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11 Abstract Visual search is central to the investigation of

12 selective visual attention. Classical theories propose that dis-

13 play items are identified as focal attention is deployed serially

14 to their locations based on their salience. While this accounts

15 for set-size effects over a continuum of task difficulties, it has

16 been suggested that parallel models can account for such ef-

17 fects equally well. We compared the serial Competitive

18 Guided Search model with a parallel model in their ability to

19 account for RT distributions and error rates from a large visual

2� search data-set featuring three classical search tasks: 1) a spa-

21 tial configuration search (2 vs. 5); 2) a feature-conjunction

22 search; and 3) a unique feature search (Wolfe, Palmer &

23 Horowitz Vision Research, 50(14), 1304-1311, 2010). In the

24 parallel model, each item is represented by a diffusion to two

25 boundaries (target-present/absent); the search corresponds to a

26 parallel race between these diffusors. The parallel model was

27 highly flexible in that it allowed both for a parametric range of

28 capacity-limitation and for set-size adjustments of identifica-

29 tion boundaries. Furthermore, a quit unit allowed for a contin-

3�uum of search-quitting policies when the target is not found,

31with “single-item inspection” and exhaustive searches com-

32prising its extremes. The serial model was found to be superior

33to the parallel model, even before penalizing the parallel mod-

34el for its increased complexity. We discuss the implications of

35the results and the need for future studies to resolve the debate.

36Keywords Visual search . Attention . Parallel processing .

37Serial processing . Computational models . Model

38comparison . RT distributions . Search termination

39Visual search is ubiquitous in daily life, as when we look for a

4�particular object (target) in a crowded scene containing nu-

41merous other objects (distractors) and also is central to the

42investigation of the nature of selective visual attention.

43Classical theories of selective attention suggest that two stages

44or modes of processing are involved in visual search: 1) a

45parallel, preattentive, and capacity-unlimited stage in which

46all visual items are processed to extract a search-guiding

47“master” or “salience”1 map, and 2) a serial, capacity-

48limited stage during which focal attention is allocated serially

49to locations flagged on the salience map to identify selected

5�items (Treisman & Gelade, 1980; Treisman, 1988; Wolfe,

511994, 2007). Henceforth, we will refer to the classical two-

52stage theory of attention as the “serial model,” due to the

53nature of its attentional component. In contrast, according to

54single-stage, mostly signal-detection-based, parallel theo-

55ries—henceforth referred to as the “parallel model”— atten-

56tion is distributed diffusively and all items are identified

57simultaneously (Cameron, Tai, Eckstein & Carrasco, 2004;

1 Note that salience, or search ‘priority’, may be based on bottom-up

stimulus driven properties (visual gradients) or a combination of

bottom-up with top-down properties (matches to a target ‘template’ held

in some search-guiding memory).
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58 Eckstein, Thomas, Palmer & Shimozaki, 2000; Palmer, 1995;

59 Palmer & McLean, 1995; Palmer, Verghese, & Pavel, 2000;

6� Shaw, 1984; Verghese, 2001; Ward & McClelland, 1989).

61 Single-stage parallel models, in turn, are in contention with

62 respect to whether the diffuse-attention mode of processing is

63 capacity-limited (Snodgrass & Townsend, 1980; Thornton &

64 Gilden, 2007; Ward & McClelland, 1989) or unlimited

65 (Palmer & McLean, 1995; Verghese, 2001); we will discuss

66 this important distinction below.

67 The most important empirical pattern that has been taken to

68 be critical for distinguishing between serial and parallel (1- vs.

69 2-stage) attentional-allocation theories of visual search is the

7� effect of set size on mean search RT, in particular the slope of

71 the function relating RT to set size. Thus, the classical result of

72 zero slopes in easy search tasks has been interpreted as an

73 indication of parallel, “pop-out” search, whereas positive

74 slopes2 in more difficult tasks have been interpreted as an indi-

75 cation of a serial search process that relies on focal attention

76 (Treisman & Gelade, 1980; Treisman, 1988). According to the

77 theory of Guided Search (GS), a continuum of search slopes

78 can be obtained by varying the salience of the target among

79 distractors, which is a function of the target-distractor contrast.

8� In GS, target salience controls the probability with which the

81 target item is chosen and identified in each (serial-step) deploy-

82 ment of focal attention: When target salience is very high, the

83 target is invariably selected and identified first, irrespective of

84 the set size, thus accounting for the flat RT/set-size slopes in

85 pop-out tasks. On the other extreme, when target salience is

86 very low, the target is not more salient than any of the distractors

87 and hence item-selection is random. Accordingly, more items

88 need to be searched as set size increases, resulting in steep

89 slopes. Finally, in-between these two extremes, intermediate

9� slopes result from moderate levels of target saliency (Wolfe,

91 1994, 1998, 2007; Liesefeld et al., 2015).

92 This classic account, however, has been challenged by sup-

93 porters of parallel models, who pointed out that under certain

94 assumptions, single-stage parallel search models also can

95 account for the set-size regularities discussed above. In partic-

96 ular, it has been argued that mean RT × set size functions are

97 inadequate to discriminate between serial and parallel search

98 mechanisms (Thornton & Gilden, 2007; Townsend, 1972,

99 1976, 1990; Palmer, 1995; Palmer & McLean, 1995; Palmer

1�� et al., 2000; Verghese, 2001; Ward & McClelland, 1989). That

1�1 is, shallow search slopes in easy searches and steep slopes in

1�2 difficult searches can be generated both from serial and paral-

1�3 lel mechanisms. For example, a parallel search across all the

1�4 items in the display can display positive slopes if attentional

1�5 capacity is limited, so that the amount of processing resources

1�6 that can be allocated towards each item decreases with set size

1�7 (Ward & McClelland, 1989; Snodgrass & Townsend, 1980).

1�8Moreover, even unlimited-capacity parallel models can

1�9account for set-size effects, as a consequence of increased

11�decision criteria to mitigate increases in the influence of deci-

111sion noise with increasing set size: without such decision-

112criteria change, the more elements there are to identify, the

113higher are the chances that one of the distractors will be

114misidentified as a target (Palmer & McLean, 1995; Verghese,

1152001). Recently, Williams, Eidels, and Townsend (2014) have

116challenged another alleged marker of seriality, namely: bimo-

117dality of RT distributions (Cousineau & Shiffrin, 2004), by

118demonstrating that such distributions could be generated by

119parallel models with attentional gradients. In sum, patterns of

12�effects on RTs and RT distributions that on first sight appear

121characteristic for serial models can also be explained by purely

122parallel models. Accordingly, the serial/parallel controversy is

123far from being settled. So far, however, no formal quantitative

124comparison of serial and parallel visual search models with

125respect to RT-distribution data has been performed.

126The purpose of the present paper was to compare a serial-

127search with a parallel-search model in their ability to account

128for the full distribution of search RTs (for both target-present

129and target-absent displays) and error rates, as a function of set

13�size. The serial model exemplar is the Competitive Guided

131Search model (CGS), which was recently fitted to the data

132of Wolfe, Palmer, and Horowitz (2010), providing a satisfac-

133tory account of the RT distributions, error rates, and their

134dependence on set size (Moran, Zehetleitner, Müller, &

135Usher, 2013). The parallel model was developed by us as an

136extension and integration of proposals made in previous stud-

137ies (Palmer & McLean, 1995; Thornton & Gilden, 2007; Ward

138& McClelland, 1989). In particular, it includes a family of

139models that have flexibility with respect to capacity (which

14�can be limited or non-limited, on a continuum), strategic set-

141size adjustments of the decision criteria, and the search-

142termination policy (i.e., how soon does one quit the search

143when the target has not been found).

144We fit RT distributions, following Wolfe et al.’s (2010)

145demonstration that RT distributions are more informative

146and constraining with respect to visual-search theories than

147mean RTs alone (Balota & Yap, 2011; Ratcliff, 1978). The

148models were fitted to an extensive benchmark data-set (of

149more than 100K search trials) collected by Wolfe et al., which

15�includes three of the most prevalent tasks in the visual-search

151literature: a color feature, a color-orientation conjunction, and

152a spatial-configuration search task. Whereas the spatial con-

153figuration (2 vs. 5) and the conjunction tasks produce positive

154set-size effects and have traditionally been considered to be

155indicative of a ‘serial’ architecture, the color-feature task pro-

156duces flat set-size slopes and has thus customarily been con-

157sidered to be indicative of a parallel architecture. We start with

158a brief description of the two models, followed by our com-

159putational methods and results. To anticipate, we find that the

16�parallel model is limited in its ability to fit the qualitative data

2 Typically, the slope is roughly twice as steep for target-absent compared

to target-present displays.

Psychon Bull Rev

JrnlID 13423_ArtID 978_Proof� 1 - 16/11/2015



AUTHOR'S PROOF

U
N
�
O
R
R
E
�
T
E
D
P
R
O
O
F

161 patterns from these search tasks and that quantitative formal

162 model comparisons consistently favor CGS. Finally we dis-

163 cuss interpretations and potential follow-up studies.

164 Computational modelsQ�

165 Serial search model: competitive-guided search

166 Competitive-guided search (CGS) is an instantiation of the

167 Guided Search framework, which, like GS (Wolfe, 1994,

168 2007), conceives of the search process as a sequence of selec-

169 tion�identification iterations. In each iteration, all visual items

17� compete for selection by the limited-capacity identification

171 process, with weights that are proportional to item salience.

172 Once an item is selected, it is correctly identified (with prob-

173 ability 1), with a Wald-distributed identification latency

174 (reflecting noisy accumulation to a single boundary; Luce,

175 1986). If the target is selected, search terminates with a “tar-

176 get-present” response. If a distractor has been selected and

177 identified as such, it is inhibited to prevent future reselection

178 of the same item. Additionally, CGS features a quit-unit that

179 competes with the visual items for selection (Fig. 1). The

18� activation of this unit increases over the course of the search

181 with each identified distractor item. When the quit-unit is select-

182 ed, the search is terminated and a “target-absent” response is

183 given. This allows the model to terminate search in a probabi-

184 listic way before all items are searched even when the target is

185 not found, accounting for the large overlap in RT distributions

186 between target-present and target-absent responses (Wolfe et al.,

187 2010). Together with residual time and motor-error parameters,

188 the model features a total of 8 parameters (see Moran et al.,

189 2013, for full details). An attractive property of this model is

19� that only a single set of parameters is needed for all set-size

191 conditions; that is, the number of parameters is independent of

192 the number of set-size conditions.

193 Parallel search model

194 We developed a parallel search model as an extension and

195 integration of a number of previous models (Palmer &

196 McLean, 1995; Thornton & Gilden, 2007; Ward &

197 McClelland, 1989). The core assumption of the model is that

198 all items are identified in parallel. For each item in the display,

199 we thus assume a corresponding item identifier that accumu-

2�� lates evidence for and against the hypothesis that the item is a

2�1 target. One such identifier is illustrated in Fig. 2, modeled as a

2�2 two-boundary noisy diffusion process, whose upper boundary

2�3 corresponds to a match (item is the target) and the lower

2�4 boundary to a mismatch (item is not the target). We assume

2�5 that all diffusers race in parallel and that they have the same

2�6 boundary separation a and starting point z. We additionally

2�7 assume that the target diffuser (if a target is present) has a drift

2�8rate v and that all distractor diffusers have the same absolute

2�9drift rate but with the opposite sign, − v.3 This two-boundary

21�diffusion is a standard way to extend signal-detection theory

211to account for RTs and speed-accuracy tradeoffs (Ratcliff,

2121978; see also Ratcliff et al., 2007, for a dual-diffusion model

213based on a race of diffusion processes).4 The model also

214includes decision noise, an essential component in the account

215of set-size effects in parallel search models (Palmer &

216McLean, 1995).

217For a display of set size n, we assume that n such diffusors

218run independently in parallel. We now describe the search-

219termination rule. A “target-present” decision is made as soon

22�as one of the diffusors reaches the upper boundary (self-ter-

221mination on matches). By contrast, ‘target-absent’ decisions

222are triggered by a quit unit, whose activation rises as more

223diffusers reach the lower boundary. Typically, parallel search

224models postulate that the search is exhaustive when a target is

225not found (Palmer & McLean, 1995, Ward & McClelland,

2261989; Williams et al., 2014). Importantly, our quit-unit-

227based termination rule reduces to an exhaustive search for

228certain parameters (see below). However, for other parame-

229ters, our termination-rule will quit the search “early,” i.e.,

23�before full-display inspection. Thus, our termination-rule aug-

231ments the model with further flexibility, with exhaustiveness

232comprising a special case, thus offering similar flexibility to

233that which is present in the CGS model.

234To elaborate, we assume that when the k'th item reaches the

235lower identification boundary (note that k does not index a

236spatial position but the fact that k − 1 items have already

237reached at the distractor boundary before the focal item), the

238
search quits with probability k

�
n

� �q
, where q ≥ 0 is the quit-

239unit exponent and a free parameter of the model. k
�
n

is the

240proportion of display items that have reached the lower

241boundary. Accordingly, the tendency to quit the search

242becomes stronger as the proportion of the display items iden-

243tified as distractors increases (see Donkin & Shiffrin, 2011, for

244a similar search termination rule). Note that if the n'th item

245reaches the lower boundary (and assuming the search has not

246already terminated), the quit unit is triggered with probability

2471. For very high quit-unit exponents (q�∞) the search is

3 This assumption implies that observers set non-biased drift rate criteria

for interpreting target-match vs. mismatch evidence. In principle, ob-

servers could bias their drift rate criterion so that distractors and targets

generate drift rates that are unequal in their magnitude, implementing a

'dynamic integration bias' (e.g., Moran, 2015). However, here we assume

that any bias in identification is fully reflected in the diffusion starting

point (see the parameter z below), but otherwise integration proceeds in a

non-biased manner.
4 The notion of a race between diffusion processes captures the intuition

that each item-identification is competitive in terms of evidence-

accumulation for or against the target, while the different diffusors operate

independently of each other (except for the capacity constraint on the

drift, which we discuss below).

Psychon Bull Rev

JrnlID 13423_ArtID 978_Proof� 1 - 16/11/2015



AUTHOR'S PROOF

U
N
�
O
R
R
E
�
T
E
D
P
R
O
O
F

248 exhaustive, because for any k < n the quitting probability is

249 negligible (limq�∞
k
�
n

� �q
� 0 ). The other extreme is obtain-

250 ed when q = 0, where the quit unit is deterministically trig-

251 gered by the first element to reach the lower bound (i.e.,

252 single-item inspection). Intermediate levels of q control the

253 tendency to quit the search earlier or later. This choice of quit

254 unit shares important similarities with the operation of the quit

255 unit in the CGS: In both models, the search-termination

256probability increases as a function of the number of rejected

257distractors and decreases as a function of set size.

258In addition to the search time, the model includes a uni-

259formly distributed ‘residual-time’ component that captures the

26�time consumed by ‘non-search’ processes, such as the initial

261perceptual encoding of the display and the motor production

262of the response. This choice of a uniform residual time is

263typical for applications of the diffusion model.5 In the

264Appendix, we provide analytical derivations of the RT densi-

265ties and error rates, for both target-present and target-absent

266conditions, based on the assumptions described above.

267To account for set-size effects on RTs and error rates, par-

268allel models of this type must assume that set size affects either

269the drift rates and/or the response boundaries. If processing

27�capacity is limited (Ward & McClelland, 1989), then the drift

271rate should decrease as a function of set size. By contrast, if

272capacity is unlimited, then the drift rate would be invariant

Fig. 1 CGS model (reproduced from Moran et al., 2013). Flow chart

depicts the sequence of decisions. When a trial is started, first a “quit-

or-continue” decision is made. The probability of quitting is described by

the equation for pquit, which is equal to the weight associated with the quit

unit relative to the summed weights associated with the quit unit and the

display items, wj. If search is not terminated, an item is selected for

inspection. If the target is selected, a “target-present” response is issued.

If a nontarget has been selected, the weights are adjusted, that is, wquit is

increased and the weight of the just inspected item is set to zero, after

which the sequence starts over with the next quit-or-continue decision.

Responses are subject to a small proportion of motor errors. The icons to

the right of the quitting decision and the attentional selection unit denote

the weights for the quit unit as well as the weights of one target, T, and

three distractors, D1 through D3. D2 has already been identified as a

nontarget and its weight was reset to zero. Also, the quit weight has

already been increased. The example illustrates some “target guidance,”

as the target weight is slightly higher than the distractor weights

Fig. 2 Noisy target match in the parallel model. Targets have a positive

drift v pointing towards the upper (yes) boundary; for nontargets, we

assume a symmetric diffusion process (drift -v) towards the negative

(no) boundary. Integration is subject to a diffusion noise denoted s

5 The mapping of diffusion-model parameters to psychological constructs

has been demonstrated behaviorally in perceptual-decision paradigms

(Schwarz, 2001; Voss et al., 2004). Additionally, there is electrophysio-

logical evidence (Philiastides et al., 2014; van Vugt et al., 2014) that the

non-decision time parameter maps onto neuronal non-decision processing

components.
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273 with respect to set size and set-size effects are attributable to

274 strategic changes in decision criteria mitigating the increasing

275 influence of noise. To equip the parallel model with ample

276 flexibility, we allowed the drift rates, starting points, and

277 boundary separations to vary with set size. Specifically, we

278 let the starting point, z, and the boundary separation, a, vary

279 freely as a function of set size (yielding 8 free model param-

28� eters for the four values of set size in the experiments).

281 Because in Wolfe et al.’s (2010) experiment, set size is ran-

282 domized across trials, this assumption entails that (highly

283 experienced) observers are able to rapidly estimate the set size

284 and use this information to adjust decision criteria.6 To allow a

285 flexible amount of capacity limitation, we assume that drift

286 rates vary with set size (n) as a power function, v nð Þ � v
nc

,

287 whose drift rate “v” and exponent “c” are additional free pa-

288 rameters; note that c = 0 corresponds to unlimited capacity and

289 c = 1/2 to a signal-detection-based derivation of limited capac-

290 ity (Ward & McClelland, 1989;Q2 Palmer, 1990; Smith & Sewell

291 2013). As customary, the diffusion noise s was maintained

292 fixed at a constant level s = 0.1 (but see Donkin, Brown, &

293 Heathcote, 2009). In addition to the two residual-time param-

294 eters, the mean Ter and the range ser, the model thus included

295 13 free parameters. The number of free parameters (np)

296 depends on the number of different set sizes k empirically

297 tested in the experiment, as np = 5 + 2 * k.

298 Methods

299 Sketch of the experimental methods of Wolfe et al. �2010)

3�� Wolfe et al. (2010) collected data from a total of 28 partici-

3�1 pants for three classic search tasks: nine participants in a fea-

3�2 ture search (with target defined by color), 10 in a conjunction

3�3 search (with target defined by a combination of color and

3�4 orientation), and nine in a spatial configuration search (with

3�5 a target digit-2 among distractor digit-5s). In each task, four

3�6 set sizes (3, 6, 12, and 18 items) were crossed with two trial

3�7 types (target present vs. absent) to create a factorial design

3�8 with a total of eight conditions. For each participant, approx-

3�9 imately 500 trials were run for each of the eight factorial cells.

31� Both factors were intermixed within experimental blocks, that

311 is, they varied randomly from trial to trial.

312 Model fitting Our full method for fitting the CGS model has

313 been reported in detail elsewhere (Moran et al., 2013).7 In

314fitting the parallel model, we repeated the same steps.

315Accordingly, our method is only sketched here. In brief, we

316adopted the Quantile Maximal Probability Estimation (QMPE;

317Heathcote, Brown, & Mewhort, 2002) procedure to our pur-

318pose. To utilize QMPE, each of the eight set-size (4) * target-

319presence (2) experimental conditions was separated into seven

32�bins: six bins defined by the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles

321for correct RTs and one bin for all error trials. Thus, the data

322from each search task provided 8 (conditions) * (7-1) = 48 free

323empirical observations. In essence, QMPE consists of

324Maximum-Likelihood Estimation (MLE) once the precise RT

325is censored and only bin identity is maintained. We fitted the

326model separately to the data of each participant as well as to the

327“average observer” obtained by averaging accuracy rates and

328correct-RT quantiles across participants. Further details are

329provided in the appendix.8

33�Results

331Spatial-configuration search �2 vs. 5)

332The best fits of the two models for the hardest task in the

333benchmark data of Wolfe et al. (2010) are illustrated in

334Fig. 3. The figure (as the following similar figures) depicts

335model predictions based on the fit for the average observer.

336As can be seen in Table 1, the capacity-limitation parameter

337for all observers (range 0.21-0.42; mean = 0.33) falls in the

338range between the unlimited capacity (c = 0) and the signal-

339detection notion of limited capacity (c = 0.5). Additionally, the

34�quit-unit exponent (range 9.45-42.76, mean = 21.59) indicates

341that participants tend to search the display deeply but not

342exhaustively when the target is not found. Figure 4 (left panel)

343displays the distribution over the number of items that were

344identified as distractors before the search was terminated on

345correct-rejection trials.

346As evident in the upper panels of Fig. 3, both models were

347able to account satisfactorily for the slowdown of RT with set

348size, for the skew in the RT distributions (larger distance

349between the upper quantile symbols) and for the substantial

35�overlap between the target-present and target-absent RT dis-

351tributions (Wolfe et al., 2010). In the parallel model, this slow-

352down is accounted for by both the decrease in drift rate (c > 0)

353and the increase in the boundary separation as functions of set

354size (Table 1). For hit trials (top left panel), however, there is a

355tendency for the parallel-model RT distributions to be too

356wide for the smaller set sizes (3, 6 items) and too narrow for

357the larger set sizes (12, 18 items). Additionally, the parallel

358model (red symbols) shows discrepancies in the false-alarm

359(FA) rates, particularly for set sizes 12 and 18 items (bottom

6 Adjusting two decision criteria is mathematically equivalent to

adjusting the boundary separation and the starting point.
7 Moran et al. (2013) fitted several sub-models and more constrained

CGS model variants: a “no-guidance” model for the 2-vs.-5 task, a 'half

set size' variant for the conjunction task, a model with a unique residual

time shift parameter for all tasks, or a model where a minimal mean

identification time was enforced. Here, we focus on the fits of the non-

constrained general 8-free parameter model.

8 Matlab simulation code for both models is provided in the Supplemental

Information.
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36� right panel). Indeed, the model predicts an increase in the FA

361 rate as a function of set size, whereas the empirical FA rate is

362 constant. The reason for the predicted increase in FA with set

363 size is that as set size increases, so does the probability that

364 one of the distractors will mistakenly hit the upper “target”

365 diffusion boundary in a target-absent display. Notably, this

366 tendency is mitigated by the search being non-exhaustive, so

367 that the effective set size that is searched when a target is not

368 found is smaller than the nominal set size. Furthermore, the

369 set-size-related increase in boundary separation acts to reduce

37� FAs. Still, these influences are overruled by the decrease in

371 drift rate, which acts to increase FAs. Regarding miss rates, the

372parallel and serial models seem to be “on par” (bottom left

373panel).

374To compare the goodness of fit for both models, we calcu-

375lated (Table 2) the difference between the parallel and CGS

376models with respect to deviance (i.e., minus twice the log

377likelihood of the data, under the QMPE parameters), AIC

378(Akaike, 1973), and BIC (Schwarz 1978). Strikingly, even

379without the additional penalty imposed by information criteria

38�(AIC, BIC) for the five extra parameters of the parallel model,

381the CGS model fits the data better for seven individual partic-

382ipants (i.e., all except participants 4 and 7) as well as for the

383group as a whole, as evidenced by the positive� Dev values.

t1�1 Table 1 Best fitting parameters for the parallel model in the 2-vs.-5-search task

t1�2 Participant v a3 a6 a12 a18 z3 z6 z12 z18 Ter ser c q

t1�3 1 0.40 0.20 0.24 0.28 0.31 0.09 0.11 0.13 0.14 0.23 0.00 0.30 21.68

t1�4 2 0.46 0.22 0.22 0.28 0.33 0.10 0.10 0.14 0.17 0.24 0.03 0.29 23.29

t1�5 3 0.47 0.30 0.33 0.39 0.43 0.15 0.17 0.20 0.21 0.35 0.00 0.42 14.80

t1�6 4 0.30 0.26 0.29 0.31 0.33 0.12 0.13 0.13 0.12 0.25 0.00 0.21 19.66

t1�7 5 0.44 0.23 0.25 0.30 0.31 0.11 0.11 0.13 0.13 0.28 0.29 0.36 9.45

t1�8 6 0.47 0.17 0.17 0.20 0.22 0.08 0.06 0.07 0.07 0.24 0.00 0.31 42.76

t1�9 7 0.46 0.29 0.32 0.39 0.42 0.13 0.16 0.20 0.21 0.31 0.00 0.39 10.70

t1�1� 8 0.34 0.17 0.21 0.26 0.29 0.07 0.09 0.11 0.11 0.22 0.14 0.30 19.66

t1�11 9 0.52 0.32 0.31 0.33 0.36 0.15 0.14 0.16 0.17 0.18 0.00 0.39 32.28

t1�12 Avg. Obs. 0.39 0.22 0.24 0.30 0.33 0.10 0.11 0.13 0.15 0.27 0.01 0.31 16.81

t1�13 Mean 0.43 0.24 0.26 0.30 0.33 0.11 0.12 0.14 0.15 0.26 0.05 0.33 21.59

Avg. Obs. row presents fits to averaged (RT-quantile and accuracy) data, whereas the “mean” row presents the parameters averaged across individual

participants. Subscripts refer to set size
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Fig. 3 Data fits of the serial and parallel models to the Wolfe et al. (2010)

“2 vs. 5” average-observer data. Empirical data are denoted with black *

symbols, the parallel-model predictions with red + symbols, and the CGS

predictions with blue diamonds. Right and left panels correspond to

target-present and target-absent trials, respectively. Upper and lower

panels correspond to quantile correct RTs and error rates, respectively
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384 Penalizing the models for complexity, AIC still prefers the

385 parallel model for Participants 4 and 7. According to BIC,

386 CGS is inferior only for participant 4, whereas for participant

387 7 the models are tied.

388 Conjunction search

389 For the conjunction-search task, too, the model fits provide

39� strong support for the CGS model (see Table 3 for the best-

391 fitting parameters). As shown in Fig. 5, the parallel model

392 provides a good fit for the target-present RTs (top left panel).

393 However, the model fails with respect to target-absent dis-

394 plays: it underestimates the inter-quantile range of RTs for

395 the large set size (12, 18 items; top right panel) and falsely

396 predicts an increasing FA rate with increasing set size (bottom

397 right panel). Additionally, CGS accounts better for the miss

398 rates (bottom left panel). A model comparison (Table 2)

399 showed that for all participants (except for Participant 1) as

4��well as for the group as a whole, CGS yielded lower deviance

4�1values despite its lower number of parameters. Even for

4�2Participant 1, after adding the penalty term, CGS was pre-

4�3ferred according to AIC (let alone, BIC).

4�4Feature search

4�5For the feature task, too, the model fits provide strong support

4�6for the CGS model (see Table 4 for the best-fitting parame-

4�7ters). To understand the reasons for this, we focus below on

4�8the fits of the parallel model. Considering first the target-

4�9present displays, we find that the parallel model provides a

41�good fit for the hit RTs (Fig. 6, top left panel). Remarkably, as

411in the data, there are no observable set size effects on the

412predicted hit RTs. Table 4 shows that with increasing set size,

413the threshold separation hardly changes, while the starting

414point moves closer to the lower target-absent boundary. With

415everything else being equal, this effect would lead to an
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Fig. 4 Distributions of the number of identified distractors before quit-unit triggering on correct rejection trials for the different tasks of Wolfe et al.

(2010), based on the best-fitting parameters for the average observers. The different colors indicate the different set sizes

t2�1 Table 2 Model comparison measures for the parallel vs. the CGS model for the different tasks

t2�2 Task 2 vs. 5 Conjunction Feature

t2�3 Participant �Dev �AIC �BIC �Dev �AIC �BIC �Dev �AIC �BIC

t2�4 1 98.2 108.2 139.6 −7.1 2.9 34.4 216.9 226.9 258.4

t2�5 2 172.7 182.7 214.2 3.8 13.8 45.2 33.1 43.1 74.5

t2�6 3 21.7 31.7 63.0 473.3 483.3 514.8 42.2 52.2 83.7

t2�7 4 −25.7 −15.7 15.7 113.5 123.5 154.9 77.7 87.7 119.2

t2�8 5 168.2 178.2 209.6 132.3 142.3 173.7 150.3 160.3 191.7

t2�9 6 307.1 317.1 348.6 396.7 406.7 438.2 −6.1 3.9 35.3

t2�1� 7 −41.4 −31.4 0.0 21.5 31.5 62.9 66.4 76.4 107.8

t2�11 8 222.6 232.6 264.1 212.3 222.3 253.7 121.0 131.0 162.4

t2�12 9 34.3 44.3 75.8 13.3 23.3 54.8 108.9 118.9 150.3

t2�13 10 227.1 237.1 268.6

t2�14 Avg. Obs. 971.6 981.6 1024.0 1732.7 1742.7 1785.7 704.5 714.5 757.0

t2�15 Group 957.5 1047.5 1429.4 1586.6 1686.6 2116.4 810.2 900.2 1282.2

The � (Dev, AIC, BIC) is calculated by subtracting the respective values for CGS from the parallel-model values. For the average observer (“Avg.

Obs.”), the number of observations was taken to be the total number of observations summed across participants. For the “Group” row, the entire set of

fits for the individual participants was considered as a single “group fit” for the entire data. The likelihood of this group fit was the product of the

likelihoods across individual observers. Additionally, the number of parameters and observations for the group fit were obtained by summing the number

of parameters and observations, respectively, across participants. Dev, deviance
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416 increase in hit RTs since the target has to traverse a longer

417 distance to reach the upper boundary. However, this effect is

418 offset by a weak tendency for “super-capacity,” that is: a neg-

419 ative capacity exponent, which results in set size increasing

42� drift rates. This weak super-capacity could arise if the larger

421 number of display items increased the target's (bottom-up)

422 salience.9 Note, however, that this drift/starting-point trade-

423 off is less successful in accounting for the miss rates: unlike

424 the data, the parallel model predicts a large increase in miss

425 rates as a function of set size (bottom left panel). Why does the

426 starting point move downwards, however?

427 To understand this, we need to consider the target-absent

428 condition. As shown in Fig. 6, in this condition, unlike in the

429 data, the model predicts a speed-up in correct rejections (top

43� right panel) in the form of shrinkage of the upper part of the

431 RT range. Figure 4 shows that when the target is not found, the

432 search is exhaustive. Thus, all other things being equal

433 (including boundaries and starting point), RTs for CRs would

434 increase with set size (it takes longer for more distractors to

435 reach the lower boundary). However, this “exhaustiveness

436 effect” is offset by the set-size-dependent decrease of the

437 starting point and the super-capacity. These “opposing effects”

438balance each other almost perfectly with respect to the three

439lowest RT quantiles (including the median), and maintain a

44�satisfactorily low stable rate of FAs (bottom right panel).

441However, unlike the data, the model predicts a speed-up in

442the two upmost (0.7, 0.9) CR quantiles. This intricate trade-off

443provides further demonstration for why stronger model con-

444straints can be gleaned by fitting search models to RT distri-

445butions, rather than only to central-tendency measures ( Q3Wolfe

446et al., 2000).

447Finally, a model comparison (Table 2) showed that for all

448participants (except for Participant 6) as well as for the group

449as a whole, CGS yielded lower deviance values despite its

45�lower number of parameters. Even for Participant 6, CGS

451was preferred according to AIC (let alone BIC). This finding

452is striking, taking into account that for a long time, feature

453search has been considered the prototypical task for a parallel

454search architecture.

455The parallel-model fits to the feature task that we presented

456above correspond to a highly flexible model, which assumes

457that boundaries, starting points, and drift rates can vary with

458set size and which also included the capacity and the quit-

459termination parameters. Interestingly, the inclusion of the lat-

46�ter did not help the parallel model in this case because the fit

461always converged to large q-values that correspond to

462exhaustive search (Table 4; Fig. 4, rightmost panel). To

463better understand the reason for this intruding behavior,

464we explored a more constrained model variant, which was

465obtained by setting a moderate upper bound on the quit

466parameter (q ≤ 5) that prevented a fully exhaustive search.

467As expected, the fits were worse than for the flexible model

468that we presented in Fig. 5. Notably, this model was able to

469account for the traditional property of flat mean-RT with set

47�size, but not for the full RT distribution and the error rate

471functions (see Supplemental information).

9 This is plausible for the present data set, because displays with more

items were also more densely packed. Importantly, higher item density

with featurally homogeneous displays entails more “iso-feature suppres-

sion” (i.e., suppression of the activation of a detector tuned to a particular

feature within its receptive field by the presence of objects possessing

similar features picked up by detectors in neighboring fields; e.g., Li,

1999), rendering the distractors less salient—which means that the target

becomes relatively more salient. In line with such an increase in iso-

feature suppression, several studies actually reported a decrease (instead

of the more typical increase�) of RTs with the number of distractors in

singleton feature ('pop-out') search, as in the current task (Bravo &

Nakayama, 1992; Rangelov, Müller, & Zehetleitner, 2013).

t3�1 Table 3 Best fitting parameters for the parallel model in the conjunction-search task

t3�2 Participant v a3 a6 a12 a18 z3 z6 z12 z18 Ter ser c q

t3�3 1 0.44 0.15 0.14 0.14 0.15 0.07 0.06 0.04 0.04 0.30 0.07 0.08 118.79

t3�4 2 0.52 0.13 0.13 0.14 0.14 0.05 0.04 0.04 0.04 0.34 0.00 0.12 62.34

t3�5 3 0.66 0.30 0.24 0.21 0.23 0.13 0.09 0.07 0.07 0.19 0.00 0.41 86.97

t3�6 4 0.55 0.08 0.08 0.09 0.10 0.04 0.03 0.04 0.04 0.26 0.01 0.08 20.86

t3�7 5 0.39 0.11 0.12 0.13 0.14 0.06 0.05 0.04 0.05 0.29 0.00 0.08 26.43

t3�8 6 0.49 0.16 0.15 0.17 0.20 0.07 0.06 0.06 0.07 0.22 0.00 0.31 23.89

t3�9 7 0.62 0.20 0.18 0.17 0.18 0.09 0.07 0.06 0.06 0.33 0.00 0.24 115.31

t3�1� 8 0.33 0.16 0.15 0.17 0.19 0.08 0.06 0.07 0.08 0.27 0.00 0.08 20.05

t3�11 9 0.48 0.15 0.14 0.15 0.16 0.06 0.05 0.05 0.04 0.31 0.07 0.12 174.80

t3�12 10 0.63 0.22 0.18 0.20 0.23 0.10 0.07 0.08 0.10 0.26 0.00 0.34 46.38

t3�13 Avg. Obs. 0.47 0.15 0.14 0.15 0.17 0.07 0.05 0.05 0.06 0.29 0.00 0.18 33.60

t3�14 Mean 0.51 0.17 0.15 0.16 0.17 0.07 0.06 0.06 0.06 0.28 0.02 0.19 69.58

“Avg. Obs.” row presents the parameters for the average observer (data averaged across observers) and the “mean” row displays the parameters averaged

across individual participants
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472 Discussion

473 Despite the remarkable support for the two-stage Guided

474 Search model in accounting for visual search data (Wolfe,

475 1994, 2007), it has been suggested that the typical set-size

476 effects on mean RT (positive slopes) also are consistent with

477 a number of parallel search models (Palmer & McLean, 1995;

478 Thornton & Gilden, 2007; Verghese, 2001; Ward &

479 McClelland, 1989). Such models could, in principle, account

48� for the positive slopes as a result of either a reduced rate of

481 item processing due to limited capacity (Snodgrass &

482 Townsend, 1980; Shaw, 1984) or an increase in the decision

483 boundary necessitated to maintain error rates at reasonable

484levels; without such a boundary change, the FA-rate would

485dramatically increase with set size (Palmer & McLean,

4861995). The purpose of our investigation was to develop, based

487on an extension and integration of prior suggestions (Palmer

488& McLean, 1995; Thornton & Gilden, 2007; Ward &

489McClelland, 1989), such a parallel model that combines both

49�capacity limitations and flexible decision-boundary settings

491and to assess how well it accounts for visual search data com-

492pared with the serial CGS model, which has recently been

493shown to account well for RT-distribution data (Moran et al.,

4942013). To endow the parallel model with ample flexibility, we

495even introduced a “quit unit” that allows for pre-exhaustive-

496search termination when the target is not found. We focused
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Fig. 5 Model fits for the conjunction-search task of Wolfe et al. (2010) to average observer data. The arrangement of the figure is identical to Fig. 3

t4�1 Table 4 Best-fitting parameters for the parallel model in the feature-search task

t4�2 Participant v a3 a6 a12 a18 z3 z6 z12 z18 Ter ser c q

t4�3 1 0.32 0.11 0.11 0.11 0.11 0.05 0.04 0.03 0.02 0.29 0.07 -0.13 200.1

t4�4 2 0.34 0.11 0.10 0.10 0.10 0.05 0.04 0.03 0.03 0.22 0.08 -0.12 178.4

t4�5 3 0.72 0.08 0.07 0.07 0.07 0.04 0.03 0.03 0.02 0.25 0.08 -0.05 44.2

t4�6 4 0.38 0.18 0.17 0.17 0.17 0.08 0.06 0.05 0.04 0.21 0.00 -0.05 204.6

t4�7 5 0.47 0.12 0.11 0.11 0.11 0.05 0.04 0.03 0.02 0.26 0.07 -0.05 170.1

t4�8 6 0.53 0.10 0.09 0.09 0.09 0.05 0.04 0.03 0.02 0.24 0.06 -0.06 111.5

t4�9 7 0.34 0.11 0.11 0.11 0.11 0.04 0.03 0.03 0.02 0.21 0.00 -0.13 159.5

t4�1� 8 0.35 0.14 0.13 0.12 0.12 0.06 0.05 0.03 0.03 0.23 0.01 -0.10 159.2

t4�11 9 0.36 0.10 0.10 0.10 0.11 0.04 0.03 0.03 0.02 0.26 0.13 -0.12 163.9

t4�12 Avg. Obs. 0.39 0.12 0.11 0.11 0.11 0.05 0.04 0.03 0.03 0.24 0.07 -0.09 78.8

t4�13 Mean 0.42 0.12 0.11 0.11 0.11 0.05 0.04 0.03 0.03 0.24 0.06 -0.09 154.6

”Avg. Obs.” row presents the parameters for the average observer (data averaged across observers) and the “mean” row displays the parameters averaged

across individual participants
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497 on three classical search tasks from a rich data set (Wolfe et al.,

498 2010) that provided reliable estimators of the full RT distribu-

499 tions for individual observers. Importantly, both the spatial

5�� configuration and the conjunction tasks exhibit robust set-

5�1 size effects, thus allowing for probing the origin(s) of those

5�2 effects. Methodologically, we embraced Wolfe et al.’s (2010)

5�3 call for fitting the models to RT distributions, rather than sim-

5�4 ply to RT means, as RT distributions provide enhanced con-

5�5 straints on the nature of the generating search mechanism(s).

5�6 Consider first the more difficult (“serial”) search tasks. The

5�7 results showed that the fits of the parallel model were prob-

5�8 lematic. In the 2-vs.-5 task, the model erroneously predicted a

5�9 set-size-dependent increase in FA rate and failed in accounting

51� for the set-size-related range expansion in hit RTs. For the

511 conjunction task, the parallel model failed to account for per-

512 formance on target-absent displays with respect to both RT

513 distributions and error rates. Formal model-comparison pro-

514 cedures using AIC and BIC consistently favored CGS for

515 almost all participants and for the group as a whole

516 (Table 2). Importantly, the superiority of CGS was not a con-

517 sequence of “over-parameterizing” the parallel model and

518 hence subjecting it to heavier AIC/BIC penalties. Indeed, de-

519 spite its larger number of free parameters (13 vs. 8 for CGS),

52� the parallel model performed worse based on a goodness-of-fit

521 deviance measure, which does not apply number-of-

522 parameters-related penalties. This finding is striking, especial-

523 ly when taking into account that CGS provided adequate fits

524 with parameters that were invariant with respect to set size,

525 whereas the parallel model allowed for flexible set-size adjust-

526 ments in boundary separation and identification bias.

527 Furthermore, by introducing a capacity parameter “c,” the

528 parallel model was equipped with the ability to behave in a

529 capacity-limited (e.g., Ward & McClelland, 1989) as well as

53�in a capacity-unlimited (Palmer & McLean, 1995; Verghese,

5312001) and even in a super-capacity manner. Thus, our model

532comparisons show that the serial, two-stage CGS model

533(Moran et al., 2013) performs better than a family of parallel

534models that vary along the degree of capacity limitation.

535Having compared the models with respect to these tradi-

536tional serial search tasks, we next compared the models based

537on their fits to the feature task. Given that this task has tradi-

538tionally been considered to epitomize a parallel search archi-

539tecture, it provides a stringent test for the serial model.

54�Strikingly, we found consistent superiority for CGS

541(Table 2), especially in its ability to provide a better account

542for miss rates and correct-rejection RTs.

543Differences between the serial and the parallel model

544with respect to the feature task

545As explained by Moran et al. (2013), CGS accounts for the

546feature-task data by assigning very high weights to both target

547saliency and to the quit-unit boost. This has two desirable

548consequences with respect to the model’s capability in fitting

549the data. On target-present trials, for any set size the target is

55�almost certainly identified as the first item. On target-absent

551trials, for any set size, the quit unit is almost always selected

552after the rejection of the first distractor. In other words, if the

553target failed to pop out, observers safely terminate the search,

554deciding that a target is absent. Thus, in both target-present

555and target-absent displays, a single item is identified; conse-

556quently, there are no set-size effects. The rightmost panel in

557Fig. 4, however, shows that according to the parallel-model

558account, feature search was exhaustive when the target was

559not found. This finding appears puzzling at first glance,

56�because by setting the quit-unit exponent to 0 (q = 0), the
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Fig. 6 Model fits for the feature task of Wolfe et al.’s (2010) to average observer data. Arrangement of the figure is identical to that of Fig. 3
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561 model can also quit after a single item is inspected. Why, then,

562 can it not successfully mimic the serial model?

563 Interestingly, this question highlights a fundamental distinc-

564 tion between the serial and parallel models compared. Whereas

565 in our CGS parameterization, identification time was invariant

566 with respect to set size, this was not the case with the parallel

567 model. Imagine we would maintain all the parameters of the

568 parallel model invariant across set size and set a zero quit-unit

569 exponent so that it quits after the first distractor reaches the

57� lower boundary. Even in this case, the parallel model would

571 not mimic the serial model because the event of “identifying

572 the first item” in the parallel model is an event that is sensitive

573 to statistical facilitation: With more display items, ceteris

574 paribus, the first item would be identified faster, producing

575 negative RT slopes (this is obvious for target-absent responses,

576 but also would occur with target-present responses, as the tar-

577 get diffusor needs to be faster than all of the distractor diffusors

578 in order for the response to amount to a “hit”).

579 Notably, everything else is not necessarily equal as the par-

58� allel model was endowed with ample flexibility to apply set

581 size modulations with respect to threshold separation, starting

582 point, and capacity. The results of our quantitative model fits

583 show, however, that the empirical RT distributions and error

584 rates provide strict constraints such that a policy of exhaustive

585 search (when the target is not found) yielded the best fits.

586 Ceteris paribus, search-exhaustiveness induces a plethora of

587 set-size effects: a slowdown in CRs (due to the 'need to wait'

588 for the last distractor to reach the lower boundary), a speedup in

589 hits (due to statistical facilitation; note that a 'hit' can be trig-

59� gered by a distractor, rather than the target, mistakenly reaching

591 the upper bound) an increase in FA-rate (higher likelihood that

592 one of the distractors will mistakenly reach the upper boundary

593 in target absent displays) and a reduction in miss rates (once

594 more, due to the higher probability that one of the distractors

595 will mistakenly reach the upper boundary in a target present

596 display and will trigger a correct hit response). In its best fits,

597 the parallel model tried compensating for these effects with set

598 size reductions of starting points and with increasing drift

599 (“super-capacity”). These fits, alas, were inferior to those pro-

6�� duced by CGS, because they failed to provide a satisfactory

6�1 tradeoff in accounting for miss rates and they generated an

6�2 unobserved set-size related speedup in the high quantiles of

6�3 the CR distributions. As shown in the Supplement, more

6�4 constrained fits (which impose a limit on the quit parameter)

6�5 failed to improve the model fits.

6�6 Qualifications and future directions

6�7 While our results favor the two-stage serial CGS model, they

6�8 need to be taken with caution with regard to concluding an

6�9 unequivocal superiority for a serial over a parallel architecture

61� of attentional selection. First, extensions of our parallel model

611 need to be explored. For example, within the framework of

612parallel-diffusor models, it would be important to probe the

613possibility that different items are processed with different drift

614rates due to attentional gradients. Such gradients (Cheal, Lyon &

615Gottlob, 1994; Downing, 1988; LaBerge & Brown, 1989;

616Müller & Humphreys, 1991) may play an important role in

617parallel models because, as recently shown by Williams et al.

618(2014), they allow parallel models to produce mixture-RT dis-

619tributions, an important characteristic of serial search models

62�(e.g., Moran et al., 2013). Because such investigations will de-

621pend on a number of critical assumptions (e.g., the magnitude of

622attentional gradients, the within-trial dynamics of such gradients,

623etc.), they will require a dedicated investigation. Additionally, in

624the current model, we adopted the simplifying assumption that

625people set nonbiased drift rate criteria for the item-identification

626process and that any identification-biases are reflected in the

627starting point (see also Footnote 3). Consequently, the identifi-

628cation drift-rates for the target and the distractors are equal in

629magnitude. This assumption, however, could be relaxed in

63�future studies to allow for different target-distractors drifts.

631Future investigations may also explore alternative termination

632rules for target-absent responses. While our quit unit constitutes

633one approach for implementing an “urgency signal” (the tenden-

634cy to quit the search increases as more distractors are rejected),

635alternative mechanisms could be explored, for example, by col-

636lapsing decision boundaries (Drugowitsch et al., 2012; Moran,

6372015; Thura et al., 2012; but see Hawkins et al., 2015; Moran,

638Teodorescu, & Usher, 2015).

639It should be noted that our model comparison study is para-

64�metric in that it makes specific distributional assumptions with

641respect to the components of the model (e.g., item-

642identification and residual times). In this respect, our approach

643is modest in its ambition as compared with non-parametric,

644model-free attempts to identify the visual-search cognitive

645architecture. Alas, prior model-free attempts have produced

646inconclusive conclusions, because they highlighted the possi-

647bility for serial-parallel mimicry (for a recent review, see

648Algom et al. 2014). Still, one limitation of our study is that it

649cannot rule out the possibility that different distributional

65�assumptions in future serial and parallel models will improve

651visual search models and that such future parallel models will

652outperform future serial models. This, however, does not

653imply that our current findings are trivial. On the contrary,

654we contend that the advantage of our approach is that—as a

655consequence of making parametric assumptions—it avoids

656the risk of model mimicry. Furthermore, our parametric assump-

657tions are well motivated: By grounding our parallel model on a

658diffusion-type architecture—the currently most popular

659approach for modeling speeded decisions across a wide range

66�of cognitive tasks—we believe that our findings are highly in-

661formative in the context of current research. Finally, these results

662provide a challenge that more sophisticated parallel models will

663need to rise to if they wish to compete with Guided-Search type

664serial models in accounting for visual search data.
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665 An alternative approach to testing the adequacy of the par-

666 allel model of visual search that may avoid the pitfall of specific

667 assumptions associated with the model we explored here (e.g.,

668 termination rule on target-absent trials) could rely on the devel-

669 opment of ideal-observer-inspired models (Palmer, Verghese &

67� Pavel, 2000). One such promising signal-detection model was

671 developed by Verghese (2001) to account for accuracy with

672 brief search displays. Unlike the current parallel model, in the

673 Verghese model, the individual items are not separately identi-

674 fied. Rather, search decisions are based on a global match

675 between the search display and a target template. This global

676 match in turn is based on the maximal value of the local

677 matches between each display item and the target. Decisions

678 are based on comparing the global match with a “signal-detec-

679 tion” criterion (see also Cameron et al., 2004; Eckstein et al.,

68� 2000). While this model was shown to account for set-size

681 effects on accuracy, it has not yet been formally extended and

682 tested on its ability to account of RT distributions.10

683 Furthermore, conclusions (favoring the serial model) may

684 need to be qualified to visual search displays that are available

685 until response. In a set of studies, Palmer and colleagues

686 (2000) showed that in a paradigm in which the display was

687 presented very briefly and the dependent variable was accura-

688 cy (rather than RT), a parallel signal-detection model with

689 unlimited capacity provided a better account of the data than

69� either a parallel model with limited capacity or a serial model

691 (Palmer, 1994; Palmer, Ames, & Lindsey, 1993; Dosher, Han,

692 & Lu, 2004, 2010). It thus is possible that the strategy that

693 observers rely on in visual search varies with task contingen-

694 cies: While for briefly presented displays observers may rely

695 on the maximal value of saliency, with time-unlimited and

696 difficult search displays, they may use the salience map to

697 engage in serial attentional selections that guide a high-

698 resolution identification process to verify target presence.

699 With more difficult displays still, observer also may need to

7�� use eye movements to explicitly search through the display

7�1 (Bloomfield, 1979; Zelinsky & Sheinberg, 1997).

7�2 To better understand the nature of the operating processes

7�3 in visual search, future studies comparing serial and parallel

7�4 models are required. Such studies should examine additional

7�5 data-sets based on experimental manipulations that are

7�6 designed to differentiate between these types of models. For

7�7 example, it would be important to test how these types of

7�8 models account for visual-search performance in displays in

7�9 which target salience is manipulated on a continuum

71� (Liesefeld et al., 2015) or in which target prevalence is manip-

711 ulated (Wolfe & Van Wert, 2010). Furthermore, the

712understanding of the nature of attentional processes in visual

713search will have to include efficiency considerations. For

714example, once attentional gradients are assumed (Williams

715et al; 2014), a two-stage serial model, such as Guided

716Search, which shifts its high-resolution attentional resources

717across the display, may just be the best way to use the visual

718system to optimize search performance under its constraints.

719Finally, while serial and parallel theories describe two pro-

72�totypical search mechanisms, future research also should con-

721sider the possibility of hybrid mechanisms. For example, an

722attentional spotlight (Eriksen & Yeh, 1985; LaBerge and

723Brown 1989; Posner & Petersen, 1990) might be deployed

724serially between spatial locations in the search display, while

725processing items simultaneously (i.e., in parallel) within loca-

726tions. Another possibility is that the search mechanism is anal-

727ogous to a “car washing” pipeline, wherein several items are

728identified in parallel and the identification of another item can

729begin only after the identification of an 'engaged' item com-

73�pletes (Wolfe, 2007). Exploring such possibilities in future

731formal models of visual search, and evaluating these models

732based on RT distributional data, may yield “middle-ground

733theories” with respect to the serial-parallel search debate.
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736Appendix: fitting the parallel model

737As explained in the main text, the parallel model was fitted

738using QMPE. To utilize QMPE one has to calculate, for a

739given ensemble of model parameters and for each experimen-

74�tal condition, predictions with respect to the proportion of

741trials terminating in each of the seven bins (i.e., RT quantiles

7420.1-0.9 and errors). These calculations, for the parallel model,

743were based on first calculating probabilities of events for a

744single diffuser, and then deriving predictions for the ensemble

745of n parallel diffusers based on the assumption of stochastic

746independence across the different diffusers. We describe each

747of these steps in turn.

748To calculate the probability that a single diffuser hits its

749upper boundary by time t, we used the infinite sum formulas

75�for the cumulative density function (henceforth CDF) of the

751diffusion process (Busemeyer & Diederich, 2010; Cox &

752Miller, 1965; Feller, 1968; Luce, 1986; Ratcliff, 1978;

753Smith, 1990, 2000). In practice, we calculated the first 1000

754terms in the sum.11 The resulting CDF is of the form F(t; a, v,

755z, up/down): the probability that a diffuser starting at z, with
10 We have performed preliminary explorations of a sequential-sampling

extension of this model, which yielded a lower poorer fits as compared

with the CGS model (Moran et al., 2013). One challenge that the test of

this model involves is that, unlike the one presented, it does not allow

analytical calculations and thus requires more laborious, slow and noisy,

model simulations.

11 In fitting the feature task we sometimes encountered numerical prob-

lem (e.g., when drift rates get very high). Thus, we also fit the average

observer of this task with an alternative methods were the (single diffuser)

CDF was estimated based on a simulation of 100K diffusion trials,

obtaining similar results (i.e., superiority of CGS over the parallel model
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756 drift v, has reached the upper (or lower) threshold with thresh-

757 old separation a by time t. These CDFs were used to calculate

758 target and distractor events as follows. The probabilities that

759 the target diffusor has reached the upper or lower threshold by

76� time t are given by FT,up = F(t; a, v, z, up) and FT,down = F(t; a,

761 v, z, down), respectively. The probabilities that a distractor

762 diffusor has reached the upper or lower threshold by time t

763 is given by FD,up = F(t; a, v, − z, down) and FD,down = F(t; a, v,

764 − z, up), respectively. The density probability functions

765 (henceforth pdf) fT,up, fT,down, fD,up, fD,down were calculated

766 based on numerical derivations of the corresponding CDFs.

767 Based on these distributions, we calculated the probabili-

768 ties for Hits and Correct Rejections (CRs) with ts ≤ t, as de-

769scribed next. Note that ts denotes the “search time,” which is

77�different from the full RT that includes an additional residual

771component. Miss and False Alarm (FA) rates were calculated

772as the complements for Hits and CRs, respectively, with

773ts =∞.12

774Hits The pdf was calculated as follows. Hits are composed

775of three disjoint events, each described in turn. The first

776event is that the target diffusor is the first to reach the upper

777boundary. In this case any number of 0 ≤ k ≤ n − 1

778distractors could have already reached the lower boundary,

779failing to trigger the quit unit. Hence this event contributes

78�the term:

Q4

781

782

783

�n−1

k�0

n−1

k

� �

f T ;up tsð ÞFD;down
k tsð Þ 1−FD;down tsð Þ−FD;up tsð Þ

� �n−k−1
�
l�1

k

1− l
�
n

� �q� �� �

784785

786 The second event is that any of the n − 1 distractor diffusors

787 is the first element to reach the upper boundary, while the

788target has already reached the lower boundary in addition to

7890 ≤ k ≤ n − 2 distractors. This event contributes the term:

79�

791

792

n−1ð Þ
�n−2

k�0

n−2

k

� �

f D;up tsð ÞFT ;down tsð ÞFD;down
k tsð Þ 1−FD;down tsð Þ−FD;up tsð Þ

� �n−k−2
�
l�1

kþ1

1− l
�
n

� �q� �� �

793794

795 The third event is that any of the n− 1 distractor diffusors is the

796 first to reach the upper boundary, while 0 ≤ k≤ n− 2 distractors

797have already reached the lower boundary and the target is still

798diffusing between boundaries. This event contributes the term:

799

8��

8�1

n−1ð Þ
�n−2

k�0

n−2

k

� �

f D;up tsð Þ 1−FT ;down tsð Þ−FT ;up tsð Þ
� �

FD;down
k tsð Þ 1−FD;down tsð Þ−FD;up tsð Þ

� �n−k−2
�
l�1

k

1− l
�
n

� �q� �� �

802803

8�4 In sum,

8�5

8�6

8�7

f Hit tsð Þ �
�n−1

k�0

n−1

k

� �

f T ;up tsð ÞFD;down
k tsð Þ 1−FD;down tsð Þ−FD;up tsð Þ

� �n−k−1
�
l�1

k

1− l
�
n

� �q� �� �

þ n−1ð Þ
�n−2

k�0

n−2

k

� �

f D;up tsð ÞFD;down
k tsð Þ 1−FD;down tsð Þ−FD;up tsð Þ

� �n−k−2
�
l�1

k

1− l
�
n

� �q� �
FT ;down tsð Þ 1−

k þ 1

n

� �q� �

þ 1−FT ;down tsð Þ−FT ;up tsð Þ

� �� �

808809

81�

811 The CDF FHit(ts) was found by numerically integrating

812 this term with a resolution of 0.1 ms. FHit(∞) was found

813 by integrating up to a large ts after which the result hardly

814 changed (typically, 5 sec, 3 sec and 1.5 sec in the spatial

815 configuration, conjunction and the feature task,

816 respectively).

817
Correct rejections The pdf for a CR was calculated as fol-

818
lows. The quit could be triggered by the k'th distractor, which

12 After fitting our models, we verified that our analytical derivations

(described below) yield predictions (in terms of RT quantiles and error

rates) that are very similar to these produced by a mechanistic trial-by-trial

simulation of the model based on the best fitting parameters.
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819 means that the prior k − 1 distractors (which have already

82� reached the lower bound) failed to trigger it. Thus,

821

822

823

f CR tsð Þ � n
�n

k�1

n−1

k−1

� �

f D;down tsð ÞFD;down
k−1 tsð Þ 1−FD;down tsð Þ−FD;up tsð Þ

� �n−k
�
l�1

k−1

1− l
�
n

� �q
k
�
n

� �q
� �

824825

826 As before, the CDF FCR(ts) and FCR(∞) were found by

827 numerical integration.

828 Incorporating residual time In order to apply QMPE, we

829 need to calculate the proportions of Hits and CRs in a given

83� temporal bin [x, y], taking into account that the reaction time

831 (RT) is the sum of the search time (ts) and a residual compo-

832 nent. This was achieved as follows: The residual time interval

833 [Ter − Ser/2, Ter + Ser/2] was represented with the 30 equally

834 distant points ti � Ter −
Ser
2
þ 2i−1ð ÞSer

60
; i � 1; 2;…; 30, and

835 we calculated

PHit x≤RT ≤yð Þ �

�
30

i�1
PHit x−ti≤ ts≤y−tið Þ

30

�

�
30

i�1
PHit ts≤y−tið Þ−PHit ts≤x−tið Þ½ �

30
836837

838

839 Similar calculations were performed for Correct

84� Rejections.

841 Fitting the full model in steps Before fitting the full (13

842 parameter) model we fit the exhaustive search variant which

843 contained one less free parameters (q =∞). Note that in this

844 case the above derivations simplify to

FHit tsð Þ � 1− 1−FT ;up tsð Þ
� �

1−FD;up tsð Þ
� �n−1

h i

FCR tsð Þ � FD;down
n tsð Þ

845846

847

848 We then augmented the best fitting parameters of the ex-

849 haustive variant with a moderate quit unit exponent (q = 5) as

85� a starting point for fitting the full model (see Donkin, Brown

851 & Heathcote, 2011 for a similar approach).
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