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Trueblood, Brown, and Heathcote (2014) provide a new model of multiattribute choice, which accounts
for 3 contextual reversal effects (similarity, attraction and compromise). We review the details of the
model and highlight some novel predictions. First, we show that the model works by setting a “fine
balance” between 2 opposing factors that influence choice. As a result, small changes in the attributes of
choice alternatives can disturb this balance. Second, we show that the model gives a partial account of
the compromise effect. We describe a number of experiments that could distinguish the MLBA from
other models of multiattribute choice.
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Almost every nontrivial choice involves balancing different attri-
butes. Do we prefer a dull but cheap vacation or an exciting but
alarmingly expensive one? A small flat with a short commute, or a
large house with a long commute? Experimental research has re-
vealed that such choices are subject to a puzzling set of contextual
reversal of preferences, which, although at odds with rationality
principles, has the potential to reveal the cognitive mechanisms that
underlie choice. To illustrate, a customer may prefer a salad dessert to
a cheesecake; but switch to the cake when the waiter points out the

availability of another (less attractive) cake. This is the attraction
effect (also labeled the asymmetric dominance effect; Huber, Payne,
& Puto, 1982). Two other contextual preference reversals effects, the
similarity (Tversky, 1972) and compromise (Simonson, 1989), show
that the preference between two multiattribute alternatives (A vs. B)
changes systematically when a third alternative is added (see Figure 1
for illustration).

Contextual reversal effects are inconsistent with option-based the-
ories of multiattribute choice (which include almost all economic
models of choice; e.g., McFadden, 1974), in which each option is
valued independent of the other options; and these values then feed
into a choice process in which higher values are preferred. In such
models, adding new options does not change the values of existing
options; and hence cannot change which is chosen more often. Con-
textual reversal of preference thus requires that options are not eval-
uated independently; and hence threaten the very idea that choices
arise from stable and context-independent utility functions. Intensive
research has explored the psychological mechanisms underlying
context-dependent evaluation and preference formation (Bhatia,
2013; Dhar & Glazer, 1996; Pettibone & Wedell, 2000; Roe, Buse-
meyer, & Townsend, 2001; Soltani, De Martino, & Camerer, 2012;
Tsetsos, Usher, & Chater, 2010; Tversky & Kahneman, 1991; Tver-
sky & Simonson, 1993; Usher & McClelland, 2004). However, so far,
only a minority of theories have captured simultaneously all three
context effects (Bhatia, 2013; Roe et al., 2001; Usher & McClelland,
2004; Wollschläger & Diederich, 2012).

Recently, Trueblood and colleagues (Trueblood, Brown, & Heath-
cote, 2014) provided an excellent review of the relevant literature and
presented an innovative new model—The Multiattribute Linear Bal-
listic Accumulator (MLBA)—that predicts the three contextual pref-
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erence reversal effects. Further, their model was shown to outperform
a seminal model of multiattribute choice, decision field theory (DFT;
Roe et al., 2001) in fitting experimental data, while also capturing the
influence of time pressure on the magnitude of context-dependencies.

The aim of this Comment is twofold. First, we examine the MLBA
and show that despite its substantial merits, including analytical trac-
tability, the model works by finely balancing competing forces. As a
result, its predictions are sensitive to the exact position of the alter-
natives in the attribute-space. Second, we discuss the various compo-
nents that are at play in the MLBA and in a number of other related
models, deriving contrastive predictions for future experimental tests.
The structure of the comment is as follows. We briefly summarize the
MLBA model; relate it to previous computational theories of prefer-
ence reversal in multiattribute choice; evaluate its stability to stimulus
variations for the attraction and compromise effects; highlight some of
its predictions about response times; and finally point to experimental
tests that could distinguish different multiattribute theories of prefer-
ence reversal.

The MLBA Model

The model consists of two parts: (a) a front-end component,
which maps choice alternatives represented in a 2-dimensional
attribute space (e.g., Figure 1) into selection tendencies (or drift
rates) and (b) a back-end component, which maps these selection
tendencies onto choice probabilities.

Front-End Component

Assuming three alternatives that differ in two attributes (e.g.,
price [P] and quality [Q], Figure 1), the front-end component
calculates selection tendencies or drift rates (di) for each alterna-
tive (i) using the following formulas:

d1 � V12 � V13 � I0

d2 � V21 � V23 � I0

d3 � V31 � V32 � I0

(1)

The term Vij reflects the result of comparing options i and j,
whereas I0 is simply a constant ensuring that at least one option is
chosen in the back-end process. The comparison terms, Vij, are
derived as follows. The first step is to map objective attribute
values to their subjective counterparts. Thus, a choice alternative
with objective attribute values (x, y) will be perceived as being
worth (Ux, Uy) with the subjective values, Ux and Uy being both
two dimensional functions of x and y, defined via a projection from
the indifference line x � y � K to a convex curve characterized by
the parameter m (see Figure 2):

�x

a�m

� �y

b�m

� 1 (2)

A more detailed description of this mapping is given in the
Appendix in Trueblood et al. (2014).

If Ui � (UPi, UQi) and Uj � (UPj, UQj) are the subjective
attribute values for options i and j then the comparison terms, Vij,
described above, are specified as follows:
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Figure 1. Example choice space with several alternatives differing in two
attributes (P and Q). The decision maker is presumed to be indifferent in
binary choices between alternatives that lie on the indifference curve
(dashed line) (A and B correspond to X and Z in Figure 1 in Trueblood et
al. (2014)). Attraction effect: A is preferred over B in the choice sets {A, B,
F}, {A, B, R} and {A, B, RF}. Similarity effect: B is preferred in {A, B, S}.
Compromise effect: B is preferred in {A, B, B=}, while A is preferred in {A=,
A, B}. Double arrows indicate distance on a given attribute between the
target-A and alternatives S (x), B (d), and F (z) (see Figure 3).
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Figure 2. Projection from objective to subjective attributes (Ui). The
linear indifference curves (diagonal lines with negative slope) are trans-
formed into convex curves for m � 5 (solid curves) following Equation 2.
Arrows show transformation from objective (x, y) space, to subjective, (Ux,
Uy) space. With this transformation, midrange alternatives have higher
subjective values (e.g., compare UB to UB=). Alternative E is constructed so
as the subjective utilities of A, B, and E are roughly equal (UA � UB � UE).
We use the {A, B, E} triplet to show that in the Multiattribute Linear
Ballistic Accumulator (MLBA) the compromise effect is conditioned on
the subjective inferiority of one of the extremes.
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Vij � wPij
· �UPi

� UPj� � wQij
· �UQi

� UQj� (3)

The weights wPij
and wQij

correspond to the attentional weight
given to each dimensional comparison. These weights embody
exponentially decaying functions of subjective distance, on each
dimension:

wPij
� exp����UPi

� UPj��
wQij

� exp����UQi
� UQj�� (4)

Thus, the greater the subjective distance between two options on
a given dimension, the less weight this comparison will have.
Crucially, the decay parameter � can differ depending on whether
the item of interest, i, is better or worse than the comparison item,
j, on a particular dimension—that is, whether that dimension
exhibits an advantage or a disadvantage for i. In particular, to
account for the three context reversal effects simultaneously, the
MLBA has to use weights for disadvantages which decay more
rapidly than the corresponding weights for advantages: that is,
�A � �D, where �A is the decay for advantages and �D is the decay
for disadvantages. As we show below and as discussed in the
original paper, this asymmetry is essential for explaining the
similarity effect.

Back-End Component

The back-end component of the MLBA is a decision process
based on the linear ballistic accumulator (LBA) model (Brown &
Heathcote, 2008), which generates choices from the drifts, di,
calculated in the front-end component. The LBA choice mecha-
nism has analytical solutions and hence is particularly convenient.
Within the MLBA two methods can be used to determine re-
sponses (decisions and their reaction times [RTs]). The first one
involves a self-terminating response, in which a decision-criterion
is used and the choice is won by the decision-accumulator whose
activation first reaches the criterion. The second method corre-
sponds to an externally controlled decision-time, in which the
accumulator whose activation is highest at the time the response is
requested determines choice. Here we follow Trueblood et al.
(2014) and use the self-terminating version of the model with LBA
parameters: A � 1, � � 2, s � 1.

The MLBA explains the attraction, compromise and similarity
effects, as applied to the sets of alternatives shown in Figure

1/Table 1, with a single set of parameters (e.g., m � 5, �A � 0.2,
�D � 0.4, I0 � 5 given in Trueblood et al., 2014). Before we
evaluate the MLBA qualitatively, we attempt to classify its mech-
anisms in relation to previous theories of contextual preference
reversal.

Classification of Mechanisms of Contextual
Preference Reversal

Trueblood et al. (2014) compare the MLBA to two alternative
computational models: decision-field theory (DFT; Roe et al.,
2001) and the leaky-competing accumulator (LCA; Usher & Mc-
Clelland, 2004). These theories build on the tradition of sequential
sampling models of information integration (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006; Busemeyer & Townsend, 1993;
Smith & Ratcliff, 2004; Usher & McClelland, 2001) and are
dynamic in nature, predicting not only choice outcomes but also
the moment-by-moment fluctuations of the corresponding prefer-
ence states. A related and more recent model of contextual pref-
erence reversal in multiattribute choice (published at, roughly, the
same time as the MLBA) is the associative accumulation model
(AAM; Bhatia, 2013), which we will consider in our discussion
below. In the light of the complexity of these theories, it is crucial
to focus on the central mechanisms that generate contextual rever-
sal effects and not on peripheral assumptions about implementa-
tional or dynamical details of the models.

To illustrate, the MLBA consists of a front-end (central) process
that produces drift-rates for a given choice scenario and a back-end
(peripheral) process that converts the drifts to choice probabilities.
Because we are mainly concerned with accounting for choice data,
we will focus now on the MLBA front-end process, and we
compare it with the processes that operate in DFT and LCA and
AAM. Back-end predictions concerning RTs are discussed later.
Since the model parameters of the MLBA were fitted to the
preference-reversal data, we will refer to the MLBA whose pa-
rameters are specified by this fit, as the MLBA account or mech-
anism of the reversal effects.

Comparisons With All Items in the Choice Set

A central assumption common to DFT, LCA, and MLBA (as
well as in earlier static models; Tversky & Kahneman, 1991) is
that the value of an alternative is determined by comparisons with

Table 1
Evaluation of the Multiattribute Linear Ballistic Accumulator Model of the
Frequency-Attraction Effect

Effect

Choice set

ParametersTarget Competitor Decoy

Effect-1 A � (4, 6) B � (6, 4) F � (4, 5.4) m � 5, �A � 0.2, �D � 0.4, I0 � 5
Choice 38% 46% 16%

Effect-2 A � (4, 6) B � (6, 4) F � (4, 5.4) m � 3, �A � 0.2, �D � 0.3, I0 � 5
Choice 44% 42% 14%

Effect-3 A � (4, 6) B � (6, 4) F � (4, 5.8) m � 3, �A � 0.2, �D � 0.3, I0 � 5
Choice 35% 42% 23%

Effect-4 A= � (2, 8) B= � (8, 2) F= � (2, 7.4) m � 3, �A � 0.2, �D � 0.3, I0 � 5
Choice 37% 46% 17%
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all the items in the choice set (Eq. 1). For example, in a three-
alternative choice the value of an option will be determined by its
comparison with the other two options. For most models that
predict context effects, additional nonlinearities in the valuation
process are required.1 By contrast, in the DFT and MLBA the
nonlinearities are introduced via distance-dependent interactions
(Equations 3, 4). In the LCA the value function is assumed to be
asymmetric, having loss-aversion that penalizes options that have
large disadvantages (Usher & McClelland, 2004). As we discuss
below, the MLBA mechanism also treats advantages and disad-
vantages in an asymmetric fashion.

Distance-Dependent Interactions

This is a similar feature between DFT and MLBA (Equation 4),
implemented by distance-dependent inhibition in the former and
distant-dependent comparison weights in the latter (see Figure 3).
Distance-dependency allows both models to capture the attraction
effect as the target alternative (A) that dominates the decoy (e.g.,
RF), is “compared” more with the inferior decoy, so obtaining a
larger net advantage than the competitor (B).

Asymmetric Weights for Advantages and
Disadvantages

Both the LCA and the MLBA embody an asymmetry in the
weighting of advantages and disadvantages but differ on the di-
rection of this asymmetry. In the LCA, following Tversky and
Kahneman (1991), the asymmetry reflects loss-aversion (Kahne-
man & Tversky, 1979): Disadvantages loom larger than advan-

tages. For example, the compromise effect is explained because
the extreme options have large disadvantages on their unfavorable
dimensions, which are penalized more than the two moderate
disadvantages of an average option.

In the MLBA, advantages count more than disadvantages and
this asymmetry increases with distance (Figure 3; monotonic
curves for the relative weights as a function of the advantage/
disadvantage magnitude). This mechanism allows MLBA to pre-
dict the similarity effect, because a new option S similar to A
contributes more (on the corresponding dimension; i.e., P) to a
distant alternative, B, than to the nearer alternative, A. In Figure 3,
we show the attentional weight for a given advantage or disadvan-
tage (monotonic curves), as a function of the distance, x, between
two alternatives on a given dimension (we assume m � 1, here, but
this is not essential). To illustrate the similarity effect we assume
comparisons of options A and B relative to S (from Figure 1).
Because all three options lie on the same indifference curve,
pairwise comparisons between them will always give an advantage
on one dimension and an equal disadvantage on the other dimen-
sion, before the weighting in Equation 4 takes place. However, for
the competitor, B, the addition of S gives a larger advantage/
disadvantage than it does for A. The solid non-monotonic curve in
Figure 3 shows the net value (now using the weights in Eq. 4) from
an equal advantage/disadvantage that S adds to either A or B, as
function of their horizontal distance from S. As long as this
quantity is increasing a similarity effect will ensue (compare the
black circle showing the net value conferred to A by S with the
gray circle for the boost conferred to B by S). Thus, for alternative
sets such as those in Figure 1, the comparison with S contributes
more to the distant alternative B than to the proximal one, A. Note
that greater added values to distant alternatives reverses the direc-
tion of the loss-aversion asymmetry, which penalizes extreme
alternatives (Tversky & Simonson, 1993; Usher & McClelland,
2004). Because loss-aversion is useful in penalizing extreme al-
ternatives, the MLBA requires a different mechanism to explain
the compromise effect (see below).

Nonlinear Subjective Attribute Space

This assumption is used only in the MLBA and reflects the
necessity to set parameter m � 1 (Equation 2) to simultaneously
capture all three effects. Accordingly, the equal preference curves
in the attribute space are not straight diagonal lines but convex
curves (see Figure 2). This implies a bias for alternatives in the
middle of the range. Hence, even for binary choice (5,5) will be
preferred to (6,4). Using this assumption, the MLBA explains the
compromise effect. In choices between the alternatives A � (4,6),
B � (6,4) and A= � (2,8), introducing the latter alternative results
in a preference of A over B.

Sequential Stochastic Samplings of the Attributes

The broad assumptions concerning the sequential stochastic
sampling of attributes (SSSA) are common to the DFT, LCA,

1 An exception here is AAM, which does not rely on comparisons
between alternatives, and also does not assume a nonlinear distance func-
tion. Instead, the AAM relies on associations between alternatives in the
choice set and attributes to determine the attribute weights.
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Figure 3. Attentional weights (left y-axis) and weighted differences (right
y-axis) for different magnitudes (x-axis) of advantages and disadvantages
relative to option S in Figure 1. The weights for advantages (�A � 0.2)
decay slower than the weights for disadvantages (�D � 0.4). Dashed curves
show the weighted advantages (e.g., wPij

· (Pi 	 Pj when Pi � Pj) and
disadvantages (e.g., wPij

· (Pi 	 Pj) when Pi � Pj). The solid, nonmono-
tonic curve in-between the two dashed ones, shows the net value, Vij, for
an alternative i relative an alternative j of equal added value (|UPi

	 UPj

|�|UQi
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|), as a function of the distance between them. Dark and light
gray filled circles show the net value conferred by S to the similar A and
the dissimilar B, respectively (see Figure 1). See the online article for the
color version of this figure.
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AAM, and the original elimination by aspects explanation of the
similarity effect (Tversky, 1972). When the SSSA is combined
with leaky integration of momentary values into preferences, both
the DFT and the LCA, produce the similarity effect. In the LCA,
for example, the SSSA counteracts the large disadvantages penalty
factor that applies on the dissimilar alternative, B (in the set, A, S,
B). Thus despite its overall weaker net value, the distant alterna-
tive, B, is chosen with a probability of more than 1/3, because the
instantaneous preference for similar options (A, S) are temporally
correlated rising and falling together. This temporal correlation
reflects the chooser’s attention switching between the attributes.
Similar options, therefore, tend to “split their wins” when attention
is centered on attributes where both excel (see Figure 4). On the
other hand, the dissimilar alternative (B in Figure 4) gets a relative
choice advantage because when its strong attribute is scanned, it
tends to dominate alone. Because the MLBA mechanism does not
rely on SSSA, it cannot use temporal correlations to explain the
similarity effect; instead, the similarity effect in the MLBA ac-
count depends on advantages being weighted more heavily than
disadvantages, as discussed above.

Asymmetric Attribute Weights

In DFT and LCA, it is assumed that the two dimensions char-
acterizing the three alternatives are equally important. In MLBA
the weights do not represent the importance of each attribute but
rather capture the attention allocated to a given (signed) pairwise
comparison. A different approach was taken in the AAM model.
There, the dimensional weights change in a bottom up fashion as
a function of the choice problem. In particular, the weight given to
any given dimension is proportional to the sum of the attribute
values on that dimension. For instance, in an attraction effect
scenario ({A, RF, B}; Figure 1), dimension Q will be more heavily
weighted because it is associated with higher values overall (QA �
QRF � QB � PA � PRF � PB). Using this mechanism, together
with SSSA, AAM explains the three effects considered here as
well as a range of other effects encountered in multiattribute
choice. Note that the attribute weights can change, exogenously, in

another recent model of multiattribute choice (Wollschläger &
Diederich, 2012). Because this model does not explain all three
effects using single parameter sets (but by allowing attribute
weights to be different for each effect), we do not discuss it here.

Overall, we saw that in three models (LCA, DFT, and MLBA)
preference formation relies on the estimation of the total dimension-
wise advantages and disadvantages of a given option relative to the
other available options. In LCA, AAM, and DFT, there is a sampling
process (SSSA), whereas in MLBA the outcome of each pairwise
comparison is weighted differentially depending (a) on its sign (ad-
vantage/disadvantage) and (b) on its magnitude. In all models tem-
poral integration gives rise to preference states. Nonlinearities come
into play in all models (other than AAM, see Footnote 1), at different
processing stages. In LCA, disadvantages loom larger than advan-
tages, in DFT similar options interact more via lateral inhibition,
whereas in MLBA large and negative differences are less impactful
than small and positive ones. A further nonlinearity is introduced in
the MLBA model by assuming that the choice space is curved such
that extreme alternatives worth less than more average ones. Finally,
in AAM the weights assigned to the two dimensions change as a
function of the choice problem at hand. Having described the main
mechanisms of the MLBA model with respect to LCA, DFT, and
AAM we turn next in evaluating its behavioral characteristics.

Sensitivity to Stimulus Changes in the MLBA Model

The MLBA is able to explain the three contextual reversal effects
as arising from a fine balance of opposing forces. On the one hand,
allowing the weights to decay with distance increases the attraction
effect because the close comparisons between the target and the decoy
are magnified. On the other hand, this mechanism undermines the
similarity effect because the distant alternative will receive less input.
To counterbalance this, the MLBA assumes that advantages decay
more slowly than disadvantages. This mechanism now boosts more
“isolated” alternatives (that have large advantages and disadvantages),
increasing the similarity effect but working against the attraction and
compromise effects. Opposing mechanisms exist also in DFT and
LCA; for example increasing the local inhibition in the former and the
loss-aversion asymmetry in the latter increase the magnitude of the
attraction/compromise effects at the expense of the similarity effect.
Tension between mechanisms and effects raises the question of how
sensitive the model is to changes of the values of the alternatives in the
two-dimensional attribute space. As we have previously shown (Tset-
sos et al., 2010) DFT and LCA are in a position to produce all three
effects regardless of the relative location of the alternatives in the
choice space, given fixed parameter sets. In this section, we evaluate
value-sensitivity for the MLBA distant-advantage mechanism, which,
as we show, drives the MLBA explanation for the similarity effect,
but comes into tension with the compromise and the frequency-
attraction effects (because in both of these cases the distant option(s)
need to be chosen less).

The Attraction Effect

Let us consider first the frequency decoy (preferring A over B in the
choice-set {A, B, F}; Figure 1). Although a frequency decoy, F, is less
effective in triggering a preference bias for the target, A, (Huber et al.,
1982), significant frequency-attraction effects have been reported
(Trueblood, 2012; Wedell, 1991; Wedell & Pettibone, 1996). Refer-
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B, S} in Figure 1). For illustration, attention switches dimension every 50
time-steps. We plot the accumulator activations (preference states) of the three
options in two trials. In both subplots we observe that the preference states of
the similar options (S and A) are positively correlated to each other and
negatively correlated to the preference state of the dissimilar alternative, B. In
A) the similar alternatives, A and S, win over B but on average they will split
their probability of being chosen due to noise. In B) the dissimilar B wins with
a big difference from the second best. Assuming that the A) and B) trials are
equally likely, the probability for choosing B will be 50% while A and S will
be chosen with probability 25% each.
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ring to Figure 1, we denote the distance between A and F with z and
the advantage of B relative to F with d, while the disadvantage of B
to F with s (s � d 	 z). In the case of binary choice A and B, being
symmetric, have equal total values. We will here describe the extra value
that is added to the two options via their comparison to the inferior F,
which potentially breaks the tie between A and B in the ternary choice
case. Following Equations 1–4, we see that F conveys an advantage
to the proximal target, A, whose weighted magnitude, [VAF]� � z ·
exp(	�A · z), can be quite small for short distances (dashed nonmono-
tonic curve, in Figure 3). The frequency decoy, F, also conveys both
an advantage and a disadvantage to the distant competitor, B. The
distance-weighted advantage of the competitor will be [VBF]� � d ·
exp(	�A · d) while the corresponding weighted disadvantage (on
dimension Q) will be [VBF]	 � (d	z) · exp(	�D · (d	z)). Thus the
net input to alternative A will be VAF � [VAF]�(because, assuming
that m � 1, [VAF]	 � 0; in this case the net value is equivalent to the
top-dashed curve in Figure 3) and to alternative B VBF � [VBF]� �
[VBF]	. Since z � d it follows that [VAF]� � [VBF]�. Because the
weights for the disadvantages decay faster with distance than the
advantages-weights (�D � �A), the competitor (B) can get a stronger
overall input. For example, a large disadvantage that has fully dissi-
pated ([VBF]	 � 0) can result in a null or negative attraction effect
(where the preference for the target is reduced after the addition of an
inferior decoy).

To illustrate this, for the parameter set reported in Trueblood et al.
(2014) (parameter set 1; m � 5, �A � 0.2, �D � 0.3, I0 � 5), the
frequency decoy effect is negative for the scenario considered by the
authors (Table 1, Effect-1). With a modified parameter set (parameter
set 2; m � 3, �A � 0.2, �D � 0.3, I0 �5; J. Trueblood, personal
communication, January 22, 2014) the frequency-attraction effect is
produced (Table 1, Effect-2). However, even for the modified
parameter-set the effect is fragile as it depends on a precise balance of
opposing factors. For example, a small increase in the proximity of F
to A (Table 1, Effect-3) reverses the effect. The effect reverses even
more strongly if the location of the options changes toward the
extremes of the choice space (A=, F=, B= in Figure 1 and Effect-4 in
Table 1). This type of negative attraction effect arises because the
more distant the frequency-decoy is from the competitor (and simi-
larly the closer the decoy is to the target), the competitor will have a
larger disadvantage to the decoy, which will end up being negligible
after the distance-dependent weighting is applied. Note that this
reversal does not correspond to a similarity-type of effect (presumably
due to bringing the decoy too close to the target and making the two
options hard to discriminate) because the frequency-decoy is still
chosen less frequently.

More generally, for each parameter set that produces all 3 effects,
it is possible to find stimuli—corresponding to the frequency attrac-
tion effect—that produce a negative attraction effect. We examined
the 348 MLBA parameter sets that produced all three original con-
textual reversal effects reported in Trueblood et al. (2014). For each
parameter set, we calculated the relative choice for the target (A) over
the competitor (B) for a new frequency decoy that was placed closer
to the target (Fclose � 5.9). In Figure 5, we show that for all 348
parameter sets the attraction effect either reverses (the majority of the
cases) or disappears. Assuming that each parameter set corresponds to
a single participant, the prediction of MLBA is that it should be
possible to find choice scenarios that generate negative attraction
effects. This is a distinctive prediction of the model, which, to the best

of our knowledge, has not been reported in the literature, and which,
if verified, will provide considerable support for the MLBA.

The Compromise Effect

We next consider the compromise effect using again the successful
parameter set reported in Trueblood et al. (2014) (m � 5, �A � 0.2,
�D � 0.4, l0 � 5). Clearly, the compromise effect poses a special
challenge to the distance-advantage mechanism, which should favor
extreme alternatives that have larger advantages and disadvantages
than less extreme options. The key ingredient that allows the MLBA
to counteract the distance-advantage mechanism and capture the com-
promise effect in conjunction with the other two effects, is the convex
subjective equal-preference curve, when m � 1 (Equation 2, Figure
2). It was possible to find MLBA parameters that account for the
compromise with sets of equal subjective values (m � 1). However,
in these parameter sets advantages decay faster than disadvantages
(�A � �D) and therefore the similarity effect is not predicted.2

Crucially, for m � 1 the model predicts that the compromise
effect arises because the extreme decoy option, A=, is subjectively
inferior to the middle item. Using this mechanism, with a suffi-
ciently large m-value (m � 5), the model produces a compromise
effect, as well as the attraction and similarity effects, for options on
the set (A, B, A=). Alternative A= under the subjective value
transformation is inferior to A (transformed values are given as

2 The same holds for parameter sets with m � 1.

Figure 5. The frequency attraction effect reverses when the decoy moves
closer to the target. Each data point corresponds to one of the 348
Multiattribute Linear Ballistic Accumulator (MLBA) parameter sets that
successfully predicted all contextual reversal effects. On the x-axis we
show the relative share of A over B in the presence of the original decoy F
(Figure 1 and Trueblood et al., 2014). Values above 0.5 correspond to an
attraction effect while values below 0.5 show a negative attraction effect.
On the y-axis we show the relative share of A over B when the decoy F is
moved to a new location, Fclose � 5.9. Colors indicate the choice difference
between the decoy, Fclose, and the average of the two superior options (A,
B). These values are negative indicating that Fclose is still perceived as
inferior. For all parameter sets the attraction effect disappears or reverses,
as illustrated by the fact data points are typically within the bottom right
quadrant. See the online article for the color version of this figure.
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Effect-1 at Table 2 and illustration in Figure 2) and thus A= acts as
an (almost) range decoy (nearly equal values on their strong
dimension and a large difference on their weak dimension).

Thus, the MLBA account of the compromise effect depends on
the extreme option (A=) being subjectively inferior to the target (A).
To illustrate this, we change A= to E=, which has the same added
subjective value as A and B (i.e., 16.3, so that E has equal value to
both A and B, and E and B are roughly equidistant from B; see
Figure 2 for a schematic depiction), the compromise effect re-
verses dramatically.

The question of whether the compromise effect is contingent on
the extreme decoy being inferior relative to the middle option is
thus critical to assessing the MLBA mechanism. Although many
demonstrations of the compromise effect used alternatives whose
values are arranged in a linear configuration on the objective
attribute space (such as A=, A, B; e.g., Pettibone, 2012), others have
attempted to equalize the subjective values of the targets and
decoys. For example, Tversky and Simonson (1993) asked partic-
ipants to choose among 35 mm cameras varying in quality and
price. “One group (n � 106) was given a choice between a Minolta
X-370 priced at $170 and a Minolta 3000i priced at $240. A second
group (n � 115) was given an additional option, the Minolta 7000i priced
at $470. Participants in the first group were split evenly between the
two options, yet 57% of the subjects in the second group chose the
middle option (Minolta 3000i), with the remaining divided about
equally between the two extreme options.” (Tversky & Simonson,
1993; p. 1123). In this case, we do not have a metric for the
distance between Minolta 370, 3000, and Minolta 7000. However,
together with their prices the cameras appear to be equally attrac-
tive: A (Minolta X-370) and B (Minolta 3000i), were of equal
subjective preference, since the first group was evenly split be-
tween them (choice � 50% 
 4.9%). A and C (Minolta 7000i) also
appear to have been of equal preference, because the participants
in the second group, who did not choose the compromise option,
were evenly divided between them.

Other studies using target and extreme decoy in a linear con-
figuration have shown that the compromise effect does not appear
to depend on the extreme decoy being subjectively inferior. Pet-
tibone (2012), for example, found that the choice of the extreme
decoy and the competitor (A= and B) have rather equal choice
probabilities (both around, 30%, compared with more than 40%
for the compromise). On the contrary, the MLBA mechanism
characteristically predicts that the added extreme decoy will be the
overall least chosen (Table 2, effect-1: 32% for B and only 16% for
A=). It is possible that some compromise studies used linear con-

figurations in the objective attribute space with subjectively infe-
rior extreme decoys and the MLBA mechanism could account for
such cases. However, further experiments will be needed to deter-
mine the precise boundary conditions of the compromise effect
and hence help distinguish different accounts of the cognitive
mechanisms from which it arises.

Back-End Predictions

Although we mainly scrutinized the front-end MLBA compo-
nent, it is also worthwhile to analyze the back-end component.
This component is a race model—LBA (Brown & Heathcote,
2008)—with absolute decision termination. As recently discussed
by Teodorescu and Usher (2013), race models have fundamentally
different characteristics than competitive models (like diffusion,
DFT, or LCA). In the MLBA model, this difference interacts with
the context sensitivity leading to a set of very particular predic-
tions. We report these predictions below using parameter set 1
(m � 5, �A � 0.2, �D � 0.4, I0 � 5) but because m � 5 is not
essential here, we examine the same parameter set with m � 1 (the
results do not change qualitatively for different values of m). The
back-end parameters are the same as in the original paper (A � 1,
� � 2, s � 1).

Consider two alternatives, such as A and B in Figure 6A and let
us introduce a dominated decoy (C at P � Q � 0.01). The mere
addition of this decoy increases the drift to both the A and B
accumulators relative to the binary case (Equation 1) (e.g., at C
(4,4) the drift-rates of A and B have nearly doubled relative to the
binary case, Figure 6B). As the decision-termination is not com-
petitive, the two parallel drift changes are not subtracted. As a
result, the model predicts a dramatic speed–accuracy trade-off
when C is added: a reduction in accuracy (Figure 6C) and a large
decrease in the RT (Figure 6D). As C keeps moving beyond x �
y � 5 and closer toward A and B a context effect comes in play:
now the drift-rates of A and B decrease and their difference starts
to increase. Thus a relative slow down is observed and accuracy
starts increasing more steeply. Nevertheless, the predicted decision
times are maintained way below those of the binary A-B decision.

Thus the MLBA predicts that although C is never chosen it
influences the choice between A and B (Figure 6B). The predic-
tions about mean choice are consistent with one recent study that
showed accuracy improvement as the value of the decoy increases
(Chau, Kolling, Hunt, Walton, & Rushworth, 2014) but are in the
opposite direction to another study that showed the contrary
(Louie, Khaw, & Glimcher, 2013). The most dramatic impact of

Table 2
Subjective Attribute Values and Compromise Effect for M � 5

Effect

Choice set

Target Competitor Decoy

Effect-1 A � (4, 6) B � (6, 4) A= � (2, 8)
Transformed values UA � (6.5, 9.8) � 16.3 UB � (9.8, 6.5) � 16.3 UA= � (2.5, 10) � 12.5
Choice 52% 32% 16%

Effect-2 A � (4, 6) B � (6, 4) E � (2.6, 10.4)
Transformed values UA � (6.5, 9.8) � 16.3 UB � (9.8, 6.5) � 16.3 UE � (3.3, 13) � 16.3
Choice 26% 37% 37%

Note. The values in italics correspond to the summed subjective (transformed) utility.
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the decoy, however, concerns the decision times. A mere shift of
the decoy toward the target alternatives is likely to slow down
decision time by a factor of 1.3 (Figure 6D) and ternary decisions
would always be faster than binary ones. As these predictions are
somewhat surprising, future experimental validations would pro-
vide strong support for the MLBA model.

Discussion

The MLBA explains contextual preference reversal in multiat-
tribute choice without the need for nonlinear value functions,
providing a unified account of these phenomena in both hedonic
and nonhedonic (perceptual) domains. The model is based on
well-motivated principles and due to its reliance on the LBA
mechanism it allows analytical solutions that facilitate data fitting.
Although we believe these are important contributions, our explo-
ration of the model behavior has uncovered a number of chal-
lenges, which we summarize below.

First, the MLBA account for the frequency-attraction effect
works only for specific choice scenarios. For every parameter set
that produces all three effects simultaneously, it is possible to find
decoys for which the model predicts a null or negative attraction
effect. Second, for parameter sets that explain all three effects, the
account for the compromise effect is limited to situations in which
the target is subjectively superior to the extreme decoy. Although
extremeness-aversion may be a feature of multiattribute binary
choice, one can create choice-sets that compensate for this (e.g., E,

A, B, in Figure 2). Thus, a systematic parametric investigation of
all three context effects (across the attribute space) will be impor-
tant to distinguish between the predictions of MLBA and other
choice models. Such experimental investigations should also ex-
amine decision times, which as shown in Figure 6, can be highly
distinctive for MLBA (see the next section).

These two challenges for MLBA result from the fact that ad-
vantages are more heavily weighted than disadvantages (especially
at large distances), an assumption necessary to explain the simi-
larity effect. This mechanism is not present in the LCA, DFT, or
AAM models, as they use a different mechanism—the stochastic
sampling of attributes—to explain the similarity effect. The
MLBA differential weighting of advantages and disadvantages is
reminiscent of the LCA loss-aversion assumption, although it
works in the opposite direction. The application of loss-aversion to
perceptual domains was criticized by Trueblood et al. (2014), as in
such nonhedonic domains, loss-aversion seems less natural. We
agree, though we note that the magnitude of the preference reversal
effects is significantly reduced in perceptual decision-making
(Trueblood, Brown, Heathcote, & Busemeyer, 2013).

One important consideration in the evaluation of all multiattrib-
ute choice models is whether their computational complexity and
demand is consistent with human decision-making capacities. This
issue becomes more critical when the set-choice increases. For
example, both the MLBA and the LCA make the assumption that
for each pair of choice units, one needs two processing variables to
compute differences for each option on each attribute (or four
processing variables if we need to keep the positive and negative
differences separate); with increasing choice-set the number of
such units increases exponentially (Soltani et al., 2012). Because
decisions often involve novel situations, all these dynamic units
need to be created online and connected with the relevant inputs.
In addition, nonlinear value functions, as well as distant dependent
interactions, contribute to the model complexity.

In light of these computationally demanding assumptions, we
highlight three recent computational approaches, proposed to ac-
count for contextual preference reversal and motivated by a reduc-
tion of task demands. The AAM model (Bhatia, 2013), mentioned
above, assumes neither a comparison between alternatives (no
exponential explosion for large-N) nor asymmetric value functions
(or distance dependent interactions). Instead it accounts for the
contextual reversal effects through the variable and adaptive
weighting of the dimensions, with more heavily represented di-
mensions carrying higher weight. In turn, the highly represented
dimensions are those that are more strongly associated with the
alternatives. For example, introducing a decoy (D) to A, makes the
dominant dimension of A more strongly represented, as it is
associated with both A and D. Using this principle, the AAM was
shown to explain the attraction, compromise, and similarity effect
under single parameter sets as well as additional behavioral phe-
nomena in multiattribute choice.

The second model is the range-normalization (RN) model (Sol-
tani et al., 2012), inspired by neurophysiological constraints. The
model was shown to account for the attraction and similarity
effects, but not for the compromise effect. In the RN model, the
contextual reversals are due to changes in the range of value
representation as more alternatives are added to the choice set. The
model relies on the notion of divisive normalization with the
divisive factors being determined by the range of values on each
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Figure 6. The back-end effects of varying an inferior alternative (C) on
the choice between two alternatives, whose preference is not ambiguous
(A � B). A: Option A is located at (8,8). Option B at (7.5, 7.5). Option C
moves from (0.01,0.01) to (7.2, 7.2). B: Drift rates in the ternary scenarios
(solid lines) as a function of the x,y coordinates of option C. Binary
baseline drift rates for A and B are plotted with dashed lines. Blacked
dotted line shows the drift rate difference between A and B as a function of
C position. C: Probability of choice for the three options (solid lines) as C
moves closer to A and B; dash lines indicate baseline choice in the binary
case. D: Mean decision times as C moves closer to A and B (solid line). The
dashed horizontal line shows the mean decision time in the binary scenario.
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dimension. For instance, the addition of a range-decoy (D) to A
will not change the divisive normalization (compared to the binary
A-B scenario) in the dimension where A is better than B. However,
it will increase the divisive factor on the other dimension, where B
has a much larger value than A. As a result, B will pay a larger
penalty and its overall value will be reduced.

Third, the selective-integration model (Tsetsos, Chater, &
Usher, 2012) replaces the explicit value-difference computation
with a weighting mechanism that prioritises the integration of
more salient samples. Following DFT and LCA, the main assump-
tion is that one dimension is sampled at a time but each value-
sample is distorted by a multiplicative weight that is proportional
to its relative rank within the active dimension. This model does
not rely on nonlinear value functions and was able to account for
attraction and similarity effects in a simple value integration task
with nonstationary dynamic evidence (i.e., temporally correlated
following the stochastic scanning of dimensions principle) (Tset-
sos, Chater, & Usher, 2012). One way in which this model can be
developed is to replace the rank-dependent weighting with a ca-
pacity limited attentional process (e.g., only the first two of three
values on a dimension are integrated), which may provide an
alternative mechanism to explain the compromise effect. One
attractive aspect of this approach is that it links decoy effects to
well-described processes with known neural substrates such as
selective attention.

Future Experimental Studies

Preference reversal in multiattribute choice has been tradition-
ally examined with experimental materials, such as consumer
products, which do not permit precise control of the decision-
relevant variables and make within participants tests difficult.
Until recently, the attraction, compromise, and similarity effects
had not been reported in the same experiment or for the same
participant. It was thus unclear whether a complete computational
model of multiattribute choice had to capture all three effects
under a single parameter set. However, recent experiments in
Trueblood (2012) and Berkowitsch, Scheibehenne, and Rieskamp
(2013) have showed that the three effects can be obtained using the
same paradigm and within single participants, highlighting the
need for a unified computational account. We believe that theo-
retical attempts could benefit by targeted experiments elucidating
the mechanisms underlying multiattribute decisions. Below we
briefly outline such experimental directions.

Parametric manipulation of the decoys in the attribute
space. Computational models of preference reversal make dif-
ferent predictions about the magnitude of the effects as a function
of the position of the added alternative in the choice space. For
example, as shown in Figure 5 of Trueblood et al. (2014), for the
attraction effect the MLBA predicts a nonmonotonic distance-
dependent influence of the decoy on the probability of choosing
the target. Experimental evidence about the distance-dependency
of the attraction effect is currently inconclusive with Soltani et al.
(2012) showing that distant decoys increase the magnitude of the
effect but with Wedell (1991) showing the opposite pattern. A
systematic parametric investigation (equivalent to Figure 7 in
Trueblood et al., 2014) is likely to provide important constraints on
theories of contextual preference reversal. As discussed above,
future experimental studies should also examine decision times,

which may provide highly diagnostic evidence for model compar-
ison.

Individual differences and correlation of effects within
subjects. Most models (LCA, DFT, and MLBA as well as the
selective integration model) use a number of functional compo-
nents to produce all three-reversal effects simultaneously. The
difficulty to capture all three effects under a single account might
coincide with a difficulty to empirically obtain the effects within
the same participant. In support to this possibility, Berkowitsch et
al. (2013) obtained all three effects in 19% of their participants
(corresponding to nine individuals). Thus, one important objective
for models of multiattribute choice is to also account for individual
differences in the form of correlations in the magnitude and
direction of the effects. More generally, although the focus so far
has been in obtaining all three effects under a single parameter set,
future work might usefully be directed toward capturing the vari-
ability in human multiattribute choice behavior under a single
theoretical framework (e.g., allowing different parameters to ex-
plain different strategies).

Presentation mode (simultaneous/sequential) and preference
reversal. One process that is likely to affect the degree of
contextual reversal is the amount of within-attribute versus
within-alternatives processing. As the DFT, LCA, MLBA, and
the selective-integration model show, within-attribute compar-
isons are necessary to trigger reversal effects. Different stimuli
format and presentation (sequential vs. simultaneous) can en-
courage the employment of one strategy over the other. For
instance, in Tsetsos et al. (2011), we obtained a strong similar-
ity effect presumably because the presentation of the stimulus
precluded holistic (compensatory) processing. Alternatively,
presenting each option separately (e.g., different pages or com-
puter frames) could encourage holistic compensatory processes.
Detailed manipulation of the presentation mode might thus shed
light on whether decoy effects are dependent on the way infor-
mation is processed.

Conclusion

Recent research has made progress in the characterization of
the choice mechanism that underlies contextual reversal effects
in multiattribute choice. Most models assume that these effects
are driven by computationally demanding processes of pairwise
comparisons among the alternatives, where evidence is accu-
mulated gradually before a decision is made. These models
differ concerning the mechanisms of evidence accumulation
and choice. We have claimed that new experimental studies
should help distinguish between rival accounts.

References

Berkowitsch, N. A., Scheibehenne, B., & Rieskamp, J. (2014). Rigorously
testing multialternative decision field theory against random utility mod-
els. Journal of Experimental Psychology: General, 143 (3), 1331.

Bhatia, S. (2013). Associations and the accumulation of preference. Psy-
chological Review, 120, 522–543. http://dx.doi.org/10.1037/a0032457

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The
physics of optimal decision making: A formal analysis of models of
performance in two-alternative forced-choice tasks. Psychological Re-
view, 113, 700–765. http://dx.doi.org/10.1037/0033-295X.113.4.700

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

846 TSETSOS, CHATER, AND USHER

http://dx.doi.org/10.1037/a0032457
http://dx.doi.org/10.1037/0033-295X.113.4.700


Brown, S. D., & Heathcote, A. (2008). The simplest complete model of
choice response time: Linear ballistic accumulation. Cognitive Psychol-
ogy, 57, 153–178. http://dx.doi.org/10.1016/j.cogpsych.2007.12.002

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A
dynamic-cognitive approach to decision making in an uncertain envi-
ronment. Psychological Review, 100, 432– 459. http://dx.doi.org/
10.1037/0033-295X.100.3.432

Chau, B. K., Kolling, N., Hunt, L. T., Walton, M. E., & Rushworth, M. F.
(2014). A neural mechanism underlying failure of optimal choice with
multiple alternatives. Nature Neuroscience, 17, 463–470. http://dx.doi
.org/10.1038/nn.3649

Dhar, R., & Glazer, R. (1996). Similarity in context: Cognitive represen-
tation and violation of preference and perceptual invariance in consumer
choice. Organizational Behavior and Human Decision Processes, 67,
280–293. http://dx.doi.org/10.1006/obhd.1996.0080

Huber, J., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dom-
inated alternatives: Violations of regularity and the similarity hypothe-
sis. Journal of Consumer Research, 9, 90–98. http://dx.doi.org/10.1086/
208899

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of
decision under risk. Econometrica: Journal of the Econometric Society,
263–291.

Louie, K., Khaw, M. W., & Glimcher, P. W. (2013). Normalization is a
general neural mechanism for context-dependent decision making. Pro-
ceedings of the National Academy of Sciences, 110(15), 6139–6144.

McFadden, D. (1974). Conditional logit analysis of qualitative choice
behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–
142). Academic Press New York.

Pettibone, J. C. (2012). Testing the effect of time pressure on asymmetric
dominance and compromise decoys in choice. Judgment and Decision
Making, 7(4), 513–523.

Pettibone, J. C., & Wedell, D. H. (2000). Examining Models of Nondomi-
nated Decoy Effects across Judgment and Choice. Organizational Be-
havior and Human Decision Processes, 81, 300–328. http://dx.doi.org/
10.1006/obhd.1999.2880

Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative
decision field theory: A dynamic connectionist model of decision mak-
ing. Psychological Review, 108, 370–392. http://dx.doi.org/10.1037/
0033-295X.108.2.370

Simonson, I. (1989). Choice based on reasons: The case of attraction and
compromise effects. Journal of Consumer Research, 16, 158–174.
http://dx.doi.org/10.1086/209205

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple
decisions. Trends in Neurosciences, 27, 161–168. http://dx.doi.org/
10.1016/j.tins.2004.01.006

Soltani, A., De Martino, B., & Camerer, C. (2012). A range-normalization
model of context-dependent choice: A new model and evidence. PLoS
Computational Biology, 8(7), e1002607. http://dx.doi.org/10.1371/
journal.pcbi.1002607

Teodorescu, A. R., & Usher, M. (2013). Disentangling decision models:
From independence to competition. Psychological Review, 120, 1–38.
http://dx.doi.org/10.1037/a0030776

Trueblood, J. S. (2012). Multialternative context effects obtained using an
inference task. Psychonomic Bulletin & Review, 19, 962–968. http://dx
.doi.org/10.3758/s13423-012-0288-9

Trueblood, J. S., Brown, S. D., & Heathcote, A. (2014). The multiattribute
linear ballistic accumulator model of context effects in multialternative
choice. Psychological Review, 121, 179–205. http://dx.doi.org/10.1037/
a0036137

Trueblood, J. S., Brown, S. D., Heathcote, A., & Busemeyer, J. R. (2013).
Not just for consumers: Context effects are fundamental to decision
making. Psychological Science, 24, 901–908. http://dx.doi.org/10.1177/
0956797612464241

Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven value inte-
gration explains decision biases and preference reversal. Proceedings of
the National Academy of Sciences, 109(24), 9659–9664.

Tsetsos, K., Usher, M., & Chater, N. (2010). Preference reversal in mul-
tiattribute choice. Psychological Review, 117, 1275–1291. http://dx.doi
.org/10.1037/a0020580

Tsetsos, K., Usher, M., & McClelland, J. L. (2011). Testing multi-
alternative decision models with non-stationary evidence. Frontiers in
Neuroscience, 5.

Tversky, A. (1972). Elimination by aspects: A theory of choice. Psycho-
logical Review, 79, 281–299. http://dx.doi.org/10.1037/h0032955

Tversky, A., & Kahneman, D. (1991). Loss aversion in riskless choice: A
reference-dependent model. The Quarterly Journal of Economics, 106,
1039–1061. http://dx.doi.org/10.2307/2937956

Tversky, A., & Simonson, I. (1993). Context-dependent preferences. Man-
agement Science, 39, 1179–1189. http://dx.doi.org/10.1287/mnsc.39.10
.1179

Usher, M., & McClelland, J. L. (2001). The time course of perceptual
choice: The leaky, competing accumulator model. Psychological Re-
view, 108, 550–592. http://dx.doi.org/10.1037/0033-295X.108.3.550

Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition in
dynamical models of multialternative choice. Psychological Review,
111, 757–769. http://dx.doi.org/10.1037/0033-295X.111.3.757

Wedell, D. H. (1991). Distinguishing among models of contextually in-
duced preference reversals. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 17, 767–778. http://dx.doi.org/10.1037/
0278-7393.17.4.767

Wedell, D., & Pettibone, J. (1996). Using judgments to understand decoy
effects in choice. Organizational Behavior and Human Decision Pro-
cesses, 67, 326–344. http://dx.doi.org/10.1006/obhd.1996.0083

Wollschläger, L. M., & Diederich, A. (2012). The 2N-ary choice tree
model for N-alternative preferential choice. Frontiers in Psychology, 3,
189.

Received April 11, 2014
Revision received December 18, 2014

Accepted January 8, 2015 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

847COMMENT ON TRUEBLOOD, BROWN, AND HEATHCOTE

http://dx.doi.org/10.1016/j.cogpsych.2007.12.002
http://dx.doi.org/10.1037/0033-295X.100.3.432
http://dx.doi.org/10.1037/0033-295X.100.3.432
http://dx.doi.org/10.1038/nn.3649
http://dx.doi.org/10.1038/nn.3649
http://dx.doi.org/10.1006/obhd.1996.0080
http://dx.doi.org/10.1086/208899
http://dx.doi.org/10.1086/208899
http://dx.doi.org/10.1006/obhd.1999.2880
http://dx.doi.org/10.1006/obhd.1999.2880
http://dx.doi.org/10.1037/0033-295X.108.2.370
http://dx.doi.org/10.1037/0033-295X.108.2.370
http://dx.doi.org/10.1086/209205
http://dx.doi.org/10.1016/j.tins.2004.01.006
http://dx.doi.org/10.1016/j.tins.2004.01.006
http://dx.doi.org/10.1371/journal.pcbi.1002607
http://dx.doi.org/10.1371/journal.pcbi.1002607
http://dx.doi.org/10.1037/a0030776
http://dx.doi.org/10.3758/s13423-012-0288-9
http://dx.doi.org/10.3758/s13423-012-0288-9
http://dx.doi.org/10.1037/a0036137
http://dx.doi.org/10.1037/a0036137
http://dx.doi.org/10.1177/0956797612464241
http://dx.doi.org/10.1177/0956797612464241
http://dx.doi.org/10.1037/a0020580
http://dx.doi.org/10.1037/a0020580
http://dx.doi.org/10.1037/h0032955
http://dx.doi.org/10.2307/2937956
http://dx.doi.org/10.1287/mnsc.39.10.1179
http://dx.doi.org/10.1287/mnsc.39.10.1179
http://dx.doi.org/10.1037/0033-295X.108.3.550
http://dx.doi.org/10.1037/0033-295X.111.3.757
http://dx.doi.org/10.1037/0278-7393.17.4.767
http://dx.doi.org/10.1037/0278-7393.17.4.767
http://dx.doi.org/10.1006/obhd.1996.0083

	Examining the Mechanisms Underlying Contextual Preference Reversal: Comment on Trueblood, Brown, ...
	The MLBA Model
	Front-End Component
	Back-End Component

	Classification of Mechanisms of Contextual Preference Reversal
	Comparisons With All Items in the Choice Set
	Distance-Dependent Interactions
	Asymmetric Weights for Advantages and Disadvantages
	Nonlinear Subjective Attribute Space
	Sequential Stochastic Samplings of the Attributes
	Asymmetric Attribute Weights

	Sensitivity to Stimulus Changes in the MLBA Model
	The Attraction Effect
	The Compromise Effect
	Back-End Predictions

	Discussion
	Future Experimental Studies
	Parametric manipulation of the decoys in the attribute space
	Individual differences and correlation of effects within subjects
	Presentation mode (simultaneous/sequential) and preference reversal


	Conclusion
	References


