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Behavioural studies over half a century indicate that making categorical

choices alters beliefs about the state of the world. People seem biased to

confirm previous choices, and to suppress contradicting information. These

choice-dependent biases imply a fundamental bound of human rationality.

However, it remains unclear whether these effects extend to lower level

decisions, and only little is known about the computational mechanisms

underlying them. Building on the framework of sequential-sampling models

of decision-making, we developed novel psychophysical protocols that

enable us to dissect quantitatively how choices affect the way decision-

makers accumulate additional noisy evidence. We find robust choice-induced

biases in the accumulation of abstract numerical (experiment 1) and low-level

perceptual (experiment 2) evidence. These biases deteriorate estimations of the

mean value of the numerical sequence (experiment 1) and reduce the likeli-

hood to revise decisions (experiment 2). Computational modelling reveals

that choices trigger a reduction of sensitivity to subsequent evidence via multi-

plicative gain modulation, rather than shifting the decision variable towards

the chosen alternative in an additive fashion. Our results thus show that categ-

orical choices alter the evidence accumulation mechanism itself, rather than

just its outcome, rendering the decision-maker less sensitive to new information.
1. Introduction
Intensive research on the neural basis of decision-making has revealed a mech-

anism of noisy evidence-integration towards a decision criterion [1]. This

mechanism was demonstrated to be optimal in terms of achieving the fastest

decision-time for a given accuracy [2–6], and to account for a wide range of

behavioural [7] and neural [8–10] data. However, the process that takes place

after the integrated evidence reaches the criterion is less well understood

[11,12]. How does the triggering of a decision affect the way that we evaluate

or accumulate additional evidence, if new information becomes available?

Consider, for example, a real-life situation whereby we deliberate which of

several alternative apartments to purchase, or which political candidate to vote

for, until we finally ‘make up’ our mind. On many occasions, following the

decision but before its execution, there is a time window during which additional

relevant information may become available (change in prices, political crises, etc.).

Do we continue to accumulate evidence in the same fashion, once an initial

decision has been made? A common introspection is that we are likely to give

less weight to such evidence, compared with a situation in which the same evi-

dence reaches us somewhat earlier, before we ‘made up’ our mind. While some

early behavioural work indicates that people might give less weight to additional

evidence after reaching a decision ([13–17]; reviewed in [18]), the mechanisms

underlying these so-called commitment and confirmation-bias effects have, so

far, remained elusive.
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Figure 1. Experiment 1: design, predictions and overall accuracy: (a) observers were presented with eight numbers (500 ms per item), after which they made either:
(i) a binary choice about the sequence’s average (only-decision), (ii) a binary choice about the average, followed by an additional eight number sequence, after
which they made an estimation of the mean of the entire sequence (decision-extra-evidence; DEE), or (iii) a non-decisional motor response, followed by additional
eight numbers, followed by a mean-estimation of the entire sequence (no-extra-evidence; NEE); (b) the distributions from which the numbers were sampled. The
first eight numbers were sampled either from the red (M ¼ 46) or from the blue (M ¼ 54) distribution. The additional eight numbers were independently sampled
from one of the four distributions; (c) different predictions of the reduced-gain and the value-shift mechanisms (for decision ,50). The divergent lines correspond
to how the evaluation changes with each additional item. The reduced-gain predicts that differences (i.e. spread) between extra evidence profiles (solid and dashed
lines) will diminish (red lines), while the value-shift model does not (blue lines). (d ) Upper panel: observed (black bars) and predicted (blue line) accuracy in the
preliminary decision, as a function of the sequence’ mean absolute deviation from the decisional criterion (50) and lower panel: scatter plot of estimations ( y-axis)
as a function of sequence’s mean (x-axis) of a single participant; error bars denote 1 s.e.m. (Online version in colour.)
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We aimed to examine and quantify the mechanisms

underlying these post-decisional effects, by combining novel

psychophysical protocols with computational modelling tech-

niques. Based on indirect evidence from social psychology

[13,16], we expected that observers would be less likely to

take into account additional information that follows a prelimi-

nary decision as compared to a control situation entailing the

presentation of identical information and similar motor

responses, but without a preliminary decision.

Critically, several alternative mechanisms might give rise to

such a behavioural pattern. It is possible that after deciding,

the decision-maker becomes less sensitive to new-arriving

information (i.e. integrates additional evidence with a

reduced-gain; we label this mechanism ‘reduced-gain’). As

we show in the electronic supplementary material, this hypo-

thesis is consistent with the idea that decisions induce a

transition to attractor-dynamics [19–25] which are stable

and resistant to perturbations [25–27]. Alternatively, deciding

may trigger a decision-consistent shift in the perceived value of

the chosen alternative (we label this mechanism ‘value-shift’).

For example, when deciding that a stock is worth investing

in, we may overestimate its value [14]. A similar effect was

also observed in a combined motion direction discrimination

and continuous estimation task, in which the estimations were

biased towards the direction of the decision [28]. Such value-

shifts, while not reducing sensitivity to additional information,

might nonetheless result in a relative underweighting of
additional information (see figure 1c; electronic supplementary

material, figure S3D).

To establish general principles, we conducted two comp-

lementary experiments in which observers are presented

with non-stationary evidence [29] and are allowed to make pre-

liminary decisions. The first experiment used evaluations of

sequences of numerical values, which were described as mon-

etary pay-offs (figure 1a), and the second one used perceptual

evidence (figure 3a). In both experiments, we obtained a clear

confirmation-bias effect: observers underweighted evidence

that followed their preliminary decision. Moreover, compu-

tational analyses support the reduced-gain hypothesis

according to which decisions trigger a reduction in the sensi-

tivity of the observer to evidence that follows the decision,

and are inconsistent with the idea that decisions induce a

value-shift towards the chosen alternative.
2. Material and methods
(a) Participants
Overall, 41 participants (range 21–29 years) participated in three

experiments (N1 ¼ 25; N2 ¼ 10; N3 ¼ 10; different participants in

each experiment). The data of four participants in experiment 1

were not analysed (because of chance performance), bringing the

number of participants to 21. All participants were undergraduate

students recruited through the Tel-Aviv University Psychology

http://rspb.royalsocietypublishing.org/
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Department’s participant pool, were naive to the purpose of the

experiment and had normal, or corrected-to-normal, vision. Partici-

pants were awarded either course credit for their participation or a

small financial compensation (approx. $10). Participants received a

performance-dependent bonus of additional 10–20 NIS.

(b) Stimulus materials and procedure
The basic set-up of a trial in experiment 1 is depicted in figure 1a.

Each trial began with a central fixation cross (200 ms) after which

a sequence of 8 two-digit numbers was presented (Arabic

numerals; each number displayed for 500 ms). On 50% of trials

(random), following the eight-number sequence, the participants

were prompted to make a binary decision about whether the

sequence’s average was smaller or larger than 50, received audi-

tory error-feedback and the trial terminated. On another 25% of

trials (random), at the termination of the eight-number sequence,

participants were prompted to make the same binary decision, yet

following the decision no feedback was delivered, and an

additional eight-number sequence appeared. At the termination

of the second sequence of numbers, the participants were asked

to convey as accurately as possible the average value of the entire

16-number sequence, by vertically sliding a mouse-controlled bar

set on a number ruler between 0 and 100 (the number correspond-

ing to the bar’s location was concurrently displayed) and pressing

the left mouse button when reaching the desired number. On the

remaining trials (25%, random), after observing an eight-number

sequence, participants were prompted to press the space bar key,

after which an additional eight-number sequence was presented.

At the termination of the second number sequence, the participants

were asked to estimate the average value. After completing 20 prac-

tice trials, participants underwent 360 experimental trials divided

into six blocks. Each block terminated with performance-feedback

on the estimations (block-average correlation) and a short, self-

paced break. In order to make the distinction between trials more

salient, the numbers presented on each trial were either all green

or red (on black background).

To generate each sequence of eight numbers, we predefined

four triangular skewed-density distributions, ranged between

10 and 90; with means of 40, 46, 54 or 60 (figure 1b). The first

eight numbers were sampled from one of the two intermediate

distributions (means 46 or 54) and the additional eight-number

sequence was independently sampled from one out of the four

distributions (random between trials). In case two identical num-

bers were sampled successively, the entire sequence was shuffled

in order to prevent successive presentation.

The design and stimuli used in experiment 2 are depicted

in figure 3a,b. Participants were presented with two brightness-

flickering discs. On each trial, one disc’s brightness level stochasti-

cally dominated the other (see the electronic supplementary

material, for a full description of the perceptual evidence). After

the participants had made their preliminary decision, the fixation-

cross turned red for 1.5 s, during which the stream of evidence con-

tinued. After 1.5 s of mandatory suspension the cross turned green

indicating that the participants can either confirm or change their

initial decision (using the left/right keypads). After the second

decision auditory error-feedback was delivered and the trial termi-

nated. A week (+3 days) later, participants attended a second

experimental session, in which the entire stream of evidence of

each trial (identical stimuli) was re-presented (figure 3b; order of

trials randomly shuffled). Participants were asked to decide upon

the termination of the re-presented stimuli which of the discs had

higher probability of being brighter. Auditory error-feedback was

delivered after the decision.

All stimuli were generated using MATLABq and were pre-

sented on a gamma-corrected ViewSonic (Walnut, CA, USA)

17 inch monitor viewed at a distance of 41 cm. The screen resol-

ution was set to 1024 � 768 pixels, and the monitor had a refresh

rate of 60 Hz.
(c) Description of the models in experiment 1
In all models, xi is the number present at position i; ji � Ni(0, s2)

are stochastically independent (temporally and independent of

the xi’s) internal noise sampled from a normal distribution.

(i) Unbiased (null-hypothesis):

y ¼ 50þ 1

16

� �X16

i¼1

(xi � 50þ ji):

(ii) Global reduced-gain:

y ¼ 50þ v1
1

8

� �X8

i¼1

(xi � 50þ ji)þ v2
1

8

� �X16

i¼9

(xi � 50þ ji);

where v1 ¼ (12v2) and v2 denotes the reduced-gain parameter.

(iii) Value-shift:

y ¼ 50þ 1

16

� �X16

i¼1

(xi � 50þ ji)þDD;

D ¼ sign �50þ 1

8

� �X8

i¼1

(xi þ ji)

 !
;

where D denotes the value-shift parameter.

(iv) Selective reduced-gain:

y¼
50þv1c

1

8

� �P8
i¼1

(xi�50þji)þv2c
1

8

� �P16

i¼9

(xi�50þji); SX2¼D

50þv1i
1

8

� �P8
i¼1

(xi�50þji)þv2i
1

8

� �P16

i¼9

(xi�50þji); SX2=D :

8>>><>>>:
SX2¼sign �50þ 1

8

� �X16

i¼9

(xiþji)

 !
;

D¼sign �50þ 1

8

� �X8

i¼1

(xiþji)

 !
;

where v1c ¼ (12v2c), v1i ¼ (12v2i), v2c denotes the reduced-

gain parameter for congruent trials and v2i for incongruent trials.

(v) Decision-induced fatigue:

y ¼ 50þ 0:5
1

8

� �X8

i¼1

(xi � 50þ ji)þ 0:5
1

8

� �X16

i¼9

(xi � 50þ eji);

where eji � N2i(0, ~s2) and ~s denotes the internal noise parameter

for the second interval.

The weights v1 and v2 were normalized to 1, in order to pre-

vent systematic overestimations or underestimations, as the data

did not show such a trend. The model-fitting procedures are

described in the electronic supplementary material.
3. Results
(a) Decision effects on value-evaluations: reduced-gain

to additional evidence
In the first experiment (N ¼ 21), we examined how decisions

affect the overall value that observers assign to a sequence of

numbers. Previous research has indicated that human sub-

jects can accurately integrate numerical values presented at

a fast rate [30–32]. We asked observers to evaluate rapid

sequences of two-digit numbers, representing payoffs of a

certain slot machine (500 ms per number; randomly sampled

from two out of four skewed distributions with different

means; see Material and methods and figure 1b). On 50% of

the trials, observers made a binary choice about the average

value (higher or lower than 50) of eight successive numbers,

http://rspb.royalsocietypublishing.org/
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and the trial terminated. These trials were introduced in order

to ensure that the observers would give priority to the decision.

On other trials (25%), the observers still made a binary

decision, following which an additional stream of eight num-

bers was presented and the observers were asked to estimate

the average value of the entire sequence (16 numbers) using

an analogue scale between 0 and 100 (figure 1a). We label

this condition decision-extra-evidence (DEE). The remaining

25% of trials were as the DEE trials, except that observers

were asked to press the space bar key after the first eight num-

bers, instead of indicating a binary choice. We label this

condition, no-decision extra-evidence (NEE). All trials were

randomly intermixed, and subjects did not know which con-

dition was presented until a response was prompted or the

trial terminated (see Material and methods). Contrasting the

two conditions (DEE/NEE) allows one to distinguish between

the different mechanisms that can give rise to a confirmation-

bias effect. While ‘reduced-gain’ predicts that the reduced

sensitivity to the extra-evidence will result in diminished

discrimination between different profiles of additional infor-

mation, the ‘value-shift’ hypothesis predicts a change in the

estimated values in the direction of the decision, without a dimin-

ished discrimination between additional values (figure 1c;

electronic supplementary material, figure S3).

Observers were able to make accurate decisions (accuracy¼

65.7%; t20 ¼ 12.99; p , 0.0001; as compared to chance level

(50%)), and their accuracy increased with the absolute deviation

of the sequence’s mean from the decisional-criterion (repeated

measures ANOVA F20,100 ¼ 11.43; p , 0.0001; figure 1d, black

error bars). Further, the final evaluations were well correlated
with the actual sequence average (M ¼ 0.49; black circles,

figure 1d, lower panel; see the electronic supplementary material

for data analysis), indicating that the observers were able to accu-

rately make binary decisions about the sequences as well as to

estimate its average value on a continuous scale.

The main effect of interest was the difference in the

evaluations given under the DEE and the NEE conditions to

otherwise identical value sequences. We use several comp-

lementary measures in order to quantify the difference

between DEE and NEE conditions and distinguish between

the alternative mechanisms discussed above. All these

measures indicate a clear effect of the preliminary decision on

the final evaluation (figure 2). First, the accuracy of the evalu-

ations (Pearson correlation of evaluations with the sequences’

actual means) is lower for the DEE condition as compared to

the NEE condition (t20 ¼ 22.4; p ¼ 0.026; figure 2a), suggesting

that the decision reduces the efficiency of the subsequent-

information processing. Second, we analysed the numerical

difference between the evaluations made in trials in which

the average additional information is higher than 50 to those

made in trials where it is lower than 50 (‘spread’). This measure

reflects the difference in estimations that are due to extra evi-

dence. We find that in the DEE condition the spread is lower

than in the NEE condition (t20 ¼ 23.79; p ¼ 0.001; figure 2b;

this observation is present in 18 of the 21 participants). This

suggests that in agreement with the predictions of the

reduced-gain hypothesis, but not with the value-shift hypoth-

esis, the participants exhibit a diminished sensitivity to the

additional information, after making a decision. The dimin-

ished spread in the DEE condition is not predicted by the

http://rspb.royalsocietypublishing.org/
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value-shift mechanism, since value-shift does not influence the

processing of extra-evidence (figure 1c; electronic supplemen-

tary material, figure S3b). Third, in the DEE condition,

participants are less accurate when estimating the average

of sequences in which the mean additional information

was incongruent to the decision as opposed to sequences,

in which the additional information was congruent

(t20 ¼ 22.72; p ¼ 0.013; figure 2c; the same pattern is observed

using correlation; Corr_Cong¼ 0.6; Corr_Incong ¼ 0.18;

t20 ¼ 27.36; p , 0.0005). This pattern is not predicted by the

value-shift hypothesis (see the electronic supplementary

material, figure S3c). Forth, when regressing the observers’

evaluations on the mean of the first eight-numbers (interval 1)

and of the additional eight-numbers (interval 2) from each

trial, we find a highly significant interaction between the con-

ditions (DEE, NEE) and the regression coefficients (F1,20¼ 12;

p ¼ 0.002; figure 2d; see the electronic supplementary material,

figure S1 for the full time-course regressions). Post hoc compari-

sons reveal that in the DEE condition, observers are more

influenced by information from the first than the second interval

(t20¼ 4.43; p , 0.001), while weights do not differ between

intervals in the NEE condition (t20¼ 0.78; p ¼ 0.44). Taken

together, these results demonstrate that human observers lose

sensitivity to subsequent information after making a decision.

An alternative account of these results (reduced-gain in the

DEE condition as compared to the NEE condition) is that some
participants assume that the evidence of the second stream is

not providing any new information and thus stop integrating

the information following the preliminary decision and base

their evaluations on the first stream alone. If few participants

were to rely on such a strategy, the group data could show

reduced-gain, as an averaging artefact. To test this possibility,

we tested whether any of the participants ignore the extra-

evidence in the DEE condition. The results confirmed that

all participants exhibit a certain degree of sensitivity to the

additional information, as reflected by (i) a positive (greater

than 0) spread in the DEE condition in 21 out of 21 observers;

(ii) a significant ( p , 0.05) regression coefficient for the

additional mean (X2) in 20 out of 21 participants ( p ¼ 0.08

for the additional participant); and (iii) all participants (21

out of 21) have made final evaluations that were opposite to

their preliminary decision on a substantial fraction of trials

(M ¼ 32%; s.d. ¼ 8%; the minimal observed fraction was

16%); 72% of these ‘changes of mind’ (M ¼ 23%; s.d. ¼ 7%)

occurred on trials in which the mean of the additional infor-

mation was incongruent with the participants’ preliminary

decision. These three observations demonstrate that all partici-

pants had processed the additional information to a certain

(but reduced) extent, and did not assume that the mean of

the additional numbers is the same as the preliminary mean.

We used computational modelling to tease apart the differ-

ent potential mechanisms mediating the effects of decision

http://rspb.royalsocietypublishing.org/
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commitment on the evaluation of subsequent evidence (see

Material and methods for a full description of the models

and the electronic supplementary material for fitting pro-

cedures): (i) an unbiased (null-hypothesis) model, whereby

all samples of information receive identical weight; (ii) a

global reduction in gain for additional information; (iii) a

decision-induced value-shift, in which the chosen alternative’s

value is shifted in the direction of the decision; and (iv) a var-

iant of the gain-reduction, in which gain of additional

evidence is selectively reduced only for evidence that is incon-

sistent with the preliminary decision (we label this model

‘selective-gain-reduction’). All the models were fitted to the

observed decisions and evaluations using the maximal likeli-

hood method (see Material and methods). We obtained, per

each model, best fitting parameters and maximal likelihood esti-

mations. Comparison of maximal likelihoods between models

support the selective gain-reduction model (congruent_gain ¼

96%; incongruent_gain ¼ 78%), followed closely by the global

gain-reduction model (gain¼ 80%), whereas the other models

(unbiased and value-shift) fall far behind. Bayesian information

criterion comparisons, which penalize for the number of free-

parameters, favour the global gain-reduction model (see the

electronic supplementary material, table S1). Both the global

reduction and the selective reduction models predict all the be-

havioural effects described above (see lines in figure 2a–d and

electronic supplementary material, figure S2a–d), in contrast

to the null-hypothesis and value-shift models (for the latter

see the electronic supplementary material, figure S3).

In addition, we tested a hybrid, model which combines both

global reduction and value-shift. This model’s parameters con-

verged onto the parameters of the original global reduction

model (i.e. the value-shift parameter was zero). Finally, while

the evaluations of the averages in the NEE condition were tem-

porally unbiased (see the electronic supplementary material,

figure S1, red line), since previous studies have reported

recency-biased integration of numerical values in decision

tasks [32], we have tested two variants of the reduced-gain

model, which include leak (l)—a decaying contribution of

earlier items to the overall estimation. We find that in both

model-variants l¼ 0.04 (a decay per 500 ms item) in the DEE

condition, suggesting that evaluations were weakly recency-

biased (see the electronic supplementary material for models’

description and results). Importantly, however, we find the

same reduced-gain parameter (v2 ¼ 0.4), demonstrating

the robustness of the reduced-gain result. Another prediction

of the reduction in gain models, but not of the value-shift

model, is that the ratio of the sensitivity between the DEE and

NEE conditions (Spread_DEE/Spread_ NEE) correlates with

the ratio of accuracy between these conditions (Correlation_

DEE/Correlation_NEE)—participants who show a stronger

decrement in sensitivity for additional information, also show a

stronger impairment in accuracy. This prediction is corroborated

by the behavioural data (R ¼ 0.69; see the electronic supplemen-

tary material, figure S4). Thus, the computational analysis

provides support for the global reduction in gain model, closely

followed by the selective gain model, suggesting that decisions

trigger a reduction in sensitivity to additional information.

(b) Change of mind paradigm: reduced-gain leads
to preference for early decision

In our second experiment (N ¼ 10), we set out to test for the

effects of decision-commitment in a paradigm that allows the
observers to explicitly report changes of mind. Here we

aimed at studying the common situation of making decisions

between competing options whose values vary in time, and

in which, a while after indicating our choice, we are asked

to confirm or change it. During this ‘suspended’ time-

window, additional evidence contradicting our preliminary

choice may become available.

To create a laboratory analogue of this situation, we pre-

sented observers with two discs of fluctuating brightness

[33,34] (figure 3a). On each trial, one side’s brightness level sto-

chastically dominating the other (sides counterbalanced; see

Material and methods and the electronic supplementary

material for details). In the first experimental session, observers

were instructed to choose, when ready (free-response proto-

col), the disc that they believed to have the higher probability

of being brighter. After making a decision, the fixation-cross

turned red for 1.5 s and during this time-period additional

information was presented (the perceptual stream continued).

After 1.5 s of mandatory response suspension, the fixation

cross turned green indicating that observers could either

confirm, or change their initial decision (information was con-

tinuously displayed until the final decision). Approximately a

week later, the same observers attended a second experimental

session, in which the exact same streams of information were

‘re-played’ to them, and they were asked to make a single

decision (which disc had an overall higher level of brightness)

upon the termination of the complete stream on each trial

(figure 3b).

In the first experimental session (free-response), observers’

accuracy in the preliminary decision was constant across their

response-times (RT) quantiles (figure 3c), indicating that they

integrated the perceptual evidence to a decisional boundary

[35], rather than relying on idiosyncratic strategies, such an

internal timer, which would have predicted an increasing accu-

racy with time (more evidence till timer runs out). In order

to quantify the influence of the preliminary decision on

the integration of additional information, we ran a logistic

regression for participants’ final choice, using as predictors

the perceptual evidence that was presented until the pre-

liminary decision (interval 1) and the evidence following

it (interval 2), separately for the two sessions. We find a signifi-

cant interaction between (non-normalized) regression weights

in the two sessions (repeated measures ANOVA of interval X

session; F1,9 ¼ 20.12; p ¼ 0.001; figure 4a). Post hoc compari-

sons reveal that in the first experimental session, in which

participants made a preliminary decision, more weight is

ascribed to the information that preceded the decision as com-

pared to the same information in session II, in which

participants did not make a preliminary decision (t9 ¼ 2.7;

p ¼ 0.025). Similarly, weight ascribed to additional information

in session I, was lower than in session II (t9 ¼ 22.93; p ¼ 0.017),

suggesting that the preliminary decision caused a reduction in

the weight assigned to information that followed the decision,

as compared to no-decision control.

We finally conducted a control experiment (experiment 3;

N ¼ 10) to test the possibility that the change in temporal

weights is due to an order effect (participants having done

the no-preliminary decision task in a second session).

We presented each participant with the exact perceptual

stream that was presented to one of the experiment 2 partici-

pants, in session II. We found that the regression-coefficients

are very similar to those observed in experiment 2 session II

(indicating recency; see the electronic supplementary material,

http://rspb.royalsocietypublishing.org/
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figure S5) and are significantly different from the weights

obtained in session I (F1,18 ¼ 5.23; p ¼ 0.035; see the electronic

supplementary material).

As a complementary measure, we compared the fraction

of trials in which participants made a final choice corres-

ponding to the recent information, when this information

was incongruent with the preliminary information (i.e.

trials in which the additional information supports the

response opposite to the preliminary choice; [13,16]). We

found that when making a preliminary decision, participants’

final decision is less likely to be in accordance with the

incongruent information as compared to situations where

the same information is presented, yet no preliminary

decision is made (t9 ¼ 24.1; p ¼ 0.003; figure 4b). These

results indicate that preliminary decisions affect the

processing of subsequent evidence.

To distinguish between potential mechanisms underlying

this effect of the first decision, we compared four models, cor-

responding to the models in experiment 1: (i) an unbiased

(null-hypothesis) drift-diffusion model (DDM) with a leak

parameter (i.e. Ornstein–Uhlenbeck diffusion; leak was

added in order to account for recency in the no-decision con-

dition; [7,36]); (ii) a global reduction in DDM-gain, in which

following a preliminary decision the integrated samples are

scaled-down/reduced (figure 4c); (iii) a DDM value-shift, in

which the accumulator’s value is shifted towards the direc-

tion of the preliminary decision (figure 4d ); and (iv) a

selective reduction in gain of additional evidence, whereby

sensitivity is reduced only for information that is incongruent

with the preliminary decision.
As the models are identical in their processing of the pre-

decision evidence, we first fitted all models to the correct

and incorrect RT distributions of the preliminary decision

and obtained an estimate of the models’ three common par-

ameters (internal noise ¼ 4.3; boundary ¼ 107; leak ¼

0.0005). With these parameters, the model accounts well for

the accuracy within each RT quantile (black line in figure

3c; see the electronic supplementary material, figure S6 for

the observed and fitted RT distribution). Next, in order to

identify the post-decision model-variant and its parameters,

we fitted each of the models to the slope of the regression

coefficients for the pre- and post-decision evidence observed

in the first experimental session (figure 4a, blue line), under

the constraint of meeting the observed per cent of trials in

which observers changed their choice (7%+1 s.e.; par-

ameters that predicted a large deviation from the observed

fraction of changes of mind were not considered). We further

assessed the model’s predictions for the slope of the regression-

weights in session II and for the fraction of trials in which

observers responded according to additional incongruent

information (generalizability criterion [37,38]). Consistent

with the conclusion from the computational modelling of the

data of experiment 1, we find that the global reduced-gain

model (gain ¼ 0.6) and the selective reduced-gain model

(congruent_gain¼ 1.1; incongruent_gain¼ 0.7) are the best fit-

ting models that are able to predict the observed data (lines in

figure 4a,b; see the electronic supplementary material, figure S7

for the selective reduced-gain fit). Conversely, the value-shift

model was unable to account for these effects (shift ¼ 20; see

the electronic supplementary material, figure S8).
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4. Discussion
The results of the two experiments, combined with the compu-

tational analysis, point to a clear effect of decision commitment

on the evaluation of, or weight given to, subsequent evidence,

which generalizes across domains (perceptual and numerical)

and task contingencies (categorical decisions and continuous

evaluations). We find that after participants made a prelimi-

nary decision, they are less influenced by the subsequent

evidence (figures 2d,4a) as compared to situations, in which

the same information is presented without making a prelimi-

nary decision. This effect leads to a deteriorated accuracy

(figures 2a,4b) and its magnitude predicts the reduction in

accuracy (electronic supplementary material, figure S4).

Previous behavioural studies have reported similar effects

of decision commitment, which were interpreted to imply a

cognitive dissonance or a sunk cost mechanism [14–17]. How-

ever, several different underlying information-processing

mechanisms may give rise to commitment effects and it is

unclear whether these phenomena are restricted to high-level

motivational situations. By controlling the accumulation of

the evidence before, after and in the absence of categorical

decisions, we find that even in simple perceptual and numeri-

cal decisions, made in a controlled laboratory setting, observers

exhibit commitment effects and confirmation bias. Future

studies will need to carry out similarly controlled experiments

in order to characterize post-decision bias processes, in socially

relevant situations, such as evaluating a tournament contender

after having already gambled on that contender.

More recent work has demonstrated that humans can

revise extended actions, which can be interpreted to indicate

changes of mind [39–42]. These studies, however, did not

control the evidence following a decision, and thus could

not quantify confirmation biases or effects. By controlling the

additional streams of information, we were able to identify

the dynamical mechanism that underlies the confirmation

bias effects, within a sequential sampling framework. Our

model comparison reveals that two models provide the best

account for these effects: a model in which the preliminary

decision reduces global sensitivity to subsequent information

(figure 4c) and a model which postulates reduction in gain

only for additional information that is incongruent with the

preliminary decision. This latter variant is consistent with a

recent model that assumes dynamic gain modulation during

accumulation of evidence which is incongruent with the pre-

dicted mean [43]. Conversely, a model that postulates a shift

of value for the chosen alternative (figure 4d ) is unable to

account for several of the observed phenomena in both exper-

iments (electronic supplementary material, figures S3 and S8).

Although simple, this gain-reduction mechanism may be

able to account for a wide range of previously reported

confirmation bias effects.

One objection that may be raised against the decision-

induced global gain-reduction account is that it could reflect

a non-specific reduction of arousal, or ‘fatigue’, after the initial

choice. This fatigue account might entail a general detriment in

information processing following the preliminary decision.

Importantly, however, because decreased arousal is associated

with increased neuronal variability across the cerebral cortex

[44,45], this account predicts a global increase in internal

noise after the preliminary decision. When fitting the data

with two internal-noise parameters, one for each interval (see

Computational Method, model v), we find that the internal
noise is not higher in interval 2 (noise¼ 24) as compared to

interval 1 (noise¼ 25)—a pattern which implies that the

decision did not induce fatigue or loss of attention. Further,

note that the selective gain-reduction model, which provided

a fit almost as good as the global gain-reduction model, is

also inconsistent with a reduction of general arousal, which

would be non-selective.

Both the global and the selective gain-reduction models

account for the intuition that once we reach a decision, we

are less likely to respond to new evidence. The neural mech-

anism that underlies this reduction in sensitivity to evidence

is an important topic for further investigation. One possibility

is that forming a decision triggers a transition to an attractor

state [26]. Accordingly, the neural circuitry that underlies the

evaluation of evidence is not fixed but rather is altered at the

time a decision is reached, possibly, as a result of neuro-

modulation [46–50]. For example, a modulatory increase in

the recurrent excitation and in lateral inhibition may turn

the decision state from one that is characterized by an accu-

mulator (or drift diffusion process; [6,10]) to one

characterized by attractor dynamics [20,23–25,48], in which

the state is relatively insensitive to new evidence. Accord-

ingly, the reduced gain to extra-evidence in our data may

be due to the triggering of such modulations by the request

to decide. In our experiment 2, for example, such decision-

triggered modulations take place in session I (free-response

paradigm, when the observers need to make a preliminary

decision), but not in session II, until the end of the evidence is

presented (interrogation paradigm). We show in the electronic

supplementary material that a decision-modulated change in

the decision attractor dynamics (within the leaky-competing

accumulators framework) predicts reduction in sensitivity to

additional information (electronic supplementary material,

figures S9 and S10).

Our analyses of commitment effect in experiment 1 have

focused on a time scale of seconds (i.e. sequences of eight

items); a more fine-grained analysis of the relative influence

of each item reveals that in the DEE condition the influence

of the 11th item is reduced (see full time-course regression,

electronic supplementary material, figure S1). This temporal

decrease in gain could reflect decision-triggered neuromodu-

lation (see the electronic supplementary material, figure S9b).

In addition, the full time-course regression shows that the

influence of the 8th item in the DEE condition is increased,

indicating an enhanced weight in the accumulation process

of the most recent evidence before the initial decision, and/

or an enhanced memory for that most recent evidence.

Future studies will be needed to investigate the fine grained

time course of this effect.

While a decision-induced gain-reduction may appear

disadvantageous for situations in which the decision is

reversible, some degree of inertia on decisions may help to

reduce indecisiveness that could lead to multiple changes of

mind when faced with ambiguous evidence and to avoid

time wasting [42,43]. Recent work within the framework of

embodied decisions have shown that decision models in

which the motor action has a stabilizing feedback input

into the decision process can improve task performance,

when the cost of action-changes are factored in [51]. The

identification of the neural basis of a post-decision commit-

ment mechanism, with regard to specific model-variants

and its putative adaptive role, remains an important topic

for future investigations.
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