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Abstract

We present a neural model that addresses the capacity of a frontal lobe
system to hold up information for short periods of time and to perform
response selection. In the model, reverberation states are sustained after
stimulus offset, due to loops of recurrent excitation in neural cell assem-
blies and lateral inhibition is necessary to block an uncontrolled spread
of activation. At high levels of inhibition the system performs response
selection, and at lower levels it retains a number of units in active states,
after stimulus offset. It is shown formally that such a system has capac-
ity limitations: only a limited number of cell assemblies can be retained.
Sequential presentation of a list of items is simulated and serial position
curves characterised by recency are obtained. The model explains re-
cency, list-length and presentation rate effects in immediate cued recall,
as well as semantic effects and patterns of forgetting in Brown-Peterson
type of experiments. A reduction in the strength of recurrent excitations
explains the absence of lexical effects in tests of immediate memory for
frontal lobe patients [1] and more extreme reductions result in impair-
ments of response selection in dynamic aphasia [2].
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1 Introduction

Recent studies using a variety of methods, such as neurophysiological recordings
[3, 4], functional imaging [5, 6, 7] and cognitive neuropsychology [1, 8, 9], have
demonstrated the involvement of areas within the frontal lobes in memory ac-
tivation over short periods of time, in particular for tasks that require semantic
processing [1, 8, 6] and response selection [2]. Moreover these studies suggest
a dissociation between short term memory (STM) characteristics within the
frontal lobes and those found in the posterior areas; unlike the posterior areas,
frontal lobe STM is mediated by attractor dynamics (neural reverberations)
that can be sustained even during the processing of new, but irrelevant, infor-
mation [4]. The aim of this paper is to present a biologically inspired model for
active maintenance and response selection in the frontal STM system, and to
test its predictions against behavioural data. Accordingly, it is proposed that
while the posterior STM system is a modality specific (phonological, for verbal
material) [10] and limited by a temporal decay window when articulation is



prevented [11], the anterior system is more central and semantic [12] and uses
active reverberations [13] which can sustain themselves and which are limited
by displacement due to competing new information [14, 15].

2 Model

We assume that memory items in frontal lobe system are encoded within ded-
icated cell-assemblies [13]. Cells within each cell assembly, receive input from
representations in the posterior system, and are connected among themselves
by excitatory connections, which are formed in a slow learning process (not
addressed here) corresponding to memory traces in LTM. ! Accordingly, STM
and LTM are not viewed as two physically distinctive stores, but rather STM
can be thought of, as the active part of the long term memory [16, 17]. The
recurrent weights stored in LTM are thus essential, in order to cause sustained
states of activity which are the essence of STM, as demonstrated in neural
models [18, 19, 20]. Lateral inhibition between units is also assumed in order
to block an uncontrolled spread of activation [21]. Recurrent excitation and
lateral inhibition also played a prominent role in neural models of STM devel-
oped by Grossberg[22] and in models by Taylor that address semantic effects
in subliminal perception [23].

2.1 Model description

To begin, we assume a set of N units (cell-assemblies), and denote by z; (i = 1,
to N) their activation level. Each unit connects to itself by a recurrent excita-
tory connection of strength « (which reflects an effective interaction between
cells within a cell assembly) and inhibits other units by inhibitory weights of
strength 4. In addition each unit might receive external sensory input (from
posterior areas), denoted by I; (Figure 1). The dynamics of such a system can
be captured by:
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where F(x) is the ‘activation-function’ which converts the input to a cell
assembly into its activation response. Equation 1 reflects a passive decay of the
activation toward the rest level (with a time constant, chosen as 1 %) in addition
to excitatory self generated feed-back, lateral inhibition, external input and
noise. The activation function is a sigmoid which keeps the activation variable
within bounds, chosen here as:

Flzy= 0, forx<0 (2)
F(z)= 15, forz>0 (3)

1Each assembly can be thought to encode a concept or a lexical item.
2This sets the time scale in equation 1 to that of synaptic currents.
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Figure 1: Model description. Each PFC cell assembly, is shown as a circle
in the PFC box, which sends recurrent excitation to itself, inhibits the other
PFC cell assemblies, and receives bottom up input from representations in the
posterior system.

This activation function was chosen for two reasons. First, for small input
(x << 1), the activation function is threshold-linear. Recent neurophysiolog-
ical studies indicate that such a function describes more accurately the firing
discharge of neural cells in response to current injection [24], for small values of
current. Second, the saturation non-linearity is essential for large values of cur-
rent (z >> 1) (due to refractory effects); equation 3 has a maximal activation
of 1 which mimics the physiological bounds on firing rate.

2.2 Activating the system

The system is activated by clamping the inputs I; for one or more units, for
a fixed amount of time. Two situations will be addressed here. The first
one, corresponds to tests of immediate memory, where following the period of
stimulation, the inputs to all units are reset to zero (I; = 0) and the system is
allowed to evolve in accordance with Equation 1 for some time (corresponding to
a short delay interval) after which the retainance of the input items is tested (it
is assumed that a retained item can be always reported when cued for recall). In
the following section we present formal solutions for the activated system after
the offset of input, which we then apply to experimental data in immediate cued
recall. The second situation (addressed in section 6) corresponds to sustained
input activation to several units (corresponding to an ambiguous stimulus).
Under this situation we will examine (using computer simulations) the ability
of the system to solve the ambiguity and select a “response”.



2.3 Formal solutions (in absence of input)
2.3.1 Steady states

Steady state solutions for equation 1 are obtained by requiring that % =0 for
all the units. The steady state solutions, in the absence of sustained inputs,
I =0, are characterised by:

N

z; = aF(z;) - B)_ Flz;) (4)
J#i

Due to the symmetry of the equation (under permutation of units) we look

for symmetric solutions, which are characterised by the number of active units,
n, and their activation z(n) (all other units are suppressed to zero):

z(n) = [a = B(n — 1)]Flz(n)] (5)

Using the formula for the activation function (Equation 3) the activation of
an n-active state is obtained:

z(n) =a—-1-p4(n-1) (6)

2.3.2  Stability

For a pair of units that are active together (with equal activation corresponding
to equation 6) a fluctuation can arise due to noise, increasing the activation
of one unit more than the activation of the other one and destabilising the
solution; unless the fluctuation decays the activation of one unit will increase
and the other will be suppressed. The condition for stability is obtained by
subtracting the equations corresponding to Equation 1 for any pair of active
units, say ¢ and j. Denoting by z the difference in the activation of units ¢ and
J, ¢ = z; — z;, and using the solution 6, one obtains:
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The fluctuation x will decrease only if the coefficient multiplying x is smaller
than zero. Thus the condition for stability is:

] (7)
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2.4 Capacity limitations

After a number of units, is transiently activated the system reaches a steady
state solution, n units have an activation z(n), which decreases with n due to
the mutual inhibition, as shown in Equation 6. Notice that sustained solutions
(z(n) > 0) exist only when a > 1, requiring strong recurrent excitation. Under
this condition and for weak inhibition 8 << «a the activation of an n-state



solution decreases linearly with n. Thus if, for example, @ =2, and § = .1 up
to 10 units can be activated together. As their number increases the activation
corresponding to their steady state solution (equation 6) decreases continuously
toward zero. The stability condition provides a further constraint, resulting in
Equation 8. For any values of a and  the maximum n which satisfies equation 8

activation

Figure 2: Stable solutions (Equations 6, 8), for @« = 2 and 8 = .1, with a maximum
of n=>5 co-active memory states (solid line), and @ = 2 and § = .2) with a maximum
of 2 co-active states (dashed line).

can be found numerically. For the previous example, « = 2 and 8 = .1, n=5
is the maximum number of active units satisfying a stable solution (solid line
in Figure 2). Increasing the inhibition, 8 leads to an decrease of this critical
number: 8 = .2 and @ = 2 results in maximal number of 2 (dashed line in
Figure 2). The system can retain only up to this critical number of items
(which depends on « and §). When more items are activated by the input
stimuli, few of them are destabilised and decay as shown in Figure 3, for a
system with N = 9 units. The excitation was chosen to be a = 2 and two
inhibition values were tested: a weak inhibition (8 = .1) and an intermediate
one ? (8 = .2). For intermediate inhibition, five of the 9 units received sensory
input (0 < ¢t < 100). As can be observed in Figure 3a, following the off-set of
the input, only two out of those five units remain active. For weak inhibition,
seven out of the nine units received input, and (as shown in Figure 3b), five out
of those seven units remain active and the other two are suppressed to zero (in
correspondence with Equation 8 and Figure 2). In the following section, the
system described is applied to data in immediate cued recall?.

3We retain the term, ‘strong inhibition’ for 8 values larger than .4 that result in a winner-
take-all selection, further discussed in section 6.

4Cued recall is addressed since it maps naturally into the framework described and since it
minimises additional processes such as serial order where we expect an important contribution
from posterior STM systems [10].
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Figure 3: Simulation of the noisy system described by Equation 1; the x-axis repre-
sents iteration steps of the formula: z; = Az; + (1 — A)[@F(z;) — BF(x;) + I; + noise]
(for A = .99, corresponding to Euler integration with dt = .01), for @ = 2 and
simultaneous activation of items (¢ < 100). a) 8= .2, b) 8 = .1.

3 Modelling cued recall

In cued recall, a list of n items is presented, sequentially, for retention, and
immediately after that a cue to recall a specific item on the list is presented.
The variable of interest is the probability of correct recall, as a function of the
serial position of the cue-item on the list. Typical data [15] (illustrated in Figure
5b) shows a strong recency effect. Figure 4 shows the activation trajectories
in a simulation where inputs were presented to the network sequentially. Each
input was clamped, (to a value of .33) for a time window of 400 iteration steps
while the input of all the other units was zero.

Notice first that, as more and more units are activated, this average acti-
vation decreases in a linear way in correspondence to equation 6. Second, at
any moment in time, the activation of the last item presented is higher than
the activations of the items presented before it. This is a consequence of the
fact that the input favours the last presented items, breaking the symmetry
of equation 1. When the number of inputs exceeds the capacity (in this case
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Figure 4: Activation trajectories for a sequential presentation of six items with o = 2
and B = .15; only the last four items are retained.

4 items) some of the retained items are dropped. Earlier items have a higher
chance of being discarded (Figure 4), since new items are initially activated at
a higher level.

In order to obtain a serial recall curve we performed 500 such simulated
trials. Serial position curves were obtained by measuring the fraction of trials
in which an item corresponding to a specific position remained active at the
end of the simulation, above some activation criterion (an arbitrary criterion,
of .2 which does not affect the results, was chosen). The assumption is that if
an item is still in active memory when a recall cue for it is given, recall is suc-
cessful. The recency curve shares many characteristics found in experimental
data [15] (see, Figure 5, below). Notice, in particular, the concave shape of the
curve; performance decays only minimally at the first 2-3 items, after which it
accelerates down.

3.1 Presentation rate effect

We tested the model, by computing recency curves for sequential presentation
of objects, at two presentation speeds (400 and 800 time units per item). All
other parameters were the same, and the simulation was run for such a time
that there was always an additional of 2000 time units after the last presented
item. The results of the simulation curves are presented in Figure 5a, and the
data from Waugh & Norman (1965) in Figure 5b.

We observe, both in the data and in the model, that the slower presentation
recency curve is a steeper sigmoid; the very recent items are recalled better,
while the earlier ones are worse. Overall the total recall probability is rather
similar (the two effects cancel each other out). In the model this is the outcome
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Figure 5: The effect of speed of presentation on cued recall. a) Model, b) Data
(Waugh & Norman, 1965). Solid lines correspond to the slower presentation rates.

of the finite capacity limitation which is distributed among the various items.
The reason for the difference is that, as the temporal window for presentation
of each item increases, each new item has more time to be encoded at a stronger
level than all the preceding items (Figure 4). As a result the activation of items
in different serial positions are more strongly differentiated, leading to a less
noisy process of selection for memory displacement. The simulation results, as
well as the experimental data [15], indicate that the system is limited due to
displacement of old items by new ones, and less so due to passive decay.

3.2 List-length and serial position effects

A prediction from this model is that serial-position interacts with list length.
This is because no interference should take place in cued recall, until the ca-
pacity limitation of the system is exceeded. Three additional simulations were
run with list length of 4, 5 and 6 items (time of presentation for each item was
400 time units, @ = 2 and 8 = .15). The predicted recency curves are shown in
the left panel of Figure 6. Accordingly, we obtain perfect performance (at all
serial positions) with a list length of 4 items. When list-length increases, the
model predicts a gradual drop in recall probability which affects in particular
the earlier items. Experimental data (with list-length of 3, 4 and 6 words),
collected in our laboratory, is shown in the right panel of Figure 6.

4 Semantic effects in STM

Strong semantic effects have been often reported in immediate recall [25, 26, 27]
and recognition [28, 29] of verbal material. Typical results show improved
performance with lists of semantically related, relative to unrelated items (for
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Figure 6: The effect of list-length on recency functions for cued-recall. Left: Model-
Solid (upper) line: 4 items, dashed (middle) line: 5 items, dotted (lower), line: 6
items; Right— experimental data with list-length of 3, 4 and 6 (only up to four serial
positions are tested).

example a list of 6 related items is better recalled than a list of 6 unrelated items
[25].) One common interpretation of these results attributes the improvement
to LTM retrieval [30]. This was supported by studies that compared free recall
on lists of unrelated items (control) with lists where one cluster of related items
was embedded either at the beginning or at the end of the list [31, 32]. Those
studies showed much stronger improvement for middle-list cluster words than
for end-list cluster words, relative to control lists (at the same serial positions).
Since, items from middle serial positions are typically retrieved from LTM [15]
this led to the conclusion that the semantic improvement is driven by LTM.

Here we show, however, that exactly these effects are obtained in our re-
verberation model without additional LTM encoding. The key assumption [25]
is that semantically similar words support each other. In the model this is
accounted for by assuming small excitatory links between units corresponding
to associations between related words. As shown in Figure 7, while a list of
unrelated items generates a typical recency curve (solid line with diamond-
s), a cluster-middle list shows a large improvement at the middle positions
(dotted line with squares), and a cluster-end list shows an almost negligible
improvement at the end-positions (dashed line with crosses). Thus characteris-
tic features of the data [31] are reproduced. The explanation within the model
is transparent. While unrelated items are typically displaced by more recent
item, this happens to much less extent for semantically related items, which
due to their mutual support, are relatively protected.

5 Forgetting in the Brown-Peterson paradigm

In the Brown-Peterson (BP) paradigm, subjects are given a number of item-
s, and recall is tested after a delay filled with a distractor (e.g., counting-
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Figure 7: Serial position recall curves for i) unrelated items (solid line with diamond-
8), ii) cluster-middle list (dotted line with squares), and iii) cluster-end list (dashed
line with crosses).

backward) task. At first the results suggested a decay mechanism, however
following Murdock’s results [33] who showed that the rate of decay is faster
when there are more items to retain (Figure 8a), the decay mechanism was
challenged [34]. Interestingly, with minimal auxiliary assumptions, the rever-
beration model can explain the dependence of the forgetting rate on the number
of items to retain.

To model the BP experiments, we assume that after activating the units
corresponding to the retention-set, subjects activate new items in the lexicon,
one for each word /number they generate. The retention items are assumed to be
encoded at a slightly stronger value of a (reflecting an attentional modulation;
the difference was .09 in the simulations reported). Although they are relatively
protected, some displacement of items from the retention set takes place when
new items are activated. As shown in Figure 8b, this leads to a fast forgetting
rate for larger response sets, where the items to be retained compete with each
other over a finite retention capacity.

6 Winner-take-all and response selection

Until now we focussed on the ability of the system to retain information. How-
ever, a system based on lateral inhibition and recurrent excitation, (as described
in Equation 1) can perform additional functions, usually associated with the
frontal lobes, such as response selection [2, 6]. Accordingly when more than
one unit receives input, the system can amplify the stronger input and sup-
press the weaker inputs, implementing a WTA network. This ability depends
critically on the o and 8 parameters. To show this, we integrated numerically
Equations 1 for the case when only two of the units receive an equal amount
of input, I; = I = .1 and independent noise. The value of the inhibition was
relatively high (in order to perform response selection) 8 = .45, and two values
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Figure 8: Probability of recalling the items in the response set (n=1: solid lines;
n=3: dashed lines) as function of the delay time (or number of intervening items).
Left: data from Murdock (1961). Right: model simulation (o = 2,8 = .11,I = .33).

of recurrent excitation were used: o = .8 and a = 1.3. The responses of the
two units under both scenarios are shown in Figure 9. At low levels of recurrent
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Figure 9: Response selection as function of the strength of recurrent excitation. Left
column: weak recurrency (a = .8); right column: strong recurrency (o = 1.3)

excitation, the two units fluctuate around the same levels of activity. For the
higher excitation, however, the system amplifies the noise fluctuations so that
the ambiguity is solved in favour of one of the units.

It is interesting to note, that for weak recurrency (a = .9) but larger inhi-
bition (8 = 1) and input (Ip = .3) the time for selection depends on the size
of the response set. As shown in Figure 10, in this situation the system per-
forms easily a selection between two alternatives, but takes much longer (than
the simulation run) to select among five of them. With increased excitation
a = 1.2 the time for selection does not depend on the response set (not shown).
Thus weak recurrency mimics similar selection characteristics to those found



in patients with dynamic aphasia [2].
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Figure 10: Response selection as function of the response-set Left column: small
(n=2) response set; right column: large (n=5) response set. With weak recurrency
(a = .9), selection is much slower at large response sets.

7 Discussion

We presented a neural model that accounts for the retention of information
for short periods of time under the form of neural reverberations, as reported
in physiological recordings from the frontal cortex [3, 4]. The model explains
effects of presentation rate, list length and semantic factors in immediate re-
call, as well as forgetting curves in the Brown-Peterson experiments, due to
a displacement type of capacity limitation. The present model is limited in
its range of application to the processes mediating short-term retainance and
thus does not address primacy effects thought to reflect LTM contributions to
recall [15]. Such effects could be addressed in an extended model that includes
Hebbian learning and hippocampal storage [35]. Also the model addresses on-
ly item, and not order, memory. Additional components (such as a primacy
gradient [36]) are needed in order to model serial order recall. Also, the model
does not account for the phonological components in immediate memory [37].
Nevertheless, despite its simplicity and domain limitation, the model taps the
components of active maintenance, characteristic of the frontal lobe system
[3, 4] which seems to be sensitive to semantic, rather than to phonological, fac-
tors [1, 9]. 5 According to our approach, the short-term retainance of semantic
contents is an essential part of context based control processes, mediated by
the frontal lobe system [12].

The ability of this system to sustain more than one active representation
following the offset of the stimulus, depends on the strength of the recurrent
excitation a and of the lateral inhibition 8. For the system described, the

5This is consistent with the reports of these studies, demonstrating a reduction of lexical
and semantic effects in immediate memory of frontal lobe patients.



maximal span increases with the value of the excitation and decreases with the
level of the inhibition. We assumed here that some small value of inhibition
is necessary in order to prevent an unbounded spread of the activation across
the whole system due to small overlap in the representations, as confirmed
in our preliminary simulations of cell-assemblies with small overlaps. Since
different tasks require different behaviour (‘hold up few things in mind’ or
‘select one’) it is appealing to assume that subjects have control on the level of
excitation or inhibition. (This process might be mediated by other brain areas
such as the Anterior Cingulate, which has been recently shown to activate in
correlation with the level of response competition [38]). Nevertheless, those
variable parameters might be within bounds that vary for every person and
account thus for individual differences in span®.

If patients that suffer from neurophysiological lesions in the frontal cortex
have anomalously weak values of recurrent excitation, and if the network ad-
dressed is processing mainly semantic/lexical information, then such patients
should suffer both in their ability to hold lexical and semantic information and
in their ability to perform response selection. The former can explain the van-
ishing effects of word superiority in the STM span of frontal lobe patients [1],
while the second could explain the deficit of response selection in patients with
dynamic aphasia [2].
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