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Abstract: A naturalistic scheme of primitive conceptual representations is proposed
using the statistical measure of mutual information. It is argued that a concept represents,
not the class of objects that caused its tokening, but the class of objects that is most
likely to have caused it (had it been tokened), as specified by the statistical measure of
mutual information. This solves the problem of misrepresentation which plagues causal
accounts, by taking the representation relation to be determined via ordinal relationships
between conditional probabilities. The scheme can deal with statistical biases and does
not rely on arbitrary criteria. Implications for the theory of meaning and semantic
content are addressed.

1. Introduction

Primitive/atomistic conceptual representations (or concepts) are central in
empirical sciences like psychology and neuroscience, and in philosophical
theories that address the structure of cognition. In psychology, concepts are
thought to provide a fast and flexible way to categorize an uncountable set of
possible objects within the external environment into a finite repertoire of
categories. In neuroscience, neural assemblies are often said to represent classes
of objects (such as faces) in virtue of their neural responses. In philosophy,
representations in general (and concepts in particular) are used as a basis for
naturalistic theories of meaning (Fodor, 1984; 1990; 1998; Millikan, 1998).

In Fodor’s representational theory of mind (RTM), for example, concepts
are mental particulars that function as atomic symbols with semantic properties.
According to RTM, the truth value of a complex mental representation (such
as ‘the white cat is on the mat’) is determined by the satisfaction of its atomic
symbols (via their semantic relation to external objects) and by applying syntac-
tic rules of computation that preserve the truth value. To avoid circularity,
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the semantic content of symbols needs to be determined in a naturalistic way
without relying on the notion of computation (as computation was defined
in terms of preserving the truth value of symbols; Fodor, 1998) or on other
semantic terms. This consideration, as well as the shared and public aspect of
concepts, motivated Fodor to develop a referential atomistic theory of concepts,
instead of an inferential one, where concepts are defined with regards to their
relationships to each other. Although the topic is under debate (e.g., Fodor
and Lepore, 1992, 1993; Churchland, 1993; 1998), a referential theory of
meaning may be in a better position to explain the shared aspect of concepts
(and the possibility for communication) in light of the fact that the relationships
between concepts vary widely from person to person.1

One should also note that accepting a referential theory of the content of
concepts does not mean that one has to accept all the assumptions of Fodor’s
Language of Thought (Fodor, 1975). One may, for example, hold that 99% of
thought processes follow associationist (Hume, 1739) or constraint satisfaction
principles (Rumelhart and McClelland, 1986). It is enough that syntactic com-
putational processes can be used to evaluate the content of composite represen-
tations on the basis of their constituent symbols. In fact, one can even conceive
of a referential connectionist theory of representation that does not satisfy
Fodor’s assumption on the compositionality and systematicity of mental rep-
resentation,2 but where the content of representations could still be determined
by causal relations between the units of representation and properties of the
environment. Such a causal component has been recently acknowledged by
Churchland (1998) as one ingredient for his scheme of semantic content.3 A
causal referential component in a theory of content, as eloquently advocated
by Fodor, is therefore, likely to provide a robust basis for a variety of cogni-
tive theories.

The success of this enterprise, however, rests on the ability to provide a
naturalistic account of how concepts represent. Unfortunately, however, all
the naturalistic theories of reference run into difficulties (Cummins, 1989;
Fodor, 1990; Crane, 1995). The major problem, often labeled as the problem
of intentionality, is that it is not clear what makes a mind/brain representation
refer to an external object (e.g., Searle, 1984). During the last 25 years, a num-
ber of theories of representation have been developed that rely on causal and
informational principles to define the nature of mental representations (Stampe,
1977; Dretske, 1981, 1983). While these theories are successful in accounting

1 Fodor also argues that a theory of conceptual content based on relationships between concepts
will necessarily have a holistic aspect (each concept depends on almost every other concept)
in a way that makes the theory useless (Fodor and Lepore, 1992; Fodor, 1998).

2 The representation theory proposed here does not negate compositionality and, moreover,
is consistent with (but does not rely on) it.

3 Churchland (1998) assumes that both the causal relations of concepts to features of the
environment as well as their relations to other concepts determine their semantic content. It
is not so clear however, what is the differential role of the two factors in determining content.
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for many representational properties, they fall short of accounting for misrep-
resentations. Other theories rely on adaptational principles in order to over-
come the misrepresentation problem (Millikan, 1993; Papineau, 1987), but
their success (in accounting for all cases of misrepresentation) is strongly dis-
puted (Cummins, 1989; Fodor, 1990, section 3; Crane, 1995; Neander, 1995).
Today, the issue of misrepresentation with respect to causal-informational
theories of content (and the related disjunction problem; see next section) is
one of the most debated and problematic topics.

The aim of this paper is to propose a naturalistic theory of reference on
the basis of statistical measures such as mutual information. The theory takes as
its assumption that concepts are used in an inherently probabilistic process of
perceptual categorization (as discussed in the next section), and therefore any
theory of representation that can account for cases of misrepresentation needs
to take this probabilistic factor seriously. Using tools from Shannon’s theory
of transmission of information, I will argue that a statistical, informational/causal
scheme can, if not provide a definitive account for the representational content
of elementary concepts, at least enable significant steps in this direction.

The paper is organized as follows. In the next section I briefly discuss some
of the difficulties encountered in causal theories of representation, focusing on
the problem of misrepresentation. In section 3, I review some of the challenges
raised against statistical approaches of representation, and then I describe a
statistical competitive scheme that should be able to meet these challenges. In
section 4, this scheme is applied to typical situations involving mispresprenta-
tions. Finally, the implications of this scheme for a theory of meaning are dis-
cussed.

2. Causal Theories of Content and the Misrepresentation-
Disjunction Problem.

Causal principles seem to be the best candidate for a theory of mental represen-
tation (Fodor, 1990; Crane, 1995). After all, the act of perception is a causal
process and its function is to provide an individual with knowledge about
objects in its environment that causally affect it. Moreover, a theory of rep-
resentation based on causation can solve a number of problems that are difficult
for non-causal approaches. For example, resemblance-based theories (which
define the representation relation in terms of the similarity between the symbol
and its reference) and description-based approaches (where concepts are
defined in terms of a list of properties) have difficulties in accounting for the
asymmetry and the singularity of representation (Stampe, 1977; Fodor, 1990;
Cummins, 1989; Crane, 1995).

Stampe (1997), for example, characterizes the relation of representation
between a representational symbol R and its representational object S by the
requirement that S causes R, in such a way that properties of S are causally
responsible for properties of R. This solves the problem of singularity (e.g.,
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the concept ‘this tiger’ refers only to this particular tiger, and not just to any
tiger, since only this tiger was causally responsible for its perception) as well
as the asymmetry of representations (the concept ‘tiger’ represents tigers but
not the opposite). Two main problems appear, however. First, according to
this account one has difficulty in assigning content to tokens of a representation
generated merely in thought (the thought about sheep is not always caused
by sheep, as when, say, one tries to sleep). Second, it is clear that this scheme
has difficulties accounting for the possibility of misrepresentation (Fodor, 1984;
Cummins, 1989; Crane, 1995). If a symbol represents an object in virtue of
being caused by it, then when an object is misrepresented (say when a dog is
misperceived as a cat) the symbol is still linked to the cause (i.e., the dog). As
discussed in detail by Fodor (1984), this generates two problems. Epistemologi-
cally, symbols are unintelligible unless one really knows what caused them
(e.g., the content of the symbol ‘cat’ may correspond to a dog or to any
other causal item (see discussion in Fodor, 1990, pp. 36–38)). Ontologically,
according to Stampe’s account the misrepresented dog-symbol represents its
cause (i.e. the cat), leaving no room for misrepresentations.

A similar theory of representation was developed by Dretske (1981; 1983).
Unlike Stampe’s, however, Dretske’s theory (as well as Fodor, 1990) is formu-
lated in terms of counterfactually supporting causation (and therefore the actual
history is irrelevant). In Dretske’s terms, a symbol represents an item when it
carries information about it. The use of information to determine the content
of representation is essential for the approach I pursue here, which follows the
framework first outlined by Dretske. There is, however, one essential differ-
ence. Although he defines representational content with regards to the infor-
mation that a symbol carries about its cause, Dretske (1981; 1983) imposes a
further restriction upon the requirement for representation. He demands that
the conditional probability for the represented item, given the symbol, is unity.
In other words, only certain information is accepted as the basis for a represen-
tational relation. This restriction, motivated by Dretske’s concern with preserv-
ing the truth value of the representational relation on composite symbols and
with preserving the transitivity of representation (but see criticism in Fodor
(1990, pp. 57–58) and section 4.1 below), reduces, however, the statistical-
informational measure to a logical one. As discussed in detail by Fodor, Dretske
formulates the condition for R to represent S, by the requirement that the
generalization S and only S causes R is counterfactually supported [or S (and only
S) causes R is a law; Fodor, 1990, p. 57]. This makes Dretske’s representation
theory (Dretske, 1981; 1983) vulnerable to the same misrepresentation prob-
lem discussed above for Stampe’s theory (Fodor, 1990; Cummins, 1989; Crane,
1995). A related and important way to describe the difficulties of these causal
theories in accounting for representation is the disjunction problem. Since this
is considered a major problem for causal theories of representation that I
address here, I will provide a brief description, following closely Fodor’s review
(Fodor, 1990, ch. 3).
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For misrepresentation to occur, the nomic relation between R and S must
be imperfect (where R is the symbol that represents S). The idea for both
Stampe and Dretske is to assume that while, for faithful representations, tokens
of R are caused by tokens of S, for incorrect representations there are ‘wild’
R tokens that are caused in some other way (say by T). If that is the case,
however, it would seem that what R represents is not only S, but rather the
disjunction (S ~ T), which has a higher correlation with R than S alone has
(Fodor, 1990, p. 40). As discussed by Fodor (1984), this problem is even more
acute in Dretske’s theory where the representation relation supports coun-
terfactuals. Even if T never occurred so far, the mere possibility of its occur-
rence causing R is enough to include T within the content of R (Fodor, 1984;
see also Dretske, 1983b, p. 17).

Most attempts to solve this problem within strictly causal theories have tried
to distinguish between two types of situations, where type I are the ones which
confer content, while type II do not. Dretske (1981; 1983), for example, relied
on the distinction between learning (where conditions are assumed to be
optimal) and retrieval phases (where they are not). This solution was strongly
criticized by most representation theorists. First, there is no non-circular way
to distinguish learning situations from other situations, as organisms appear to
be able to learn to identify things without ever reaching perfection (Cummins,
1989, p. 68; Fodor, 1984; 1990). Second, because of the counterfactual-sup-
porting property of Dretske’s condition, it is not possible to rule out the causes
of ‘wild’ tokens of a representation from its content domain, merely because
they did not happen to occur during the learning period (Fodor, 1984).

Other approaches have tried to distinguish between type I and type II situ-
ations with regard to the notion of ‘normalcy’. The challenge, though, is to
provide a naturalistic account for ‘normalcy’ that does not rely on semantic
features (see Fodor, 1990, ch. 2 and 3). In light of these difficulties, Fodor
(1990) concluded that a naturalistic theory of representation (and referential
content) that provides an account of misrepresentation without relying on a
distinction between the two types of situations is needed. In the next section,
I try to show how this can be achieved for a specific type of representation—
conceptual (atomistic) representations—by returning to Dretske’s (1981) orig-
inal idea for determining the content of a representation with regards to the
information it conveys about its causal factors (but without the restriction on
conditional probability). This will require, however, a statistical framework
(Oaksford and Chater, 1998) rather than a logic-based one.

3. A Statistical Scheme for Representational Content

Causal theories of representation are attractive because they make use of per-
ception and categorization processes where mental representations are tokened.
The problem is that in order to allow room for misrepresentation it needs to
be the case that ‘the conditions for the truth of a symbol dissociate from the
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conditions whose satisfaction determine what the symbol represents’ (Fodor,
1990, p. 42). This is, however, what the causal theories cannot do: since caus-
ation is used to determine representational content it cannot also be used to
dissociate content from truth.

The idea proposed here is that while causation is important for represen-
tation it provides too strong a condition. Note that the introduction of
counterfactuals in the theories of Dretske (1981; 1983) and Fodor (1990)
already provides a weaker condition, as it allows R to represent S even when
S never happened. Dretske’s additional requirement that the conditional prob-
abilities are unity, however, nullify the full effects of this modification; when
R is eventually tokened, then S needs to have caused its tokening (thus one
still cannot have tokening of concepts ‘offline’ in thought). Fodor (1990)
eliminated (and criticized) this conditional probability restriction within his
causal theory of content, without, however, making use of the probabilistic
framework for addressing the problem of misrepresentation. I will comment
on Fodor’s solution to this problem in the discussion section. The work
presented here shall make full use of the probabilistic framework that provides
statistical measures to define the reference of representations. The rationale
behind the approach is that, since organisms perceive the world via a causal
but probabilistic process, the causal object of a perceptual categorization can
never be known with certainty. The rational strategy in this situation is to
estimate the most likely object that could have caused the perceptual state (Bialek
et al., 1991). The role of mental representations may therefore be to provide,
not faithful access to the class of objects causing an act of perception, but rather
a statistical inference (or hypothesis) of what type of object could be causally
involved (see also Oaksford and Chater, 1998, for an introduction to a statisti-
cal framework to cognition and rationality that replaces the traditional logic-
based one). In other words, when a concept is tokened, what is represented
is not the type that caused the mental state but the type that is the most likely
to have caused it. This is consistent with Dretske’s original idea that mental
symbols represent what they carry information about. A statistical measure for
‘carrying information’ is provided by Shannon’s theory of the transmission of
information (see e.g., Fano, 1961).

Before I describe the scheme for representational content based on this
theory three preliminary issues need to be addressed. First I review the chal-
lenges that a statistical framework for representation needs to face, and which
have often been used to dismiss it. Second, prior assumptions regarding the
nature of concepts as tools for a categorization map of the world, are addressed.
Third, two factors that make the categorization map intrinsically probabilistic
are discussed.

3.1 Challenges Facing a Statistical Scheme for Representation
A number of arguments have been put forward to demonstrate that statistical
measures cannot offer a valid account of representation. One such argument
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was already mentioned. Accordingly, if the representation relation is to be
explained by a correlation/frequency measure, one is faced with the fact that
a representation symbol covaries more often (and therefore more reliably) with
a class of disjunctive stimuli that includes its reference than with the class
corresponding to its reference alone (Fodor, 1990; Hutto, 1999). A similar
argument involves the observation that, when the expectation for (or the sali-
ence and importance of) an item is high, the representation frequency may be
high while the occurrence frequency of the represented item is low. Millikan
(1989) provides the example that, although the representation of danger is very
often tokened (for a vulnerable animal), the actual occurrence of a predator
in its immediate environment may be quite rare (so that given the tokening
of danger representation it is more likely that there is no predator than that
there is one).

A second argument is related to the concern that an appeal to statistical
measures will result in arbitrary criteria: ‘are average conditions those which
obtain in at least 50% of the occasions, or is it 90%? . . . But the notion of
semantic content is surely not relative’ (Millikan, 1989). A similar argument
(the ‘redox’ principle) has been put forward by Dretske (1981, 1983) to support
the claim that informational content cannot rely on uncertain messages that
are likely to require arbitrary criteria for their disambiguation. More generally,
it is said that there is no way in which statistical measures can set up the
‘standard’ for correct representation. To anticipate, I will try to show that in
fact a statistical approach can meet all these challenges.

3.2 Conceptual Maps
Since I focus on primitive conceptual representations, I will start by defining
the terms and assumptions underlying my scheme. These definitions follow
quite closely recent work by Fodor (1998) and by Millikan (1998) on the
nature of concepts. I take concepts to correspond to categories (Fodor, 1998)
that are used to refer to objects in the external environment. In this sense
concepts provide a many-to-one map of the world (many world-items map
onto the same concept). Millikan (1998) uses the Aristotelian term ‘substances’
to characterize the type of items that concepts refer to. The examples she
examines, and which I also focus on, include what Millikan calls real kinds
(cat, chair), individuals (Mama, Bill Clinton) and stuffs or ordinary substances
(milk, gold). Moreover, Millikan (1998) argues that concepts are to be indi-
viduated by the capacity to identify exemplars rather than by a description of
their properties (i.e., the concept ‘cat’ is individuated by the ability to tell cats
from non-cats, rather than by being able to list properties such as fur, meowing,
etc.). These properties are, according to Millikan, secondary to the referential
character of concepts. They are acquired later during human development
(infants acquire linguistic representation of substances, such as ‘animal’ and
‘food’ much earlier than they acquire linguistic terms for their properties), and
the ability to identify a substance is needed in order to confer to it a set of
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properties.4 This approach is also consistent with Fodor’s (1998) referential
atomism.

Here I adopt Millikan’s characterization of concepts, but I label their refer-
ents as ‘objects’ (instead of ‘substances’) to avoid the possible confusion with
ordinary substances (or stuffs, such as ‘gold’).5 Two properties of this approach
are particularly important for the theory of representation presented here. First,
concepts are symbols with conditions of satisfaction within acts of perception.
For example, the concept ‘cat’ is satisfied when tokened in perception if it is
caused by seeing a cat. This allows one to address the simplest and most widely
discussed cases of misrepresentation, where a concept is tokened during an act
of perception in response to an object that corresponds to another concept
(e.g., when perceiving a small dog in a dark night as a cat; Fodor, 1990; Crane,
1995). A second important feature of this scheme is that the representational
map is limited to apply only to objects as defined above. It thus excludes events
such as ‘a glimpse of a dog in the dark’. Such events are situation dependent
and do not satisfy the requirement of being an object (or substance). To put
it differently, the use of concepts relies on a prior ontological assumption that
the world can be individuated with regards to objects (and not just with regards
to events).6 Accordingly, the content of a concept is a set of objects and not
a set of events (or situational properties).

3.3 Probabilistic Factors in Perception
Two factors make the categorization map between objects in the world and
conceptual states, probabilistic. The first factor is related to intrinsically noisy
information processing in the central nervous system. Both human perform-
ance and single neurons show highly variable (probabilistic) behavior even
under identical external stimulation.7 For example, in the neuroscience litera-
ture, the issue of variability in the discharge patterns of nerve cells has recently
been the focus of intensive research (Softky and Koch, 1993; Shadlen and
Newsome 1994; Usher et al., 1994). This aspect of information processing is

4 This does not mean that the identification process is insensitive to a set of sensory properties
that the perceptual object generates. Such sensory properties, however, need not be part of
the conceptual repertoire of the user, and may not play a role in lexically based definitions.

5 No perfect term for Aristotelian-substances exists in common language. The term objects,
as used here, should be taken in a broad way to apply also to real kinds, to individuals and
to ordinary substances, like ‘gold’. This term is preferred here for being more accessible to
non-philosophy cognitive scientists.

6 Likely reasons for human and animals to operate upon this assumption in their formation of
conceptual maps, are adaptationally evolved perceptual mechanisms such as object constancy
and Gestalt principles, which divide the world in terms of whole objects (dogs but not dogs-
at-night). Exceptions to this such as, evening-star/morning-star, exist, however they take
place only when object-binding fails.

7 This is clear for brief or degraded stimuli but is also present under the most optimal sensory
conditions as quantified by the variability in behavioral measures such as response latencies.
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consistent with the computational framework of Parallel Distributed Processes
(PDP, Rumelhart, McClelland, and the PDP Research Group, 1986, ch. 5–
7; McClelland, 1991; Movellan and McClelland, 1995; Usher and McClelland,
2001) and Attractor Neural Networks (ANN, Hopfield, 1982; Hinton and
Sejnowski, 1983, 1986; Amit, 1989). In particular, McClelland (1991) and
Movellan and McClelland (1995) have shown that only with intrinsic variability
incorporated can a classical PDP model (the interactive activation model)
account for empirical data patterns involving effects of context on perceptual
categorization (Massaro, 1989). The implication of this intrinsic noise factor
is that, even in identical stimulus conditions, the perceptual process of categoriz-
ation is probabilistic.

The second factor is conceptually more interesting. The categorization pro-
cess, as presented above, involves a (many to one) map between objects and
concepts. Objects, however, are not directly presented in perception. They
are projected onto the senses via perceptual stimuli. This projection process
depends on specific situations (light, distance, occlusion, modality, etc.). Since
such situations are orthogonal to the map (between objects and concepts) they
introduce an additional random factor that the perceptual system needs to take
into account when selecting the most likely object responsible for a percep-
tual representation.

3.4 A Statistical Competitive Scheme based on Mutual
Information
As discussed above, a statistical measure for content based on a measure of
correlation is not enough. First, such a measure would be biased by the occur-
rence frequency of objects (Millikan, 1989). Second, if the categorization pro-
cess is truly probabilistic, then any object in the world may causally token a
symbol with some low probability. A simple correlation measure would then
imply that the symbol has as its content the whole world; that would trivially
obtain the maximal correlation with the symbol.

Fortunately, Shannon’s theory of transmission of information (see, e.g., Fano,
1961) provides more refined statistical measures to characterize the information
a symbol in a receiving system carries about states of the environment (here
denoting objects that affect perception). The relevant measure of this theory
for a theory of representation is the mutual information (MI) between a symbol
(or representation), Ri, and objects or states of the environment, Sj (the indexes
i,j enumerate various representation states and objects). The mutual infor-
mation can be simply expressed in terms of conditional probabilities between
objects and representations:

MIij = log
P(RiuSi)
P(Ri)

= log
P(Ri, Sj)

P(Ri) P(Sj)
= log

P(SjuRi)
P(Sj)

(1)

This identity is based on Bayes’ law of probability and shows that the mutual
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information can be computed either from the matrix of joint probabilities
(middle term) or from the matrices of conditional probabilities (left and right
terms; the left term corresponds to the probability conditioned on objects, Si,
and normalized with the frequency of symbols, Ri, while the right term corre-
sponds to the converse).8 Since in what follows we only make use of ordinal
relations in MI, and since the logarithm is a monotonic function, we can elim-
inate it (or more formally, rely on exp(MI) which provides the same expression
but without the logarithm).

The measure of mutual information alone, however, is not enough to
determine the content of representational symbols. After all, any symbol carries
some amount of information about any object (unless there is absolutely zero
correlation). What is needed is some procedure to determine which one of
the objects in the environment the symbol represents, given the amount of
information it carries about them. Two complimentary approaches are outlined
below, differing in the way they determine the representational map: from the
world to representations—an externally based approach; or from representation
to the world—an internally based approach, but alike in making use of a com-
parative type of scheme.

External-based scheme. According to this approach, the classes of objects
in the world (e.g., cats, dogs, gold, etc) are considered to be given as part of
the structure of the world.9 The aim of the scheme is to determine the rep-
resentation states that correspond to these classes of objects and to account for
the representational relation. Basically, this is similar to the pragmatic way in
which neuroscientists proceed to determine the neural representation an animal
has for objects within a category, say cats. Schematically, the animal is
presented with a representative sample of cats and one determines the neural
structure that shows the best response (in terms of activation) in average over
all the sample, and relative to responses it generates for items of other classes
(not cats). (For a philosophically friendly presentation and criticism of this
approach, see Eliasmith, 2000). This can be formalized in term of MI:

C1. Ri is a representation for the class Si, (only) when Si, can cause Ri and
the mutual information between Ri and Si is larger than the mutual information between
Ri and objects of any other types, Sj, in average over exemplars and situations.

Using the second term of Eq. 1, this can formulated as:

8 The formula can be understood following the intuition that no mutual information exists
when the two systems are independent (i.e., uncorrelated, and thus P(Ri, Sj) = P (Ri)P(Sj),

resulting in log (
P(Ri, Sj)

P(Ri) P(Sj)
) = 0, and that MIij should increase with the deviation from inde-

pendence (measured by
P(Ri, Sj)

P(Ri) P(Sj)
).

9 I.e., there is a set of properties that can, in principle, be formulated in scientific terms and
that characterizes these classes. I do not address here use-dependent objects, such as doorknobs
(Fodor, 1998), which are likely to be culture/use dependent.
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MI(Ri, Si) =
P(RiuSi)
P(Ri)

.
P(RiuSj)
P(Ri)

= MI(Ri, Sj); for all j ± i (2)

which, because of the identical denominator, can be reduced to a simple
expression that involves forward conditional probabilities (i.e., conditioned
on objects):

P(RiuSi) . P(RiuSj); for all j ± i (3)

The definition C1 (Eq. 3) provides a necessary condition for Ri to be a
representation of the class Si. For example, for symbol R to represent cats, it
is necessary that P(Rucats) . P(Rudogs, etc). Thus R represents cats if R is ‘cats’
but not if R is ‘dogs’, ‘animals’ or ‘gold’, etc. As defined above, however, C1
does not provide a sufficient condition for R to represent ‘cats’; subclasses of
‘cat’ (e.g., ‘siamese’) will also satisfy Eq. 3 [P(‘siamese’ucats) .P(‘siamese’udogs,
etc)]. To provide a sufficient condition, C1 can be strengthened to:

C1*. The difference (or contrast) between the mutual information that Ri carries
about Si and the information it carries on other type of objects, is higher than for other
representation states that satisfy C1.

Clearly, P(‘cat’/cats) . P(‘siamese’/cats) (when computed over a representa-
tive sample of cats) and therefore ‘cat’ but not ‘siamese’ represents cats.10 Defi-
nition C1 (Eq. 3) can be interpreted to imply that a necessary condition for
the symbol R to have S as its content is that R has a higher probability to be
tokened by exemplars of the category S (in average over exemplars and
situations) than by exemplars of other categories. Interestingly, Eq. 3 does not
restrict the relation between the forward conditional probabilities comparing
different concepts (Ri, Rj) for a specific category of objects, Si; it is still possible
(but not necessary) that:

P(RiuSi) , P(RjuSi); j ± i. (4)

The example below shows the matrix of forward conditional probabilities,
P(RiuSj), for a 2-case categorization, corresponding to Millikan’s case of the
rare high-significance predator (see Appendix).

R1 R2

S1 .8 .2

S2 .6 .4

10 In neuroscience terms, a necessary and sufficient condition for R to be a representation of
the class S can be obtained by averaging the neural activity patterns of responses, for samples
of objects of type S. It is unlikely that two different classes (or a class and a non-representative
subclass) will result in the same pattern. In the case of subsets (cats/siamese) one possibility
is that the broader concept will pick a neural representation consisting of a subset of neurons
that participate in the representation of the specific concept.
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In this case, Eq. 3 is satisfied (because when comparing over objects, i.e.,
over columns of the matrix, the diagonal elements have the highest values),
however, Eq. 4 is not (comparing over representations, i.e., over rows, the
diagonal elements do not always have the highest values [.6 . .4]). This does
not prevent R2 from representing S2 since what matters according to C1 is
Eq. 3 and not Eq. 4.

Internal-based scheme. This approach is closer to the task an individual
(human or animal) faces and takes into consideration the limited resources of
the individual (the animal does not have fully representative samples of objects
and their objective probabilities at its disposal). To the animal what is given
is the representation tokened, and the class of objects that may have caused it
needs to be estimated (see also Eliasmith, 2000, for a detailed discussion of
this approach and its advantages). This can be formulated as follows:

C2. For a given representation state, Ri, its content corresponds to the set
of objects, Si, which can cause Ri and for which the mutual information between Si and
Ri is larger than the mutual information between Si and any other representational
state, Rj (where j ± i and the relations are estimated when objects are presented
under all situations).

In order to find whether Si belongs to the representational extent of Ri,
one needs to compare the mutual information matrix element Mii to all the
other elements Mji (keeping the second index of the matrix, i which denotes
objects, fixed). Using the right term in Equation 1 (where the denominator
P(Si) is the same for all elements compared, and the logarithm can be ignored)
this can be simply formulated (using Eq. 1) in terms of backward conditional
probabilities, as:

P(SiuRi) . P(SiuRj), for all j. (5)

This relation involves backward conditional probabilities of external objects
given representation states (see Eliasmith (2000), for an illustration of the differ-
ence between this type of conditional probability and the traditional forward
type [where the objects are given]). A similar condition can be formulated
(using the left term in Equation 1) in terms of the forward conditional prob-
abilities (of representations given external states), but requires a normalization
by the representation frequencies:

P(RiuSi)
P(Ri)

.
P(RjuSi)
P(Rj)

, for all j. (6)

Only in the special case where the probabilities of representations are uni-
form, i.e. P(Ri) = P(Ri), Equation 6 simplifies to Eq. 4, which as we saw,
does not need to be satisfied for a representational relation to hold (when the
probabilities of symbols are not uniform).

To summarize, the question an individual faces is estimating which of the
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concepts in its repertoire best matches an object in term of mutual information.
This more individualistic (internal-based) approach is different from the more
normative (external based) approach, where the competitive process of selec-
tion takes place among samples of objects for each concept. The difference
between these two perspectives to representation have been discussed in detail
by Eliasmith (2000), who labeled them (in the context of neuroscience) as the
animal vs observer perspectives.

An additional feature of the internal-based approach is that it provides an
account for the best estimate (or best-exemplar/prototype) of a concept, which
is a central part of psychological phenomena. This can be done as in Eq. 3,
i.e. P(RiuSi) . P(RiuSj); j ± i, where Si is interpreted, not as a representative
sample of exemplars for the concept (that were given in the external-based
approach), but as the best estimate of an object (corresponding to a prototype),
which given the tokening of the concept Ri, the individual can consider most
likely to have tokened it, relative to all other objects of that category or of
other categories.

An important issue to consider is whether the normative external-based
approach is consistent with the internal-based approach, which is at the indi-
vidual’s disposal. We saw that the external-based approach does not require
the satisfaction of Eq. 4 (i.e., that in comparing among representation states
for a given object, the conditional probabilities do not need to be in favor of
the diagonal element). It can be demonstrated, however, that even when this
happens, the inclusion of the denominator (as in Eq. 6) restores the dominance
of the diagonal element as required for the internal-based approach (this
resolves Millikan’s challenge, as discussed in the next section and in the
Appendix).

Finally, one additional qualification needs to be made to the procedure C2.
As presented so far, conceptual content is determined via a competition process
between all concepts for a perceptual object in terms of MI. This procedure
may face a problem with concepts that form sub/super-ordinate hierarchy
(e.g., animal/dog/poodle). As defined in C2, if an object has higher MI with
the poodle concept, it will be excluded from the content domain of the super-
ordinate concept ‘dog’.11 Clearly, however, this happens because of the excess-
ive competition (between concepts) in the scheme which does not correctly
reflect the competitive process that takes place within the cognitive system
(where a stimulus can be categorized as ‘dog’ and ‘animal’ simultaneously). To
correct for this, condition C2 can be modified so that the competition is
restricted: when determining the content of concept A, the competition is
limited to concepts that are not subordinate to A and do not compete with it.

11 I wish to thank to Chris Eliasmith for bringing this to my attention.
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4. Using the Scheme

Here I will try to show how this competitive statistical scheme can be used
to account for representational content in simple situations that are considered
problematic for causal theories. In particular I will show that it can meet the
challenges raised against statistical theories (e.g., of not relying on arbitrary
criteria and of being able to cope with expectation and frequency bias effects)
providing an account for paradigmatic cases of misrepresentation.

4.1 No Arbitrary Criteria
I examine here an important argument (Dretske’s redox principle) previously
used to highlight the problems of relying on arbitrary criteria of probability
in informational theories of representation, and I will try to show that the
present scheme can stand its challenge.

The redox principle (Dretske, 1981, 1983) is supposed to show that the
transitivity of informational content (A has the content that B, and B has the
content that C, implies that A has the content that C) is inconsistent with
conditional probabilities between symbols and contents of any arbitrary value
smaller than unity (this argument was one of the major justifications Dretske
(1983) brought to support the restriction of conditional probability.12) Tran-
sitivity would indeed be violated if one defines the condition for A to represent
B by the requirement that the latter causes the former with a conditional
probability larger than some arbitrary threshold (say, .9). (This follows from
simple laws of probability of independent events, P(AuC) = P(AuB)P(BuC); if
both P(AuB) and P(BuC) are higher than the threshold, say .91, P(AuC) is lower
than the threshold).

The reason why the scheme presented here (e.g., C2), does not suffer from
this problem (thus satisfying transitivity) is that it does not rely on an arbitrary
criterion value to determine content of representation, but rather on a compara-
tive measure that involves ordinal relations between values of conditional prob-
abilities. To illustrate this in a day-to-day setup, consider the situation where
someone is told by another person that she detected the content A in her
observation of an event (for example that person-A took part in a bank
robbery). What this implies is a causal chain of events, going from the object
A itself (the person recognized), to its representation in the first observer, A9
(the belief that person-A was involved), and ending with the representation
in the second observer A0. According to the present approach, A9 has the
content of A even when the conditional probability for A9 to have been caused
by A, P(AuA9), is lower than one, if this probability is higher than the prob-
ability for any other representational symbol, B9 (say corresponding to the belief
that person-B was involved), to have been caused by A, P(AuA9) . P(AuB9)

12 See, also, Fodor, 1990, p. 58, for a criticism of the compositionality argument.
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(see Eq. 5. This corresponds to the requirement that the probability for the
A-belief to have been caused by the A-person is larger than the probability
for the B-belief to have been caused by the same A-person, which means that
the A-belief carries more information on A than any other belief, such as the
B-belief). Transitivity of informational content would therefore imply that the
same ordinal relationship between the relative probabilities is preserved when
the A9, B9 representations are replaced with the A0, B0 representations. This
can be the case despite the fact that all the conditional probabilities decreased.
Therefore, receiving a noisy message of another noisy message may still provide
informational content, as intelligence agencies definitely know. Moreover,
noisy messages are the rule in the perceptual life of animals and humans who
need to make the best of it.

4.2 Misrepresentations and the Disjunction Problem
There are a number of situations where misrepresentations happen. Most typi-
cally discussed is a situation where, because of degraded sensory input, an
object is misrepresented for another one (say, a small dog at night is misrep-
resented as a cat) (Cummins, 1989; Hutto, 1999; Fodor, 1990; Crane, 1995).
In the strictly causal theories, such a situation would have forced one to accept
the unreasonable statement that the ‘cat’ token represents, in fact, a dog. This
is definitely not the case here. According to the normative external-based
approach, C1, the symbol ‘cat’ represents the category of objects that (via a
representative sample) best tokens it (in terms of mutual information) relative
to (representative samples of) objects in other categories. It does not matter
that in a specific case, the symbol was tokened by a dog; what matters is only
the general regularity. The disjunction problem does not arise also, as the
content of the representational symbol is not the object that caused it, or the
‘set that has the maximal correlation with it’, but is limited to items belonging
to the class whose exemplars obtain the highest MI to the representation sym-
bol. In fact the symbol ‘cat’ (or its neural substrate), according to this approach,
was picked by searching for the best response to cats only (on average over
exemplars and conditions). Notice that, according to the assumption implicit
to the categorization map, what is represented are objects only and not objects-
under-a-situation. A dog-at-night, is still a dog and in order to find the concept
that represents it, the same dog needs to be presented under all conditions
(night, day, etc.). Similarly, according to C2, in average under all conditions,
the small dog is more likely to be tokened as a dog, rather than as a cat
(especially when looked upon in daylight and when barking). Therefore, it
belongs to the content of the symbol where most dogs are mapped to, i.e.,
to the content of ‘dog’. It having caused the tokening of the ‘cat’ symbol is
a case of misrepresentation.13

13 In his comments on a previous version of this paper, Jerry Fodor formulated the following
objection to my solution of the misrepresentation-disjunction problem. Assume that the
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A more problematic situation may arise, however, if the (mis)perceived dog
is really perverse; under all possible scrutiny and under the best sensory situ-
ations, it somehow seems more ‘catish’ than most cats (maybe it was surgically
modified to appear as a cat: it even mews). In this situation, indeed, the rep-
resentational scheme C2 will assign it to the content of the ‘cat’ representation
and the misrepresentation is unexplained. However, such a misrepresentation
is, by assumption, beyond the power of the agent to detect it and therefore
it does not pose the same kind of problem. Indeed, according to C2, the
content of the ‘cat’ representation contains the disjunction of ‘cat’ and all other
items that are absolutely indistinguishable from cats. A similar disjunction is also
accepted by Fodor in his reply to Baker’s problem in his ‘theory of content’
(Fodor, 1990, pp. 103–104; see also Eliasmith (2000), p. 80 for a discussion
of allowable disjunctions).

4.3 Expectation and Frequency Bias Effects
Let us now address, specifically, the example raised by Millikan (1989), where,
for a vulnerable animal, the representation frequency of ‘danger’ (e.g., in relation
to a predator) may be high, despite the fact that the occurrence frequency of that
predator may be very low. To illustrate this, assume that there are two types of
items in the animal’s environment: deer (not dangerous) and tigers (dangerous).
Assume also that tigers are very rare relative to deer (in a fraction of 1/9). Since not-
missing a tiger is of crucial importance to the animal (much more than mistaking a
deer for a tiger), the animal is biased in its categorization in favor of tigers: it has
a high chance (.6) of mistaking a deer for a tiger and much lower chance (.2) of
doing the opposite. [P(‘deer’utigers) = .2, while P(‘tiger’udeer) = .6; i.e., whether a

representation ‘cat’ is (always) caused by a dog in condition C (say, dog in dark night or
dog at exactly this place and time, etc). Since C is, by assumption, sufficient for a dog to
cause ‘cat’, the probability that a dog in C will cause ‘cat’ is 1. Thus it would follow that
‘cat’ means cat or dog-in-C. This objection can be addressed at two levels. First, according
to the probabilistic scheme presented, it is not clear that any C exists that gets the stipulated
probability of 1 (for a dog to token ‘cat’.) This is surely the case for degraded sensory
situations (such as dark nights), where noise in the neural information processing (which
may be ultimately dependent on quantum fluctuations) will make the process, essentially
probabilistic. (Notice that the inclusion of timing in the definition of C is inconsistent with
the idea of probability, as it makes C unique and unrepeatable). Another candidate for dog-
in-C (tokening cats with probability 1) could be proposed to be something like: ‘dog when
I happen to think of a cat’. This is, however, a subject dependent property and not an
objective world property, as needed for a naturalistic theory of concepts; according to the
statistical theory presented here, one needs to average out over situational contexts (e.g.,
thinking of cats or of dogs prior to the act of perception and categorization). Second, a
constraint imposed in this theory is that concepts map objects (or substances) and not events
or situations. This constraint, satisfied by adaptationally evolved perceptual mechanisms such
as object constancy, requires that only whole items (dogs but not dogs-at-night) are used to
define conceptual content via their MI with representational symbols. Accordingly, dogs do
not belong to the content of ‘cat’ representations since they have a higher MI with ‘dog’
than with ‘cat’ or any other concept that satisfies the constraints described above.
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tiger or a deer are present, the animal is more likely to categorize it as ‘tiger’
(than as ‘deer’). ] The matrix of conditional probability for this case was shown
in section 3.4 (see also the Appendix).

The three matrices corresponding to the joint probabilities, P(Ri, Sj), the
forward conditional probabilities, P(RiuSj) (shown in section 3.4), and the back-
ward conditional probabilities, P(Si)uRj), which can be formulated in terms of
nromalized forward conditional probabilities, P(RiuSj)P(Ri), are shown in the
Appendix. The way in which the scheme C1 accounts for representations in
this case was addressed in section 3. Consider here the account obtained
according to C2. The relevant measure (Eq. 6) is the normalized matrix (see
Appendix). It is shown there that within each row of this matrix, the largest
value is the one on the diagonal (unlike in the unnormalized matrix). There-
fore, despite the bias in expectation, the mutual information scheme, C2, pro-
vides an account for the fact that ‘deer’ represents deer, despite the fact that
deer are more likely to token ‘tiger’.

This is a general result that holds in any situation where the probability of
each representation given the correct object P(Ri, Sj) is higher than the prob-
ability of that representation given an incorrect object (P(Ri, Sj) (see Eliasmith,
2000, Appendix). Thus if the probability for deer to token ‘deer’ is larger than
the probability of tigers to token ‘deer’ (.4 vs .2 in the example above) and
if the probability for tigers to token ‘tiger’ is higher than the probability of
deer to token ‘tiger’ (.8 vs .6 in the example), this is enough to confer on the
two symbols the ability to represent the corresponding items. While these two
requirements correspond to the psychological generalization that the animal
has the ability to discriminate the two items, the relation between probability
for deer to token ‘deer’ and its probability to token ‘tiger’ depends on decision
biases and is irrelevant for the representational status of the symbols. Notice
also that the frequency of objects in each class, P(Sj) does not figure at all in
this calculation and therefore it doesn’t matter that there are more deer than
tigers. The representational relations depend on counterfactuals as reflected by
the conditional probabilities and therefore the actual frequency of objects in
the external world does not matter.

4.4 Generalization to Socially Shared Concepts
The account for conceptual content offered under C2 is mainly intended to
cover the way an individual makes use of concepts to interpret likely causes
of perceptual experience. This approach, however, has a straightforward gen-
eralization to social groups, where the same principle applies. The content of
a concept shared by the group can be determined, to refer to objects in the
world that have the highest mutual information with the tokening of the con-
cept in the group relative to all other concepts (Eqs. 5, 6). The only difference
is that here the tokening of a concept involves a group agreement14 (see also
Eliasmith, 2000, p. 79).

14 This can be done either by a majority rule or, more effectively, by nominating experts.
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5. Discussion

A fundamental issue for the theory of meaning and semantic content, which
triggered a strong debate in cognitive science, is: ‘What is the content of a
symbol and what accounts for semantic relations?’ In the absence of a definitive
answer the program of the Cognitive Science threatens to collapse into a
theory of manipulation of ungrounded, meaningless symbols (Harnad, 1990;
Searle, 1980, 1984). The field is divided between referential theories where
the meaning of a symbol is determined by its causal relations with items in
the world (i.e., reference; Fodor, 1987, 1990, 1998; Dretske, 1981, 1983;
Millikan, 1998) and inferential theories where meaning is defined mainly with
regards to conceptual interrelations (Harman, 1982). Recently, a new version
of an inferential theory for meaning was proposed by Paul Churchland (1993)
on the basis of connectionist network theory. In this approach, semantic
relations are determined by the similarity among neural activity patterns in a
semantic space.15 In a more recent work, however, Churchland included causal
relations between representations and ‘stable and objective macrofeatures of
the external environment’ as a component (a referential one) in his theory of
meaning (Churchland, 1998, p. 8). The approach suggested here may provide
a way to bring these two frameworks closer together.

The statistical scheme for conceptual content proposed here is close to
Fodor’s in a number of ways. First, as in Fodor’s theory, concepts are mental
particulars which provide a categorization of the external environment.
Second, the content of concepts is provided by a causal referential relation to
things in the world (and not by inter-conceptual relations). Third, as in Fodor’s
theory, meaning is not identical with causation. For Fodor (1990, pp. 90–91) this
involves a dissociation between meaning and information. Since I rely on a
statistical theory of information this second separation is not needed, because
information is interpreted according to the contrastive/competitive procedure
discussed earlier. When a concept is tokened, the information it conveys is
about the class of items it carries the most information about, and not about
what caused it in a singular case.

In particular, the external-based scheme C1 is formally very close to Fodor’s.
In Fodor’s theory of asymmetric causation, a concept R has the meaning A, if A
can cause R and in addition every other type of item B that causes R is asymmetri-
cally dependent on the fact that A causes R.16 (where the asymmetry is defined
to mean that if the A-to-R causal relation is broken, so will be the B-to-R relation,
but not the opposite). In fact, the external-based scheme provides exactly such
an asymmetric relation. According to it, R represents A if: R carries information

15 It is beyond the scope of this paper to provide even a brief description of this debate, but
see Fodor and Lepore (1992, 1993); Churchland (1993).

16 I use here for illustration a simplified version of his theory (Fodor, 1990, p. 91) but see
Fodor (1990, p. 93) for a more precise formulation.
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about A, and for any B that R carries information about, this information is lower
than for B. The main difference between this scheme and Fodor’s is that while
in C1 the contrast is made in terms of a statistical (but objective) measure of mutual
information, for Fodor’s it is mediated by a metaphysical (or logical) contrast. A
large number of theorists have found Fodor’s asymmetric causation theory untrans-
parent for not providing an explanation of what determines the asymmetric depen-
dency (Cummins, 1989; Crane, 1995; Hutto, 1999; Eliasmith, 2000). Whether
or not it may be possible to obtain a bootstrapping of content on the basis of
logics and metaphysical considerations alone,17 the scheme proposed here provides
a simple naturalistic explanation to support Fodor’s theory of informational atomism.

In addition to the external-based scheme, which may be thought of as a
normative one, I have also proposed an individual-based scheme C2. I have
argued that this scheme is, in fact, the relevant one for describing how concepts
are used within a noisy environment. Unlike other referential theories (e.g.,
Fodor, 1990), it provides, not only an account for the content of conceptual
categories, but also for their best exemplars (or prototype). A similar theory
(also based on the statistical measure of mutual information) was recently
developed by Eliasmith (2000), showing that it can account for another
important characteristic of both psychological and neurobiological represen-
tations—their variable degree of goodness. The view that a statistical framework
needs to replace the traditional logic-based approach for cognition and ration-
ality has recently been strongly supported (Oaksford and Chater, 1998) within
the domain of inferences and problem solving.

Despite the attractive features of the statistical approach presented, there
are still a number of issues that require further scrutiny. For example, according
to C2; every possible object can be assigned to the content of some concept
representation (because of the competitive rule). If the object is totally unfam-
iliar, this may be an undesired feature. A number of ways may be used in
order to deal with this problem. First, it is not unplausible that one of the
concepts corresponds to a ‘don’t know’ situation (see, e.g., Chappell and
Humphrey, 1994, for a neural network model used to explain data in memory
literature which relies on this assumption). Second, it is plausible that an
unfamiliar item is categorized by a relatively general concept (say animate/non-
animate) when categorization under specific concepts is not possible. Future
work is needed to refine this theory providing a complete account of the
representation of hierarchies of sub/super-ordinate concepts.

17 See e.g., Fodor’s discussion on pp. 125–129, 1990, that examines how God could determine
what a mental symbol in a person’s brain means. In the example, God sees that the symbol
‘c’ is caused by cats, but also that it is caused sometimes by shoes. To know that ‘c’ means
cats, God needs to examine the counterfactuals. He will look in worlds where ‘c’ is not
caused by cats. Fodor admits that in such worlds ‘c’ may still be caused by shoes. The
asymmetric dependency arises because, if that happened, ‘c’ would not mean cats anymore.
This sounds to me a bit too much like a logical bootstrapping.
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Finally, I conclude by examining implications of this scheme for a theory
of meaning with regards to the referential/inferential debate. One of the
appeals of a referential theory of meaning is that it allows a simple explanation
for the shared aspect of concepts and their role in communication in light of
the strong interpersonal variability in conceptual relations (Fodor, and Lepore,
1992; Fodor, 1998; Millikan, 1998). For Fodor (1998), moreover, the meaning
of a symbol is exhausted by its reference (i.e., synonyms have the same meaning
if they have the same reference). In the theory presented here, the content of
a concept (C2) is determined by causal relations to objects in the world via a
probabilistic process of categorization. While this determines content in a refer-
ential way (as Fodor likes), the content of the categories are likely to develop
gradually. Accordingly, infants have only a few broad (and maybe disjunctive)
conceptual categories (the concept ‘sheep’ may represent both sheep and goats)
which gradually get refined to a larger and more precise repertoire (Mandler,
Bauer, and McDonough, 1991; Mandler and McDonough, 1998). Neverthe-
less, the variation in conceptual content for an individual person gets fixed
within a few years of life to an almost common standard. This explains how,
despite the interpersonal variability in the structure of conceptual inter-
relations, the public character of concepts is maintained via the shared reference
to items in the external environment (Fodor, 1998).

Even if one accepts, however, that the primary meaning of semantic sym-
bols is determined by their reference, it seems likely that a second component
of meaning (which perhaps depends on the former) is needed to explain the
ways in which concepts function in associative processes (this is exactly the
part of cognition Fodor is less interested in). Such associative processes, as
measured in semantic priming (e.g., Meyer and Schvaneveldt, 1971) are mainly
driven by interconceptual relations, typically explained by spreading of activation
in semantic networks (Collins and Loftus, 1975; Anderson, 1983). In the
scheme I presented (see footnote 10, and Usher and Niebur, 1999; Herrmann,
Ruppin and Usher, 1993), as well as in Churchland’s (1998) recent version
of ‘space semantics’, this component is driven by similarities between neural
patterns of activity (see also Laasko and Cottrell, 2000). Interestingly, while
Fodor has combated connectionism for a long time on the issue of compo-
sitionality of concepts (e.g., Fodor and McLaughlin, 1990), it may be possible
that a connectionist type of approach, the Attractor Neural Networks (ANN;
Hopfield, 1982; Anderson et al., 1977; Amit, 1989; Chappell and Humphrey,
1994) could provide a basis for both a referential theory of atomic symbols18

(that can be used by a symbolic system) and for their associational powers in
terms of similarity of neural patterns (Herrmann et al. 1993; Plaut and
Booth, 2000).

18 ANN are a good candidate for this because: i) they perform a robust multi-state categoriz-
ation, ii) they can support sustained states of activations even in absence of input correspond-
ing to concept activation in thought.

 Blackwell Publishers Ltd. 2001



A Statistical Referential Theory of Content 331

Appendix

1. Consistency of C1 and C2. According to C1:

P(R1uS1) . P(R1uS2)

P(R2uS2) . P(R2uS1) (7)

Even if P (R1uS1) . P(R2uS1) is not satisfied, one can check that the nor-
malized terms (that are required by the MI formula (Eq. 6) satisfy condition C2

P(R1uS1)
P(R1)

.
P(R2uS1)
P(R2)

(8)

Assuming that the frequencies of objects are equal P(S1) = P (S2), the prob-
abilities for the representations can be calculated: P(R1) = P(R1uS1) 1 P (R1uS2);
P(R2) = P(R2uS1) 1 P(R2uS2) Inserting this in Equation 8 one obtains:

1

1 +
P(R1uS2)
P(R1uS1)

.
1

1 +
P(R2uS2)
P(R2uS1)

which is satisfied by inserting the relations from

Eq. 7 (condition C1).
2. An example with bias in frequencies and expectations. Assume that
there are two types of external items: deer and tigers, with probabilities,
P(Tiger) = .1 and P(deer) = .9, and that the forward conditional probability
matrix, P(RiuSj)/P(Ri), is:

‘tiger’ ‘deer’
Tiger .8 .2
Deer .6 .4

The joint probability matrix, P(Ri,Sj), is:

‘tiger’ ‘deer’
Tiger .08 .02
Deer .54 .36

From this the backward conditional probability matrix, computed from the
normalized forward matrix, P(RiuSj)/P(Ri), is:

‘tiger’ ‘deer’
Tiger 1.29 .52
Deer .96 1.05

It can be also shown that the dominance of the diagonal terms over rows of
the matrix is not dependent on the external item frequencies (.1, .9) or on
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the specific values of conditional probabilities (.8 vs .6 and .4 vs .2) assumed
here. See also Eliasmith (2000, Appendix) for a general proof.

School of Psychology
Birkbeck College, University of London
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