig. 2. The interactions between choice correctness and discriminability in Exp. 1 and 3 and in Pleskac and Busemeyer’s line
length task. The top panels present the interactive effect on confidence and the bottom panels—the interactive effects on RT2.
The results are averaged across participants. Exp. 2 (not displayed), wherein RT2 was manipulated, yielded a similar interaction
pattern for confidence.

R. Moran et al. / Cognitive Psychology 78 (2015) 99–147 117
in correct choices increases as a function of discriminability whereas, confidence in error responses
decreases as a function of discriminability (Hurdle 9). Consequently, resolution improves for higher
discriminability. The RT2 data revealed a ‘mirror pattern’ where correct RT2s speeded up with increas-
ing discriminability whereas error RT2s-slowed down (Hurdle 10).

To evaluate statistically the interaction effect on confidence we conducted a multiple probit-ordi-
nal regression. ‘CONF’ and ‘CORRECT’ were defined as in prior analyses and ‘DISC’ was a discriminabil-
ity level variable, with higher values corresponding to higher discriminability level (1–3 in our Exp. 1–
3 and 1–5 in the line length task). CONF was regressed on CORRECT, DISC and their interaction, which
is of focal interest. We also examined the ‘simple discriminability effects’ for correct and error trials
separately.9 At the group level, the DISC�CORRECT interaction effect was positive for all experiments
(Exp. 1: bgroup ¼ 0:59; z ¼ 5:59;p < :001, Exp. 2: bgroup ¼ 0:65; z ¼ 10:11;p < :001, Exp. 3: bgroup ¼ 0:51;
z ¼ 4:78; p < :001, line-length: bgroup ¼ 0:62; z ¼ 15:56;p < :001). The simple effects of discriminability
were positive for correct trials (Exp. 1: bgroup ¼ 0:27; z ¼ 4:82; p < :001, Exp. 2: bgroup ¼ 0:35; z ¼ 9:69;
p < :001, Exp. 3: bgroup ¼ 0:30; z ¼ 6:64;p < :01, line length: bgroup ¼ 0:30; z ¼ 13:06; p < :001) but nega-
tive for error choices (Exp. 1: bgroup ¼ �0:32; z ¼ �4:57;p < :001, Exp. 2: bgroup ¼ �0:30;
z ¼ �7:01;p < :001 Exp. 3: bgroup ¼ �0:21; z ¼ �2:96;p < :01, line length: bgroup ¼ �0:33; z ¼ �10:07;
p < :001). The individual-participant results are reported in Table D3.

To probe the interaction effect on RT2 we conducted a multiple linear regression for RT2 on
CORRECT and DISC (Exp. 2, wherein RT2 was manipulated was excluded from this analysis). For all
three data sets the interaction was negative (Exp. 1: bgroup ¼ �0:07; z ¼ �3:15; p < :01, Exp. 3:
bgroup ¼ �0:04; z ¼ �3:31p < :001, line-length: bgroup ¼ �0:09; z ¼ �5:33; p < :001). Considering the
simple discriminability effects, for correct trials, the effect was negative in all datasets (Exp. 1:
bgroup ¼ �0:05; z ¼ �3:20; p < :01, Exp. 3: bgroup ¼ �0:03; z ¼ �4:70p < :001, line-length:
9 This was achieved by repeating the regression but replacing CORRECT with CORRECT0 = CORRECT + .5 (for errors) or
CORRECT0 = CORRECT � .5 (for corrects) and probing the effect of DISC.
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bgroup ¼ �0:04; z ¼ �3:66; p < :001). For error trials, in all three data sets the trend was positive, but it
reached significance only for the line-length task (Exp. 1: bgroup ¼ 0:02; z ¼ 1:27; p ¼ :20, Exp. 3:
bgroup ¼ 0:01; z ¼ 1:36p ¼ :17, line-length: bgroup ¼ 0:05; z ¼ 3:17; p < :01). The individual-participant
results are reported in Table D4.

The upshot of these results is that in addition to causally influencing confidence, RT2 correlates
with other variables (both dependent, such as choice-correctness and independent, such as stimu-
lus-discriminability) in the choice-followed by confidence paradigm and it is subject to interaction
influences. These findings converge on the conclusion that theories of confidence should address
the immanent role that RT2 serves in shaping confidence. In the following section, we describe two
alternative ways to incorporate RT2 into models of confidence, either as an exogenous or as an
endogenous variable. These approaches are illustrated with respect to the 2DSD model variants.
Then we continue to present a novel endogenous model of RT2.

3.2. The exogenous versus endogenous status of RT2

An endogenous theory for RT2 is a theory that predicts RT2 alongside choice accuracy, RT and con-
fidence. Unlike endogenous models, in exogenous models RT2 is external to the model in the sense that
the model ‘observes’ RT2 i.e., reads it from the data, rather than predicts it. This means that in order to
generate predictions pertaining to confidence judgments, the empirical RT2 needs to be measured and
used to inform the model (the model’s predictions are a function of RT2). Alternatively, the model can
make a priori predictions but only for effects that control for RT2. The two variants of 2DSD demon-
strate these different approaches.

The 2DSD interrogation model treats inter-judgment time as an exogenous parameter. A potential
limitation of such an approach is that it restricts the ability of 2DSD to make a priori predictions about
confidence prior to measuring inter-judgment times, even under the idealistic assumption that all the
2DSD parameters (for a given participant) are perfectly known. Consider for example Hurdle 3, the posi-
tive correlation between confidence and stimulus discriminability. On first thought, it may seem that
2DSD predicts this relationship unequivocally. In free-RT tasks, a higher drift rate will result in an
increase in the amount of evidence that is accrued during the post-decision integration stage, and
hence, with all other thing being equal, confidence will increase by the end of this stage. However,
not all other things are equal. Indeed, according to Hurdle 8, stimulus discriminability correlates nega-
tively with inter-judgment time. Thus, on the one hand, easier stimuli benefit from higher drift rates in
the second processing stage, which tend to yield higher levels of total evidence and hence confidence.
But on the other hand, the second inter-judgment stage tends to be shorter for easier stimuli, thus
decreasing the amount of total evidence. Depending on the more dominant factor, the combined effect
on confidence may ultimately result in either lower or higher confidence judgments with increased
stimulus discriminability. Without a theory, which specifies how RT2 is determined, this pattern
can only be assessed ex-post. In a similar vein, RT2 is correlated with accuracy and with decision time
and these correlations may affect the model’s predictions pertaining to confidence for correct vs.
errors (Hurdle 6) and to fast vs. slow choices (Hurdle 4). In summary, for exogenous models of RT2
one cannot predict confidence without considering these factors.10 Without auxiliary assumption
about RT2, the model can only make a priori predictions when RT2 is controlled for.

Thus, theories of confidence could benefit substantially by accounting endogenously for RT2.
Accounting for RT2 (in addition to confidence) would allow us to test whether a theory can predict
empirical effects that independent variables exert on confidence, while simultaneously capturing
the variance in RT2. Furthermore, given a set of cognitive parameters, a model of RT2 can generate
a priori rather than tentative predictions with respect to confidence. The optional stopping rule
2DSD is such a model (see Section 1.4.2.3). Remarkably, this model accounted for the negative
relationship between inter-judgment time and confidence, which was problematic for the interroga-
tion 2DSD (see Pleskac & Busemeyer, 2010 for further details). Thus, the 2DSD is a promising model for
10 Notably, in fitting the interrogation 2DSD, Pleskac and Busemeyer (2010) used the mean empirical inter-judgment time in each
of the SAT conditions. Thus, in the fits RT2 did not vary as a function of discriminability and choice correctness. It is thus an open
question how well the model can account for the Hurdles when RT2 varies as a function of these variables as it did in the data.
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all four dependent variables in the choice-followed by confidence paradigm. However, some ques-
tions, pertaining to the models’ ability to account simultaneously for the entire empirical manifold,
remain open for future research.11

4. The collapsing confidence boundary model

Our next goal was to propose a novel endogenous dual stage model for RT2, which is motivated by
the various aspect of the empirical manifold. We stress that it is possible that alternative models from
the extant literature may also able to account for the entire empirical manifold (see discussion in
Section 5.5). Nonetheless, we decided to explore here a novel model since we believe that it provides
new important insights into the nature of the confidence-generating mechanism, that it integrates
confidence theories with modern models of decision making (which rely on temporally dynamic
choice thresholds) and finally, that it achieves a satisfactory tradeoff in providing a unifying and yet
a relatively straightforward account for the vast range of empirical hurdles. We begin with a detailed
description of the model, which we dub the Collapsing Confidence Boundary (henceforth CCB) model
and follow with a demonstration of how it predicts the empirical manifold.

4.1. A description of CCB

The first decision stage in CCB is identical to 2DSD: A standard diffusion model. During the second
stage of processing, the diffuser, whose state is denoted LðtÞ, continues to integrate evidence, with drift
rate and diffusion-noise (diffusion coefficient) identical to the first stage. At the onset of the second
stage a single confidence boundary is placed beyond the recently crossed choice threshold. If in the
first stage the upper choice boundary h was reached then the confidence threshold is placed above
the choice threshold whereas, if the lower choice boundary �h was reached-the confidence threshold
is placed below the choice threshold. Below, we refer to these events as the upper and lower choice
events respectively.

The core property of the model lies in the assumption that with the passage of (the post-choice
integration) time, the choice threshold collapses towards decreasing levels of choice-supportive evi-
dence. In other words, the confidence boundary moves down or up, respectively, in the upper and
lower choice events. With each collapse, the confidence boundary represents a decreasing level of con-
fidence. Thus, at the onset of the second stage, the confidence boundary represents a confidence level
of 1.00 which decreases to 0.90 after the first collapse, 0.80 after the second collapse and so on (fol-
lowing the fifth collapse—the boundary corresponds to confidence 0.50). The time between consecu-
tive collapses is distributed according to a uniform distribution U 0; sj

� �� �
, where j indexes confidence

levels (1.00, .90, .80, . . . , .60). The sj’s are dubbed the timer parameter (for example, s0:7 is the maximal
duration that the confidence boundary ‘spends’ at the .70 confidence level, until it collapses to confi-
dence .60). The absolute heights of the confidence threshold are hj; j ¼ 1:00;0:90; . . . ; 0:60 where hj

decreases monotonically. Note, that in our notation these heights are measured relative to z ¼ 0,
the non-biased starting point of the first diffusion stage and not relative to the choice threshold (for
example h:90 is the absolute height of the confidence boundary when it corresponds to confidence
.90). The mean collapse times and the heights are free model parameters. Importantly, the collapse
durations are stochastically independent of each other and of the diffuser dynamics until the comple-
tion of the second stage.

In CCB, a confidence response j is given for the shortest time RT2 such that either (a) the diffuser
and the confidence boundary crossover, i.e. L RT2ð ÞP hj (or L RT2ð Þ 6 �hj) for the upper (lower) event
and hj is the active height of the confidence bound at time RT2; or (b) the choice boundary collapsed to
11 First, in fitting the model the across trial variability parameters were not used, either in starting point or in drift rate. But
without these parameters a diffusion model cannot account for the systematic differences between correct and error choice RTs
(Hurdle 2). Furthermore, without drift rate variability and for a constant difficulty level, the second stage dependent variables (RT2
and confidence) depend only on the decision and on the second stage parameters but not on RT. Thus, the model can account
neither for the negative RT-confidence correlations (Hurdle 5) nor for a positive RT–RT2 correlation (Hurdle 10). Second, data was
collapsed into a single difficulty level, a procedure that forfeits the ability to assess whether the model accounts for difficulty
related effects (Hurdles 3, 9, and 10).
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Fig. 3. Illustrative trial realizations for the CCB model. The black trace plots the first stage of a trial leading to choice of
alternative A. Once, the choice is made a collapsing confidence boundary is set. The blue trace depicts a typical correct trial and
the red line depicts a typical error trial (compare with Fig. 1). While the blue trace ‘converges’ towards the collapsing boundary,
the red trace ‘escapes’ from the boundary. The blue trace intersects the confidence boundary as it collapses from confidence
level 1.00 and hence the confidence level is .90. Similarly, the red trial terminates with confidence .70 (as the threshold
collapses from confidence .80). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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the .50 confidence level (in this case a confidence judgment j = .50 is issued immediately even if there
is no cross over with the diffuser). The rationale for (b) is that .50 is the minimal eligible confidence
rating, so confidence cannot diminish further. The CCB model is illustrated in Fig. 3.

According to the CCB model the confidence judgment process reflects a tradeoff between two con-
flicting goals of the judge: On the one hand, a high level of confidence is desired. Nevertheless, high
levels of confidence mandate sufficiently high amounts of evidential support, whose accrual is time
consuming. The CCB model assumes that integration time incurs costs, which may be either associated
directly with the passage of time or with ‘effort exertion’. The collapsing confidence boundary imple-
ments the tradeoff between the conflicting desires for high confidence and low costs by assuming that
initially, participants set their threshold at a confidence level of 1.00. As time unfolds, if this target-
confidence rating lacks sufficient support, the judge is willing to compromise his or her confidence,
effectively reducing the second stage duration (cf. Drugowitsch, Moreno-Bote, Churchland, Shadlen,
& Pouget, 2012 for a similar model but with collapsing decision boundaries).

The optional stopping 2DSD and the CCB are similar in that both models determine confidence by
the final state of the diffuser in the evidence space. The fundamental differences between these mod-
els are twofold: First, whereas in 2DSD multiple ‘confidence markers’ are active throughout a trial, in
CCB only a single height (the current state of the confidence boundary) is active at any given moment.
Furthermore, whereas in 2DSD reaching an intermediate confidence marker is a stochastic termina-
tion event (integration ends with some exit probability), in CCB the confidence boundary crossover
deterministically terminates the trial. In our opinion, these differences and especially the fact that
crossing the threshold unavoidably terminates the trial, render the mechanism of the CCB more
straightforward to understand and allow it to make clear qualitative predictions with respect to the
empirical manifold, as we next show.

4.2. A combined model fitting and simulation study of a simplified CCB model

We performed a combined model fitting-simulation study to test whether the CCB model can
account for the vast range of patterns in the empirical manifold. The empirical data that we used in
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this study was taken from the line length task of Pleskac and Busemeyer (2010). Both this task and our
Experiments (1 and 3) agree with respect to all the qualitative patterns in the empirical manifold.
Given this unanimity, we preferred to use the line-length task because it contains more than twice
the number of trials relative to our experiments and so it yields more reliable estimates of the depen-
dent variables.

The above presentation of CCB was highly general in that both the boundary heights and the timer
parameters are free to vary with j. This yields a set of ten free parameters that specify the collapse
dynamics. Model simplicity was of paramount concern for us because the simpler a model, the easier
it is to understand both its operation and predictions. Thus, below we used a simplified model version,
which has only three free collapse parameters. This version is obtained by assuming that the first col-
lapse has its own timer parameters s1:00 but that with each consecutive collapse, the timer parameters
shrinks by a factor of two, i.e. s1:00 ¼ 2s:90 ¼ 4s:80 ¼ � � � ¼ 16s:60. This speed up between consecutive
timer parameters was motivated by the observation that when confidence declines, the variance of
the RT2 distribution, conditional on the confidence level, increases but in a decelerating rate. A further
simplifying assumption which allowed us to reduce the number of free model parameters is that the
1.00 confidence boundary is placed at a free height h1:00 but that with each collapse it falls by the same
amount, denoted D i.e., h1:00 � h:90 ¼ h:90 � h:80 ¼ � � � ¼ h:70 � h:60 � D. Strikingly, even this highly con-
strained model, can predict all the qualitative patterns in the empirical manifold.

Another simplification we adopted was to assume that the second stage parameters are not influ-
enced by the SAT manipulation. Finally we assumed that the residual time for the confidence response
is a constant that is identical to the motor production time for the choice response. Notably, if evi-
dence-integration continues while the choice-response is being produced, then RT2 ¼ tconf�
tm þ T2ER, where tconf denotes the post-choice integration duration as measured from the time the
choice was made (but still not produced), tm is the choice motor production time and T2ER is the resid-
ual time for the confidence judgment. Hence, assuming that tm ¼ T2ER implies that RT2 is equal to the
time spent on post-choice integration.

In our combined simulation-fitting study we used a strategy of ‘parameter separation’. Our proce-
dure consisted of two stages: In the first fitting stage we fit the drift diffusion model to the group
choice and RT data,12 ignoring altogether the confidence and RT2 data. In the parametric design of
our diffusion model, the choice threshold hspeed; haccuracy was selectively influenced by the SAT condition
and the mean drift rate veasy;vhard was selectively influenced by the difficulty level (but see Rae et al.,
2014). In total, our diffusion model consisted of eight free parameters (see Table 5). Importantly, follow-
ing the first stage the diffusion parameters were maintained at a fixed level and were not adjusted during
the second simulation stage.

In the second stage we augmented the diffusion parameter set with the three ‘stage II’ parameters
listed at the bottom of Table 5. These parameters were configured so that the model’s predictions with
respect to response proportions and mean RT2’s would be similar to the empirical observations (see
Figs. 4 and 5). We then simulated the CCB model and calculated predictions with respect to RT2 and
confidence. Notably, in CCB the effects of the first stage diffusion parameters are not limited to choice
and RT but also manifest in the second stage performance measures. Consequentially, the predictions
with respect to confidence and RT2 can improve if the diffusion parameters are adjustable during the
second stage. In allowing the diffusion parameters to be affected only by the choice data, our method
is similar in spirit to the generalization criterion for model evaluation (Ahn, Busemeyer,
Wagenmakers, & Stout, 2008; Busemeyer & Wang, 2000). While our fitting procedure is highly sub-
optimal it was tailored to our main goal in the current study, which was not to recover the model
parameters with the highest possible reliability but rather, to show that the relatively simple CCB
model, can account for the vast empirical manifold in a parametric range that produces behavioral
predictions, which are similar to those observed in the data.
12 We pooled the three highest and the three lowest difficulty levels, respectively, into 2 compound difficulty levels: hard and
easy. Next, for each combination of trials defined by choice correctness (correct, error) � choice-stress (speed, accuracy) � difficulty
(hard, easy) � participant we calculated the RT quantiles (.1, .3, .5, .7, .9). Finally, we averaged these quantiles across participant to
obtain group data specified at the level of choice correctness � stress � difficulty. The group data fit was conducted using the DMAT
toolbox (Vandekerckhove & Tuerlinckx, 2007, 2008).



Table 5
Parameters of the CCB simulation.

Parameter Meaning Value

First stage diffusion parameters
hspeed; haccuracy Choice thresholds for the SAT conditions 0.045, 0.106
veasy; vhard Mean drift rate for the easy and hard trials 0.110, 0.309
g Standard deviation of drift rates across trials 0.156
r Diffusion coefficient 0.1⁄

z Starting point 0⁄

sz Range of starting point 0.018
TER Residual non decision time 0.377
sT Range of residual non decision time 0.127

Second-stage parameters
h Absolute height of the 1.00 confidence boundary 0.18
D Collapse height 0.041
s1:00 First collapse timer parameter 1.203

Note. The � indicates parameters that were fixed at a given level, rather than fit, during the first fitting stage.
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Fig. 4. Empirical and CCB predicted response-proportions for the different choice accuracy and confidence combinations. The
empirical, group level results were obtained by averaging the corresponding measures across participants. The top and bottom
panels correspond to the speed and accuracy SAT manipulation respectively. The left and right panels correspond to hard and easy
trials respectively. Within each panel proportions, which sum to 1, are presented for correct (+) and for error choices (�). One, two
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4.2.1. Predictions for RT2 and confidence
The results of our study are presented in the following set of figures: Fig. 4 displays the empirical

and predicted proportions of the different choice-accuracy and confidence combinations, in the vari-
ous experimental conditions. The proportions predicted by CCB (in blue) track the data (black) quite
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Fig. 5. Empirical and predicted RT2 quantiles. The arrangement of the figure is similar to Fig. 4.

R. Moran et al. / Cognitive Psychology 78 (2015) 99–147 123
nicely. Fig. 5 displays the RT2 empirical and predicted (10%, 30%, 50%, 70% and 90%) quantiles. While
the shape of the RT2 distributions roughly follows the shape of the empirical distributions these
results are admittedly ‘far from perfect’ as there are some substantial deviations between the empiri-
cal data and the predictions of CCB. In evaluating the CCB predictions, consider again the fact that we
used a constrained and suboptimal procedure and a highly simplified model. Viewed from this per-
spective, our overall assessment is that the CCB can produce reasonable predictions for confidence
and RT2. Fig. 5 also shows that CCB predicts the negative correlation between RT2 and confidence
(Hurdle 8). Notably, the CCB-predicted C correlations between RT2 and confidence for the different
SAT conditions were almost identical to the empirical correlations (CCB: Cspeed ¼ �:51;Caccuracy

¼ �:44, Data: Cspeed ¼ �:52, Caccuracy ¼ �:47).
4.2.2. CCB vis. a vis. the empirical manifold
We next describe how the CCB predicts the empirical Manifold (Table 1). To facilitate the pre-

sentation, we divided the empirical manifold into subsets of empirical patterns that are grouped
around a common motif.
4.2.2.1. Hurdles involving discriminability. In CCB, the higher the drift rate (corresponding to increased
levels of discriminability), the earlier the diffuser converges towards and finally crosses the confidence
boundary, hence predicting a negative RT2-discriminability correlation (Hurdle 8). Furthermore, ear-
lier crossovers entail reduced opportunity for the confidence boundary to collapse—yielding higher
confidence (Hurdle 3). However, these predictions are restricted to correct trials (that comprise a
majority of the trials) for which the diffuser generally converges towards the confidence boundary.
For erroneous trials, the opposite pattern is predicted i.e. higher drifts result in slower and lower con-
fidence crossovers, because for errors, the diffuser moves away from the boundary (see red trace in
Fig. 3). This difference between correct and erroneous responses underlies the interaction hurdles
(9 and 10; see Fig. 2). Consider a negative drift trial and an erroneous ‘upper choice’ event (i.e. the high
choice boundary was reached). During the second stage the confidence boundary will collapse down-
wards and the diffuser will trend downwards too. The situation resembles a chase: The confidence
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boundary tries to ‘catch’ an ‘escaping’ diffuser. The higher the drift rate, the faster the diffuser escapes.
Thus, higher drift rates for errors predictably result in both a larger RT2 and a lower confidence. These
predictions are illustrated in Fig. 6. The upshot is that CCB predicts the novel stimulus discriminability
and choice interaction effects on confidence and RT2. Note also, that a consequence of the confidence
interaction (left panel) is that resolution increases with stimulus discriminability (the difference in
mean confidence between correct and erroneous choices is larger for high than low discriminability
trials).

4.2.2.2. Relationships involving RT. Consider first, the negative RT-confidence correlation, which is
found within experimental SAT conditions (Hurdle 4). Two common principles underpin the account
of CCB for this effect: the drift rate variability and the continuity of the drift between the first and sec-
ond integration stage. The variability in drift rate across trials results in two important consequences:
First, trials with higher drifts generally yield lower RTs as the choice threshold is reached faster.
Second, the higher drift carries over to the second integration stage and produces both a higher and
faster confidence rating. When trials of various discriminability levels are intermixed, this negative
correlation is further exacerbated. Importantly, these considerations also demonstrate that CCB pre-
dicts a positive RT–RT2 correlation (Hurdle 8).

Next, we turn to the positive RT-confidence relationship across SAT conditions (Hurdle 5). This
hurdle is accounted for by the fact that, in the accuracy (relative to the speed) condition, the diffuser
has to traverse a shorter distance to cross the confidence boundary. Indeed, in the accuracy vs. speed
condition the first stage terminates at a higher choice-threshold. Additionally, the heights of the col-
lapsing boundary (and the collapsing dynamics) are invariant across SAT conditions. Thus, at the onset
of the second stage the diffuser and the confidence boundary are closer to each other in the accuracy
condition. Consequentially the confidence crossover occurs both sooner and at a higher confidence
level. These considerations account for both Hurdle 5 and for the higher RT2 in speed relative to accu-
racy SAT conditions as illustrated in Fig. 7.

The higher RT2 in the speeded SAT condition warrants some qualifications. In the line length
task (Pleskac & Busemeyer, 2010), this pattern was found for all participants and for the group.
However, in our Exp. 1 and 3 we sometimes found a significantly opposite pattern: lower RT2
in the speed condition, for four participants (Participant 3 in Exp. 1 and Participant 2, 7 and 9
in Exp. 3). Furthermore, recall from the discussion of Exp. 1, that for Participant 3 the lower
RT2 in the accuracy condition was paired with a beneficial TP effect on resolution. The current
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simplified CCB model version, in which the collapsing boundary parameters are uninfluenced by
the SAT manipulation, cannot predict a lower RT2 in the accuracy condition. Nonetheless, in fol-
low-up model simulations, we found that a more flexible CCB variant which allows the h-parame-
ter—the initial height of the confidence boundary—to vary with the SAT manipulation (with lower
values for the speeded condition, hspeed < haccuracy; the rest of the parameters, the collapse height, D
and the collapse-rates were still maintained at a fixed level across SAT conditions), can predict a
lower RT2 in the accuracy condition combined with a positive TP effect (as for Participant 3 in
Exp. 1). When RT2 is lower in the speed than in the accuracy SAT condition, the model can still
generate a higher resolution due to drift rate variability particularly, the different distribution of
second-stage drift rates, conditional on choice correctness, imposed by the different SAT conditions
(see Appendix B). In conclusion, modeling the more intricate individual data patterns requires a
more complex CCB variant. Such extensions are beyond the scope of the current paper, in which
we focus on the more typical and robust patterns.

4.2.2.3. Resolution and the TP effects. How does the CCB account for the positive resolution of the con-
fidence judgments (Hurdle 6)? As in 2DSD, the second stage information tends to be congruent with
correct decision and incongruent with erroneous decisions. Consider for illustration the second stage
following an ‘upper choice’ event (i.e. the positive choice threshold was reached; see also Fig. 3): For
both correct and errors the confidence boundary collapses downwards. However, whereas for correct
the diffuser typically traverses upwards, for errors it trends downwards. Consequentially, the average
convergence rate (or the ‘relative velocity’ with which the diffuser and the confidence boundary move
towards each other denoted ~vcorrect; ~verr) of the diffuser relative to the confidence boundary is higher
for correct than for error choices: ~vcorrect > ~verr Thus for corrects the crossover occurs sooner (Hurdle
8), and confidence is higher (Hurdle 6).

Note that strictly speaking, in CCB the confidence boundary does not move continuously but rather
in ‘collapsing bursts’. Nonetheless, to gain intuition with respect to the operation of the model with
respect to the beneficiary TP effect (on resolution) it might help to imagine a continuous rather than
a discrete ‘velocity’. CCB predicts the beneficiary TP effect because the extra distance between the
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diffuser and the confidence boundary (in the speed relative to the accuracy condition) is traversed in a
shorter time by the higher correct (relative to error) velocity.13 These predictions are confirmed by
Fig. 8.14

4.2.2.4. Summary. In the current section, we presented a ‘proof of concept’ for the notion that dual
stage theories can provide a unifying account for the many intricate aspects of the empirical manifold.
Admittedly, our presentation of the CCB model was somewhat preliminary as it leaves many
important questions open for futures research (see Section 5.4). Nonetheless, this presentation served
our purpose, to demonstrate a (relatively) simple dual-stage model, which integrates in a coherent
manner our understanding of the choice followed by confidence paradigm and which provides a
plausible mechanistic theory for existing and novel empirical phenomena.

5. General discussion

The goal of the current paper was threefold: First, we presented direct empirical evidence in sup-
port of the hypothesis that in the choice followed by confidence paradigm, participants continue to
accrue perceptual evidence after the decision is made and that the duration of the post-choice evi-
dence-accrual stage causally affects their confidence judgments. The resolution of confidence and
the beneficial choice-TP effect increased as a function of perceptual availability (Exp. 1).
Additionally, perceptual availability increased both the resolution of confidence and the harmful—
confidence TP effect (Exp. 2). Testing the boundary conditions of this phenomenon, post-choice
13 To elaborate, define by, Dh ¼ haccuracy � hspeed the difference between the choice threshold in the accuracy and the speed SAT
conditions. Comparing these SAT conditions, in the speed condition an additional gap of Dh between the diffuser and the
confidence boundary should be bridged, for a crossover to occur. The larger the boundary-diffuser convergence velocity the sooner
the gap will be bridged (this time is approximated by Dh

~v ) and hence the lower the effect of the extra gap on confidence (when the
gap is bridged faster the confidence boundary will collapse to a lower extent). Putting the pieces together, since the convergence
velocity for corrects is larger than for errors ~vcorrect > ~verr , the additional Dh gap in the speed condition is traversed faster for

corrects Dh
~vcorrect

< Dh
~verr

� �
. These correct vs. errors differences in RT2 differences entail a corresponding difference with respect to

confidence, because faster convergences provide fewer opportunities for collapse. Thus, while confidence for corrects decreases,
confidence for errors drops down to a larger extent. A beneficiary TP-resolution effect ensues (Hurdle 7).

14 The TP and choice-correctness interaction effect on RT2, which is displayed in the right panel of Fig. 8, was significant in the
line length task. We found a similar trend in our Exp. 1 but it failed to reach significance. Thus, we did not include this pattern in
the empirical manifold.
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integration proved surprisingly resistant to our attempt to hinder it by backward masking of the stim-
uli immediately after the choice (Exp. 3).

Second, we showed that the inter-judgment time (RT2) is correlated with the other variables in the
choice followed by confidence paradigm. We concluded that accounting for RT2 is an important chal-
lenge for theories, which aim to explain the confidence-generation mechanism. Third, we addressed this
challenge by presenting a novel theory of confidence and RT2, the CCB model. This theory, which was
successful in accounting for the entire empirical manifold, provides the novel insight that confidence
is determined by collapsing boundary dynamics. Below, we discuss the implications of our findings.

5.1. Single vs. dual information-collection stages theories

The Balance of Evidence (BOE) (Vickers, 1979) is arguably the most established among the family of
the single-stage theories of decision confidence. Remarkably, this model is able to account for many of
the empirical regularities in the decision followed by confidence paradigm (Hurdles 1–6). Despite the
overall support we obtained for dual-stage models, we believe that it is premature to dismiss the BOE
account. First, our results indicate that individual difference in the confidence mechanism may be at
play (e.g., see our discussion of Participant 1 in Exp. 1, Section 2.2.2). Future studies are needed for
assessing the possibility that BOE is a viable strategy for confidence resolution on which a portion of
participants may rely. Furthermore, single stage models may be able to account for findings in other per-
ceptual paradigms, wherein the stimulus is presented very briefly (say for 100 ms) and then masked.
Indeed, in such cases pipeline and iconic memory influences may be exhausted during the first informa-
tion-integration stage, and so nothing would remain to feed a second information-collection stage.

Finally, our conclusions in favor of dual-stage models accounts are so far limited to speeded per-
ceptual-decision tasks. One speculation is that in other domains of choice, such as general knowledge
questions (e.g., when participants deliberate for 30 s vs. 1 min on the question of which of two authors
wrote ‘Moby Dick’), the decision stage is not mediated by integration to boundary but, rather, people
terminate the decision when they exhaust the information that can be retrieved from memory (or
when novel mnemonic information deteriorates in its quality). In such cases, confidence may be dri-
ven by either the balance or by the consistency (SCM; Koriat, 2012) of the evidence supporting each
alternative.

5.2. Error monitoring, changes of mind and the extent of post-choice integration

Additional converging evidence for post-choice integration comes from the field of error monitor-
ing. Error monitoring is the meta-cognitive process by which observers can detect and correct their
own errors, once a choice has been made, even in the absence of explicit feedback (Rabbitt, 1966).
Empirical studies suggest that this ability relies on post-choice integration of additional information,
which stands against the initial erroneous choice (e.g. Jentzsch & Dudschig, 2009; Rabbitt, 2002;
Rabbitt & Vyas, 1981; see Yeung & Summerfield, 2012 for a review).

Resulaj et al. (2009) provided further evidence for post-choice integration in a ‘changes of mind’
paradigm: Observes indicated the direction of a random dot motion stimulus by moving a joystick
leftwards or rightwards. On some portion of the trials, the initial direction of the joystick movement
was opposite to the final choice. The authors suggested that such changes of mind are caused by
additional information that is integrated following the initial choice. Importantly, this post-initial
choice-integration was attributed to residual information in the processing pipeline. Presumably,
pipeline information can support error monitoring functions as well.

Finally, in a series of studies, which were grounded in the choice-followed by confidence paradigm,
Baranski and Petrusic found evidence for confidence processing both during and after the decision
(Baranski & Petrusic, 1998, 2001; Petrusic & Baranski, 2003). The latter, post-decisional confidence-
processing, was pronounced when choice-speed rather than choice-accuracy was stressed.
Importantly, as we explained in the introduction, confidence processing does not necessarily entail
stimulus processing in the sense of seeking novel information. For example, confidence processing
may be limited to a confidence calculation, which interrogates the information that was available
by the time the decision was made.
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By manipulating the perceptual availability of the stimulus following the choice, we were able to
show directly that post-choice information integration is operative and that it extends beyond a pipe-
line. Notably, a pipeline is operative whether the stimulus remains on the display or disappears.
Additionally, the influence of a pipeline would be exhausted prior to the early confidence condition
of Exp. 2. Hence, a pipeline is insufficient in accounting for the resolution differences between the
remain and vanish conditions and between the early and late confidence conditions. Whereas the
effects of a short pipeline may be unintentional and unavoidable, our findings suggest that post-choice
integration is driven by a deliberative act of will. To the best of our knowledge, these are the first find-
ings that point to the existence of such an extended post-choice integration process.

5.3. Insights from CCB: collapsing boundaries as a means for effort regulation

According to the CCB model, confidence judgments reflect a tradeoff between two conflicting
desires for high confidence and for low integration costs. A similar idea but with respect to choice
rather than confidence, has been prominent in recent decision making models (e.g. Deneve, 2012;
Drugowitsch et al., 2012; Moran, 2014; Thura, Beauregard-Racine, Fradet, & Cisek, 2012; but see
Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown, 2015). The main idea that underlies these mod-
els is that when difficulty level varies across trials (as a consequence of either an objective and/or a
subjective variability in discriminability) collapsing thresholds provide an efficient method to imple-
ment a tradeoff between choice accuracy and decision time (i.e., to regulate integration effort) in
optimizing reward rate.

Unlike collapsing choice-thresholds models, CCB assumes that the choice is governed by a station-
ary threshold, whereas confidence is governed by a noisy dynamically collapsing threshold. Initially,
once the decision is made, participants place a high confidence threshold corresponding to the highest
confidence level. However, as time passes and the trial fails to terminate, the cognitive system infers
that it is more and more likely that the current-trial drift rate is low rather than high (because easier
higher drift trials tend to reach the threshold earlier on). Such an inference in turn implies that it is less
likely that the decision was correct in the first place, motivating a reduction in confidence. This reduc-
tion is achieved by collapsing the confidence boundary to a lower level, allowing judges to reduce tem-
poral costs, as a lower boundary is usually reached faster.

This description, however, begs the question of why do not thresholds already collapse during the
decision stage. One speculation is that during the decision stage, a collapsing-thresholds strategy
would require observers to cognitively access and maintain two collapsing thresholds, a task which
may be too demanding while evidence is integrated. In CCB, on the other hand, the task is simpler
because a single collapsing boundary, which is activated by the decision, has to be accessed and imple-
mented. Observers may thus opt to execute a standard stationary-thresholds decision stage, and to
regulate their effort only during the second, confidence stage.

5.4. CCB: future developments and challenges

Our focal purpose in the current research was to establish the causal influence of post-choice
integration on confidence and to suggest a mechanism that can account for the vast empirical mani-
fold. Thus some more specific and yet, highly interesting questions were left outside the scope of the
paper. First, can the CCB account for the effects that the perceptual availability manipulation exerted
in Exp. 1, e.g., the increased RT2, resolution and TP effect in the remain relative to the vanish condi-
tion? The reduced resolution and TP effect can be accounted for in CCB by assuming that the drift rate
decays after the stimulus disappears in the vanish condition hence dampening the second-stage differ-
ences between correct and erroneous trials. However, such drift-rate decay will tend to increase RT2
by slowing down the convergence towards the confidence boundary. Thus, to account for the percep-
tual availability effect the model will have to assume that in addition to a drift decay, the collapse
dynamics speeds up in the vanish condition (e.g., by setting the confidence boundary to a lower initial
heights, by increasing the collapse step and/or by speeding up collapses).

Second, is the CCB also relevant in confidence-interrogation scenarios, such as our Exp. 2? One
hypothesis is that when confidence is interrogated, rather than determined freely, observers do not
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use a collapsing confidence boundary mechanism to terminate evidence integration, but rather
exhaust the entire interrogation time for the post-decision stage. When the confidence signal arrives,
observers map their total evidence on a confidence scale as in the 2DSD interrogation variant.
Alternatively, if integration of information is effortful and costly, as the CCB assumes (see also
Drugowitsch et al., 2012) then it is reasonable that observers use a collapsing confidence boundary
even when confidence is interrogated. One such possibility is that if the confidence boundary is
met prior to the response-signal, participants form a covert confidence judgment and delay their overt
report until the response-signal arrives. On the other hand, if the response deadline arrived prior to
the diffuser-confidence boundary intersection, participants resort to some kind of guessing strategy
(e.g. report 50% confidence or: report a confidence level that corresponds to level below the current
height of the confidence boundary). In such cases, the harmful confidence-TP effect may result from
the fact that when the confidence signal arrives early rather than late, a larger portion of the confi-
dence judgments are produces via the guessing (rather than the covert confidence) route.

Third, it should be tested whether CCB can account for fine-grained aspects of empirical RT2 dis-
tributions. For example, as illustrated in Fig. 5, the skewness of the RT2 distribution increases as a
function of confidence. While the CCB fit captured this qualitative pattern it under-predicted the skew
for all levels of confidence. Future studies should test whether this shortcoming could be ameliorated
by using less constrained variants of CCB or perhaps by using skewed distributions for the collapse
timers (recall that here we used uniform collapse timers).
5.5. CCB and alternative dual stage models

CCB and the optional stopping 2DSD are both dual-stage diffusion based models, which aim to
account for confidence and its latency. These models share an identical decision-stage and differ only
with respect to the second confidence stage, specifically—their termination rule. It remains to be seen
in future research, whether the optional stopping 2DSD, like CCB, can account for the entire empirical
manifold.

Unlike CCB and 2DSD, the response-reversals model (Van Zandt & Maldonado-Molina, 2004) is a
dual-stage accumulator-based model with Poisson counters. Following the choice, the counters
continue to accrue evidence towards a second set of thresholds and confidence is determined by
the balance of evidence, when this second stage terminates. Interestingly, this model cannot account
for some of the patterns in the empirical manifold. For example, for a given set of accumulation rates
and thresholds, RT is predicted to correlate negatively with RT2 in violation of Hurdle 8. Indeed, the
faster the first choice stage terminates, the lower the count on the loser racer at the moment of choice
(the count for the winner is fixed by definition to the thresholds level). Since the first stage counts
serves as ‘starting points’ for the second stage, a lower first-stage count, extends the duration of the
second stage by reducing statistical facilitation.

Additional future viable dual stage model for the choice followed by confidence paradigm may be
based on extensions of models that successfully account for confidence judgments in an alternative
popular paradigm, wherein rather than choosing and ranking confidence sequentially, observers pro-
vide choice and confidence ratings simultaneously in a single compound response. Such models
include, RTCON (Ratcliff & Starns, 2009) or its successor, RTCON2 (Ratcliff & Starns, 2013) and the
recent ‘bounded accumulation model’ (Kiani et al., 2014; see also Zylberberg, Barttfeld, & Sigman,
2012). Notably, these two confidence-paradigms have been found at times to yield conflicting results.
For example, in violation of Hurdle 9, Kiani, Corthell and Shadlen found that confidence in erroneous
choices decreased as a function of difficulty. Additionally, Ratcliff and Starns (2013) presented data
showing negative but also flat and even positive confidence-RT correlations, suggesting that Hurdle
4 may be less robust in the simultaneous choice-confidence, as compared with the choice-followed
by confidence paradigm. Such differences between the two confidence paradigms beg a fundamental
question: Do both confidence paradigms measure the same psychological construct? Or perhaps,
despite the face similarity, they measure two different forms of confidence? If so, what is the relation-
ship between these ‘two confidences’? Extending confidence-models to account for findings in both
paradigms could thus integrate our knowledge from two separate confidence paradigms.
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One possibility to extend RTCON(2) to the choice-followed by confidence paradigm is to follow up
the first diffusion stage (for choice) with a second stage akin to RTCON2, featuring a race between
accumulators that correspond to the alternative eligible confidence rankings. Here, however, the chal-
lenge is to develop a theory, which will connect the first stage parameters (e.g. the choice-diffusion
drift) to the second stage parameters (the confidence drifts), hence allowing the model to account
for correlations between first stage variables (such as RT) and second stage variables (such as
confidence).

In the bounded accumulation model of Kiani et al. (2014), the choice is based on a race between
two (anti) correlated accumulators. The novelty of this model lies in the suggestion that confidence
is a function of not only the balance of evidence favoring the choice, but also the decision time.
Specifically, based on trial by trial correctness feedback, observers learn to associate combinations
of decision time and balance of evidence with the probability of choice-correctness (i.e., confidence).
One possibility to extend this model to the choice followed by confidence paradigm is to introduce a
second, post-choice, higher threshold in similarity with the response-reversals model (Van Zandt &
Maldonado-Molina, 2004). Confidence can then be based the balance of evidence at the end of the sec-
ond stage and on the total integration time (i.e., RT + RT2).

In summary, the recent confidence literature has witnessed a flourish of interesting and promising
models of confidence judgments, including the optimal-stopping 2DSD, RTCON(2), the bounded accu-
mulation model (Kiani et al., 2014) and the current addition, CCB. We believe that the next important
step is to test and compare these models with respect to benchmark data sets. Specifically, future
research should examine whether extensions of RTCON(2) and the bounded accumulation model
(and as mentioned above, the optional-stopping 2DSD) can account for the entire empirical manifold.
Then, direct head to head comparisons between these models should be conducted to identify which
of the models provide the best quantitative fit, when model complexity and flexibility are controlled
for. Hopefully, neurophysiological measures may also help in probing more directly the neural mecha-
nism associated with confidence in the various models.

5.6. Confidence qua meta-cognition

In terms of signal detection theories, the choice followed by confidence paradigm elicits responses
of two different types: choice—‘type 1’ and confidence—‘type 2’ (Galvin, Podd, Drga, & Whitmore,
2003). In type-1 tasks the objective is to detect the presence or absence of a signal. Hence, observers
attempt to discriminate between objective external events. In type-II tasks, on the other hand, obser-
vers are asked about their belief in the correctness of the type-I response. Here, observers distinguish
between one’s own subjective states: a feeling of being correct or wrong. Thus, the referent of a type II
judgment is an internal rather than an external event. The type-I and type-II tasks are thus considered
to measure cognition (about external events) and meta-cognition (i.e. cognition about internal events)
respectively.

Logically, a type-II belief could be reduced to a belief about the external presence of a signal. In
other words, beliefs about choice-correctness may be formed by reconsidering the external evidence
with respect to signal presence. However, logical reductionism does not necessarily translate to
psychological identity. Whereas in type-I judgments, observers seek the external environment for
relevant evidence, in a type II judgments they may search their own cognitive system for evidence
with respect to correctness (e.g. was the decision quick and easy to arrive at?).

Current dual stage models such as CCB and 2DSD provide an interesting perspective with respect to
the relationship between cognitive and metacognitive judgments. Unlike single stage theories such as
BOE, which rely solely on internal representations to derive confidence (the post-decisional evaluation
of the balance of the evidence between the competing alternatives), 2DSD and CCB continue to probe
the external world, seeking for novel information. Notably, the post-decisional stage updates the same
mental representation (the activation of a diffuser) that was generated during the choice stage. Hence,
according to these models, in experimental designs such as those employed here, metacognition may
be construed as an extension of cognition, rather than a qualitatively different process. Understanding
the interplay between the cognitive and the metacognitive processes in a variety of confidence
paradigms is an important issue for future research.
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Appendix A. Sequential sampling: a brief summary

In describing the sequential sampling framework for decision making, we focus on two main
approaches: random walk/diffusion and accumulator models (Ratcliff & McKoon, 2008; Teodorescu
& Usher, 2013). In random walk/diffusion theory, as each time interval Dt passes after stimulus
Siði ¼ A;BÞ is presented, judges consider a sample of information and transform it into evidence favor-
ing one alternative over the other. Observers maintain a single tally, which corresponds to the total
accumulated evidence LðtÞ. Evidence is accumulated until the first time tD that the total LðtÞ reaches
an upper threshold h or a lower threshold �h.15

One limiting aspect of this simple diffusion model is that when participants are unbiased, RTs for
correct and for error choices predictably follow the same distributions. Nevertheless, the empirical
reality is that hard and easy tasks often yield slow and fast errors respectively (Hurdle 2). To account
for such findings the diffusion model has been augmented with two types of across trial variability.
The first, starting point variability (Laming, 1968) enables the model to account for ‘fast errors’. The
second, drift rate variability (Ratcliff, 1978), which is usually attributed to (across trial) fluctuations
in the levels of attention, alertness or perceptual efficiency, enables the model to account for ‘slow
errors’.16 The diffusion model, augmented with these trial-by-trial viabilities, has been extremely suc-
cessful in accounting for choice accuracy and the forms of the RT-distributions, for both correct and
incorrect responses (e.g. Ratcliff & McKoon, 2008).

An alternative sampling process of choice could be found in the family of accumulator models.
When judges are asked to make a 2AFC, evidence accrues in two counters, one in support of each
response alternative. The first counter to reach a threshold determines the choice. Some examples
of accumulator models are the Linear Ballistic Accumulators (Brown & Heathcote, 2008), the
Poisson race model (Pike, 1973; Townsend & Ashby, 1983), the Accumulator Model (Usher, Olami,
& McClelland, 2002; Vickers, 1979) and the Leaky Competing Accumulator Model (Usher &
McClelland, 2001). One fundamental difference between random walkndiffusion and accumulator
models is that they use relative vs. absolute stopping rules, respectively (Ratcliff & Smith, 2004). In
particular, whereas in diffusion models the amount of evidence favoring the chosen (over the non-
chosen) alternative is constant across trials, in accumulator models it is variable. In Section 1.4, we
show that this difference between diffusion and accumulator models bears significant implications
regarding the possibility to model confidence based on the balance of evidence favoring the chosen
over the non-chosen alternative, within the diffusion and accumulator models.

Appendix B. A simulation study: a higher RT2 in the speed vs. accuracy condition is not a
necessary condition for the beneficiary TP-effect on resolution

In accounting for the beneficiary TP effect on resolution (Hurdle 7), Pleskac and Busemeyer (2010)
relied on the higher RT2 in the speed vs. the accuracy condition. However, in our experiments we
15 The theory assumes that the amounts of evidence in different samples are stochastic, independent and identically distributed.
Additionally, each evidence sample, collected in a temporal duration of Dt is distributed according to a Gaussian distribution with
mean dDt and variance r2Dt. The parameter d is the drift rate, the average advantage of response A over B or the rate of evidence
accumulation over time, which indexes the average strength or quality of evidence that observers are able to extract from the
stimulus. The parameter r2 is the drift coefficient, which indexes within-trial random fluctuations.

16 Starting point variability is incorporated into the model by assuming that the starting point Lð0Þ varies uniformly across trials.
Drift rate variability is incorporated into the model by assuming that for a single difficulty level and even for a single stimulus, the
drift rate d is distributed � Nðd0;g2Þ across presentations.
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found a beneficiary TP effect when RT2 was not larger (and even smaller) in the speed condition. Here
we show that an increased RT2 in the speed condition is not a necessary condition for 2DSD to predict
Hurdle 7.

Let us assume that the inter-judgment time is identical under speed and accuracy conditions.
Resolution depends on the amounts of evidence that are accrued during the second stage for correct
and error responses. These amounts of evidence in turn, are determined by the second stage drift rates.
We thus examined the second stage drift rates. To facilitate the presentation, we derived a coarse
quantification of the resolution effect, as a function of these drift-rates.

Assume that the correct choice is A, and denote the mean, post –decisional, drift rates for correct
and error responses by vcorrect and verror respectively (see Fig. 1) and the constant post-decision
integration time by s. For correct choices, the mean evidence in support of the choice (A) by the
end of the second stage is hþ s � vcorrect (see blue curve in Fig. 1). Erroneous choices, on the other hand
will reach the bottom criterion and thus, by the end of the second stage the diffuser state will be
�hþ s � verror (note that for the red erroneous curve in Fig. 1, B is supposed to be the correct answer,
whereas here we assume that A is the correct answer. Thus the current scenario would be obtained if
the black and red curves and the vector verror would be reflected to the bottom threshold). However,
this state reflects evidence in favor of A, now the non-chosen alternative. Since confidence is framed in
relation to the chosen alternative B, the amount of supporting evidence is obtained by negation:
h� s � verror. Assuming that confidence is proportional to the total amount of evidence supporting
the decision, it follows that resolution of confidence is proportional to the difference between the
mean levels of evidence for correct and erroneous choices, which translates into the sum of correct
and error mean drift-rates:
resolution / hþ svcorrect � h� sverrorð Þ ¼ s � ðvcorrect þ verrorÞ; ðB1Þ
In words, the resolution rate (i.e. the rate with which resolution grows with respect to the post-
choice integration time) generated during the second stage is proportional to the summed means of
the drift rates conditional on correct and error choices and also to RT2 (note that this rate is the
obtained by dividing the term in Eq. (B1) by s).

In order to understand how the beneficiary TP effect on resolution (Hurdle 7) can emerge without
differences in RT2, we examined, how these second stage drifts rates ðverror;vcorrectÞ are differentially
distributed for correct and for error choices across different TP regimes. Thus, we simulated the first
stage diffusion model under speed and under accuracy conditions. In these simulations we used the
best fitting parameters from the line length tasks of Pleskac and Busemeyer (2010).

Fig. B1 displays the typical result we obtained in our simulation. The figure corresponds to
Participant 3 and to the third difficulty level. The black curve shows the drift rate density distribution
across all trials: the mean drift rate is v ¼ 0:1418 and the standard deviation is g ¼ 0:0876. Note, that
this distribution pertains to both the speed and accuracy SAT conditions because in the Pleskac and
Busemeyer fits, the drift distribution was not influenced by that manipulation. The blue and red curves
correspond to the drift rate density conditional on correct and erroneous choices respectively. The
‘error conditional density’ (for each SAT condition) is located to the left of the ‘correct conditional den-
sity’ since lower drift trials are more likely than higher-drift trials to lead to error responses.

The solid and dashed curves in Fig. B1 correspond to conditions that stress choice accuracy and
speed respectively. Since drift-rate variability plays a less influential role in generating errors under
TP (in this condition starting point variability and within trial noise are more dominant causes of
errors), drift rate distributions conditional on response type assume different shapes with and without
TP. Furthermore, since errors are less associated with low drift rates under TP, the mean error drift rate
under TP is higher than without TP ðMspeed ¼ 0:096;Maccuracy ¼ 0:052Þ. The TP differences between the
drift rate distributions for correct responses, on the other hand, are more minor
ðMspeed ¼ 0:158;Maccuracy ¼ 0:157Þ. It follows that the sum of the mean drift rates conditional on correct
and error decisions is larger for speed than for accuracy. Indeed, this sum was �0.25 for the speed con-
dition and a lower �0.21 for accuracy conditions. Recall from Eq. (B1) that this sum is the rate with
which resolution is generated during the second integration stage. In conclusion, because the res-
olution-rate is higher under TP, resolution will be higher (Hurdle 7) even if inter-judgment time is



Fig. B1. Drift rate variability density curves across all trials (black) and conditional on correct (blue) and error (red) responses.
Solid and dashed curves correspond to stress on choice accuracy and speed respectively. It can be clearly observed that the sum
of the means for the correct and error curves, which constitutes the second stage resolution rate, is larger for the accuracy stress.
Indeed, for correct responses the means are very similar whereas for error response the ‘speed’ mean is larger than the
‘accuracy’ mean. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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invariant with respect to the SAT regime (such as in the pipeline model). Furthermore, theoretically,
due to higher resolution rate, higher resolution is predicted under speed even if under such conditions
the inter-judgment time is moderately lower.

Note that the current demonstration ignored possible influences of TP on confidence mapping
(Baranski & Petrusic, 1998; Pleskac and Busemeyer, 2010) and on accumulation drift rates (Rae
et al., 2014). Such presumable influences may provide alternative routes to account for the beneficiary
TP effect without the mediation of RT2.
Appendix C. Detailed experimental methods

C.1. Method of Experiment 1

C.1.1. Participants
The six participants (all women in the age-range of 22–25) were Tel Aviv University undergraduate

psychology students. In return for their participation, they were rewarded with course credit and
additionally, they were paid a performance-based reward (an amount of 30–40NIS, roughly equivalent
to 8–12 $) in each of the 4–5 sessions. All the participants had normal or corrected-to normal vision.

C.1.2. Apparatus
All stimuli were presented using software programmed in Matlab with Psychtoolbox-3 (Brainard,

1997; Pelli, 1997; Kleiner, Brainard, & Pelli, 2007). This allowed for controlled presentation of graphics,
instructions, event sequencing, timing, and recording of responses. Participants recorded their
responses using a standard QWERTY keyboard. During the experiments participants placed their
index, middle, medicinal and little fingers of the right hand on the keyboard keys ‘H’, ‘J’, ‘K’ and ‘L’
respectively. The corresponding left hand fingers were placed on the keys ‘G’, ‘F’, ‘D’ and ‘S’. The
thumbs of both hands were placed on the spacebar key. Participants used the spacebar key to indicate
their readiness for the onset of the next trial and then entered their choice with either the ‘L’ (for
choosing the right stimulus) or the ‘S’ (for choosing the left stimulus) keys. After making a choice,
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participants entered a confidence rating using the keys located between ‘D’ to ‘K’. These keys
corresponded to confidence levels 50%;60%; . . . ;100%. If the right-side stimulus was chosen then con-
fidence increased from left to right i.e. ‘D’ corresponded to 50% confidence and ‘K’ corresponded to
100% with the intermediate keys corresponding to the intermediate confidence levels. If, on the other
hand, the left-side choice was made then confidence increased from right to left i.e. ‘D’ corresponded
to 100% confidence and ‘K’ corresponded to 50% confidence. Participants sat in individual sound-
attenuated booths approximately 60 cm away from the screen.

C.1.3. Response entry task
Each experimental session began with a response entry practice task. On each trial participants

entered a sequence of responses that simulated an expected sequence of responses on the main
2AFC experimental task. During this practice task, participants were instructed to enter a sequence
of responses in the following manner: First, to initiate a trial, participant pressed the spacebar key.
As soon as the spacebar was pressed the choice word ‘left’ or ‘right’ (written in Hebrew) appeared
at the center of the screen and participants were instructed to press the ‘S’ or the ‘L’ key respectively.
Only once the appropriate key was pressed, the choice word was replaced by one of the confidence
labels 50,60, . . . ,100 and participants had to press the appropriate confidence key. A graphic confi-
dence scale appeared below the confidence label. This scale extended from left (50) to right (100) if
the ‘left’ choice was made or from right to left if the ‘right’ choice was made. The trial terminated only
after participants pressed the correct confidence key. Each of the 2 (directions) � 6 (confidence labels)
appeared 12 times in the task for a total of 144 trials.

C.1.4. The 2AFC discrimination task
C.1.4.1. Stimuli. The basic display had a gray background. On each trial a pair of squared black and

white arrays appeared on the screen. Each array was composed of 65 � 65 squares where the edge size
of each square was 4 pixels. Thus, the edge length of each array was 260 pixels. Vertically, theses
arrays were located on the screen center. Horizontally, the array centers had an offset of 200 pixels
to the left and to the right of the screen center. Each array pair consisted of one reference and one tar-
get array. In the reference array, half of the squares were white and half were black. The target array
consisted of a majority of black squares whose proportion was drawn from one of the three values:
133/260 135/260, 137/260, corresponding to three different discriminability levels. The black and
white arrangement of squares within each array was random.

C.1.4.2. Design and procedure. Participants completed four experimental sessions within a period of
2–3 weeks (Participant 5 participated in five sessions). Different sessions were conducted on different
days. During each session participants completed two tasks. The first task was the previously
described response entry task. The second task was the experimental task. During the experimental
task, participants completed eight experimental blocks and two practice blocks. There were two types
of blocks: Speed and accuracy blocks. During each experimental block (speed or accuracy) participants
completed 72 randomly-ordered trials (3 discriminability levels � 2 directions of the target array (left/
right) � 2 post-decisional perceptual availability (remain/vanish) � 6 repetitions). For each trial a
reference and target arrays were created anew, respecting the discriminability level. Each of the
two practice blocks (speed or accuracy) contained only 18 trials (selected randomly from a set of
72 trials that was generated in the same way as in the experimental block). In all other respects the
practice blocks were identical to the experimental blocks. The eight experimental blocks alternated
in their type, emphasizing either choice speed or choice accuracy. The type of the first block (speed
or accuracy) was counterbalanced for each participant across sessions. Finally, half of the participants
began Session 1 with an accuracy block and half with a speed block. The first experimental block of
each type was preceded by a practice block of the same type. A minimal 30sec break was enforced
between consecutive experimental blocks. In total, participant completed 1152 (1440 for
Participant 5) critical trials of each type (practice trials were discarded from the analysis).

Before each block of trials, participants were informed about their goal (speed or accuracy) for the
upcoming block. Generally, participants were instructed to strive to achieve both response speed and
accuracy but additionally, for each block they were asked to stress one over the other. For accuracy
blocks, participants were instructed to enter their choice as accurately as possible even if this means
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that would slow down their choices. After each trial in the accuracy emphasis condition, feedback on
incorrect responses was given on the feedback screen (described below) in the form of an ‘‘Error’’ mes-
sage. The feedback screen was displayed after participants entered their confidence rating. For speed
blocks participants were instructed to try and enter their choice quickly even if this policy results in a
moderate compromise of accuracy. After each trial in the speed emphasis condition, feedback on
responses slower than 750 ms was given in the form of a ‘‘Too Slow’’ message in the feedback screen.
No feedback on error responses was given during the speed conditions. For both speed and accuracy
blocks, participants were instructed to enter an accurate confidence rating. The instructions stressed
that there is no time pressure on the confidence judgment.

An individual trial proceeded as follows. Participants were first given a preparation screen which
asked them to press the spacebar key when they were ready to initiate the next trial. 250 ms after
participants pressed the spacebar key, the two black and white arrays appeared to the left and right
sides of the screen. Participants were instructed to choose the side with the array that contains a larger
proportion of black. Once a choice was entered, a graphic confidence scale appeared below the arrays.
This scale extended from left (50) to right (100) if the ‘right’ choice was made or from right to left if the
‘left’ choice was made.17 For remain condition trials, the stimuli remained on the screen following
the decision but for vanish trials, the appearance of the scale was coupled with the disappearance of
the arrays from the display. Participants were instructed to judge their confidence in the correctness
of the choice they just made (50%;60%; . . . ;100%). After entering a confidence rating, a feedback screen
appeared informing participants if they made an incorrect choice in the accuracy block or if they were
too slow in the speed block. The feedback screen (which appeared after each trial) reported also the com-
bined score (see below) for the current trial and the total accumulated score for the current block.
Additionally, if either the choice or the confidence response occurred sooner than 150 ms following
the stimuli or confidence scale onset respectively, the trial was aborted and a feedback screen asked par-
ticipant to wait for the appropriate cue (i.e. the appearance of the arrays or of the confidence scale)
before they respond. The trial was also aborted if at any stage of the trial a non-eligible key was pressed.
In this case the feedback screen informed participants that they pressed the wrong key and they had to
wait 4 s before they could proceed to the next trial. The feedback screen also served as the preparation
screen for the next trial.

C.1.4.2.1. Combined choice-confidence accuracy score. At the beginning of the experiment, partici-
pants were told to select a confidence rating so that over the long run the proportion of correct choices
for all trials assigned a given confidence rating should match the confidence rating given. Participants
were reminded of this instruction before each session. This instruction is common in studies on the
calibration of subjective probabilities (cf. Lichtenstein et al., 1982). As further motivation, on each trial
participants earned points based on the accuracy of their choice and confidence rating according to the
quadratic scoring rule (Stael von Holstein, 1970),
17 One
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where correct is a correct choice indicator (i.e. equal to 1 or 0, if the choice was correct or erroneous
respectively) and confidence was the confidence rating entered in terms of probability of correct
(.50, .60, . . . ,1.00). This scoring rule is a variant of the Brier score (Brier, 1950), and as such it is a strictly
proper scoring rule ensuring that participants will maximize their earnings only if they maximize their
accuracy in both their choice and their confidence rating. Participants were informed of the properties
of this scoring rule prior to each session and were shown a table demonstrating why it was in their
difference between the experiments of Pleskac and Busemeyer (2010) and the current experiment pertains to the response
l. In Pleskac and Busemeyer’s experiment participant made both the choice and the confidence responses using the same

We speculated that, perhaps (at least some part of) the increase in RT2 for the speed trials was due to a motor slowdown
nd not due to longer post-choice integration stage. Specifically, we speculated that if the first choice is made under time
e then the second choice with the same finger would be slower, as if the first speeded response induces a ‘refractory motor
In our Exp. 1, to minimize interactions or carryover effects between the choice response and the confidence response, the
ponses were elicited with different fingers. We hoped that the using different motor responses would weaken, perhaps
iminate, this increased RT2 in the speeded choice for some of the participants. This may allow us to examine whether the
ed RT2 is necessary for the emergence of the beneficial TP effect on resolution.
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best interest to accurately report their choice and confidence rating. To enforce time pressure during
the speed conditions, the points earned were cut in half if a choice exceeded the deadline of 750 ms.
For every 1.600 points participants earned 1NIS (approximately 0.25$).
C.2. Method of Experiment 2

C.2.1. Participants
The six participants were Tel Aviv University undergraduate psychology students. Four of the

participants participated also in Exp. 1 (Participants 2, 3, 4, 6). The two other Participants of Exp. 1
were unavailable and hence two new participants were recruited (Exp. 2 was conducted six months
after Exp. 1). The two new participants (denoted Participants 7 and 9) were women in the same range
age and were awarded with course credit. Participants, continuing from Exp. 1 needed no course
credit, so instead they were reimbursed with double payments. Each participant carried out five
sessions, each during approximately one hour.
C.2.2. Apparatus, the 2AFC discrimination task and stimuli
The Apparatus, the 2AFC discrimination task and the stimuli were identical to those used in Exp. 1.
C.2.3. Design and procedure
The design and procedure were similar in many respects to those of Exp. 1 so we describe only the

differences. Participants completed five experimental sessions within a period of 3–4 weeks. In Exp. 2
all experimental blocks stressed choice speed rather than accuracy (as in the speed blocks of Exp. 1).
There were two types of experimental blocks, early and late confidence interrogation blocks. Both
the experimental and practice blocks were created and arranged (interleaved) in the same way as
in Exp. 1, the only change being that the two block types were early vs. late confidence interrogation
rather than choice speed vs. accuracy stress.

With respect to choice, participants were given the same instructions as in the speed blocks
of Exp. 1. However, the instructions with respect to confidence differed as participants were asked
to enter their confidence judgments only after an auditory cue (a short beep) is delivered.

The sequence of events on an individual trial is similar to that of Exp. 1 up to the presentation of the
confidence scale. Once the scale was presented, participants were instructed to continue thinking
about their confidence judgment until they hear the beep. The beep sounded either 300 ms or
1300 ms after the onset of the confidence scale in the early and late conditions respectively. After
entering a confidence rating, feedback was given if the choice was too slow (more than 750 ms from
stimuli onset) or if the confidence rating was too slow (more than 1 s from the beep onset) and the
amounts of earned points for the trial was cut by half. Additionally, if either the choice or the
confidence response occurred earlier than 150 ms after the stimuli or the beep onset respectively,
the trial was aborted and a feedback screen asked participant to wait for the appropriate cue before
they respond.
C.3. Method of Experiment 3

C.3.1. Participants
The nine participants were Tel Aviv University undergraduate psychology students. Three of the

participants participated also in Exp. 1 and 2 (Participants 2, 4, 6) and one participant participated only
in Exp. 2 (Participant 7). Six new participants were recruited but one was excluded as she failed to
exceed chance performance in the speed condition. The five remaining novel participants (denoted
Participants 8, 11, 12, 15 and 16) were in the same age-range and were awarded as in Exp. 1.
Participants, continuing from Exp. 1 or 2 needed no course credit, so instead they were reimbursed
with double payments. Each participant carried out two sessions, each during approximately one
hour.



R. Moran et al. / Cognitive Psychology 78 (2015) 99–147 137
C.3.2. Apparatus, the 2AFC discrimination task and stimuli
The Apparatus, the 2AFC discrimination task and the stimuli were identical to those used in Exp. 1.
C.3.3. Design and procedure
The design and procedure were similar in many respects to those of Exp. 1 so we describe only the

differences. Participants completed two experimental sessions within a period of one week. The
sequence of events on an individual trial is similar to that of Exp. 1 up to the choice execution.
Once the choice was executed black and white chess-board masking patterns replaced location of
the two arrays and the confidence scale appeared. Thus, the remain and vanish conditions of Exp. 1
were replaced with a single masking condition.
Appendix D. Individual participant data pertaining to Hurdles 8–10

D.1. Hurdle 8: the RT2 correlations

See Tables D1 and D2.
Table D1
RT2 for correct and erroneous choices in Exp. 1 and 3.

Exp. 1 Exp. 3

Par RT2 error RT2 correct Par RT2 error RT2 correct

1 0.61(0.01) 0.55(0.00)⁄⁄⁄ 2 0.53(0.01) 0.47(0.00)⁄⁄⁄

2 1.35(0.03) 1.01(0.01)⁄⁄⁄ 4 0.84(0.03) 0.54(0.01)⁄⁄⁄

3 0.41(0.00) 0.39(0.00)⁄⁄⁄ 6 0.42(0.01) 0.37(0.00)⁄⁄⁄

4 1.34(0.04) 0.72(0.01)⁄⁄⁄ 7 0.48(0.01) 0.43(0.00)⁄⁄⁄

5 0.73(0.01) 0.61(0.01)⁄⁄⁄ 8 0.60(0.01) 0.54(0.01)⁄⁄

6 0.58(0.01) 0.45(0.01)⁄⁄⁄ 11 0.39(0.01) 0.36(0.00)⁄

12 0.68(0.02) 0.44(0.01)⁄⁄⁄

15 0.80(0.02) 0.72(0.01)⁄⁄

16 0.89(0.02) 0.70(0.01)⁄⁄⁄

Group 0.83(0.10) 0.62(0.06)⁄⁄⁄ Group 0.62(0.05) 0.51(0.03)⁄⁄⁄

Note. RT2 is measured in seconds. Values in parentheses are standard errors. �, ��, � � � indicate p < .05, .01, .001 respectively
according to a z-test for individual or a meta-analysis for the group.

Table D2
Correlations between RT2 and discriminability, RT and confidence for Exp. 1 and 3.

Exp1 Exp3

Par Discriminability RT Confidence Par Discriminability RT Confidence

1 .01(0.02) .19(0.02)⁄⁄⁄ �.20(0.02)⁄⁄⁄ 2 �.24(0.03)⁄⁄⁄ .14(0.03)⁄⁄⁄ �.53(0.02)⁄⁄⁄

2 �.26(0.02)⁄⁄⁄ .23(0.02)⁄⁄⁄ �.51(0.02)⁄⁄⁄ 4 �.27(0.03)⁄⁄⁄ .23(0.03)⁄⁄⁄ �.79(0.01)⁄⁄⁄

3 �.03(0.02) .06(0.02)⁄⁄⁄ �.36(0.02)⁄⁄⁄ 6 �.07(0.03)⁄ �.02(0.03) �.36(0.02)⁄⁄⁄

4 �.15(0.02)⁄⁄⁄ .16(0.02)⁄⁄⁄ �.69(0.01)⁄⁄⁄ 7 �.10(0.03)⁄⁄⁄ .40(0.03)⁄⁄⁄ �.31(0.02)⁄⁄⁄

5 �.12(0.02)⁄⁄⁄ .08(0.02)⁄⁄⁄ �.44(0.01)⁄⁄⁄ 8 �.07(0.03)⁄ .29(0.03)⁄⁄⁄ �.65(0.02)⁄⁄⁄

6 �.08(0.02)⁄⁄⁄ .03(0.02)⁄ �.39(0.01)⁄⁄⁄ 11 �.07(0.03)⁄ .07(0.03)⁄⁄⁄ �.51(0.05)⁄⁄⁄

12 �.11(0.03)⁄⁄⁄ �.02(0.03) �.83(0.02)⁄⁄⁄

15 �.05(0.03) .21(0.03)⁄⁄⁄ �.24(0.02)⁄⁄⁄

16 �.12(0.03)⁄⁄⁄ �.04(0.03) �.53(0.02)⁄⁄⁄

Group �.10(0.04)⁄⁄ .13(0.03)⁄⁄ �.43(0.07)⁄⁄⁄ Group �.12(0.03)⁄⁄⁄ .14(0.05)⁄⁄ �.53(0.07)⁄⁄⁄

Note. The table presents C correlations for discriminability and confidence and Pearson’s correlations for RT. Values in
parentheses are standard errors, which for the individual participants were calculated based on bootstrapping. �, ��, � � �
designate p < .05, .01, .001, respectively based on permutation tests for the individuals and a meta-analysis for the group.
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D.2. Hurdles 9–10: the discriminability � accuracy interactions

See Tables D3 and D4.
Table D3
The interaction between choice correctness and stimulus discriminability on confidence and the simple effects of discriminability
for correct and error choices separately, for Exp. 1–3.

Participant CORRECT�DISC DISC(correct) DISC(error)

101 0.31(0.06)⁄⁄⁄ 0.18(0.03)⁄⁄⁄ �0.12(0.05)⁄

102 0.80(0.08)⁄⁄⁄ 0.46(0.03)⁄⁄⁄ �0.34(0.07)⁄⁄⁄

103 0.48(0.07)⁄⁄⁄ 0.13(0.04)⁄⁄ �0.35(0.06)⁄⁄⁄

104 1.04(0.09)⁄⁄⁄ 0.36(0.04)⁄⁄⁄ �0.68(0.08)⁄⁄⁄

105 0.57(0.06)⁄⁄⁄ 0.32(0.03)⁄⁄⁄ �0.25(0.05)⁄⁄⁄

106 0.34(0.07)⁄⁄⁄ 0.14(0.04)⁄⁄⁄ �0.20(0.06)⁄⁄⁄

Group (Exp. 1) 0.59(0.10)⁄⁄⁄ 0.27(0.06)⁄⁄⁄ �0.32(0.07)⁄⁄⁄

202 0.88(0.07)⁄⁄⁄ 0.49(0.03)⁄⁄⁄ �0.39(0.07)⁄⁄⁄

203 0.70(0.06)⁄⁄⁄ 0.34(0.04)⁄⁄⁄ �0.36(0.04)⁄⁄⁄

204 0.79(0.07)⁄⁄⁄ 0.37(0.04)⁄⁄⁄ �0.42(0.06)⁄⁄⁄

206 0.55(0.05)⁄⁄⁄ 0.32(0.03)⁄⁄⁄ �0.23(0.04)⁄⁄⁄

207 0.51(0.06)⁄⁄⁄ 0.25(0.03)⁄⁄⁄ �0.26(0.05)⁄⁄⁄

209 0.47(0.06)⁄⁄⁄ 0.32(0.03)⁄⁄⁄ �0.15(0.04)⁄⁄⁄

Group (Exp. 2) 0.65(0.06)⁄⁄⁄ 0.35(0.04)⁄⁄⁄ �0.30(0.04)⁄⁄⁄

302 0.85(0.13)⁄⁄⁄ 0.51(0.05)⁄⁄⁄ �0.34(0.12)⁄⁄

304 0.97(0.15)⁄⁄⁄ 0.45(0.05)⁄⁄⁄ �0.52(0.14)⁄⁄⁄

306 0.66(0.09)⁄⁄⁄ 0.29(0.05)⁄⁄⁄ �0.37(0.08)⁄⁄⁄

307 0.02(0.13) 0.13(0.04)⁄⁄ 0.11(0.12)
308 0.44(0.09)⁄⁄⁄ 0.23(0.05)⁄⁄⁄ �0.20(0.07)⁄⁄

311 �0.14(0.15) 0.09(0.07) 0.23(0.13)
312 0.86(0.12)⁄⁄⁄ 0.39(0.07)⁄⁄⁄ �0.47(0.09)⁄⁄⁄

315 0.57(0.1)⁄⁄⁄ 0.35(0.04)⁄⁄⁄ �0.22(0.09)⁄

316 0.36(0.09)⁄⁄⁄ 0.27(0.05)⁄⁄⁄ �0.09(0.08)
Group (Exp. 3) 0.51(0.11)⁄⁄⁄ 0.30(0.05)⁄⁄⁄ �0.21(0.07)⁄⁄

Note. The table displays the coefficients of a multiple probit-ordinal regression. Values in parentheses are standard errors. �, ��,
� � � indicate p < .05, .01, .001 respectively according to t-test for the participants and a meta-analysis for the group.

Table D4
The interaction between choice correctness and stimulus discriminability on RT2 and the simple effects of discriminability for
correct and error choices separately, for Exp. 1–3.

Participant CORRECT�DISC DISC(correct) DISC(error)

101 �0.02(0.01) 0.00(0.01) 0.02(0.01)⁄

102 �0.16(0.04)⁄⁄⁄ �0.16(0.02)⁄⁄⁄ �0.01(0.04)
103 �0.01(0.01) 0.00(0.00) 0.01(0.01)
104 �0.28(0.04)⁄⁄⁄ �0.09(0.02)⁄⁄⁄ 0.19(0.04)⁄⁄⁄

105 �0.03(0.02) �0.06(0.01)⁄⁄⁄ �0.03(0.02)
106 �0.03(0.02) �0.02(0.01)⁄⁄ 0.01(0.01)
Group (Exp. 1) �0.07(0.02)⁄⁄ �0.05(0.02)⁄⁄ 0.02(0.01)

302 �0.02(0.01)⁄ �0.03(0.00)⁄⁄⁄ 0.00(0.01)
304 �0.10(0.04)⁄⁄ �0.08(0.01)⁄⁄⁄ 0.02(0.03)
306 �0.01(0.01) �0.01(0.00) 0.01(0.01)
307 �0.01(0.01) �0.01(0.00)⁄⁄ �0.01(0.01)
308 �0.09(0.02)⁄⁄⁄ �0.03(0.01)⁄⁄ 0.05(0.02)⁄⁄

311 0.01(0.02) �0.01(0.01) �0.02(0.01)
312 �0.10(0.02)⁄⁄⁄ �0.04(0.01)⁄⁄⁄ 0.06(0.02)⁄⁄

315 �0.06(0.04) �0.02(0.02) 0.04(0.03)
316 �0.04(0.02)⁄ �0.04(0.01)⁄⁄⁄ 0.01(0.02)
Group (Exp. 3) �0.04(0.01)⁄⁄⁄ �0.03(0.01)⁄⁄⁄ 0.01(0.01)

Note. The table displays the coefficients of a multiple linear regression. Values in parentheses are standard errors. �, ��, � � �
indicate p < .05, .01, .001 respectively according to t-test for the participants and a meta-analysis for the group.



R. Moran et al. / Cognitive Psychology 78 (2015) 99–147 139
Appendix E. Resolution analysis with additional measures

E.1. A brief description of the resolution measure

To recapitulate, resolution of confidence pertains to the relation between choice-accuracy and
confidence. Perhaps the simplest operative definition of this relation is given by the slope scores
(Yates, 1990), which are the difference between mean confidence for correct and incorrect decisions
(Eq. (E1)). Another relevant statistic, the scatter score (Yates), is defined as a weighted estimate of
the variance of confidence judgments for the correct and incorrect choices, where the averaging
weights are proportional to the prevalence of correct and error responses (Eq. (E2)). When a compar-
ison of resolution of confidence between experimental conditions is conducted, increased slope scores
Table E1
Resolution of confidence measures as function of the SAT and the perceptual availability manipulations of Exp. 1.

Par 1 2 3 4 5 6 Group

SLOPE
speed 0.06(0.01) 0.21(0.01) 0.19(0.01) 0.3(0.01) 0.22(0.01) 0.15(0.01) 0.19(0.04)
accuracy 0.08(0.01) 0.14(0.01)⁄⁄⁄ 0.10(0.01)⁄⁄⁄ 0.09(0.02)⁄⁄⁄ 0.18(0.01)⁄⁄⁄ 0.11(0.01)⁄ 0.12(0.02)⁄

DI0

speed 0.47(0.07) 1.86(0.11) 1.07(0.09) 2.31(0.15) 1.10(0.07) 0.93(0.08) 1.28(0.23)
accuracy 0.66(0.09) 1.41(0.13)⁄⁄ 0.77(0.10)⁄ 0.98(0.19)⁄⁄⁄ 0.99(0.08) 0.79(0.09) 0.92(0.1)⁄

C
speed 0.31(0.04)⁄ 0.85(0.02) 0.67(0.03) 0.90(0.01) 0.68(0.03) 0.58(0.03) 0.67(0.07)
accuracy 0.46(0.05) 0.73(0.04)⁄⁄ 0.50(0.05)⁄⁄ 0.60(0.07)⁄⁄⁄ 0.61(0.03) 0.49(0.04) 0.57(0.04)⁄

Ag

speed 0.12(0.02)⁄ 0.37(0.01) 0.22(0.02) 0.37(0.01) 0.26(0.01) 0.23(0.02) 0.26(0.04)
accuracy 0.17(0.02) 0.29(0.02)⁄⁄⁄ 0.15(0.02)⁄⁄ 0.19(0.03)⁄⁄⁄ 0.23(0.02) 0.19(0.02)⁄ 0.20(0.02)⁄

SLOPE
remain 0.07(0.01) 0.24(0.01) 0.17(0.01) 0.30(0.02) 0.22(0.01) 0.12(0.01) 0.19(0.03)
vanish 0.07(0.01) 0.13(0.01)⁄⁄⁄ 0.14(0.01) 0.23(0.01)⁄⁄ 0.19(0.01) 0.15(0.01) 0.15(0.02)

DI0

remain 0.60(0.08) 2.15(0.14) 1.10(0.09) 2.61(0.20) 1.18(0.08) 0.83(0.09) 1.39(0.23)
vanish 0.58(0.07) 1.30(0.10)⁄⁄⁄ 0.88(0.09) 1.87(0.14)⁄⁄ 0.99(0.08) 0.96(0.08) 1.08(0.15)⁄

C
remain 0.41(0.04) 0.85(0.02) 0.65(0.04) 0.89(0.02) 0.70(0.03) 0.53(0.04) 0.68(0.07)
vanish 0.39(0.04) 0.78(0.03)⁄ 0.57(0.04) 0.81(0.03)⁄ 0.63(0.03) 0.58(0.03) 0.63(0.06)⁄⁄

Ag

remain 0.16(0.02) 0.38(0.01) 0.21(0.02) 0.35(0.02) 0.27(0.01) 0.20(0.02) 0.26(0.03)
vanish 0.15(0.02) 0.30(0.02)⁄⁄ 0.18(0.02) 0.33(0.02) 0.23(0.01) 0.23(0.02) 0.24(0.03)

TP slope
remain �0.02(0.02) 0.10(0.03) 0.10(0.03) 0.24(0.03) 0.06(0.02) 0.05(0.02) 0.09(0.03)
vanish �0.02(0.02) 0.04(0.02) 0.08(0.03) 0.19(0.03) 0.02(0.03) 0.03(0.02) 0.05(0.03)⁄

TP DI0

remain �0.12(0.15) 0.69(0.30) 0.37(0.20) 1.64(0.40) 0.29(0.16) 0.24(0.18) 0.40(0.17)
vanish �0.25(0.16) 0.22(0.19) 0.23(0.18) 1.23(0.32) �0.05(0.16) 0.03(0.17) 0.17(0.15)⁄

TP C
remain �0.13(0.09) 0.17(0.06) 0.18(0.08) 0.27(0.08) 0.12(0.06) 0.14(0.08) 0.13(0.05)
vanish �0.16(0.09) 0.05(0.07) 0.16(0.09) 0.36(0.14) 0.02(0.07) 0.04(0.07) 0.07(0.05)

TP Ag

remain �0.05(0.03) 0.12(0.04) 0.08(0.04) 0.16(0.05) 0.06(0.03) 0.06(0.04) 0.07(0.03)
vanish �0.06(0.04) 0.03(0.04) 0.06(0.03) 0.20(0.05) 0.00(0.03) 0.03(0.04) 0.03(0.03)

Note. Values in parentheses are standard errors, which for participants were calculated based on bootstrapping (except for slope
based measures). Bold numbers indicate difference from 0 using p < .05 (two sided). �, ��, � � � indicate the condition (speed vs.
accuracy or remain vs. vanish) in which the relevant statistic was smaller using p < .05, .01, .001 (two sided), respectively.
Statistical inferences are based on permutation tests for the participants (except for z-tests, for slope based measures) or on a
meta-analysis for the group.
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may be paired with an increase in scatter. This increase in scatter may detract from the increase in
slope, in terms of a judge’s resolution (Wallsten, Budescu, Erev, & Diederich, 1997; Yates & Curley,
1985). This motivates the use of a standardized measure of resolution dubbed DI0 and defined in
Eq. (E3)(Wallsten et al.).
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ion of confidence measures for the different confidence and perceptual availability manipulations in Exp. 2.

2 3 4 6 7 9 Group

E
confidence 0.26(0.01) 0.22(0.01)⁄ 0.31(0.01) 0.21(0.01)⁄⁄⁄ 0.19(0.01) 0.19(0.01) 0.23(0.02)⁄⁄

confidence 0.28(0.01) 0.25(0.01) 0.31(0.01) 0.26(0.01) 0.20(0.01) 0.21(0.01) 0.25(0.02)

confidence 2.04(0.12) 1.58(0.09) 2.24(0.14) 1.28(0.07)⁄⁄ 1.38(0.09) 1.14(0.07) 1.60(0.15)⁄⁄⁄

confidence 2.33(0.12) 1.76(0.09) 2.24(0.13) 1.62(0.08) 1.48(0.09) 1.30(0.08) 1.78(0.15)

confidence 0.85(0.02)⁄ 0.78(0.02)⁄ 0.89(0.01) 0.70(0.02)⁄⁄⁄ 0.65(0.03) 0.64(0.03) 0.75(0.04)⁄⁄

confidence 0.91(0.01) 0.84(0.02) 0.89(0.01) 0.80(0.02) 0.72(0.03) 0.69(0.02) 0.81(0.03)

confidence 0.37(0.01)⁄ 0.32(0.01) 0.35(0.01)⁄ 0.30(0.01)⁄⁄⁄ 0.28(0.02) 0.27(0.01) 0.32(0.02)⁄⁄⁄

confidence 0.41(0.01) 0.35(0.01) 0.39(0.01) 0.36(0.01) 0.32(0.01) 0.30(0.01) 0.35(0.02)

E
in 0.29(0.01) 0.26(0.01) 0.36(0.01) 0.26(0.01) 0.21(0.01) 0.22(0.01) 0.26(0.02)

sh 0.24(0.01)⁄⁄ 0.21(0.01)⁄⁄⁄ 0.26(0.01)⁄⁄⁄ 0.22(0.01)⁄⁄ 0.18(0.01)⁄ 0.18(0.01)⁄⁄ 0.21(0.01)⁄⁄⁄

in 2.42(0.13) 1.84(0.10) 2.81(0.18) 1.57(0.08) 1.58(0.09) 1.34(0.08) 1.90(0.18)
sh 1.98(0.11)⁄⁄ 1.51(0.09)⁄ 1.80(0.11)⁄⁄⁄ 1.33(0.07)⁄ 1.29(0.09)⁄ 1.10(0.07)⁄ 1.49(0.13)⁄⁄⁄

in 0.90(0.02) 0.84(0.02) 0.94(0.01) 0.79(0.02) 0.72(0.03) 0.71(0.02) 0.82(0.04)
sh 0.86(0.02) 0.78(0.02)⁄ 0.83(0.02)⁄⁄⁄ 0.71(0.02)⁄ 0.65(0.03) 0.62(0.03)⁄ 0.74(0.04)⁄⁄⁄

in 0.41(0.01) 0.35(0.01) 0.39(0.01) 0.35(0.01) 0.32(0.01) 0.30(0.01) 0.35(0.02)
sh 0.38(0.01) 0.31(0.01)⁄⁄ 0.35(0.01) 0.31(0.01)⁄ 0.28(0.02) 0.26(0.01)⁄ 0.32(0.02)⁄⁄⁄

ope
in �0.04(0.02) �0.04(0.02) �0.03(0.02) �0.07(0.02)⁄ �0.01(0.02) �0.03(0.02) �0.04(0.01)⁄⁄

sh 0.00(0.02) �0.01(0.02) 0.03(0.02) �0.02(0.02) 0.00(0.02) �0.01(0.02) 0.00(0.01)

I0

in �0.41(0.26) �0.38(0.19) �0.28(0.37) �0.58(0.16)⁄ �0.19(0.18) �0.22(0.16) �0.35(0.08)⁄⁄

sh �0.15(0.22) 0.00(0.17) 0.19(0.22) �0.14(0.14) �0.02(0.17) �0.11(0.15) �0.06(0.07)

in �0.05(0.03) �0.10(0.03) �0.01(0.02) �0.15(0.04) �0.08(0.06) �0.05(0.05) �0.07(0.02)
sh �0.07(0.04) �0.01(0.04) 0.03(0.05) �0.05(0.05) �0.08(0.07) �0.03(0.06) �0.02(0.02)

g

in �0.04(0.02) �0.05(0.02) �0.05(0.02) �0.08(0.02) �0.04(0.03) �0.03(0.03) �0.05(0.01)⁄

sh �0.04(0.02) �0.01(0.03) �0.01(0.03) �0.03(0.02) �0.03(0.03) �0.02(0.03) �0.02(0.01)

alues in parentheses are standard errors, which for participants were calculated based on bootstrapping (except for slope
easures). Bold numbers indicate difference from 0 using p < .05 (two sided). �, ��, � � � indicate the condition (early vs.

fidence or remain vs. vanish) in which the relevant statistic was smaller using p < .05, .01, .001 (two sided), respectively.
al inferences are based on permutation tests for the participants (except for z-tests, for slope based measures) or on a

nalysis for the group.



Table E3
Resolution of confidence measures as function of the SAT and the perceptual availability manipulations of Exp. 3.

Slope DI0 C Ag

Par Speed Accuracy Speed Accuracy Speed Accuracy Speed Accuracy

2 0.23(0.02) 0.19(0.02) 1.83(0.19) 1.74(0.21) 0.81(0.04) 0.78(0.05) 0.34(0.02) 0.32(0.03)
4 0.29(0.02) 0.15(0.04)⁄⁄⁄ 2.28(0.22) 1.42(0.35)⁄ 0.87(0.02) 0.69(0.08)⁄⁄⁄ 0.38(0.02) 0.26(0.05)⁄⁄

6 0.17(0.02) 0.14(0.02) 1.07(0.11) 0.99(0.14) 0.60(0.05) 0.53(0.06) 0.25(0.02) 0.22(0.03)
7 0.10(0.02) 0.11(0.02) 0.86(0.15) 0.90(0.18) 0.44(0.08) 0.49(0.09) 0.17(0.03) 0.20(0.04)
8 0.07(0.02) 0.04(0.01) 0.42(0.10) 0.27(0.10) 0.34(0.06) 0.18(0.07) 0.12(0.02) 0.06(0.03)

11 0.04(0.01) 0.03(0.01) 0.42(0.13) 0.37(0.16) 0.41(0.10) 0.44(0.12) 0.07(0.02) 0.07(0.02)
12 0.19(0.02) 0.14(0.03) 1.22(0.13) 1.50(0.27) 0.75(0.04) 0.80(0.05) 0.24(0.02) 0.25(0.03)
15 0.17(0.01) 0.10(0.02)⁄⁄ 1.03(0.09) 0.69(0.13)⁄ 0.67(0.05) 0.44(0.07)⁄⁄ 0.28(0.02) 0.19(0.03)⁄

16 0.25(0.02) 0.15(0.02)⁄⁄⁄ 1.60(0.14) 1.09(0.14)⁄⁄⁄ 0.78(0.03) 0.60(0.06)⁄⁄ 0.34(0.02) 0.25(0.03)⁄⁄

Group 0.17(0.03) 0.12(0.02)⁄⁄⁄ 1.17(0.18) 0.96(0.16)⁄ 0.64(0.05) 0.56(0.07)⁄ 0.24(0.04) 0.20(0.03)⁄⁄

Note. Values in parentheses are standard errors, which for participants were calculated based on bootstrapping (except for
slope). Bold numbers indicate difference from 0 using p < .05 (two sided). �, ��, � � � indicate the condition (speed vs. accuracy)
in which the relevant statistic was smaller using p < .05, .01, .001 (two sided), respectively. Statistical inferences are based on
permutation tests for the participants (except for z-tests, for slope based measures) or on a meta-analysis for the group.
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Importantly, these measures assume that the values of the confidence judgments emerge from the
use of an interval scale. As explained in the main text (Section 2.2.1), this assumption may be
problematic. Thus, we augmented our set of analyses by additionally using two measures that merely
postulate an ordinal structure of the confidence scale. The first measure is the Goodman and Kruskal C
correlation (Goodman & Kruskal, 1954; henceforth we refer to it simply as the C correlation). The sec-
ond, is the area that is locked between the type-II ROC curve and the diagonal, denoted by Ag . Ag is
calculated as follows: For each confidence category c ¼ 50%;60%; . . . ;100% we plot the proportion
of correct choices that yielded confidence of at least c (ordinate) against the proportion of error choices
that yielded confidence of at least c (abscissa). Next, we add the two points (0,0) and (1,1) to the plot
and we connect consecutive points with straight lines to obtain the type-II ROC curve. A positive
resolution is evident by an ‘above diagonal’ tendency of the curve. Formally, this trend is gauged by
subtracting 0.5, the area below the non-resolution diagonal, from the area of the curve.

E.2. Results

The top part of Table E1 displays the resolution of confidence measures for the different SAT con-
ditions in Exp. 1. The middle section of Table E1 lists the resolution of confidence measures for the
remain and vanish conditions. Finally, the bottom section of Table E1 lists the TP effect on resolution
for the remain and vanish conditions, which was calculated by subtracting the resolution in the choice-
accuracy condition from the resolution in the speed condition. Table E2, refers to Exp. 2 and was cal-
culated similarly with the single change that the choice-speed and accuracy conditions were replaced
with the early and late confidence conditions, respectively. Finally, Table E3 displays the resolution of
confidence measures for the different SAT conditions in Exp. 3. The results for each of the measures are
similar to the results, which were reported in the main text, based on multiple ordinal regressions.

Appendix F. Replicating empirical Hurdles 3–4 in Experiments 1–3

F.1. Experiment 1

First, to test the relationship between confidence and stimulus discriminability, we calculated for
each participant the C correlation (Goodman & Kruskal, 1954) between confidence judgments and
stimulus discriminability. The first data row in Table F1 displays these correlations. For all participants
as well as for the entire group, the correlation between confidence judgments and stimulus discrim-
inability was significantly positive replicating Hurdle 3. Second, we tested the relationship between
confidence and RT within speed and accuracy blocks separately. Thus, for each participant and for each
SAT condition we calculated the C correlation of the confidence judgments and decision RT. We then



Table F1
C correlations between confidence and discriminability and between confidence and decision-RT in Exp. 1.

Par 1 2 3 4 5 6 Group

Disc .13(0.02)⁄⁄⁄ .39(0.02)⁄⁄⁄ .07(0.03)⁄ .26(0.03)⁄⁄⁄ .21(0.02)⁄⁄⁄ .14(0.03)⁄⁄⁄ .20(0.05)⁄⁄⁄

RT �.15(0.02)⁄⁄⁄ �.30(0.02)⁄⁄⁄ �.13(0.02)⁄⁄⁄ �.31(0.02)⁄⁄⁄ �.02(0.02) �.09(0.02)⁄⁄⁄ �.17(0.05)⁄⁄⁄

Note. Values in parentheses are standard errors, which for participants were calculated based on bootstrapping. �, ��, � � � indicate
p < .05, .01, .001 (two-sided), respectively based on permutation tests for the individuals and a meta-analysis for the group.
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averaged these correlations across SAT conditions to obtain single confidence-RT correlation esti-
mates, which are displayed in the second row of Table F1. For five of participants as well as for the
whole group, the correlation between confidence judgments and decision RTs was significantly nega-
tive replicating Hurdle 4.

F.2. Experiment 2

The first data row in Table F2 lists the C correlation between confidence and stimulus discrim-
inability. For all participants as well as for the entire group, the correlation was significantly positive
in accord with Hurdle 3. The second data row in Table F2 displays the C correlation between confi-
dence and choice-RT. For four of the participants, this correlation was significantly negative as pre-
dicted by Hurdle 4. However, for Participant 2 the correlation was positive and the negativity for
the group reached significance only according to a one-sided test ðz ¼ �1:851; p ¼ :032Þ.

F.3. Experiment 3

As shown in Table F3, for the group and for all the participants, the correlation between confidence
and discriminability was significantly positive replicating Hurdle 3 ðC ¼ :25; z ¼ 6:44; p < :0001Þ.
Additionally, the correlation between confidence and RT was negative, replicating Hurdle 4
ðC ¼ �:19; z ¼ �4:53; p < :0001Þ. This negativity was significant for all but two participants (12 and 16).
Table F2
C correlation between confidence and discriminability and between confidence and RT for Exp. 2.

Par 2 3 4 6 7 9 Group

Disc .41(0.02)⁄⁄⁄ .15(0.02)⁄⁄⁄ .30(0.03)⁄⁄⁄ .16(0.02)⁄⁄⁄ .22(0.02)⁄⁄⁄ .22(0.02)⁄⁄⁄ .24(0.04)⁄⁄⁄

RT �.22(0.02)⁄⁄⁄ .06(0.02)⁄⁄ �.15(0.02)⁄⁄⁄ .02(0.02) �.11(0.02)⁄⁄⁄ �.06(0.02)⁄⁄⁄ �.08(0.04)

Note. Values in parentheses are standard errors, which for participants were calculated based on bootstrapping. �, ��, � � � indicate
p < .05, .01, .001 (two-sided), respectively based on permutation tests for the individuals and a meta-analysis for the group.

Table F3
C correlations between confidence and discriminability and between confidence and decision-RT in Exp. 3.

Par Confidence-discriminability Confidence-RT

2 .44(0.04)⁄⁄⁄ �.34(0.03)⁄⁄⁄

4 .42(0.04)⁄⁄⁄ �.36(0.03)⁄⁄⁄

6 .18(0.03)⁄⁄⁄ �.06(0.03)⁄

7 .17(0.04)⁄⁄⁄ �.20(0.02)⁄⁄⁄

8 .12(0.04)⁄⁄ �.20(0.03)⁄⁄⁄

11 .22(0.07)⁄⁄ �.26(0.05)⁄⁄⁄

12 .23(0.05)⁄⁄⁄ �.04(0.04)
15 .27(0.03)⁄⁄⁄ �.24(0.02)⁄⁄⁄

16 .21(0.04)⁄⁄⁄ �.02(0.03)
Group .25(0.04)⁄⁄⁄ �.19(0.04)⁄⁄⁄

Note. Values in parentheses are standard errors, which for participants were calculated based on bootstrapping. �, ��, � � �
indicate p < .05, .01, .001 (two-sided), respectively based on permutation tests for the individuals and a meta-analysis for the
group.



R. Moran et al. / Cognitive Psychology 78 (2015) 99–147 143
Appendix G. Tables for individual participants data

See Tables G1–G3.
Table G1
Accuracy rate, mean decision time, mean confidence and mean inter-judgment time for each participant and for the group for the
speed and accuracy conditions and for the remain and vanish condition of Exp. 1.

Par 1 2 3 4 5 6 Group

ACC
speed 0.65(0.01)⁄⁄⁄ 0.79(0.01)⁄⁄⁄ 0.69(0.01)⁄⁄⁄ 0.73(0.01)⁄⁄⁄ 0.61(0.01)⁄⁄⁄ 0.67(0.01)⁄⁄⁄ 0.69(0.03)⁄⁄⁄

accuracy 0.80(0.01) 0.88(0.01) 0.80(0.01) 0.94(0.01) 0.80(0.01) 0.80(0.01) 0.84(0.03)

RT
speed 0.56(0.00)⁄⁄⁄ 0.50(0.00)⁄⁄⁄ 0.49(0.00)⁄⁄⁄ 0.48(0.00)⁄⁄⁄ 0.45(0.00)⁄⁄⁄ 0.56(0.00)⁄⁄⁄ 0.51(0.01)⁄⁄⁄

accuracy 0.83(0.01) 0.82(0.01) 0.70(0.01) 1.89(0.04) 0.98(0.01) 0.95(0.01) 1.02(0.07)

CONF
speed 0.80(0.00)⁄⁄⁄ 0.88(0.00)⁄⁄⁄ 0.87(0.01)⁄⁄⁄ 0.88(0.01)⁄⁄⁄ 0.79(0.01)⁄⁄⁄ 0.86(0.01)⁄⁄⁄ 0.85(0.02)⁄⁄⁄

accuracy 0.84(0.00) 0.91(0.00) 0.92(0.00) 0.95(0.00) 0.85(0.01) 0.89(0.00) 0.89(0.02)

RT2
speed 0.57(0.01) 1.08(0.02) 0.38(0.00)⁄⁄⁄ 1.02(0.02) 0.70(0.01) 0.48(0.01) 0.70(0.08)
accuracy 0.57(0.01) 1.05(0.02) 0.41(0.00) 0.63(0.01)⁄⁄⁄ 0.59(0.01)⁄⁄⁄ 0.50(0.01) 0.62(0.06)⁄

CONF
remain 0.82(0.00) 0.89(0.00) 0.9(0.01) 0.92(0.00) 0.81(0.01) 0.88(0.00) 0.87(0.02)
vanish 0.82(0.00) 0.89(0.00) 0.9(0.01) 0.91(0/00) 0.83(0.01) 0.87(0.00)⁄⁄⁄ 0.87(0.02)

RT2
remain 0.59(0.01) 1.27(0.02) 0.39(0.00) 0.88(0.02) 0.72(0.01) 0.52(0.0‘) 0.73(0.09)
vanish 0.55(0.01)⁄⁄⁄ 0.87(0.01)⁄⁄⁄ 0.40(0.00) 0.77(0.02)⁄⁄⁄ 0.58(0.01)⁄⁄⁄ 0.45(0.0‘)⁄⁄⁄ 0.60(0.06)⁄⁄

Note. Decision time and inter-judgment time were measured in seconds. Values in parentheses are standard errors. �, ��, � � �
indicates the condition (speed vs. accuracy or remain vs. vanish) in which the relevant statistic was smaller with p < .05, .01,
.001 (two-tailed) respectively, according to a z-test (for participants) or a meta-analysis for the group.

Table G2
Accuracy rate, mean decision time, mean confidence and mean confidence time for each participant and for the group for the early
and late confidence conditions and mean confidence and mean confidence time for each participant and for the group in the
remain and vanish conditions for Exp. 2.

Par 2 3 4 6 7 9 Group

Accuracy
Early conf 0.81(0.01) 0.70(0.01) 0.79(0.01) 0.62(0.01) 0.74(0.01) 0.69(0.01) 0.73(0.03)
Late conf 0.80(0.01) 0.62(0.01)⁄⁄⁄ 0.77(0.01) 0.64(0.01) 0.75(0.01) 0.67(0.01) 0.71(0.03)

RT
Early conf 0.45(0.00)⁄⁄⁄ 0.45(0.00) 0.50(0.00) 0.51(0.00) 0.52(0.00) 0.50(0.00) 0.49(0.01)
Late conf 0.47(0.00) 0.41(0.00)⁄⁄⁄ 0.51(0.00) 0.5(0.00)⁄⁄ 0.48(0.00)⁄⁄⁄ 0.44(0.00)⁄⁄⁄ 0.47(0.01)

Confidence
Early conf 0.86(0.00) 0.88(0.00) 0.90(0.00) 0.77(0.01) 0.81(0.00) 0.82(0.00) 0.84(0.02)
Late conf 0.86(0.00) 0.86(0.01)⁄⁄ 0.87(0.01)⁄⁄⁄ 0.77(0.01) 0.8(0.00) 0.82(0.00) 0.83(0.02)⁄⁄⁄

RT2
Early conf 0.36(0.00) 0.29(0.00)⁄⁄⁄ 0.40(0.00) 0.33(0.00)⁄⁄⁄ 0.35(0.00) 0.30(0.00) 0.34(0.02)
Late conf 0.29(0.00)⁄⁄⁄ 0.33(0.00) 0.29(0.00)⁄⁄⁄ 0.37(0.00) 0.33(0.00)⁄⁄⁄ 0.25(0.00)⁄⁄⁄ 0.31(0.02)

Confidence
Remain 0.86(0.00) 0.86(0.01)⁄⁄⁄ 0.89(0.01) 0.77(0.01) 0.81(0) 0.82(0.01) 0.84(0.02)
Vanish 0.86(0.00) 0.88(0.00) 0.88(0.00)⁄ 0.77(0.01) 0.80(0) 0.83(0) 0.84(0.02)

RT2
Remain 0.34(0.00) 0.31(0.00) 0.35(0.00) 0.36(0.00) 0.34(0.00) 0.28(0.00) 0.33(0.01)
Vanish 0.32(0.00)⁄⁄⁄ 0.31(0.00)⁄ 0.35(0.00) 0.34(0.00)⁄⁄⁄ 0.34(0.00) 0.28(0.00) 0.32(0.01)⁄

Note. Decision time and inter-judgment time were measured in seconds. Values in parentheses are standard errors. �, ��, � � �
indicates the condition (speed vs. accuracy or remain vs. vanish) in which the relevant statistic was smaller with p < .05, .01,
.001 (two-tailed) respectively, according to a z-test (for participants) or a meta-analysis for the group.



Table G3
Accuracy rate, mean decision time, mean confidence and mean inter-judgment time for each participant and for the group for the
speed and accuracy conditions of Exp. 3.

Par Accuracy RT Confidence RT2

Speed Accuracy Speed Accuracy Speed Accuracy Speed Accuracy

2 0.82(0.02)⁄⁄ 0.88(0.01) 0.51(0.00)⁄⁄⁄ 0.64(0.00) 0.88(0.01)⁄⁄ 0.91(0.01) 0.48(0.00)⁄ 0.49(0.00)
4 0.81(0.02)⁄⁄⁄ 0.95(0.01) 0.54(0.00)⁄⁄⁄ 1.20(0.03) 0.89(0.01)⁄⁄⁄ 0.94(0.00) 0.61(0.01) 0.54(0.01)⁄⁄⁄

6 0.68(0.02)⁄⁄⁄ 0.82(0.02) 0.52(0.00)⁄⁄⁄ 0.89(0.01) 0.81(0.01)⁄⁄⁄ 0.85(0.01) 0.40(0.00) 0.38(0.00)⁄⁄⁄

7 0.84(0.02)⁄⁄ 0.90(0.01) 0.53(0.00)⁄⁄⁄ 0.77(0.01) 0.87(0.01) 0.85(0.01)⁄⁄ 0.40(0.00)⁄⁄⁄ 0.48(0.01)
8 0.68(0.02) 0.68(0.02) 0.58(0.00)⁄⁄⁄ 0.64(0.01) 0.88(0.01)⁄ 0.90(0.01) 0.56(0.01) 0.56(0.01)

11 0.76(0.02)⁄⁄⁄ 0.85(0.02) 0.68(0.01)⁄⁄⁄ 1.06(0.02) 0.96(0.00)⁄ 0.97(0.00) 0.34(0.01)⁄⁄⁄ 0.38(0.01)
12 0.68(0.02)⁄⁄⁄ 0.89(0.01) 0.43(0.00)⁄⁄⁄ 0.93(0.02) 0.9(0.01)⁄⁄⁄ 0.96(0.00) 0.53(0.01) 0.45(0.01)⁄⁄⁄

15 0.73(0.02)⁄⁄⁄ 0.86(0.01) 0.48(0.00)⁄⁄⁄ 1.31(0.02) 0.71(0.01)⁄⁄⁄ 0.79(0.01) 0.80(0.02) 0.67(0.02)⁄⁄⁄

16 0.68(0.02)⁄⁄⁄ 0.80(0.02) 0.48(0.00)⁄⁄⁄ 0.86(0.02) 0.82(0.01)⁄⁄⁄ 0.86(0.01) 0.79(0.01) 0.72(0.01)⁄⁄⁄

Group 0.74(0.02)⁄⁄⁄ 0.85(0.02) 0.53(0.02)⁄⁄⁄ 0.92(0.06) 0.86(0.02)⁄⁄⁄ 0.89(0.02) 0.54(0.04) 0.52(0.03)

Note. Decision time and inter-judgment time were measured in seconds. Values in parentheses are standard errors. �, ��, � � �
indicates the condition (speed or accuracy) in which the relevant statistic was smaller with p < .05, .01, .001 (two-tailed)
respectively, according to a z-test (for participants) or a meta-analysis for the group.
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Appendix H. RT2 in the response entry task

We analyzed the RT2 data from the response entry task. (See detailed methods in Appendix C.1.3.)
Fig. H1 displays the average RT2 across participants in our three experiments. Examining the contrast
between each pair of confidence levels revealed that on average, the ‘100’ responses were faster than
all other responses, and the ‘60’ response was slower than all other response except for the ‘80’
responses (all contrasts were conducted with a meta-analysis and significance was determined
according to a two-sided p < .05, planed comparisons). Note that unlike the experimental tasks, correct
responding was enforced and RT2 was measured until the correct response was provided (participants
were instructed to take their time to familiarize with the second stage response mappings). Still, this
raises the possibility that there might have been differences in motor production times across the dif-
ference confidence responses, in our experimental tasks.
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Fig. H1. Mean RT2 in the response entry task across individuals from Exp. 1–3.
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We thus reexamined the RT2 correlations (Hurdle 8) in our experiments. First, the Gamma correla-
tion between confidence and RT2 in the response entry task was negative ðC ¼ �:20; z ¼ �6:36;
p < :001Þ. Importantly, however, this correlation was weaker than the same C correlation in either
Exp. 1 ðC ¼ �:43Þ or Exp. 3 (C ¼ �:53; p < :001 for both contrasts). Second, we repeated the analysis
reported in Section 3.1.1, but for a ‘corrected RT2’, which was obtained as follows. Denote the confi-
dence of a trial by conf . The corrected RT2 for each trial was calculated by subtracting from RT2, the
mean RT2 across all trials with confidence conf (for the same participant) and adding the mean RT2
across all trials (for the participant). Notably, this correction maintains the same overall mean RT2
for each participant but obliterates any differences in mean RT2 across different confidence levels.
Analyses based on the corrected RT2 across both Exp. 1 and 3 revealed that (the corrected) RT2 was
still faster for correct than for error choice ðDMðcorrect� errorÞ ¼ �0:11 s;z ¼ �3:31; p < :001Þ, that
the C correlation between RT2 and stimulus discriminability was still negative ðC ¼ �:02;
z ¼ �1:81; pðone sidedÞ < :05Þ and that Pearson’s correlation between RT2 and RT was positive
ðr ¼ :05; z ¼ 2:37; p < :05Þ. These analyses suggest that the RT2 correlations remain even after control-
ling for possible differences in motor times across confidence responses.

Next, we used the corrected RT2 measure to reexamine Hurdle 10, the interaction between dis-
criminability and choice-correctness on RT2. Repeating the analysis in Section 3.1.2, we found that
the CORRECT�DISC interaction was not significant ðb ¼ 0:00; z ¼ 0:31; p ¼ :75Þ. Thus, the control
analysis did not rule out the possibility that this effect was due to differences in motor production
times. Note however, that our control is highly strict in that it controls for any non-motor ‘true’ dif-
ference in RT2 between confidence levels. Note also that we included in the empirical manifold
(Table 1) only hurdles that were replicated in the line-length task of Pleskac and Busemeyer (2010),
which used a different confidence response protocol.
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