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A central puzzle for theories of choice is that people’s preferences between options can be reversed by
the presence of decoy options (that are not chosen) or by the presence of other irrelevant options added
to the choice set. Three types of reversal effect reported in the decision-making literature, the attraction,
compromise, and similarity effects, have been explained by a number of theoretical proposals. Yet a
major theoretical challenge is capturing all 3 effects simultaneously. We review the range of mechanisms
that have been proposed to account for decoy effects and analyze in detail 2 computational models,
decision field theory (Roe, Busemeyer, & Townsend, 2001) and leaky competing accumulators (Usher
& McClelland, 2004), that aim to combine several such mechanisms into an integrated account. By
simulating the models, we examine differences in the ways the decoy effects are predicted. We argue that
the LCA framework, which follows on Tversky’s relational evaluation with loss aversion (Tversky &
Kahneman, 1991), provides a more robust account, suggesting that common mechanisms are involved in
both high-level decision making and perceptual choice, for which LCA was originally developed.
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Confronted with an unusually short dessert menu, Ms. X vacil-
lates between two options, A and B. Finally, she plumps for A, at
which point the waiter responds that, in fact, there is also the daily
special, Option C. “Thank goodness you told me that,” says Ms. X,
relieved, “In that case, I’d prefer B.” There is something paradox-
ical about Ms. X’s change of heart. How can the availability of a
third option, C, possibly affect whether A or B is preferred? The
relative pleasure of eating Dessert A or B surely should depend on
the properties of A and B alone and not on the properties of any
other dessert C, whether that C is an available option or not. To
hammer home how paradoxical any influence of C might be, let us
push the story a little further. The waiter returns with Dessert B
and says, “Actually, the chef has just told me that C is sold out.”
“In that case, I’d like to switch back to A, please,” decides Ms. X.

The puzzling behavior of Ms. X in this situation is a case of
contextual preference reversal. It is fascinating that such reversals

have been reported to characterize human decision making be-
tween alternatives that vary on several dimensions, as illustrated in
Figure 1, where one has to choose one out of several cars that vary
on two attributes (i.e., economy and quality). Three such reversal
effects have been reported in the literature. The most puzzling of
them are the attraction effect (Huber, Payne, & Puto, 1982) and the
compromise effect (Simonson, 1989), which have the form of Ms.
X’s preference reversal and both violate the principle of regularity
that suggests the preference for Option A should not increase when
its choice set is expanded by adding more irrelevant options to it.
For the attraction effect, the irrelevant Option D is a decoy (an
inferior or dominated option), similar but of less value than A,
which creates a bias in favor of A. For the compromise situation,
Option C is of approximately equal value to A and B, but it is
placed in the middle within the two-dimensional attribute space,
making it a compromise. A third and perhaps less puzzling choice
reversal is the similarity effect (Tversky, 1972), which violates the
independence from irrelevant alternatives principle. Here, the in-
troduction of a new option, S, very similar to B (and of equal
value), shifts the relative choice between A and B in favor of the
dissimilar option, A. More recently, a new type of reversal effect,
the phantom decoy, has been observed (Choplin & Hummel, 2005;
Dhar & Glazer, 1996; Pettibone & Wedell, 2000, 2007; Pratkanis
& Farquhar, 1992), in which the introduction of an unavailable but
dominant option (P in Figure 1) biases the decision toward the
similar dominated option (A). Phantom decoy effects raise an
additional challenge to the theory of choice (Pettibone & Wedell,
2007).

Such paradoxical preference reversals are, not surprisingly,
ruled out by many theories of choice. In particular, they are ruled
out by any theory of choice that separately assigns some attrac-
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tiveness value to each option and proposes that people always or
more likely (if the choice mechanism is stochastic) prefer options
with higher goodness values. We call such accounts option-based
theories (also known as simple scalable choice models) where the
crucial assumption is that a value is assigned independently to the
available options and choice is determined by the comparison of
values.

Option-based accounts of choice require that whether A is
chosen rather than B depends on the relative values of A and B. By
assumption, these values are determined by independent consid-
eration of each option. No further option, C, can affect the relative
values of A and B. Value-based accounts of choice include ex-
pected utility theory, the cornerstone of economic theory and
rational choice explanation (Debreu, 1960; Von Neumann & Mor-
genstern, 1947). Moreover, they apply to any variants of such
theories that allow noise, either in the assignment of goodness
values or in the decision between goodness values (e.g., stochastic
expected utility; Blavatskyy, 2007). This class is broad and in-
cludes many psychological theories of choice, including, for ex-
ample, prospect theory (Kahneman & Tversky, 1979; but see
Tversky & Simonson, 1993, for a prospect theory variant that
allows contextual preference reversal).

How can such apparent anomalies be explained? As we show
below, a wide variety of theoretical proposals have been put
forward, although no single mechanism accounts for all three
decoy effects. What is required is an integration of several mech-
anisms into a single computational model. Here, we analyze two
such models, both based on principles of neural computation:
decision field theory (DFT; Roe, Busemeyer, & Townsend, 2001)
and leaky competing accumulators (LCA; Usher & McClelland,
2004). The aim of this article is to compare in a systematic way
DFT and LCA in their account of reversal effects and to derive
novel predictions from these models (see also Pettibone & Wedel,
2007, for a comparison of models focused on phantom decoys).

The structure of the article is as follows. The next section,
Mechanisms for Reversal Effects, explores the variety of mecha-
nisms that have been proposed to explain preference reversal and
clarifies which mechanisms explain which effects. Then, in Two
Neurocomputational Approaches, we describe DFT and LCA in
relation to the core theoretical mechanisms and consider the sim-

ilarities and differences between them. In Distance-Dependent
Inhibition in DFT, we take up the challenge of specifying an
important parametric dependency in DFT (the dependence of
lateral inhibition on the similarity among the alternatives), which
was left open in the previous DFT account. The next section,
Contrasting DFT and LCA, compares predictions of the instantia-
tions of DFT and the LCA model presented here, and in particular,
we raise some apparent problems for the DFT approach and
evaluate it against empirical data: This involves limitations caused
by local inhibition and linearity and the robustness of the correla-
tional mechanism that accounts for the compromise effect. Finally,
in the General Discussion, we summarize and draw conclusions for
future research. To anticipate, we find that DFT, as presently
formulated, is less robust in the way it accounts for the preference
reversal effects compared with the LCA, and we point to a number
of experimental predictions that distinguish the two models and
motivate future experimental studies.

Mechanisms for Reversal Effects

Before plunging into details concerning specific models, it is
worth considering, in general terms, how a third option might
influence the choice between two existing options. There are three
broad classes of mechanism based on (a) attentional switching to
different choice aspects; (b) relational, rather than independent,
evaluation of properties and loss aversion; and (c) value shifts or
contrast effects, mediated by lateral inhibition. We consider these
briefly in turn.

Attention to Choice Aspects and Temporal
Correlations

The similarity effect follows immediately, and fairly uncontro-
versially, from a stochastic criteria shifting mechanism (Roe et al.,
2001; Usher & McClelland, 2004; Usher & Zakay, 1993), a
mechanism that has some resemblance to the stochastic examina-
tion of choice attributes in Tversky’s elimination by aspects (EBA;
Tversky, 1972).

Assume that, while struggling to choose between tiramisu and
fruit salad, at some moments, Ms. X is swayed by taste (favoring
the tiramisu), and at other moments, she is swayed by health
(favoring the fruit salad). That is, her criterion for choice (or in the
language of the EBA, her attention to the choice aspects) is
continually shifting. Suppose that there is a .60 probability that she
will choose fruit salad. However, before she can choose, the waiter
points out that there is a third option, fruit surprise, which turns out
to be almost exactly the same as, and no better or worse than, fruit
salad. Ms. X resumes her oscillations between taste and health.
Now if, as before, there is a .60 chance that health will win out and
she will choose fruit, note that she has a further choice: between
fruit salad and fruit surprise. If she makes this choice randomly,
then the probability of choosing fruit salad is now .30—that is, less
than the .40 probability of choosing tiramisu. Yet before fruit
surprise was added, the probability of choosing fruit salad was
greater than the probability of choosing tiramisu.

The preference reversal described above can also be seen as
an instantiation of a more general principle of fluctuating and
temporally correlated preference. What happens to Ms. X above
is that her preferences fluctuate and that the preferences for fruit

Figure 1. Illustration of a choice space for options that vary on two
dimensions. The pattern of preferences between A and B can be affected by
the presence of other, irrelevant options (C, D, P, S) in the choice set.
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salad and for fruit surprise are positively correlated (they rise
and fall together). In this case, the correlation is caused by the
switching of attention to different choice attributes, but as we
show below, such correlations can be also caused by other
mechanisms. The general idea, however, is that when temporal
correlations between momentary preference exist, the corre-
lated options split their wins and, hence, lose share relative to
the uncorrelated options.

Relational Evaluation of Options and Loss Aversion

The impact of relational, rather than independent, evaluation of
options or properties is best illustrated by considering the attrac-
tion effect. This corresponds to the addition to the menu of a
second tiramisu, which is just like tiramisu but marginally inferior
in every way (or, more strictly, marginally inferior in at least one
way and no better in any other way). Now consider the relative
goodness of each option. If one is not sure how to weigh up the
different dimensions of desserts, one may feel that fruit salad is
roughly as good as tiramisu and that fruit salad is roughly as good
as second tiramisu, but however one weighs the dimensions, it is
clear that tiramisu is better than second tiramisu. The specific
account of why tiramisu is now relatively favored can take various
forms. For example, according to reason-based decision making
(Pennington & Hastie, 1993; Shafir, Simonson, & Tversky, 1993;
Simonson, 1989), people choose by searching for a justification for
their choice. The choice of tiramisu may be justified by its clear
superiority to second tiramisu (i.e., it is clearly relatively better,
even if one is not sure how much one likes either option, in
absolute terms), but fruit salad has no clear justification, being
difficult to compare with either alternative option.

Alternatively, both the attraction and the compromise effects
could be accounted for, without appealing to a justification pro-
cess,1 by assuming that values are computed via pairwise compar-
isons. For example, we might assume that each option is compared
with each other option and that the differences, advantages, or
disadvantages (on each dimension, separately) are transformed
into utilities via a value function (Tversky & Kahneman, 1991;
Tversky & Simonson, 1993) characterized by loss aversion (a
steeper slope in the domain of losses than in that of gains, so that
losses loom larger than gains).2

Consider first the attraction effect (Options A, B, and A�—an
inferior decoy of A). The decoy option, A�, now confers to A a
clear advantage on both dimensions and thus a net advantage
overall. In contrast, A� confers to B an advantage on one dimen-
sion and an almost equal disadvantage on the other. Since the value
function makes disadvantages loom larger, the overall value con-
tributed by A� to B is negative. Exactly the same logic explains the
compromise effect. Here, the compromise is the only option that
has no large disadvantages being conferred on it from comparisons
with other (extreme and with large disadvantages) options in the
choice set (Tversky & Simonson, 1993).

Inhibition as Contrast Enhancement Between
Similar Options

An alternative way to explain the attraction effect is a type of
local contrast enhancement, as observed in visual perception (e.g.,
a circle appears larger when surrounded by smaller circles; Mas-

saro & Anderson, 1971). One mechanism that can mediate such a
process is lateral inhibition between similar items, so that only
alternatives that are similar inhibit each other. To cause an en-
hancement of the dominating option, one needs to assume that the
local inhibition operates on a relational attribute evaluation func-
tion (inferior options, A�, have negative values, while superior
options, A, have positive values; thus, A� causes an enhancement
in the value of A since passing negative activation via an inhibitory
link results in excitation; Roe et al., 2001).

The mechanisms described above are not the only ones that can
account for reversal effects. Other mechanisms, such as dimen-
sional weight change, distortions (stretching or shrinking) of the
choice space, ranking, grouping, and so on, have been proposed in
various models (Guo & Holyoak, 2002; Pettibone & Wedel, 2007;
Stewart, Chater, & Brown, 2006). We focus on these three mech-
anisms because they are used in the models we contrast here. In
particular, the first two are used in the LCA, which implements
key elements of two of Tversky’s models, EBA (Tversky, 1972)
and the context-dependent advantage model (Tversky & Simon-
son, 1993), while the first and the last are used in DFT. We focus
on the attraction, compromise, and similarity effects and address
phantom effects in the discussion section.

Two Neurocomputational Approaches

Although the mechanisms described above can explain the
various decoy effects, no single mechanism appears to explain the
full range of effects. A computational account integrating several
mechanisms appears to be required to provide an adequate expla-
nation of the effects and make parametric predictions for choice as
a function of how the options are situated in the attribute space.
Recently, a number of dynamical theories of value-based decision
making accounting not only for the choice outcome but also for the
dynamics of the decision process as it unfolds over time have been
proposed. In contrast to heuristics and computational theories with
static parameterization, dynamical models can make predictions on
temporal aspects of decision making such as vacillations and
decision times, and they are also in the position to make contact
with recent neurophysiological studies of perceptual choice. Here,
we focus on two such theories, DFT for multiattribute choice (Roe
et al., 2001) and the LCA (Usher & McClelland, 2004), which
account simultaneously for all the three contextual reversal effects.

Both DFT and LCA conceptualize choice as an Ornstein-
Uhlenbeck diffusion process or, in other words, a leaky integration
of preference subject to choice competition and driven by atten-
tional shifts. This allows both models to account for the similarity
effect, following Tversky (1972), as a result of a stochastic atten-
tion shift. Despite many processing similarities between the mod-
els, there are also a few important differences. While DFT is a
linear model, which has the appeal of mathematical tractability, the
LCA assumes two types of nonlinearity. The first concerns value
of the activations that (corresponding to firing rates) are not

1 Note that decoy effects have been found in other, nonhuman species
(Hurly & Oseen, 1999; S. Shafir, Waite, & Smith, 2002), suggesting that
justification is not crucial for such effects to occur.

2 Loss aversion explains the endowment effect (Knetsch, 1989), reflect-
ing the fact that people tend to stick with the current choice because they
overweight losses incurred from switching, relative to gains.
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allowed to go negative. The second nonlinearity is carried over
from prospect theory, in the form of an asymmetric value function
with loss aversion (losses weighted higher than gains), which is
taken by LCA as a primitive. Unlike the LCA, which maintains
most of the aspects of Tversky’s theories, DFT does not assume
loss aversion as a primitive but rather derives it as an emergent
property. To do so, it assumes that the inhibition between the
choice alternatives is an increasing function of their similarity in
the attribute space. Despite the central role of the decreasing
inhibition-distance function, no explicit function was used in DFT
(and as we show later, the choice of the inhibition function turns
out to be important), aside from the special case of the step
function. We start with a brief description of DFT and LCA
models (the text focuses on main principles; a detailed description
is presented in the appendices), and then, we examine the choice
patterns that DFT generates under various inhibition-distance
functions. After characterizing the inhibition mechanism in DFT,
we proceed with a set of comparisons between the two models and
discuss some difficulties in the current DFT formulation for both
the attraction and the compromise effects.

Reviewing DFT and LCA

DFT and LCA are both instantiated in four-layered connection-
ist networks as illustrated in Figure 2. The first layer corresponds
to the choice attributes (two attributes are illustrated here). In both
models, it is assumed that the attention of the decision maker
switches stochastically across dimensions (D1, D2), according to a
Bernoulli process3; hence, at any time step, only one of the
attributes is active. The two-dimensional characterization of each
alternative on the D1–D2 space (see Figure 3) is given by the
connectivity between the first and the second layers (i.e., a 2 � 3
matrix). Each node in the second layer corresponds to the inte-
grated attribute values of each choice alternative (see Appendix A,
Equation A1).

The two models differ slightly on the intermediate computations
performed in the third layer and on the way in which the prefer-
ences are integrated in the fourth layer. In DFT, the third layer
computes contrasts between each option and the other alternatives
(also mentioned as valences) as the difference between the value of
the option and the mean value of the other options, with respect to
the active dimension (taken from the second layer; see Appendix
A, Equation A2). In LCA, the third layer computes advantages and
disadvantages between all pairs of options, which are transformed
by a nonlinear, asymmetric (loss-averse) value function (see Ap-
pendix A, Equation A4). Finally, in both models, the fourth layer
integrates the contrasted differences (valences or sum of advan-
tages/disadvantages in DFT and LCA, respectively) as preferences
across time.

The integration of preference for each option is imperfect
(leaky) and subject to competition with the preferences of the other
options (see Appendix A, Equations A4 and A5, for DFT and
LCA, respectively). The leaky integration of preferences and the
competitive interactions between the options are implemented in a
connectivity matrix, whose diagonal term corresponds to a self-
connectivity coefficient (or the leak parameter chosen as .94 in the
simulations presented here, unless stated otherwise) and whose
off-diagonal elements correspond to inhibitory connections.
While, in LCA, all the off-diagonal elements are constant (global
inhibition), in DFT, their magnitude depends on the distance
between the alternatives (in the two-dimensional attribute space).
Finally, as mentioned above, DFT is linear, and thus, preference
states can take both positive and negative values, as opposed to LCA,
where negative activations at the fourth layer are truncated to zero. In
the original DFT model for preference reversal (Roe et al., 2001), the
connectivity matrix, s, is such that its eigenvalues are smaller than
one, preventing unstable dynamics that result in unbounded activation
levels. This poses a restriction on the class of inhibition functions (the
off-diagonal terms). This restriction can be relaxed by using an
additional mechanism that prevents unbounded activation (J. Busem-
eyer, personal communication, November 4, 2009).

While the two models explain identically the similarity effect,
their explanations for the attraction and compromise effects are
very different. In DFT, it is the contrast enhancement mediated by
local inhibition that accounts for the attraction effect; the value of
the dominating option, A, is enhanced by the similar decoy. In
particular, the similarity between nearby alternatives (A and D in
Figure 3b) results in their being coupled by strong local inhibition.
As Option D is inferior to both A and B, it has negative valence.
Therefore, Option D boosts the preference of Option A by passing
its negative activation value through a negative connection (we
call this activation by negated inhibition). The function that spec-
ifies the local inhibition relates the psychological distance (i.e.,
similarity) of the options and the degree they compete by lateral
inhibition.

The compromise effect is also accounted for by DFT due to the
distance-dependent inhibition; however, the key mechanism is
correlation, not contrast enhancement. In this case (see Figures 3c
and 3d), the extremes (A and B) and the compromise (C) interact

3 More complex models of the shifting of the attention across dimen-
sions are possible, for example, models with the Markov property (Died-
erich, 1997).

Figure 2. Illustration of decision field theory and leaky competing accu-
mulators models in neural networks; circle arrow heads correspond to
inhibition. a: Connectionist network for decision field theory. b: Connec-
tionist network for leaky competing accumulators.
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via strong inhibitory links, whereas the extremes, A and B, are too
distant from each other to compete. As the extremes do not inhibit
each other, although they inhibit the compromise option, their
momentary preference becomes decorrelated from the compromise
but correlated with each other. Thus, the correlated extremes split
their wins, making the compromise option stand out and take a
larger share of choices (see Roe et al., 2001, for details).4 The DFT
model has a different way to account for the compromise effect,
when its s matrix has eigenvalues larger than one that result in
unstable dynamics. For example, the situation may be such that
adding Option B to the pair A and C makes the s matrix unstable
(C now being linked by inhibition to two options instead of one).
In that situation, the C activation will go to � infinity, depending
on noise; thus, for options of equal valence, C will win half of the
time, while the extremes will share the other half (J. Busemeyer,
personal communication, November 4, 2009).

Unlike in DFT, the LCA account of the attraction and the
compromise effects is similar to the context-dependent advantage
model (Tversky & Simonson, 1993) and does not require a
distance-dependent inhibitory mechanism. Instead, it follows the
principles suggested by Tversky and Simonson (1993), according
to which the value for each option is evaluated in relation to all
other options in the choice set (so far, this is not fundamentally
different from DFT) via a nonlinear loss-aversion value function.
In particular, for the attraction effect (see Figure 3b), when Option
D is introduced, Option B is penalized more by having two large

disadvantages (relative to A and D, when dimension of economy
is attended to) relative to A (which has one large disadvantage
only). The same principle helps the LCA account for the compro-
mise effect (see Figure 3c); the extreme options (A and B) have
one large and one small disadvantage each, whereas the compro-
mise option has two small disadvantages. Due to the asymmetry of
the value function, large disadvantages are penalized more, favor-
ing that way the compromise option. A summary of the accounts
that each model gives for each effect is given in Table 1.

The inhibition function, which is crucial to the explanatory
power of DFT, is the first topic of this investigation. As shown by
Roe et al., 2001, it is possible to find inhibition values that capture
all three effects.5 However, since Roe et al. examined only ordinal
distance relations between alternatives (similar/dissimilar), an ex-
plicit functional specification for the distance function is needed to
make parametric predictions for DFT. One such function, consis-

4 For both the compromise and similarity effects, DFT gives a correla-
tional account. However, while, in the similarity effect case, the temporal
correlations occur between the similar options as a result of the attentional
switching, in the compromise effect case, the correlations occur between
the two extreme (dissimilar) options as a result of the distance-dependent
inhibition.

5 Figure 14 in Roe et al. (2001) shows that the model can account for the
three effects for a variety of noise/inhibition parameters.

Figure 3. The choice sets corresponding to the three effects and annotation of the distances between the options
that determine the inhibition values in decision field theory. a: The similarity effect. b: The attraction effect. c:
The compromise effect. d: Explicit inhibition values that can account for the three effects simultaneously. In
Panel d, on the y-axis: H � high, L � low; on the x-axis: S � small, M � medium, L � large.
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tent with (though not suggested by) the DFT model, could be a step
function, as depicted in Figure 4b (red curve): Inhibition is high
within a range and, outside it, is virtually zero. Since, in psycho-
logical theories of similarity, a step function is unusual (Nosofsky,
1986; Shepard, 1987), we explore here other inhibition functions
that can account simultaneously for the three effects.

Distance-Dependent Inhibition in DFT

Linear, Exponential, and Gaussian Functions

The aim of this section is to explore the distance-dependent
inhibition function that allows DFT to explain the three phenom-
ena simultaneously. Before we start, we note that these effects
were so far obtained in different studies, so until a study reports all
three effects with the same materials, procedures, and subjects,
there is the possibility that more freedom exists if parameters (e.g.,
noise) can be modified for various decoy effects. We mainly
consider here the same-parameter case, but we also discuss some
other possibilities. We started with the simplest type of decreasing
functions of distance, which are piecewise linear. Next, motivated
by well-known theories of similarity (Nosofsky, 1986; Shepard,
1987), we focused on exponential and Gaussian functions of
inhibition. The results were obtained using Monte Carlo simula-
tions and keeping the noise parameter constant to .2 and the leak
parameter to � � .94. None of the linear and exponential functions
was able to capture the three phenomena simultaneously (the
details are omitted here, but see Tsetsos, 2008, for details). The
Gaussian inhibition functions we tried are illustrated in Figure 4a.
We crossed the starting point of the inhibition (three values) with
different slopes. The results for the three effects are summarized in
Table 2, suggesting that the Gaussian functions also fail to account
for the three reversal effects simultaneously.

We believe that the reason DFT cannot capture the three phe-
nomena with smoothly decaying inhibition functions, such as the
Gaussian functions, is the following. The similarity effect under
the DFT framework is maximally obtained for global inhibition,
but it still can be obtained when the inhibition at small distances (B
vs. S) and at large distances (A vs. B) does not differ a lot.
However, the compromise effect requires a large difference in the
inhibition between intermediate (A vs. C) and large distances (A vs.
B). To satisfy these conditions together, the distance function needs to
decay slowly or not at all over intermediate distances but with a much

higher slope at large distances (see also Figure 3d for such an extreme
case); Gaussian functions do not decay slowly over intermediate
distances and significantly faster enough at large distances.

In our initial explorations, we found a sigmoid (logistic) function
that can satisfy all three reversal effects (Tsetsos, 2008; see also
Figure 4b, red line). Another inhibition function that can satisfy the
three effects together has recently been proposed (J. Busemeyer,
personal communication, November 4, 2009). This function, which is
a Gaussian of the distance-square, has a sharper decay than a normal
Gaussian (black line in Figure 4b).6 Below, we refer to this more
abrupt distance function as the Gaussian-distance-square, and we use
it along with our sigmoid function (when the two functions provide

6 In addition, it is assumed here that the psychological distance between
two options increases more rapidly along the line of dominance and less
rapidly along the line of indifference. Intuitively, this new metric of
distance suggests that options with equal additive utilities compete more
strongly, while inferior options appear distant and do not interact with
superior options. This concept is expressed by transforming the conven-
tional distance between two options into the sum of the squares of the two
new dimensions of indifference and dominance (see Appendix B) and then
applying a larger weight to the dimension of dominance.

Figure 4. a: Gaussian inhibition-distance functions. b: The black solid
line is a localized function, suggested by the decision field theory authors
(J. Busemeyer, personal communication, November 4, 2009), with sharper
boundaries (a Gaussian on the square of distance; see Appendix B, Equa-
tion B2). The red line is the sigmoidal function we specified as optimal for
noise fixed at .2. The blue line is a Gaussian function dependent on
distance (and not distance-square). The latter fails to account for the
compromise effect.

Table 1
A Summary of DFT and LCA Accounts of the Preference
Reversal Effects

Effect

Model

DFT LCA

Similarity Attentional switching across
dimensions

Attentional switching across
dimensions

Attraction Excitation by negated
inhibition

Loss aversion in value
function

Compromise Correlations due to local
inhibition

Loss aversion in value
function

Note. DFT � decision field theory; LCA � leaky competing accumula-
tors.
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distinctive predictions) in all the following DFT simulations. First,
though, note that the mechanism for obtaining the compromise effect
with the Gaussian-distance-square inhibition of Figure 4b is based on
the transformation of the s matrix from a stable to an unstable one,
when Option B is added to the pair A, C (note that the off-diagonal
inhibition magnitude is higher for the Gaussian-distance-square com-
pared with the sigmoid).

Contrasting DFT and LCA

In this section, we explore parametrically how choices depend
on the locations of the choice alternatives in the attribute space.
Specifically, two options (i.e., A and B) remain constant, while the
third option (i.e., C) moves across the two-dimensional space with
an increment of .05 at each step. We consider only results at or
below the diagonal between A and B, as, above the diagonal,
Option C is always chosen. For the DFT model, we use the
Gaussian-distance-square function defined on the indifference/
dominance directions (see Appendix B, Equation B2). The param-
eters that were found to optimize DFT in predicting correctly the
reversal effects were � � .05 (additive noise, see also Appendix A,
Equation A4), �1 � .022, �2 � .05, b � 12 (J. Busemeyer,
personal communication, November 4, 2009). For the sigmoid
function we used noise � � .2 and inhibition � .042 as the starting
point of inhibition, while the function started to decay after a
distance d � 2.15 and with a slope equal to s � 20. For the LCA
model, in preliminary investigations (Tsetsos, 2008), we found
predictions to be robust to the value of the global inhibition and to
the value function used, as long as it is asymmetric, such that
disadvantages are weighted more highly than advantages (Kahne-
man & Tversky, 1979). Note that the LCA with asymmetric value
function results in attraction and compromise effects co-
occurring.7 For brevity, we present here the results obtained using
the value function from prospect theory (Kahneman & Tversky,
1979):

V�x	 � x.88, x � 0,

and

V�x	 � 2.5x.88, x � 0.

A representative set of results (for I0 � 2 and � � .94) is
presented in Figure 5c, along with the predictions of the DFT
model with the Gaussian distance-dependent inhibition (Figure 5a)
and with the sigmoid function (Figure 5b). The figure illustrates
the magnitude of the attraction and similarity effects with respect
to Option A, as the difference between the probability of choosing
A and the probability of choosing B, for different locations of
Option C in the two-dimensional lattice. We use a gray scale,
where brighter points correspond to a stronger enhancement of the
preference of A by the introduction of C. For both models, we can
see the similarity effect illustrated as a thin white line close to Option
B (1, 3) and adjacent to the diagonal (i.e., the introduction of Option
C similar to—neither dominating nor dominated by—Option B
results in boosting the preference for the dissimilar Option A). The
predictions for the attraction effect diverge, however. For the LCA
model (see Figure 5c), the attraction effect is present in the
triangular white area close to Option A. The magnitude of the
effect gradually decreases as the distance between the decoy
(Option C) and the target (Option A) increases. This prediction is
a consequence of the asymmetry in the value function, which
renders the relative disadvantages of the competitor (Option B),
which determine the magnitude of the attraction effect, dependent
upon the position of the decoy (Option C). On the other hand, DFT
gives a more dichotomous prediction regarding the magnitude and
the location of the attraction effect for both the distance functions
we used. As Figures 5a and 5b illustrate, there are areas in which
the attraction effect occurs and areas in which it does not (the
precise range depends on the parameter of the distance function in
the dominance direction for the distance-square function). More
importantly, the DFT predicts that the magnitude of the effect is
relatively flat within the area where it takes place. This discon-
tinuity directly stems from the relatively abrupt distance inhi-
bition functions. Since there are no empirical findings that
clearly relate the magnitude of the attraction effect to the
distance between the target and the decoy, we do not see these

7 It is possible that some subjects show attraction without compromise
effects. The LCA framework is able to account for this with a symmetric
value function (Bogacz, Usher, Zhang, & McClelland, 2006).

Table 2
Decision Field Theory Choice and Magnitude of Reversal Effects for Gaussian Inhibition Functions

f �x	 �

ae

x2

2�2

��2�
, x � 0

Similarity Attraction Compromise

P(A) P(B) P(S) Effect P(A) P(B) P(D) Effect P(A) P(B) P(D) Effect

1a. � � .08, � � 5.0 .22 .37 .42 �.13 1.00 0 0 .50 .33 .32 .35 .01
1b. � � .08, � � 2.5 .02 .51 .48 �.47 1.00 0 0 .50 .25 .28 .47 .16
1c. � � .08, � � 1.5 .02 .50 .48 �.46 1.00 0 0 .50 .27 .25 .48 .15
2a. � � .06, � � 5.0 .36 .33 .30 .02 .95 .05 0 .45 .38 .39 .23 �.13
2b. � � .06, � � 2.5 .29 .39 .32 �.08 1.00 0 0 .50 .33 .35 .32 �.01
2c. � � .06, � � 1.5 .21 .37 .42 �.13 1.00 0 0 .50 .45 .40 .15 �.25
3a. � � .04, � � 5.0 .45 .23 .33 .16 .63 .37 0 .13 .45 .44 .11 �.31
3b. � � .04, � � 2.5 .44 .24 .32 .15 .79 .21 0 .29 .41 .41 .18 �.19
3c. � � .04, � � 1.5 .43 .24 .33 .14 .88 .12 0 .38 .43 .44 .13 �.27

Note. Positive numbers correspond to reversal effects in the predicted direction, while negative values correspond to results against the predicted direction.
Boldface values indicate effects against the expected direction.
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simulation results as a criticism against DFT but as a prediction
for future experimental work.

In the next section, we carry out a number of additional inves-
tigations of predicted differences between the two models. We
start with predictions that follow from the inhibition mechanism in
DFT, and then, we examine predictions that follow more explicitly
from testing the DFT correlational account of the compromise
effect.

Avoiding Dominance Reversals in DFT

The attraction effect in DFT is a type of contrast effect in which
the decoy enhances the dominating option with which it is con-
trasted. While this works well in the attraction situation, this
mechanism has the danger of causing dominance reversals for
options that are in a strict domination order, as illustrated in
Figure 6a (C dominates B, and B dominates A). Such reversals
may occur (depending on the magnitude of the inhibition), when
the distance between the options is such that A and B inhibit each
other while C is more distant and outside the inhibition range of
the two dominated options.

In the simulation result in Figure 6b we used an inhibition value of
.049 (between A and B), consistent with the localized distance func-
tions in Figure 4b that allowed us to reproduce all three reversal
effects. As can be seen, although the activations are bounded (all
eigenvalues of the s matrix are smaller than 1), after approximately
200 time steps, the dominated Option B emerges as the choice
winner (Figure 6c shows a single-trial trajectory for DFT). This
result can be confirmed analytically by the steady state of the
system, which is given by P � (I 
 S)
1 � V�, where V is
the valence matrix (see Appendix A, Equation A2) and S is the
connectivity matrix derived from the distance-square function of
inhibition (see Figure 4b, solid black curve). For this example,
A � (0, 0), B � (.2, .2), and C � (1, 1), and the steady state is
P(A) � 
72, P(B) � 62, P(C) � 18 (see Appendix C for
derivation of this and for the mapping of inhibition levels that
produce such dominance reversals). Intuitively, this prediction
results from the fact that the superior option, C, does not benefit
from the boosting by negated inhibition from any option since it
does not interact with either A or B. On the other hand, the inferior
decoy, A, which has a negative valence, confers excitation on B.
On the contrary, as illustrated in Figure 6d, the LCA gives the
correct prediction since, due to the nonlinearity in the preference

Figure 5. Illustration of the attraction and similarity effects as the boost
that A gets relative to B by the introduction of C (i.e., P[A|A, B, C] 

P[B]|[A, B, C]) in various places of the two-dimensional lattice. a: Pre-
dictions for decision field theory (DFT), distance-square inhibition func-
tion. b: Predictions for DFT, sigmoidal inhibition function. c: Predictions
for leaky competing accumulators.

Figure 6. a: A choice scenario where Option C has the highest additive
utility. b: Probability of choice for the three options in decision field theory
(DFT); after approximately 200 time steps, the inferior Option B outplays
C due to the sharp boundaries of the inhibition (see Figure 4b, black line).
c: Single-trial trajectory for DFT. d: Predictions for the leaky competing
accumulators model.
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states, uninformative options are deactivated (stuck at zero) at
early stages of the decision process.

There are a number of ways in which the DFT can address these
problems. First, one can decrease the inhibition magnitude. In
Appendix C, we show that the critical magnitude that triggers
dominance reversal is lower than the one that triggers instability
and that it depends on the leak (�) and on the distances between the
three options. As shown in Appendix C, one can prevent domi-
nance reversal by reducing inhibition below the critical value of
.043 while still maintaining similarity and compromise effects (see
Table C1 in Appendix C for exact parameters). A second way to
prevent dominance reversals is by imposing a negative boundary
on activations such that activations cannot go lower than this
value. Third, one can limit the effective time that the decision
makers are engaged in the deliberation process via an attentional
slowdown process (J. Busemeyer, personal communication, March
20, 2010). We thus do not see these problems as critical (but we
think that they motivate further model development in the DFT
framework), and we now turn to a set of comparisons between
predictions of DFT and LCA for the decoy effects.

Distance Dependency for the Compromise Effect

The local inhibition mechanism also has consequences for the
range of the compromise effect, as a function of the separation
between the extreme options. To examine this, we contrasted the
DFT and LCA choice patterns for triples A, B, C, in which the
compromise option, C (2, 2), is constant while the distance x
between the extremes varies in a symmetric fashion (see Fig-
ure 7a). In Figure 7b, we report the magnitude of the compromise
effect, as a function of the distance between the extremes, for both
DFT and LCA (positive values correspond to an advantage of the
compromise option, negative values to a disadvantage).

We observe (see Figure 7b, black and red lines) that the com-
promise effect in DFT occurs only within a particular distance
range, which is directly determined by the distance threshold of the
inhibition function; the effect occurs only when the compromise is
within the inhibition range from the extremes, and it disappears
when the extremes are in inhibition range with each other. This
holds for both the sigmoid (red line) and distance-square (black
line) inhibition functions as both are localized. In the latter, case
however, as the effect is mediated by the unstable s matrix, we find
that the effect has little robustness with regard to small changes in
the valence of the compromise option, C. For example, it was
enough to change C from (2, 2) to (1.99, 1.99) to reverse the
compromise effect (C now wins only 1%). Finally, if we relax the
assumption that the similarity and compromise effects have to be
predicted by the same parameter set and allow for other parameters
such as noise to vary for each effect, we can have less abrupt
predictions (cyan line; for higher noise, � � .7 applied for the
compromise effect) for a normal Gaussian distance-dependent
inhibition function (see Figure 4b, blue dashed line). Again, how-
ever, the compromise effect becomes small at large distances (i.e.,
when the compromise becomes outside the range of the local
inhibition of the extreme options).

By contrast, the LCA model predicts (see Figure 7b, black line)
a robust compromise effect that is continuous with the separation
between the extremes, and its magnitude increases proportionally
to the separation, subject to saturation. This reflects the properties

of the asymmetric value function; the slope in the domain of losses
increases with distance, penalizing the extreme options. Future
empirical studies should assess the robustness and the magnitude
of the compromise effect as a function of the distance between the
two extremes.

The Correlational Nature of the Compromise
Effect in DFT

According to the original DFT model (Roe et al., 2001), the
compromise effect occurs because the preferences of the extremes
are correlated in time. A different way for the DFT to explain the
compromise effect is related to the change of the s matrix into an
unstable one upon the addition of a new alternative. These ac-
counts of the nature of the effect are very different from the one
offered by the LCA, which follows Tversky and Simonson’s
(1993) proposal that it is a result of the fact that options are
compared to each other and that large disadvantages are penalized.
Here, we compare these two types of account in two ways. First,
we argue that the correlational account lacks robustness when

a

b

Figure 7. a: A choice space for the investigation of the effect of the
distance between the extreme options on the compromise effect. b: The
magnitude of the compromise effect for leaky competing accumulators
(LCA; gray line) and decision field theory (DFT) for distance-square
inhibition (black line), for the sigmoidal inhibition function (red line), and
for a Gaussian function with increased noise (� � .7, cyan line).
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additional options are added. Second, we consider experimental
results that directly address the correlational nature of the effect.

Robustness of the Correlational Mechanism

The correlational nature of the compromise effect is based on
the fact that the extremes are in inhibition with the compromise
option but not with each other and that therefore they become
decorrelated from the compromise and correlated with each other.
When DFT dynamics are stable, the correlational mechanism
depends both on the strength of the inhibition between the com-
promise and the extremes and on the level of noise. This mecha-
nism is not robust to situations in which additional options are
introduced. Consider the case with five alternatives, illustrated in
Figure 8a, in which we have four (instead of two) extreme alter-
natives. As the two similar extreme pairs (A-D and B-E) are
mutually inhibitory, the decorrelation from the compromise is
unlikely to be enough to make the extremes more strongly corre-
lated than the compromise. To show this, we ran DFT simulations
corresponding to this five-alternative choice set. Here, we relied on
our sigmoid inhibition function, and we lowered the leak to .93 to
maintain stability for the five-alternative choice scenario.8

We observe (see Figure 8b) that the compromise effect now
disappears. When we set the inhibitory connections within the
similar pairs (A-D) and (B-E) to zero, the compromise effect is
restored (see Figure 8c), demonstrating that it is the local inhibition
that is the factor responsible for its disappearing. Future experi-
mental work is required to examine the robustness of the compro-
mise effect in a five-alternative choice scenario.

Testing for Correlations Between Preferences

If the compromise effect arises from the temporal correlation of
the extremes, it should be possible, in principle, to detect a signa-
ture of this correlation. One way to investigate this was recently
explored experimentally (Usher, Elhalal, & McClelland, 2008). In
this study, participants were presented with a three-choice com-
promise choice set, and in some cases, following the participants’
choice of an extreme option, this option was announced to be
unavailable, and a speeded second choice was requested for one of
the remaining two options (see Figure 9a). If the two extremes
indeed become correlated, one may predict that, at the moment
when one of them reaches a response criterion, the other extreme
is also high in its activation and therefore is more likely to be
selected in a speeded choice.9 Computer simulations of the DFT
(Tsetsos, 2008) confirmed the statement that, unlike in LCA, if the
preference value of an extreme option is inhibited (so that it is
eliminated and rendered unavailable from the choice competition)
after it reaches the response criterion, the other extreme is more
likely to be selected, especially at short time intervals.

The experimental results in Figure 9b show that after the choice
of an unavailable extreme, the participants had an overwhelming
tendency to choose the compromise, rather than the other extreme
(Usher et al., 2008). Furthermore, the selection times were longer
when participants chose the other extreme than when they chose
the compromise (see Footnote 9; also see discussion in Usher et
al., 2008).

Our results do not confirm the correlational account of the
compromise effect assumed by the DFT model.10 However, within

the DFT framework, an alternative explanation for this effect has
been suggested (Busemeyer & Johnson, 2004). According to this
account, availability can be seen as a third choice attribute, which
makes an unavailable option less desirable but allows it to compete
for selection. According to this, the unavailable option bears
negative valence due to its low attribute value in the availability
dimension and boosts the compromise due to their mutually in-
hibitory connections (negated inhibition). Such a mechanism could
therefore provide an alternative account for the data from this
experiment.

This availability mechanism can be tested as follows. Consider
a choice set with three options, as in the attraction case. During the
deliberation, we announce that the decoy is unavailable. According
to the availability assumption, this will make the valence of the
decoy option even more negative, and thus, the boost it should give
to the dominant option should be further enhanced. On the other
hand, if unavailable options are simply eliminated from the choice
set, we would expect that the attraction effect will diminish toward
the baseline for a binary choice. To test this, we presented to 30
participants (students at University College London, London, En-
gland) three choice problems, all of which involved the same two
alternatives, A and B, which created a trade-off between two
choice attributes. The first problem was a binary choice between A
and B. The second problem was a trinary choice in which a decoy
dominated by A and similar to it was added. The third problem was
identical to the second, except that after 15 s of deliberation, the
decoy was announced to the participants as unavailable. The
participants were divided into three groups, each of which received
a different permutation of three problems with three types of
material (visit to clinic, choice of flowers, and candidates for a
master of science scholarship). The problems were presented as a
PowerPoint presentation, and the response was solicited after 30 s
(no earlier responses were accepted). Thus, for decisions with
unavailable products, this information was given halfway within
the decision time.

The results, reported in Figure 10, are clear and do not fit
with this alternative explanation of the availability being an
extra choice dimension. The decoy induced a strong attraction
effect in favor of the dominating option, 2(1, N � 30) � 6.67,
p � .01, between trinary and binary. When the decoy was
announced as unavailable during the deliberation, its impact
disappeared, and the choice between Options A and B reversed
very close to baseline, 2(1, N � 30) � .07, p � .78, between
trinary-unavailable and binary.

8 Note that the distance-square inhibition function results in unstable
dynamics even in the three-alternative compromise effect case.

9 One caveat to this prediction is that, following the announcement of the
unavailability of the preferred choice, the participant will restart the choice
from scratch, in which case the advantage of the correlated alternative
becomes immaterial. Such a restart, however, is expected to lead to longer
choice latencies, leading to a second prediction: The choice latencies of the
second response (following the unavailability input) should be faster when
the other extreme is chosen than when the compromise is chosen (as, in the
latter case, a restart is more likely). The LCA model makes the opposite
prediction. See Usher et al. (2008) for results and discussion.

10 The unstable explanation is also contradicted by these data. According
to this, the extremes go together to either positive or negative activations.
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The results of this experiment are also different from the ones
regularly obtained with phantom decoys (Choplin & Hummel,
2005; Dhar & Glazer, 1996; Pettibone & Wedell, 2000, 2007;
Pratkanis & Farquhar, 1992), since, unlike in the latter, in our
experiment the effect of the unavailable decoy dissipated, re-
sulting in a binary choice baseline preference pattern. Note,
however, that unlike our decoy, which is an inferior (dominated
one) the decoys used in phantom decoy studies are superior to
the target. As discussed in detail by Pettibone and Wedell
(2007), relational valuation models with loss aversion such as
LCA and the context-dependent advantage model can account
for the phantom decoy effect by assuming that people use the
superior unavailable decoy as a reference point. The DFT could
also account for phantom decoys if the valence of the superior
decoy is negative (due to its unavailability); however, it has
difficulties in explaining how the magnitude of the effect de-
pends on its distance from the target (Pettibone & Wedell,
2007).

General Discussion

DFT and the LCA are computational models of multiattribute
decision making, which can account for contextual reversal ef-
fects. The two models share many properties and use similar
connectionist frameworks, but they differ in the way they account
for the attraction and compromise effects. While the LCA follows
the more traditional account offered by Tversky and Simonson
(1993), in which the effects arise from the asymmetry of the value
function and the fact that options are compared with each other,
DFT does not assume asymmetric loss-aversion value functions.
Instead it derives the attraction and compromise effects from the
emergent properties of the local inhibition within a linear network.
The attraction effect is viewed as a contrast effect, which results
from the fact that the decoy boosts the preference of the similar
dominating alternative by the mechanism of activation by negated
inhibition. The compromise effect is the outcome of an emergent
correlation between the extremes, which share their wins in the
choice, favoring the compromise option.

To compare the models’ predictions, we examined the family of
distance-dependent inhibition that enables the DFT to account for
the three reversal effects with the same model parameters. We
found that this inhibition function needs to have a relatively abrupt
boundary (see Figure 4b, red line), to reproduce simultaneously the
similarity, the attraction, and the compromise effects. Another
localized function (see Figure 4b, black line) can account for the
effect under the unstable matrix scenario (but this has little robust-
ness to changes in the valence of the compromise, as we showed
in the Distance Dependency for the Compromise Effect section).

Figure 8. a: A five-alternative choice problem similar to the compromise
effect case; the all-average option (C) is expected to win. b: Probability of
choice for the five options in decision field theory (DFT); the compromise
option is not chosen. c: Probability of choice in DFT when the inhibitory
links in the pairs of the extreme options (A, D and B, E) are removed. d:
Probability of choice for the five options in the leaky competing accumu-
lators model; the compromise option is chosen.
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With these inhibition functions, we compared DFT and LCA’s
predictions for multiattribute decisions.

Our simulations showed that, as a result of the local inhibition
boundary, the range of the attribute space in which DFT produces
reversal effects also has relatively sharp boundaries, which stand in
contrast to the more continuous effects obtained in the LCA model,
and which could be subject to future experimental investigations.
We also found that the predictions of DFT are less robust to the
introduction of new options in the choice set (see Figure 8a) and
that the inhibition level needs to be properly restricted to prevent
dominance reversal (see Figure 6). This restriction results in a
smaller parameter space for noise and inhibition than the one that
was possible in Roe et al. (2001). We expect, however, that
additional mechanisms could be used to allow DFT more robust-
ness in dealing with such problems. For example, a mechanism
may be required to restrict activations and depart from linearity, as
some of the problems are produced by the local inhibition com-
bined with the linear dynamics, which allows options with low
valence to boost their nearby options and that way to distort the
choice process. This stands in contrast to the LCA, which uses its
nonlinearity to eliminate inferior option from the choice.

Finally, we examined whether the compromise effect should be
explained in terms of correlations, which is probably the most
original mechanism in the DFT account of multiattribute decision

making.11 To examine the correlational prediction, we introduced
a choice situation in which decision makers are presented with a
choice between three alternatives that form a compromise situation
and, following the choice of an extreme option, that option is
announced as unavailable and another speeded choice is requested.
Using this experimental design, Usher et al. (2008) found that
following the choice of an extreme option, the overwhelming
fraction of speeded choices goes to the compromise option, rather
than to the other extreme. In one version of DFT (Busemeyer &
Johnson, 2004), such a result can be accounted for by assuming
that unavailability is a third attribute, which does not eliminate an
option from the choice process but only reduces its valence,
making it less attractive. Under such a mechanism, the unavailable
extreme plays the role of the decoy, which activates the compro-
mise via activation by negated inhibition. Note that for this to
happen, the unavailable extreme needs to continue to interact with
the available options (rather than being dropped from the decision)
and have a negative valence. To test this, we carried out an
experiment, which compared the attraction effect in a normal
situation to that in a situation in which the decoy is announced as
unavailable after 15 s of deliberation.12 We found, that, converse
to the prediction that the unavailability of the decoy reduces its
valence, enhancing the attraction effect, this effect is reduced
toward the baseline of binary choice. This suggests that unavail-

11 According to this mechanism and counter to introspection, when a
person feels ready to choose an extreme option out of a compromise set, the
preference for the other extreme is also quite high and is stronger than the
preference for the compromise.

12 It could be argued that the effect of inhibition might dissipate with
time and disappear after 15 s of deliberation following announcing the
dominated option unavailable. This, however, would mean that the un-
available decoy is either chosen or simply eliminated. In the latter case, it
could not affect decisions.

Figure 9. a: When one extreme option (A) is chosen, it is set unavailable,
and the remaining options (B and C) compete until a new decision is made.
b: The experimental results show that in the second choice between the
compromise (C) and the available extreme (B), participants dramatically
preferred the compromise option. Error bars indicate 95% confidence
intervals of the mean.

Figure 10. Experimental results testing the role of unavailable options in
the deliberation process. The choice pattern of the binary case is reversed
in the presence of a decoy option (i.e., the attraction effect). However,
when the decoy option is set unavailable after 15 s of deliberation, then the
preference falls back to the baseline of the binary case. Error bars indicate
95% confidence intervals of the mean.
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ability should not be viewed as a third choice dimension (making
unavailable options slightly less desirable), but rather that it main-
tains their desirability while eliminating them from the decision
process.

While the results of these comparisons present challenges to
DFT, it remains possible that a revised specification may meet
these challenges successfully. There are several ways in which
DFT may potentially be strengthened further. First, note that the
noise parameter, if allowed to vary across different choice sets, can
play an important role in allowing a more gradual inhibitory
distance function to account for the three effects simultaneously (J.
Busemeyer, personal communication, March 20, 2010). Equally,
note that the three effects have not all been obtained in a single
experiment. It is thus conceivable that there is something in the
procedure used by Tversky (1972) that corresponds to a lower
degree of noise (or attention to irrelevant dimensions) than the
experimental procedure used by Huber et al. (1982) and by Si-
monson (1989). Future studies are thus needed to test if the three
effects can be replicated within the same experimental design. If,
indeed, the similarity effect requires less noise in its procedure,
this may allow more space for a gradual inhibition function to
account for reversal effects in the DFT model.

Another factor that could help strengthen DFT is the introduc-
tion of some nonlinearity in its dynamics. The nonlinearity is in
fact one of the differences between the DFT and the LCA. The
linear dynamics of DFT are attractive, from a theoretical stand-
point, because predictions can be obtained using linear algebra
rather than time-consuming simulations. In LCA, by contrast, the
nonlinearity is motivated in terms of neurocomputational princi-
ples (activation is seen as corresponding to firing rates and thus
cannot go negative) and enhancing computational efficiency. For
example, due to its zero-threshold nonlinearity, the LCA can
naturally eliminate inferior options from the decision process,
preventing them from introducing noise that may distort the deci-
sion preference (see Bogacz et al., 2007, for a discussion of the
advantage of nonlinearity in perceptual choice). This is closely
related to the issue of biological plausibility; in their response to
Usher and McClelland (2004), Busemeyer, Townsend, Diederich,
and Barkan (2005) suggested that the activation by negated inhi-
bition in DFT could be understood biologically in relation to a
disinhibition process. Note, however, that the phenomenon of
disinhibition should be bounded. Consider an inhibited target
neural unit (T in Figure 11a) that fires below the baseline (i.e.,
negative in DFT) on account of the inhibition it receives (from
Unit A in Figure 11a). If the inhibiting neuron is suppressed, then
the firing rate of the previously inhibited unit (T) potentially
exceeds the baseline rate (see Figure 11b). However, the firing rate
of the disinhibited unit cannot be higher than its firing rate when
it is no longer linked with an inhibitory connection with the
inhibiting neuron. In other words, the boost that the previously
inhibited neuron gets from disinhibition cannot be infinitely large
but must be bounded from above (say, via its excitatory input, B,
in Figure 11b). To satisfy this biological constraint and to also
prevent instabilities, DFT may need to introduce either an upper or
a lower bound on the value of activations, thus departing from
linearity.

Such a mechanism was indeed discussed by Roe et al. (2001, p.
385) in considering how strategy switching can be implemented in
DFT. Future implementations of such nonlinearity in DFT need to

be tested for the various choice situations. Such a model would
face a dilemma: to assume whether options that reach the low
boundary are fully eliminated from the choice or still influence the
decision by competing with the alternatives that are within their
inhibition range. An alternative account could be to limit the
effective time of decision making by reducing the gain with which
the DFT equations proceed as the decision unfolds (J. Busemeyer,
personal communication, March 20, 2010).

One of the distinctive features of DFT is the fact that it produces
loss aversion as an emergent property without assuming any asym-
metry or nonlinearity in the value function. In LCA, on the other
hand, we have followed Tversky and Kahaneman (1991) in their
assumption that the asymmetry between gains and losses is a
primitive, which is hardwired in the neural system. Although, no
consensus on the nature of loss aversion has yet been reached, a
recent study of brain imaging during risky decision making sup-
ports the hypothesis that there is a single system in the brain that
encodes subjective value asymmetrically, weighing disadvantages
more than advantages (Tom, Fox, Trepel, & Poldrack, 2007). Such
findings, however, do not rule out explanations of the value
function asymmetry, reflecting environmental contingencies. For
example, in decision by sampling (Stewart et al., 2006), loss
aversion is attributed to the asymmetry of the real world distribu-
tions of gains and losses.

Figure 11. a: The target unit (T) receives excitatory input from Unit B
and is inhibited by Unit A. b: Removing the inhibitory connection between
the target (T) and the inhibiting unit (A) brings a boost to the activation of
the target (T). The level of the activation at the target when disinhibited
cannot be higher than the excitatory input it receives from Unit B.
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Alternative Models

In this article, we have focused only on DFT and LCA as they
are the only two theories that account for the similarity, attraction,
and compromise effects simultaneously. Alternative theories have
been proposed for multialternative, multiattribute choice, namely,
decision by sampling (Stewart et al., 2006) and the ECHO model
(Guo & Holyoak, 2002), with the latter accounting for a subset of
the reversal effects. Three particular mechanisms stand out from
the two models as promising: ranking, grouping, and bidirectional
connections in the neural network.

In decision by sampling, no underlying psychoeconomic scales
are assumed. Instead, the subjective value of an attribute is its rank
in the decision sample, which consists of attribute values both
present in the decision context and drawn from memory. Thus, the
value of a given option is constructed online using basic cognitive
tools such as binary comparisons and frequency accumulation.
Drawing from simple psychological principles, decision by sam-
pling accounts for a large set of decision phenomena such as loss
aversion, temporal discounting, and overestimation of small prob-
abilities. Being explanatorily robust in several domains, decision
by sampling and its mechanisms (ranking and ordinal compari-
sons) appear to be promising for the case of preference reversal
effects. Recently, decision by sampling was integrated with LCA
in a dynamical model for decisions under risk (Stewart & Simpson,
2008). This model can also be extended for multiattribute deci-
sions, and its descriptive power in that domain should be the
subject of future computational explorations.

The second alternative model, the ECHO model proposed by Guo
and Holyoak (2002), has been applied for the similarity and the
attraction effects. Its central assumption is that decisions follow a
sequential two-stage process. At the first stage, the two similar options
are grouped and processed together. The preference states of the
similar options from the first stage are carried over as initial acti-
vations at the second stage, where all three alternatives are
compared together. Thus, the similar, grouped options receive
more processing time overall. Note that the mechanism of
grouping can be comparable to the step sigmoid inhibitory
function in DFT, which involves competition only between the
similar options.

Another assumption in the ECHO model is that the preference
states of the alternatives are passed backward to the attribute
nodes, providing positive feedback. Therefore, it is predicted that
during deliberation, the attribute values of the option that is dom-
inating the preference will be enhanced and thus appear to be more
important, which has been confirmed experimentally (Holyoak &
Simon, 1999). It would be interesting to test what further predic-
tions the LCA and DFT models would yield by changing their
connectionist networks from feedforward to bidirectional (Glöck-
ner & Betsch, 2008).

To conclude, we have pointed out some difficulties of the DFT
account of multiattribute decision making and suggested a number
of ways to test between the DFT and LCA models. We believe that
future experimental and computational investigations are needed
to develop a solid neurocomputational theory of multiattribute
decision making. Such a theory may share assumptions with both
DFT and LCA, as well as other decision-making models.
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Appendix A

Dynamics of the DFT and LCA Models

In this appendix, we show the computations that are performed
at each layer of the decision field theory (DFT) and leaky com-
peting accumulators (LCA) networks. At the first layer for both the
models, a stochastic mechanism allocates the attention among the
attribute units, so that only one attribute (randomly determined)
provides input to the second layer at each time step. The second-
layer activations are common for the two models and are deter-
mined by the following equation:

Ui�t	 � �
j�1,2

wj�t	 � mij � εi�t	. (A1)

In the above equation, ε is the probability of attending irrelevant
dimensions, and wj is either 0 or 1 depending on which dimension
the attention is focused.

The second-layer activations are passed forward to the third
layer. For DFT, the valences are computed as

vi�t	 � Ui�t	 � � �
k�i

Uk�t	���n � 1	. (A2)

At the third layer of LCA, the relative advantage/disadvantage
of each option is computed as

Ii � �
j�i

V�dij	 � I0. (A3)

In Equation A3, dij is the advantage or disadvantage of Option i to
Option j on the active dimension, V is a nonlinear value function with
loss aversion, and I0 is a positive constant that promotes the alterna-
tives in the choice process, namely, prevents the Ii of inferior options
(i.e., with very low �j�iV�dij	) from being too negative.

In the fourth layer, the preference states evolve in DFT as

Pi�t � 1	 � vi�t	 � �
j

sij � Pj�t	 � ��t	, (A4)

and for LCA according to the following equation:

Pi�t � 1	 � Ii�t	 � �
j

sij � Pj�t	 � ��t	, (A5)

with � standing for additive noise.

(Appendices continue)
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Appendix B

Distance-Dependent Inhibition Model in Decision Field Theory

In this appendix, following decision field theory author recom-
mendations (J. Busemeyer, personal communication, November 4,
2009), we present a more sophisticated distance metric defined on
the two new dimensions of indifference and dominance.

To illustrate how this distance metric operates, we assume two
options that are characterized in two attributes, economics and
quality: A � (E1, Q1) and B � (E2, Q2).

Then, we define (�E, �Q) � (E1 
 E2, Q1 
 Q2) and (�I,
�D) � ([�Q 
 �E], [�Q � �E]), with �I and �D standing for the
indifference and dominance directions, respectively.

The psychological distance between Options i and j is defined as

Dij � �I2 � b � �D2, (B1)

with b � 1 being the weight on the dominance direction.
The Gaussian inhibition function is defined as

sij � �ij � �2 � e
�1�Dij
2

, (B2)

with �1 and �2 being the parameters of the Gaussian function and
�ij being 1 when i � j (self-feedback connection) and 0 when i �
j (lateral inhibition).

Appendix C

Reversal of Dominance in Decision Field Theory

The decision field theory (DFT) steady state solution is P �
(I 
 S)
1 � VT, where S corresponds to the connectivity matrix
and V to the valence vector of the choice options.

For the choice scenario in Figure 6a in the main text, A � (0, 0),
B � (.2, .2), and C � (1, 1), we get

P � � 227.2 �216.9 0
�216.9 227.2 0

0 0 20
� � ��0.6

�0.3
0.9

� � ��71.2
62
18

� ,

thus Option B is the winner. In general, for any leak parameter � and
if we assume that A(0, 0), B(x, x), and C(y, y), with C outside the
range of inhibition and A and B interacting with inhibition equal to �,
the steady state preferences for the three options are given as

P � �1 �� �� 0
�� 1 � � 0
0 0 1 � �

� � ��0.5x � 0.5y
x � 0.5y
y � 0.5x

�

� �
��

��2 � �2

a

��2 � �2 0

a

��2 � �2

��

��2 � �2 0

0 0
1

�

	 � ��0.5x � 0.5y
x � 0.5y
y � 0.5x

�

� �
�

1

2

�x � y � �x � �y � 2�x � �y

�1 � 2� � �2 � �2

1

2

�x � �y � 2x � y � 2x� � y�

�1 � 2� � �2 � �2

1

2

�2y � x

� � 1

	 .

To prevent P(B) � P(C), we need

1

2

�x � �y � 2x � y � 2x� � y�

�1 � 2� � �2 � �2 �
1

2

�2y � x

� � 1

or

� � f �x, y	�� � 1	 (C1)

(Appendices continue)

Figure C1. The boundary of inhibition above which a reversal of dom-
inance happens: B wins over C for the triple A(0, 0), B(x, x), and C(k, k),
as a function of the attribute values x of the mediocre and dominated
Option B(x, x) and for three different levels of k (C[1, 1], C[1.5, 1.5], and
C[3, 3]). The star on the solid line (k � 1) indicates the critical inhibition
boundary for the choice scenario of Figure 6a in the main text.
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with

f �x, y	 �
1

2

x � y � ��13x2 � 34xy � 25y2	

�2y � x
. (C2)

Note that, for the choice scenario where C is outside the range
of inhibition and A interacts with B, the stability is maintained for

� � � � 1. (C3)

Therefore, the dominance reversal boundary and the instability
boundary coincide only when f(x, y) � 1. In Figure C1, we can see
the boundary of inhibition for dominance preservation for the
triple A(0, 0), B(x, x), and C(k, k). We observe that the critical
level of inhibition above which the dominance order is reversed
increases as x and k are teased apart and decreases when they are
brought closer.

For the scenario above (A[0, 0], B[.2, .2], C[1, 1]) and � � .95, the
critical inhibition boundary derived from C1 is � � 
.043 (see also
the red star in Figure C1). The parameters that give inhibition between
A and B below the critical boundary are the same as the optimized

ones, except that �2 is changed from .05 to .044 (see Appendix B for
an interpretation of the parameters) and noise is increased to � � .2.
Crucially, the leaky parameter was maintained to � � .95. Under
these new parameters, decision field theory still predicts the compro-
mise and similarity effects (the attraction effect is robustly predicted
for both parameter sets). The magnitude of these effects is weaker as
compared to the ones given from the optimized parameter set that did
not control for the reversal of dominance (see Table C1).

However, we have shown that it is possible to prevent the
reversal of dominance and at the same time maintain the predic-
tions for the three effects. Therefore, we recommend that future
parameter estimations of the DFT model should predict the three
reversal effects but should also be constrained by the prevention of
the reversal of dominance.
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Postscript: Contrasting Predictions for Preference Reversal

Marius Usher
Tel Aviv University and Birkbeck College

Konstantinos Tsetsos and Nick Chater
University College London

Hotaling, Busemeyer, and Li (2010) provided a valuable reply to
the challenges we raised for the decision field theory (DFT) account
of preference reversal in multiattribute choice. We agree with their
observation that with the addition of an internal stopping rule—where
a decision is reached when the first choice unit reaches a response
criterion—the model is more stable and less subject to violations of
dominance. Indeed, in its present form, DFT captures most existing
data on preference reversals, and its limitations (due to linearity) have
the virtue of facilitating analytical calculations. It is therefore inter-
esting to contrast DFT and alternative accounts of preference
reversals (e.g., leaky competing accumulators [LCA; Usher &
McClelland, 2004] or the context-dependent advantage model
[Tversky & Simonson, 1993]). This note builds on the improved
clarity of DFT mechanisms resulting from this exchange and
highlights predictions that could distinguish between competing
explanations and drive further experimental research. We also
note common aspects of DFT and LCA and draw implications
for theories of decision making.

Consider first the attraction effect. In DFT, this is a contrast
effect and is conditioned on the decoy being close to the target
(within the inhibition range in the dominance direction). As the
inhibition function is relatively sharp (decreasing with distance, x,
in the dominance direction, as exp[
x4]), it yields a sharp bound-
ary for the attraction effect, in contrast to the more graded predic-
tions obtained in LCA or other theories based on gradual value
functions with loss aversion (see Figure 5 in Tsetsos, Usher, &
Chater, 2010). Furthermore, these models make opposite predic-
tions about the magnitude of the attraction effect for decoys of the
type of D1, D2 (see Figure 1 in Hotaling et al., 2010). While DFT
predicts a larger decoy effect for D2 (the decoy that is closer to the
nontarget, B; see Tables 1 and 3 in Hotaling et al., 2010), LCA and
the context-dependent advantage model predict the opposite:
P(target|D1) � .68 and P(target|D2) � .64. The reason for this
difference is that the DFT inhibition function is higher for D2 (as
this decoy is closer in the dominance direction), while, for the
LCA, the magnitude of the effect depends on the relative distance
of the decoy from the two competing options (and the D2 decoy
slightly dominates the target in one dimension, conferring a dis-
advantage). Finally, DFT differs from LCA in predicting that the
attraction effect reverses when a decoy to the decoy is introduced
(see Table 2 in Hotaling et al., 2010) in a four-option choice
scenario. This occurs because the attraction effect in DFT is due to
the decoy with negative valence boosting the activation of the
target (via negated inhibition); this boost reverses with the intro-

Table C1
Decison Field Theory Predictions When the Reversal of Dominance Occurs and When It Is
Prevented

Parameters Effects
Dominance

reversal�2 � Noise Similarity Compromise

.050 .95 .05 14% 13% Yes

.044 .95 .20 9% 8% No
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