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Abstract

The time course of perceptual choice is discussed in a model based on gradual and stochastic accumulation
of information in non-linear decision units with leakage (or decay of activation) and competition through
lateral inhibition. In special cases, the model becomes equivalent to a classical diffusion process, but leakage
and mutual inhibition work together to address several challenges to existing diffusion, random-walk, and
accumulator models. The model provides a good account of data from choice tasks using both time-controlled
(e.g., deadline or response signal) and standard reaction time paradigms and its overall adequacy compares
favorably with that of other approaches. An experimental paradigm that explicitly controls the timing of
information supporting different choice alternatives provides further support. The model captures flexible
choice behavior regardless of the number of alternatives, accounting for the linear slowing of reaction time
as a function of the log of the number of alternatives (Hick’s law) and explains a complex pattern of visual
and contextual priming effects in visual word identification.
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When an experience presents itself to the senses, the need often arises to determine its identity or to
make some other judgment about it. In experimental paradigms, the time course of this judgment process is
often studied in experiments requiring a choice among two or more response alternatives. Choice responses
in these tasks tend to take more time when the judgment is difficult, and they are quite variable, both
in their outcome and in their duration. Progress in understanding these findings has come through the
development and testing of models that capture two crucial principles of information processing: First, they
treat information processing as a gradual process, based on the accumulation of information over time.
Second, they treat the process as stochastic or intrinsically variable, so that the information accumulated
within each small time interval is subject to random fluctuations. Many variants of such models have been
explored (e.g., Ashby, 1983; Audley & Pike, 1965; Laming, 1968; Link & Heath, 1975; Ratcliff, 1978, 1988;
Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999; Stone, 1960; Vickers, 1970, 1979).

Models of this class have had considerable success in addressing a wide range of experimental findings on
the time-course and outcome of perceptual choice experiments. However, we argue that there are additional
principles that should also be incorporated: First, that information accumulation is subject to leakage or
decay; and second, that representations of the alternative outcomes of the decision process compete with
each other, through a process of lateral inhibition. We develop a new model called the leaky, competing
integrator model as an extension of the classical models in the field. Two additional principles — recurrent
excitation and non-linearity — are also considered. We propose specific formulations of the principles that
allow their incorporation into stochastic information accumulation models, and we explore their utility in
accounting for a broad range of phenomena on the time course of information processing in perceptual choice
experiments.

Classical Stochastic Information Accumulation Models

To set the stage for our exploration of these matters, it is useful to begin with a brief discussion of key
aspects of the literature on existing stochastic information accumulation models. This discussion will focus
on the reasons why it is important to elaborate the framework to take the additional principles of leakage
and competition into account.

In early work, two types of models were considered: the accumulator or counter models (Audley & Pike,
1965; LaBerge, 1962; Vickers, 1970, 1979; Vickers, Caudrey & Wilson, 1971) and the random walk models
(Ashby, 1983; Laming, 1968; Link & Heath, 1975; Stone, 1960). An introduction to the basic properties
of these models is available in Townsend and Ashby (1983). Both kinds of models are typically applied to
experiments consisting of trials in which a stimulus is presented, and the subject must decide which of two
responses to assign to it. For example, the stimulus might be a colored light, and the subject may be asked
to decide if it is red or green. All these models span a range of variants, in which information is accumulated
over time. Increments may be binary, multi-valued, or continuous, and sampling may be assumed to occur
at discrete time-steps or continuously in time. In one variant of the accumulator model (Audley and Pike,
1965), a series of discrete, binary information samples is assumed. The process is equivalent to drawing a
series of balls, which might be thought of as colored either red or green, from an urn, with replacement,
so that the probability of drawing a red or green ball remains fixed during sampling. The actual stimulus
would be viewed on this analogy as setting the proportion of red or green balls in the urn. A red stimulus
would establish a high proportion of red balls, while the green stimulus would establish a high proportion of
green balls. Before processing, accumulators for balls of each color are initialized, and at each time step, a
ball would be drawn and a count added to the appropriate accumulator. In applications to the standard RT
paradigm, a response criterion is assumed, so that a response is produced when the count associated with
one of the accumulators reaches the criterion value.

The classical random walk and the related diffusion model are similar to the accumulator model. Partic-
ular models differ in terms of whether the sampled values are discrete or continuous and whether sampling
is thought of as occurring at discrete time points or continuously in time. The crucial distinction between
these models and the accumulator models, for our purposes, is that in all these models, a single cumulative
variable is used. To illustrate, we can consider a classical random walk, where this variable can be thought
of as the difference between the number of red or green balls that have been drawn from an urn. Before
processing, the single counter is initialized, and at each step a count is added if the ball is red or subtracted
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if the ball is green. In other variants of this class of models, the counter variable is incremented by a variable
amount, for example it might be a sample from a normal distribution with mean µ and standard deviation
σ. When such a process is thought to proceed in continuous time (rather than in discrete jumps) it is called
a “diffusion process”. In the version that we will consider, here called the classical diffusion model, the
stimulus condition is thought to set the value of µ, and σ is left invariant across conditions. Thus for our
case, a red light might be associated with µr > 0, and a green light with µg < 0. Responses are generated
using two decision boundaries. When the value of the diffusing variable reaches the positive boundary, the
“red” response is initiated, and when it reaches the negative boundary, the “green” response is initiated.

In earlier research, these classical models (and other variants) were typically applied to data from what
we will call the standard reaction time (RT) paradigm, in which subjects are instructed to respond as rapidly
and accurately as possible, to indicate which of two stimulus alternatives has been presented. We consider the
RT paradigm in detail later. For the present, we consider a difficulty that all these models share in another
paradigm. In this paradigm, called the time-controlled paradigm, an attempt is made to track the time
course of information accumulation by asking subjects to respond at different specified times after stimulus
presentation on different trials. In one common variant of the time controlled paradigm, a response-signal
is presented at some point in time after stimulus onset on each trial, and the subject is required to make
a response choice within a very brief interval thereafter (Corbett & Wickelgren, 1978; Ratcliff & McKoon,
1982; Reed, 1973, 1976; McElree & Dosher, 1989; Wickelgren, 1977; Wickelgren & Corbett, 1977). In this
case the natural assumption is that information continues to accumulate until the response signal is detected,
at which point a decision is made based on the state of the accumulators (Ratcliff, 1978; but see also Ratcliff,
1988, for a more complex process). For simplicity we consider the case in which there are no biases in the
decision process. For accumulator models, the two counters are both initialized at 0, and the response
associated with the largest count is chosen. For the random walk and diffusion models, the single counter
value is initialized to 0, and one response is chosen for all values greater than 0 with the other response
chosen otherwise.

Constraints on Asymptotic Accuracy: Drift Variance and Leakage

The difficulty that the classical models face in this situation is that the information accumulation process
proceeds indefinitely without loss or decay of information. The effect of this is that as time from stimulus
onset to the response increases, discriminability as measured by d′ always increases without bound unless
the stimuli are exactly identical. Specifically, as N increases, d′ continues to increase following a square-root
function.1 In all cases, accuracy increases without bound, even when p and q are very close to 0.5 (or, for
the continuous case, µr and µg are very close to 0.0). As long as there is any difference among the stimuli,
accuracy will be perfect if enough time is allowed for information accumulation.

Perfect accuracy with unlimited processing time may be a useful approximation in some cases, but there
are clearly experiments in which accuracy asymptotes at a finite level. This typically occurs when stimuli
that are difficult to discriminate are used without any time pressure. Swensson (1972) noted that “an
accuracy ceiling is assumed implicitly in any experimental procedure that uses error rate as its sole measure
of discrimination performance, without attempting either to make S respond quickly or to limit the time for
which the stimulus is available to him”. Indeed, Swensson explicitly demonstrated the accuracy ceiling in
one of his experiments. He presented one subject with tilted rectangles with sides differing by less than 2%
in length, with the task of indicating which pair of sides was longer. Payoffs were adjusted across sessions
to manipulate reaction time. Accuracy increased as reaction time increased, but only up to a point; for
reaction times above 500 ms, accuracy remained fixed at about 97% correct. Such a pattern is inconsistent
with the information accumulation assumptions of all the classical models. Swensson suggests that “the
presence of an accuracy ceiling could reflect a limit on the number of useful observations S can sample. If

1Consider the random walk model, with a red stimulus presented, so that p > 0.5 of the balls in the urn are red and q = 1−p
are green. The expected value of the number of red and green balls drawn as a function of the number of samples N is pN
and qN respectively, and thus the expected value of the difference is (p− q)N . At the same time the standard deviation of the
difference increases according to a different function, proportional to the square root of N . Discriminability as measured by d′
is the expected value of the difference divided by the standard deviation of the difference, which is proportional to N/

√
N , or

just
√

N . Similar arguments apply to the accumulator model and the classical diffusion model.
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Ss observations were truncated, there would be a limit on the expected amount of evidence he could obtain
before some ‘critical duration’ elapsed.” (Swennson, 1972, p. 30).

Ratcliff (1978) introduced a variant of the diffusion model that overcame this shortcoming of the classical
models, but in a way that differed from Swensson’s proposal. Working within the framework of the classical
diffusion model, Ratcliff introduced the assumption that there may be variability in µ, the mean direction
of drift, from trial to trial within the same experimental condition. This introduces a new parameter, the
standard deviation of the drift, here given by σd. In this case the asymptotic discriminability d′ of stimuli
presented in two different conditions converges to a finite value equal to µ1−µ2

σd
, where µ1 and µ2 are the

mean directions of drift for the two different conditions. We call the diffusion model that incorporates this
assumption the diffusion with variance (DDV) model to distinguish it from from the classical diffusion model
without drift variance.

The DDV model has considerable appeal since it directly links the outcome of processing given unlimited
time to the standard picture of stimulus discrimination presented in signal detection theory. Using the drift
variance assumption, Ratcliff (1978) was able to account quite well for a wide range of data from recognition
memory experiments obtained both with the standard RT and the time-controlled paradigms. More recently,
Ratcliff and Rouder (1998) and Ratcliff et al. (1999) have applied the same model to perceptual classification
experiments and have shown that the model can account quite well for individual subject data in experiments
involving the perceptual classification of ambiguous stimuli.

In the DDV model, the limitation on discriminability arises from trial-to-trial variation in the input to
the information accumulation process. While not denying that such a factor is likely to play a role in many
experiments (especially the memory experiments that were the main focus of the Ratcliff 1978 analysis), we
suggest that in addition, limitations on discriminability may also arise from characteristics of the information
accumulation process itself. Specifically, we suggest that information that has been accumulated may be
subject to leakage or decay. In such a case, we shall see that the information accumulated reaches an
asymptotic level reflecting a balance between the accumulation of new information and the loss of information
already accumulated. This proposal is a graded version of the suggestion made by Swensson: leakage provides
a soft or graded truncation of the information accumulation process. At some point, the gains from further
sampling are matched by losses of what has already been sampled, so that further information accumulation
is of no benefit.

Leaky integration has previously been proposed by several investigators, including Grice (1972) and
McClelland (1979). Smith (1995) has incorporated leakage in stochastic information accumulation models
applied to luminance increment detection, Busemeyer and Townsend (1993) have employed this assumption
in their model of of decision making (see also Diederich, 1997), Diederich (1995) has used it in a model of
intersensory RT facilitation, and Kim & Jae Myung (1995) used leakage of neural activity in a model of
semantic priming. McClelland (1993) proposed leaky stochastic information integration as part of a general
framework for modeling cognitive processes. In later sections, we compare the shapes of time-accuracy curves
produced by incorporating drift variance to those that arise from the effects of leakage. We shall see that
leakage and drift variance make different predictions for the shapes of empirical time-accuracy curves, with
leakage leading to curves that more closely approximate the shapes of empirical time-accuracy curves.

Extending the Framework Beyond Two Alternatives

Another issue for classical information accumulation models concerns how to extend them to choices
among more than two alternatives. We consider this issue as it arises in the standard RT paradigm. In the
two-alternative situation for which the models were developed, the diffusion and random walk models assume
that the decision to respond is based on a single decision variable, which represents the relative evidence
for one alternative compared to another. For the accumulator model, the response is made whenever either
accumulator reaches its own independent criterion, regardless of the state of the other accumulator. Here a
quandary arises. While the use of an absolute criterion for each alternative generalizes directly from two to
any number of alternatives, it is not immediately apparent how to generalize the relative evidence criterion.
Yet, the use of a relative evidence criterion has several advantages. First, the use of relative evidence has
been shown to be optimal, in the sense of being the procedure that produces the fastest possible reaction
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times for a given desired level of accuracy (Wald & Wolfowitz, 1948). Furthermore, current diffusion models
(Ratcliff & Rouder, 1998; Ratcliff et al., 1999), do an excellent job of accounting for an impressive range
of aspects of reaction time data from two-choice experiments. Thus it would be desirable to retain the
relative-evidence characteristic of the random-walk/diffusion approach in extensions to situations involving
more than two alternatives.

A number of ways of extending the relative-evidence characteristic of the random walk and diffusion
models have been explored. The problem we face in this case is really an excess of possibilities, where it
is difficult to know in advance which approach to choose. Here, the study of neural information processing
mechanisms suggests an approach based on the use of lateral inhibition. In our use of this mechanism,
there is a separate evidence accumulator for each alternative. Inhibition among the accumulators allows
the evidence accrued at each to influence the state of every other accumulator. As input builds up in one
accumulator, it sends inhibition to all of the others. The accumulator with the strongest input tends to
dominate the others, so that in the end the states of the accumulators tend to reflect the relative amount of
information accumulated in comparison to the other accumulators. Given that relative evidence is already
reflected in the state of activation of each accumulator, an absolute criterion can be used as in the classical
accumulator models. Thus the use of lateral inhibition allows the construction of models that emulate the
relative evidence characteristic of the random-walk and diffusion models while at the same time using the
absolute criterion of the accumulator models, so that the model can be applied equivalently to experimental
situations involving two or more than two alternatives.

One alternative to lateral inhibition that may at first seem similar is bottom-up or feed-forward inhibition.
A stochastic information accumulation model consistent with this approach has in fact been proposed by
Heuer (1987). On this scheme, whenever an input provides positive (excitatory) input to the accumulator
for one alternative it would simultaneously provide negative (inhibitory) input to the other alternative(s).
However, bottom-up inhibition can become problematic as the number of alternatives is varied, and this
makes it less attractive than lateral inhibition as a general mechanism for use with any number of alternatives.
To see the problem, imagine first a situation in which some evidence that favors one alternative has an
excitatory effect on that alternative and an equal inhibitory effect on all other alternatives. In this case,
the alternative with the strongest excitation will also receive the weakest inhibition, thus on balance it will
receive an excitatory input. But when there are N > 2 alternatives and several are partially supported, each
one will receive inhibition from N − 1 sources of evidence and excitation from only a single source. The
input to all units can be negative in this case, preventing any alternatives from achieving a positive level
of activation. One could compensate for this effect by reducing the amount of inhibition as the number of
choice alternatives increases. Though he did not consider more than two alternatives, Heuer’s model does
assume that task variables can modulate the strength of the negative coupling. However, this will mean that
the amount of inhibition that can be produced by evidence for just one alternative will shrink as the number
of choice alternatives grows. The problem can be avoided by using lateral inhibition instead of feed-forward
competition. In this approach, inputs to accumulators are only excitatory. Many alternatives will receive
some excitation, and the one that is the most consistent with the input will receive the most excitation.
These alternatives all inhibit each other, but the one with the largest excitatory input will tend eventually to
dominate, even if there are many partially activated competitors. Effects of this type have been simulated in
many models, including the interactive activation model (McClelland & Rumelhart, 1981). The mechanism
automatically adjusts itself to the number of alternatives, so that the alternative with the strongest support
tends eventually to dominate the competition.

Thus, lateral inhibition appears to be a powerful mechanism for selection. We are not, by any means,
the first to emphasize this (see, e.g., Grossberg, 1976, 1978). The issues addressed by lateral inhibition are
very general, and apply whenever the occasion arises to select the alternative that is most consistent with
one or more sources of input. Such occasions arise continually, we believe, whenever one is processing any
kind of natural stimuli (such as spoken or handwritten input) in the presence of any form of degradation
(line noise in telephone circuits, faintness of signals due to distance, etc), and whenever one is attempting
to exploit linguistic context, which generally supports multiple possibilities.
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Additional Principles of Information Accumulation

The considerations we have reviewed suggest two useful ways in which the classical models might be
extended. First, incorporation of leakage may allow these models to capture the time-course of information
accumulation more accurately. Second, incorporation of lateral inhibition may allow them to capture the
desirable properties of the relative-evidence decision criterion in a way that extends naturally to more
than two alternatives. These considerations nicely dovetail with neurophysiological evidence that will be
considered below suggesting that such mechanisms are indeed at work in the neural machinery underlying
performance in information processing tasks.

Our model also explores two more principles. One of these is recurrent self-excitation. The motivation
for including this principle comes not so much from the reaction-time and time-accuracy studies that are
the primary target for our present analysis, but from other domains of psychological and computational
investigation. The use of recurrent excitation allows models to exhibit a tendency to settle to a fixed point
or stable equilibrium. It has been suggested that this tendency may underlie a large number of phenomena in
perception, language processing, and working or active memory (Anderson, Silverstein, Ritz & Jones, 1977,
Cohen & Servan-Schreiber, 1992; Grossberg, 1976, 1978; Hinton & Shallice, 1991, McClelland & Elman,
1986; McClelland & Rumelhart, 1981; Rumelhart, Smolensky, McClelland, & Hinton, 1986, Usher & Cohen,
1999).2 Given the utility of the assumption in a wide range of models and the neurophysiological evidence we
consider below, is seems useful to consider what role it may play in models of the time-course of information
processing.

The final principle we consider is non-linearity, and here the motivation for inclusion of this principle rests
on general computational considerations. As is well known, many computations thought to be essential for
perception, cognition, and action cannot be carried out without at least one layer of non-linear computation
(See, e.g., Rumelhart, Hinton, and McClelland, 1986 for discussion). Negation, detection of symmetry
and disparity, and other computations that depend crucially on conjunctions of elements are among those
requiring the use of some form of non-linearity. Therefore it is important that a type of non-linearity that
appears to characterize neural information processing can be incorporated into our model without impacting
its ability to account for any of the data that we will consider in this article.

Linking Psychological and Neural Levels of Analysis

The present work grows in part from a long-standing effort on the part of the second author and several
collaborators to understand perceptual and cognitive processes within the parallel-distributed processing
framework, where processing arises from the interactions of ensembles of simple, neuron-like processing
units (Rumelhart, McClelland, and the PDP Research Group, 1986). Much of this work has focused on
understanding phenomena at the psychological level. Principles of neural information processing have been
exploited where useful, but often a principle or assumption whose motivation was fundamentally compu-
tational was introduced without regard to its possible biological implementation. Thus, the introduction
of the back propagation algorithm (Rumelhart, Hinton & Williams, 1986) fostered the development of a
powerful computational framework. While back-propagation has been helpful in the development of models
that can capture psychological data on a number of different aspects of cognitive and perceptual process-
ing (Cohen, Dunbar & McClelland, 1990; Plaut, McClelland, Seidenberg & Patterson, 1996; Seidenberg &
McClelland, 1989), there have been some drawbacks to this approach. First, it has tended to distance the
work from insights from neuroscience that might inform and constrain it (Grossberg, 1987, McClelland, in
press). Second, the models have generally been underconstrained (Massaro, 1988; McCloskey, 1991). The
range of different assumptions that have been considered in this work is extensive, and the decision about
what principles should be considered and about their exact implementation has sometimes seemed arbitrary.

2The idea that recurrent excitatory influences operate in perception has not gone uncontested, and Massaro (1989; Massaro
& Cohen, 1991) pointed out that the original interactive activation model failed to capture a pattern of data seen frequently
in experiments manipulating both context and stimulus information in perception, and claimed that this failure indicated that
information processing is a strictly feed-forward process. However, McClelland (1991) and Movellan & McClelland (1995) have
shown that with intrinsic variability incorporated, the interactive-activation model accounts for the pattern of data in question,
demonstrating that Massaro’s claim was incorrect. Given this finding, we know of no empirical evidence against the possibility
that recurrence plays a role in perception.
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In addition to these limitations, the relationship between models developed in this framework and classical
models of information processing has not always been explicitly considered.

The present work attempts to address these limitations. First, the work draws extensively on develop-
ments in experimental and computational neurophysiology, where the goal is to understand the functional
properties of actual neural mechanisms (Abbott, 1992; Ahmed et al, 1995, 1998; Amit, 1989; Amit &
Tsodyks, 1991; Amit et al., 1994; Douglas, Koch et al., 1995; Ermentrout, 1994; Hess, Negishi, & Creutzfeld,
1975; Hertz et al., 1991; Chellazi et al., 1993; Usher & Niebur, 1996). Second, the principles included in
the modeling effort have neurobiological as well as computational and/or psychological motivation, and the
specific instantiations of the principles are informed by additional neurophysiological observations. Third,
we direct our efforts, not toward multi-layer network models focused on specific tasks, as in much of the
parallel-distributed processing work, but toward a simplified but very general model that can be seen as a
continuation of the tradition of stochastic information accumulation models. How the principles explored
here would play out in more complex multi-layer architectures is left for subsequent investigations.

It must be acknowledged that the implications of findings from neurophysiology for models of cognition
are not transparent. There are many aspects of the physiology that we do not incorporate but that may
turn out to be relevant, and there are many ways in which the aspects that we do incorporate might be
rendered irrelevant to understanding perceptual processes at an information processing level. In this light
our exploration of some possible implications of neurophysiology for models of cognition must be seen as a
contribution to an ongoing exploration, and not as a definitive statement of how cognitive processes arise
from the neural substrate.

Next we review work on neural information processing that has informed the development of our model.
This review both supports the general principles on which the model is based and also provides further
constraints that have been used in determining the specific quantitative formulation.

Unit activations and population firing rates. When considering relations between cognitive/perceptual
processes and the underlying neurophysiology, it is essential to relate the two at an appropriate level of
description of neural processes. As already indicated, the choice of level is itself a scientific question. We
will adopt the dominant approach taken in computational neuroscience today, which follows the Hebbian
perspective (Hebb, 1949). In this approach, each cognitive unit is represented by a pattern of activation over
a group of neurons or cell-population, and the activation of the cognitive unit is represented by the mean
firing rate of the neurons in the population (Abbott, 1992; Amit, 1989; Amit, Brunel, & Tsodyks, 1994;
Wilson & Cowan, 1972; Georgopoulos, Kettner & Schwartz, 1986). This approach is consistent with the
idea that a representation may be distributed over many neurons at the physiological level, even while it is
treated as a single variable for the purpose of modeling the time-course of information processing in choice
response situations (for discussion, see Smolensky, 1986).

At a physiological level, it seems likely that individual neurons participate in the representation of
particular inputs to varying degrees. Neurons generally appear to have fairly broad tuning curves, so that
when a particular stimulus is shown many neurons will be activated to some extent (Georgopoulos et al., 1986;
Tanaka and Saito, 1991; Miyashita, 1988). Furthermore, it seems likely that different response alternatives
may in some cases be represented by potentially overlapping populations. Our present model allows overlap
in the patterns of activation produced by different inputs, but treats the representation of distinct response
alternatives as non-overlapping. This seems a useful first approximation for most 2- or even N-alternative
choice reaction-time tasks.

Input currents and firing rates. In modeling neurons, it is often useful to distinguish between two local
variables: the local input current and the neuron’s firing rate. The firing rate corresponds to the probability
that the individual neuron will or will not fire (emit an action potential) in any given small increment of
time, while the input current is taken to be the variable that determines the instantaneous value of the firing
rate. When averaged across a cell population, those quantities are called the population input current and
the population firing rate. These variables correspond approximately to the “net input” and “activation”
variables used in many connectionist models, and they are the variables we will concentrate on modeling in
our simulations.

At the single neuron level, the input current captures the net effect of the external input, including
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inputs arising from lateral connections from other neurons. The neural input current and the firing rate
are related by a nonlinear activation-function. One such function that is often used in cognitive models is
the logistic function. However, response functions in cortical and motor neurons typically approximate a
threshold-linear input-output relation in the range of firing rates observed physiologically (Jagadeesh, Gray
& Frester, 1992; see also Ahmed et al, 1995, 1998; Granit, Kernell & Shortess, 1963; Mason & Larkman,
1990). Thus, the threshold-linear function appears to provide a good approximation over the range of firing
rates likely to occur in the relevant neural populations during tasks such as stimulus identification in choice
reaction time experiments. The threshold-linear function is also quite tractable mathematically. For these
reasons, we have adopted it for use in our model.

The threshold-linear function has similarities to the Brain-state-in-a-box (BSB) activation function used
by Anderson, Silverstein, Ritz and Jones (1977). Like the BSB function, the threshold-linear function is
linear over part of the domain of its input, and under certain conditions, some aspects of its behavior can
be captured using a simple linear approximation. Even so, the imposition of a threshold makes it sufficient
to perform non-linear computations such as the XOR problem. It should be noted that an upper bound
on activation is sometimes needed to prevent runaway activation in recurrent networks. This is provided
explicitly in the BSB model. Such an explicit upper bound is not necessary when recurrent activation are
overmatched by leakage, as we assume for the problems we consider here. There are circumstances, however,
in which some form of upper bound may be necessary, and many models do incorporate them (Grossberg,
1976; McClelland & Rumelhart, 1981; Usher & Cohen, 1999). Thus we assume that such an upper bound is
present, but it is not necessary to incorporate it into our models to understand the phenomena of interest
here.

Intrinsic variability. Both human performance and single neurons show highly variable (probabilistic)
behavior even under identical external stimulation. In the neuroscience literature, the issue of variability in
the discharge patterns of nerve cells has recently been the focus of intensive research, both at the empirical
(Softky & Koch, 1993) and the theoretical level (Shadlen & Newsome 1994; Usher et al., 1994, 1995). As
emphasized by Shadlen and Newsome (1994), the variability in single cell discharge suggests that the code
used by nerve cells is a graded rate code. At the cell population level, the rate can be defined as the number
of spikes emitted by all members of the population within a short time period. Accordingly, one can think
of the fluctuations in neural discharge as a source of noise or variability in this population rate variable.
The central limit theorem shows that these fluctuations in the population activity are well characterized by
Gaussian distributions. Correspondingly, the fluctuations in the input to a neuron can be thought of as the
sum of the Gaussian fluctuations from all of the different populations that project to it. For this reason we
model intrinsic variability by adding a random sample of zero-mean Gaussian noise into the inputs to the
decision units in our model. This aspect of our model is consistent with standard practice in many existing
stochastic information accumulation models.

Leakage and recurrent self-excitation. An important characteristic of the neural input current is its
passive exponential decay (Abbott, 1992; Amit & Tsodyks, 1991). This decay results in the “leakage” or
dissipation of information over time, preventing the neural current from providing a lossless summation
of incoming signals. The leakage results in an exponential approach to an asymptotic neural current in
response to a fixed input, or an exponential decay of the current to zero when stimulation is terminated.
For an isolated cell, the time constant for decay of excitatory currents is very short (5-10 ms). With such a
short time constant, the neural signal would decay away very quickly in the brain, and actual accumulation
of information would be very strictly curtailed. A mechanism that can counteract and indeed reverse this
tendency is recurrent excitation.

From the early days of neural modeling to the present, modelers working in a neuroscience framework have
suggested that recurrent excitation may play a prominent role in maintaining activity in neural populations
(Amit, 1989; Anderson, Silverstein, Ritz and Jones, 1977; Edelman, 1982; Grossberg, 1976, 1978; Hopfield,
1982).

From the neuroscience perspective, an abundance of interactivity is evident. For example, in the visual
cortex, 80% of the excitatory input to cortical cells is provided by lateral connections from other cells within
the same layer, or from connections from other layers further up in the processing stream (Douglas & Martin,
1990; Douglas, Koch, et al., 1995). The neurophysiological data (e.g., Miller, Erikson & Desimone, 1996) is
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Figure 1: Dynamics of lateral inhibition. Activity of unit 1 (solid lines) and unit 2 (dashed lines) in
response to a slightly stronger input to unit 1 than unit 2. Activations are based on the equations dx1 =
(I1− x1− βf2)dt

τ and dx2 = (I2− x2− βf1)dt
τ where dx1 and dx2 represent the change in activation of each

accumulator in a time step of size dt; x1 and x2 represent the activations of the two accumulators; I1 and I2

represent the excitatory input; βf2 and βf1 represent the inhibitory input of each accumulator to the other;
and τ is a time scale. Here fi (i = 1 or 2) is equal to xi if xi is greater than 0, or to 0 otherwise, on the
assumption that activations less than 0 are not propagated from one neuron to another. The stimulus is
applied at t = 1. Before this both units receive a background input I0 = .2. After stimulation the input to
unit 1 increases to 0.7 and the input to unit 2 increases to 0.6.

consistent with the idea that the strength of the recurrent excitation (and thus the effective time constant)
increases along the ascending stream of processing. This provides a constraint for the rates of the units which
in the cascade model (McClelland, 1979) were arbitrarily chosen. From the computational point of view the
recurrent excitation can achieve two functions: the amplification of the incoming sensory input (Douglas &
Martin, 1990; Douglas et al., 1995), and (when the recurrent effect is very strong) the maintenance of the
neural activity during delay periods without a stimulus (Amit, Brunel, & Tsodyks, 1994), obtaining thus
a form of short term memory (See also Anderson et al, 1977; Usher & Cohen, 1999). In this work we will
limit the discussion to the weaker effect of recurrent excitation, which as we shall see in our mathematical
treatment of the model, decreases the effective rate of leakage or dissipation of the population activity as it
amplifies the overall magnitude of the response to sensory input.

Lateral rather than feed-forward inhibition. As previously noted, lateral inhibition appears to be a
powerful mechanism for selection and has significant advantages compared to feed-forward inhibition. This
computational advantage of lateral inhibition may explain in part why the cortex appears to adhere to the
same general constraint that we impose on our models. It is very well known that axonal projections from
one brain area to another have purely excitatory effects, while within each local brain region there are both
excitatory and inhibitory interactions. While it would be simplistic to identify conceptual levels of processing
in information processing models with separate regions of the brain, it may be reasonable to construe each
brain region, at least in the visual system, as deriving a particular type of representation of the input, based
on inputs from many other regions. If so, the use of excitatory connections between areas and the use of
inhibition to mediate competitive interactions within areas may allow each region to select the representation
that is most consistent with the possibilities suggested by information represented in every other area.

There is considerable neurophysiological evidence consistent with the idea that inhibitory influences are
predominantly of the lateral or recurrent type. Figure 1 shows what the dynamics of neural activity should
look like in this case, based on a simulation of two competing accumulators in a simplified version of the model
we will introduce below. The trajectory of the unit receiving the weaker input is non-monotonic, showing
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Figure 2: (a) Cell response in monkey IT cortex, as reported by Chelazzi, Miller, Duncan & Desimone
(1993). Shown is the average firing rate of a cell when it responds to the cued shape (solid line) or to the
distractor shape (dotted line). Black horizontal bars on the abscissa indicate presentation of cue and choice
stimuli. Average time of saccade onset (297ms) is indicated by an asterisk. From Figure 2 of “A neural
basis for visual search in inferior temporal cortex”, by Chelazzi, Miller, Duncan & Desimone, 1993, Nature,
363, p. 345. Copyright 1993 by Macmillan Magazines Ltd. Permission Pending.

transient activation followed by suppression. Such transients are a characteristic property of systems with
lateral inhibition, and arise because the amount of inhibition depends on the activity of the other units
involved in the competition. Initially, activity is low and therefore the external input dominates, but as the
activity increases, a point when the inhibition from the stronger alternative outweighs the excitatory input
to the weaker unit is reached. Another interesting feature is apparent: The activation of the unit receiving
the stronger input shows a transient deceleration while the competition is being resolved; the magnitude of
this deceleration is parameter dependent.

Corresponding characteristics of the dynamics of neural activation have been reported in several experi-
ments. The clearest examples come from studies in which the input provides explicit support for a competitor
of the designated target. In one such study (Chelazzi, Miller, Duncan & Desimone, 1993), spike trains were
recorded from cells in the inferotemporal cortex of monkeys during the performance of a visual search task.
Monkeys were first shown a target shape. Following a delay, a visual display containing the target together
with a distractor was presented, and the monkey had to respond by moving its eyes toward the target. As
can be seen in Figure 2, following the presentation of the display with the choice stimulus (approx. 3.3
ms.), the activity in cells that respond to either of the two stimuli increased. However, after rising at about
the same rate for about 100 ms, the activity in cells that responded to the cued stimulus showed a brief
deceleration and then continued to rise, while the activity of cells that responded to the distractor was sup-
pressed. This pattern of results is highly consistent with the use of lateral inhibition for selection (Desimone
1998; Reynolds, Chelazzi, & Desimone, 1999). A more detailed model based on lateral inhibition (which
was mediated by a separate inhibitory pool) was shown to explain fine details of the activation trajectories,
including the exact timing of deceleration of activation seen in the activation of the cells that responded to
the cued stimuli in this experiment (Usher & Niebur, 1996). Similar neural signatures have been reported
in an evoked response potential (ERP) study (Gratton, Coles, Sirevag, Eriksen & Donchin, 1988) in which
subjects must identify a target (S or H) flanked by presentations of the competing alternative (e.g, S in the
center of a row of four Hs).
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Simplifying Assumptions

As the foregoing discussion suggests, information processing in the brain may involve quite subtle dy-
namics, dependent on processing distributed over multiple brain regions. It is evident that large numbers of
neurons participate in recurrent amplification and competition among alternative representations, and that
representations of response alternatives may be partially overlapping. Rather than incorporate all of this
complexity directly in our model, we have adopted several simplifications. We examine models in which all
of the “action” occurs in a single layer of units, each corresponding to a single choice alternative. These units
function as accumulators, with one assigned to each of the N possible response alternatives in the experiment
being simulated. We assume a set of inputs to these units (and connection weights modulating the effects of
these inputs on the unit corresponding to each alternative), but we will treat activations of these input units
as occurring after a fixed delay from stimulus onset, neglecting the dynamics of the input. We also ignore the
details of transmission delays along axons from the neurons representing the input and among the neurons
participating in the same population, and indeed we ignore the additional lags that would be imposed by
the interneurons that mediate competition among the different populations. Finally, the generation of the
response is also simplified, adding an additional fixed delay. Again, this is merely a simplifying assumption.
In reality response generation is sure to be a complex process with intrinsic variability that can be modeled.

As we have stated previously, it is not self-evident that simplifications such as those we have adopted
will lead to a useful model; this is essentially an empirical question, one which we explore extensively in
what follows. To the extent that a simplified model provides a perspicuous account of experimental data,
the simplifications allow for mathematical analysis and deeper understanding of the essential functional
implications of the underlying mechanisms. We have adopted these simplifications for two principal reasons.
First, they allow a fairly transparent mathematical analysis. Second, they facilitate direct comparison
with existing stochastic information accumulation models and facilitate comparison with aspects of the
experimental data. To the extent that the model provides a good fit to the data, it suggests that the
simplifications it adopts are useful for characterizing the emergent properties of systems with far greater
underlying complexity.

Related Models

We turn in the next section to the leaky, competing accumulator model itself. The model draws exten-
sively on the whole body of prior work in stochastic information integration discussed above, and incorporates
additional principles all of which have been widely employed in other settings. We will not repeat all these
citations here. However, we do wish to note the similarities between our current model and two other models.
Smith (1995) incorporates leakage into his stochastic accumulator model of luminance increment detection,
so that the dynamics of the decision stage in his model are the same as the dynamics of an individual accu-
mulator in our model in the absence of lateral inhibition. Busemeyer and Townsend (1993) present a model
of the dynamics of deliberative choice among actions with uncertain outcomes in which leakage combines
with differential gradients of approach to desirable outcomes and avoidance of undesirable outcomes leads
to an expression for the time-evolution of the decision variable that is equivalent to the expression we arrive
at by combining leakage with lateral inhibition and self-excitation. Our model (early versions of which were
reported in Usher and McClelland, 1994, 1995) arose independently from separate motivations (McClelland,
1993; Usher & Niebur, 1996). We address a set of issues not previously considered by models of this type,
most notably the shapes of time-accuracy curves that arise in perceptual identification experiments, char-
acteristics of latency discriminability functions, and effects of number of alternatives on reaction time. The
fact that related models have been highly successful in accounting for data in other domains attests to the
importance and generality of the underlying principles.

THE LEAKY, COMPETING ACCUMULATOR MODEL

We call our model the leaky, competing accumulator model because leakage and competition (via lateral
inhibition) are the key features that differentiate it from the classical stochastic information accumulation
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Figure 3: Network architecture for an N-alternative choice task.

models reviewed previously in this article. As we have stressed, our model shares the principles of gradual
and stochastic accumulation of information with the classical models. Non-linearity and recurrent excitation
are encompassed by the model as well, but the main role of recurrent excitation is to balance leakage, and
indeed we will mostly be concerned with the net leakage resulting from the combined effects of leakage and
recurrent excitation. Similarly, as we shall see, non-linearities also play a minor role.

In line with the principles and simplifying assumptions outlined above, the model that we study in the
rest of this article takes the form of a simple two-layer network, consisting of a set of input units indexed by
j, over which the external input to the network is represented; and a set of accumulator units indexed by i,
one for each of the response alternatives. Accumulator units are thought of as corresponding to populations
of neurons, and they are characterized by two variables: Their activation, xi, which corresponds to the
population current, and their output, fi, which corresponds to the population firing rate, as discussed above.
We use a simple nonlinear function called the threshold-linear function in which fi = xi for xi ≥ 0 and fi = 0
for xi < 0. Activations of accumulators determine responses: Under time-controlled conditions, the response
simply corresponds to the unit that is most active at the time the response choice is made. In standard
reaction-time conditions, the unit that reaches a preset criterion first becomes the overt response, and the
reaction time is determined by the time it takes to reach the criterion.

The focus of attention in the model is on the dynamic behavior of the activations of the units xi, which
can be seen as playing a similar role as the counter variables in the classical accumulator model. The starting
point of our formulation of this dynamic behavior is a stochastic version (see Cox & Miller, 1965) of the
cascade equation (McClelland, 1979), which has frequently been used in neural models to characterize neural
activation processes (see Abbott, 1992, Amit & Tsodyks, 1991, Ermentrout, 1994). In psychological research
it has been used by Smith (1995) in his model of simple visual reaction time and by Busemeyer and Townsend
(1993) in their model of stochastic decision making. The equation is

dxi = [Ii − λxi]
dt

τ
+ ξi

√
dt

τ
. (1)
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Here τ is a time scale chosen for convenience,3 and ξi is a Gaussian noise term with zero mean and variance
σ2. This equation implies that, within a time interval dt

τ , the change in the activation of an accumulator
unit, dxi, is driven by input from other units, Ii, with a characteristic decay rate λ which reflects leakage
of the activation. The noise term scales with the square root of dt/τ , due to the fact that the variance of
uncorrelated stochastic random variables is additive, leading to the square root behavior for the standard
deviation.

Equation 1 characterizes a leaky, stochastic accumulator. For tractability, we consider the case in which
Ii suddenly changes from 0 to a fixed positive value. In this case, the equation produces an exponential
approach (like a charging capacitor) to a steady state in which dxi

dt = 0. In the absence of noise, the value of
xi at steady state, xasy

i , is equal to Ii

λ . In the presence of noise, xi is a random variable whose distribution
evolves over time so that it comes to fluctuate around this same value, which is in this case the expected
value of the mean of xi for long times after the onset of the fixed input Ii.

The input Ii can be decomposed into three distinct components: an external source Iext
i ; a recurrent

excitatory source Irec
i coming from the unit back to itself; and lateral inhibition between accumulator units.

Iext
i is simply a scalar multiple of the output of the unit itself. That is, Iext

i = αfi where α is the scaling
factor.

The external input, Iext
i , is thought of as a weighted sum of the output of the input units, so that

Iext
i =

∑
j Wijfj . For simplicity, we treat the input units as having activations of 0 before the presentation

of the stimulus. Likewise the accumulator units are initialized at 0 at stimulus onset except where otherwise
stated. Outputs of the input units are set to values fj(Φ) following the presentation of the stimulus Φ. Due
to the threshold-linear function mapping activations to outputs, the fj will always be ≥ 0. We also impose
the restrictions that the connection weights Wij are always ≥ 0. As a result Iext

i (Φ) will also be ≥ 0 for all
accumulator units. To simplify the notation, we use the symbol ρi to represent this feed-forward input to
accumulator i.

Finally, we introduce the inhibitory influences exerted by each accumulator unit on each other accumu-
lator unit. As with the recurrent and external input, this input is a weighted sum of the outputs of the
relevant units. For simplicity the inhibitory influences of each unit on each of the other units all have the
same weight β. Thus the total inhibitory input to a unit becomes βΣi′ 6=ifi′ . The equation that incorporates
all of the separate influences in our model is therefore

dxi = [ρi − λxi + αfi − βΣi′ 6=ifi′ ]
dt

τ
+ ξi

√
dt

τ
. (2)

The equation above contains several parameters, each of which introduces a degree of freedom in fitting
the model to data, and it is non-linear, thereby making analysis quite complex. However, when our model
operates within certain constraints on the parameters that we discuss below, the selection of one alternative
over others occurs through a competition that reaches its climax when the activations of units that might
win the competition are close to each other and greater than 0. Once the activation of a unit goes below 0,
it has essentially lost out in the competitive dynamics and has no appreciable chance of becoming the most
active unit later. In light of this, it is useful to note that the above equation is completely linear as long as
all of the xi are greater than 0. In this case we can replace the f terms with their x counterparts:

dxi = [ρi − (λ− α)xi − βΣi′ 6=ixi′ ]
dt

τ
+ ξi

√
dt

τ
. (3)

Note that whenever xi > 0 for all i this equation gives exact results. In some other important cases, as we
shall see, it provides an extremely useful approximation. In this equation, we see that λ and α function
together, so that their difference λ − α becomes a “net leakage”, which can be replaced with the single
parameter, k. When k is greater than 0, the net effect is a decay towards 0 that produces stability; when

3The time scale τ can be ignored if one uses a natural time scale such as seconds, or ms. However, when integrating the
equations numerically, it is more convenient to use a time scale that is on the order of magnitude with the temporal process
observed (say, 100 ms, for time-accuracy curves, as shown in Tables 1 and 2, below) and to ensure that the time step, dt is
smaller than τ , as required for Euler integration. A value of dt

τ
= .1 will be used in all our numerical integrations, corresponding

to time steps of about 10 ms.
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it is less than 0, they tend to self-amplify and are not stable. We will include some examination of the
self-amplifying case in our analysis below, but for the simulations of data from perceptual classification
experiments we assume decay dominates, and so will constrain k to be greater than 0.

A limitation of Equation 3, which may be especially relevant when the number of competing units becomes
large or when the external input to one or more of the competitors is very weak (ρi ≈ 0), is that the activations
xi of many of the units may go negative well before the time of responding. In that case, whenever a unit’s
activation becomes negative, use of Equation 3 leads to an inappropriate and unphysiological boosting of
other units through the −βΣi′ 6=ixi′ term (subtracting the effect of the negative activation leads to a positive
influence). The non-linear version of the model in Equation 2 avoids this by using fi and fi′ rather than xi

and xi′ to mediate both the self-excitation and the recurrent inhibition, but this then forces us to separate λ
and α. We can avoid this difficulty by adopting a slightly different formulation, in which we use Equation 3,
with the proviso that activations that go below 0 are immediately truncated to 0, so that negative activation
never propagates. We show in Appendix A that this formulation closely approximates Equation 2 when
the parameters are constrained within the range conforming to our conception of the characteristics of the
underlying physiology.

For time-controlled tasks with two response alternatives, where the response simply depends on which
unit is most active at the moment of the choice response, simulations reported below will show that it does
not matter whether the truncation at 0 is imposed or not, because this does not alter which unit is most
active. Given this, it is possible to derive useful analytical results by ignoring the trunction and treating the
system as completely linear. In standard RT tasks, however, omitting the truncation can spuriously speed
the time it takes the unit that eventually wins to reach the response criterion due to the unphysiological
boosting effect mentioned above. In that case we are forced to rely on simulations employing the truncation.

In summary, then, the evolution of activations of units in the model is governed by

dxi = [ρi − kxi − βΣi′ 6=ixi′ ]dt
τ + ξi

√
dt
τ

xi → max(xi, 0) .
(4)

This is the simplest formulation we have been able to develop that incorporates the essential stochastic and
non-linear elements into a system of leaky, competing accumulators.

As previously noted, we assume that there are additional processing stages between the actual sensory
surface and the input layer of the model, as well as additional stages between the initiation of a response
based on the state of the accumulator units and the muscle contractions effecting the overt response which
introduce delays that we treat as fixed in the propagation of information from input to response. As in
other models, these delays are lumped into a single delay parameter T0. Collectively, they give rise to the
initial flat portion of the empirical curves relating time since stimulus onset and activation or accuracy. For
completeness, some trial-to-trial variability could be included in the value of T0. Such variability would
produce a less abrupt transition of time-accuracy functions from their initial flat portion into the subsequent
curvilinear approach to asymptote, as is seen in empirical data (McClelland, 1979). For simplicity we have
not incorporated this assumption in our simulations.

APPLYING THE MODEL TO TASKS INVOLVING ONLY TWO
ALTERNATIVES

Since most of the classical literature revolves around experiments in which there are only two alternatives,
we consider this case first. For this case we are concerned with only two decision variables x1 and x2

corresponding to the activations of accumulators for each of the two choice alternatives. Equation 4 and the
linear approximation 3 still characterize the system’s dynamic behavior in this case, with the simplification
that each accumulator only receives inhibition from one other accumulator.

In many of the two-alternative experiments considered in this article, a stimulus input is varied along
a continuum, such as the difference in lengths of two lines, and the task is to indicate which is longer.
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In such cases, as one moves along the continuum, it is natural to suppose that as the input supporting
one alternative increases, the input supporting the other decreases. For this reason we have adopted the
restriction that the sum of the ρi remains constant at all points along the continuum. This is similar
to an assumption of Townsend’s (1981) bounded performance model, which included an upper bound on
transmitted information. Without loss of generality we set the value of the sum to 1, so that the ρi represent
the fraction of the support provided by the input to each of the two alternatives. This choice serves to reduce
the number of free parameters in the model. Thus, with Σiρi = 1, it follows for the two alternative case that
ρ2 = 1− ρ1.

When the task is set up as a standard reaction time task it is assumed that the subject does not respond
until some criterial state of activation (i.e., a threshold) is reached. Many types of response criteria have
been proposed in the literature (Ashby, 1983; Audley & Pike, 1965; LaBerge, 1962; Laming, 1968; Link &
Heath, 1975; Ratcliff, 1978), and as we already noted in the introduction, the choice of criterion can affect
the predicted reaction time and accuracy data. As also noted, the analysis is simplified when the amount
of time allowed for processing is controlled, e.g. by means of a signal that indicates when to respond. We
consider this case first before turning to the greater complexity of the standard RT paradigm.

Time-Accuracy Functions under Time-Controlled Conditions

Under time-controlled conditions, a general formulation would assume that subjects compare the differ-
ence in activation of the two detectors, x1 − x2, with some criterion B, choosing alternative 1 whenever
x1 − x2 > B and alternative 2 otherwise. For simplicity we consider cases in which B is zero (equivalent to
choosing the most active alternative). Notice that the role of the criterion in this formulation is only to bias
the choice between alternatives and not determine its timing. The experimental results in the time-accuracy
literature use the bias-free measure d′ as the dependent variable, and choosing B = 0 does not affect the
sensitivity as measured with d′.

Ratcliff (1988) has suggested that subjects may not always wait until the response signal is presented
to select a response in time-accuracy experiments, but may select a response based on reaching a decision
boundary, if this occurs before the response signal is presented. In our analysis we do not consider the effects
of including these decision boundaries, focusing our attention on the information accumulation process itself.
Effects of introducing decision boundaries will be discussed below, following the presentation of this analysis.

We will explore the adequacy of the leaky competing accumulator model to account for data from time
controlled experiments through a sequence of steps. First, we will study the approximate, linear version of
the model (Equation 3), showing how it reduces, in the time controlled case with two alternatives, to a very
simple expression for the relationship between time and accuracy, eliminating two of the free parameters of
the full non-linear version of the model. We then compare the linear approximation to the full model, to
demonstrate that the full model still exhibits the same form of time-accuracy dependency that is seen in
the linear version, and to consider what role if any the extra parameters in the full model actually play in
the underlying process. Given the adequacy of the approximation, we then compare the simple expression
derived from it for the shapes of time-accuracy curves to a comparable expression that results from assuming
a non-leaky accumulation process with drift variance, and consider how well each conforms (a) to the shifted
exponential function often used to summarize the data from time controlled experiments, (b) to a focused
analysis of the shape of the early part of the time-accuracy curve, and (c) to the actual data obtained in a
previously unreported experiment.

Analysis of the Linear Approximation of the Leaky, Competing Accumulator Model

Our analysis of the linear approximation of the model begins by defining a new variable x = x1−x2 which
simply represents the difference in activation between the two accumulator units. To obtain this variable,
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we begin by instantiating Equation 3 for x1 and x2 in the two-alternative case:

dx1 = [ρ1 − kx1 − βx2]dt
τ + ξ1

√
dt
τ ,

dx2 = [ρ2 − kx2 − βx1]dt
τ + ξ2

√
dt
τ .

(5)

We can now obtain an equation in x by subtracting the second equation from the first and making use of
the fact that ρ2 = 1− ρ1:

dx = [(2ρ1 − 1)− (k − β)x]
dt

τ
+ ξ

√
dt

τ
. (6)

The variable x behaves similarly to the decision variable in the classical diffusion model without drift variance,
with ν = 2ρ1 − 1 corresponding to the diffusion drift. The standard deviation σ of the noise in the classical
diffusion process corresponds directly to the standard deviation of the Gaussian random variable ξ for the
leaky competing accumulator model. The process described by Equation 6 is well known in statistical physics;
it is called an Ornstein-Uhlenbeck (OU) process (see Ricciardi, 1977).

Unlike the classical diffusion model, the OU process is also characterized by an effective differential
leakage or decay term K = k − β. Note that this term K extends beyond the effective unitwise leakage
term k, which does not incorporate the inhibitory influences of other units, to provide a measure of the net
leakage in the difference between the two units’ activations. As with k, when K = 0, differential information
integration occurs without loss. In this case a classical diffusion process results. The OU diffusion with both
negative and positive K value has been used by Busemeyer and Townsend (1993) in their model of decision
making, where the sign of the K coefficient relates to approach-avoidance characteristics of the decision.
A version with negative K arises in Smith’s (1995) model of simple reaction time for luminance-increment
detection.

In order to characterize the time-accuracy curves, a measure of d′ has to be obtained as a function of the
time t when the response is selected. According to signal detection theory, d′ is computed as the separation
between the means of distributions associated with the two types of trials, divided by their standard deviation
(SD). Consider the case in which there are two kinds of trials: those in which stimulus 1 is presented and
therefore ν = ρ1−ρ2 > 0, and those in which stimulus 2 is presented and therefore ν = ρ1−ρ2 < 0. For this
situation we can designate as a hit those cases in which ν > 0 and, at the moment a response must be made,
x(t) = x1(t)−x2(t) > 0. A false alarm would correspond to those cases in which ν < 0 and x(t) > 0. Let us
denote the expected value of the x variable when ν > 0 as µ+(t) and as the expected value when ν < 0 as
µ−. Due to the symmetry of our assumptions, µ− = −µ+, and the difference between the expected values
just becomes 2µ (where µ represents the absolute value of µ+ or µ−). Thus we can write an expression for
d′(t):

d′(t) =
2µ(t)
SD(t)

. (7)

The time evolution of the mean (µ) and the standard deviation (SD) of x(t), as well as the time evolution
of its distribution P (x, t), can be obtained for the process described in Equation 6, using the theory of
stochastic processes (Ricciardi, 1977; see Appendix B for the computation of the choice accuracy, P (t)). If
at time t = 0 the activation is initialized as x(0) = 0 then the distribution of x at a later time t is a Gaussian
with distribution P (x, t) = N [µA(t), SD(t)], where N denotes the normal density distribution whose mean,
µ, and the standard deviation, SD, are given by

µ(t) = ν
K (1− exp(−Kt)) ,

SD(t) = σ√
K

√
(1− exp(−2Kt)) .

(8)

From this (and using Equation 7) the following expression of the time-accuracy function is obtained:

d′OU (t) = dasy
1− exp(−Kt)√
1− exp(−2Kt)

. (9)

This determines the time evolution of OU process, where dasy is the asymptotic value of d′ obtained for
unlimited time:

dasy =
2ν

σ

√
1
K

. (10)
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We see in this expression that dasy depends on the difference between the inputs to the two accumulators
ν, the standard deviation of the noise, and the net decay K. When K is greater than 0, dasy takes on
a finite value, consistent with the leakage or decay of information and with the pattern of data found in
time-accuracy experiments.

The special case of K = 0 leads (using Equation 6) to a classical diffusion process. In this case the
distribution P (x, t) is also a Gaussian N [µ(t), SD(t)], whose mean increases linearly with time (µ(t) = νt)
and whose standard deviation increases as the square root of time (SD(t) = σ

√
t). In this case, as noted in

the introduction, the accuracy increases with processing time to infinity, even for a highly degraded signal to
noise ratio ν/σ << 1. This is indeed expected since as the integration time increases the noise is progressively
averaged out; a noiseless estimation of the stimulus can thus be obtained with infinite integration time.

Comparison of the Linear Approximation to the Nonlinear Model

The OU function represents an approximation of the actual processes assumed to operate in our complete
model, since it ignores the effects of the non-linearity of the activation function. It therefore becomes
important to understand whether the complete model adheres to the properties of the simplification. Our
first goal was to determine whether the time-accuracy curves still correspond to the shape expected under
the OU equations, and to establish whether the differential effective leakage, K = k−β, still determines the
shapes of these curves. To this end we ran simulations of the non-linear diffusion process in which negative
activations were trucated to zero as specified in Equation 4. The net unitwise leakage k was set at 0.2
throughout, and different values of β were used to produce different values of K in different simulations.

For each simulation trial, the activations of the units were initialized to 0. At every iteration of the
simulation, units received an increment in activation according to the following expressions, following which
negative values of x1 or x2 were set to 0:

dx1 = [ .5(1 + ν)− kx1 − βf2]dt
τ + ξ1

√
dt
τ ,

dx2 = [ .5(1− ν)− kx2 − βf1]dt
τ + ξ2

√
dt
τ .

(11)

In these expressions we have replaced ρ1 with .5(1 + ν), and ρ2 with .5(1− ν). This replacement preserves
ρ1 + ρ2 = 1. As above, ν represents the difference ρ1 − ρ2 in input to the two accumulator units. For all
the simulations in this section, dt

τ , the time step of the simulation, was set to .1, ν was set to .1, and σ,
the standard deviation of the noise variables ξ1 and ξ2, was set to 1.58 (so that the effective noise per step
when multiplied by

√
.1 is .50). 4 For the sake of calculating time-accuracy curves, at every iteration, the

simulation program tabulated whether x1 > x2. The number of times x1 > x2 was then divided by the
number of simulation trials (5,000) to determine the probability correct at each time step.

Figure 4 shows that the time-accuracy curves do indeed depend on the differential effective leakage K.
At β = .2, the inhibition and the leakage are balanced so that K = 0. In this case the time-accuracy curve
increases indefinitely toward perfect performance, as expected for a diffusion process without loss. For other
values of β, inhibition does not perfectly balance the effective unitwise leakage, and there is information
loss resulting in asymptoting curves. Therefore we see that the curves depend only on the absolute value of
the differential effective leakage, |K|. For example, virtually identical time-accuracy curves were obtained
for β = 0 (square symbols) and for β = .4 (diamonds) as they correspond to K = .2, and to K = −.2,
respectively. Finally, the lowest performance was obtained for β = .6 which corresponds to K = −.4 in
Equation 10.

To test if the simulation results are consistent with the analytic time-accuracy curves, we fitted the
simulated time-accuracy curves with the formula derived for the OU process in Equation 9. Two parameters,
dasy and the OU integration time constant, 1/KOU , were allowed to vary while the offset time T0 was fixed
at zero; We denote the parameter of the OU fit by KOU to distinguish it from the value of K used in the
simulation of the non-linear process. The best fits, shown with solid lines in Figure 4, are consistent with

4In the Monte-Carlo simulation program, we first add to each accumulator the deterministic input (ρi) and the Gaussian
distributed variable (ξi). The leak factor (multiplication by 1− kdt/τ) and the lateral inhibition (subtraction of βdtxj 6=i) are
then applied to all units. This is equivalent to applying all the factors at once with the ρ and σ parameters scaled by 1−kdt/τ .
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Figure 4: Time-accuracy simulations at four levels of lateral inhibition. The probability correct P (t) =
prob[x1(t) > x2(t)] is displayed as a function of time. In all simulations the unitwise effective leakage factor,
k was .2, the stimulus discriminability corresponds to ν = 2ρ1 − 1 = .1 and the noise factor was σ = 1.58.
Results for balanced inhibition and leakage (β = .2) (+ symbols) and for three other cases: Two in which
|k − β| = .2 (β = 0, square symbols, and β = 0.4, diamond symbols) and one in which |k − β| = 0.4
(β = 0.6, X symbols). The continuous lines are fits with the the analytic time-accuracy curves for the OU
process (Equation 9). Correspondence between the parameters of the fitted curves and their expected values
based on the approximate linear model is very close. For example, the fitted time constant 1/KOU should
correspond to τ/dt

K from the actual stochastic simulation. For |k − β| = |K| = .4, and dt/τ = .1 we expect
1

KOU to be 25, which was the value obtained. For |K| = .2, we expect 1/KOU = 50, and a value of 48
was obtained. For the simulation with |K| = 0, we expect 1/KOU to take a very large value, and 225 was
obtained. This large value 1/KOU would correspond to a very small |K| ( .03), and differences between the
curves for |K| = 0 and |K| = .03 would only show up at times much longer than the time interval covered
by the simulation.
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Figure 5: Density distribution for x1 − x2. Left column: Dissipative case (k = .2). Center column: self-
expanding, (k = −.2, β = 0). Right column, dissipation and inhibition (k = .2, β = .4). Top panels: t = 10
iterations, Middle panels: t = 50 iterations, Bottom panels: t = 195 iterations for the left and right panels
(asymptotic distributions) and t = 100 iterations for the middle-low panel.

the simulation results. Moreover, the fit parameters correspond closely to the values used in the simulation
(see figure caption).

Note that values of K of equal magnitude but of opposite signs result in the same time-accuracy curves.
A negative value of K in Equation 6 has the implication that the system is dominated by divergence instead
of decay (this can happen with strong recurrent excitation or strong lateral inhibition). Strikingly, however,
equivalent degrees of divergence and decay lead to the equivalent evolution of d′ over time. This is due to
the symmetry of the OU speed-accuracy curves to the inversion of sign of K (e.g. from .2 to −.2).5

The symmetry of the OU speed-accuracy curves to K inversion implies therefore that the two strategies
are equivalent in terms of what we call their sensitivity-dynamics, i.e. the trajectory of d′ as a function
of time, where d′ at time t is based on the probability that the difference variable x is greater that 0 at
t. Despite this symmetry, however, the distributions of trajectories of the underlying activations are very
different in these different situations. Busemeyer and Townsend (1993) have noted these characteristics of
the OU process in their model of decision making, where the sign of the K coefficient relates to approach
or avoidance of the choice alternatives. To illustrate these characteristics of the system, we display in
Figure 5 the density distributions of x derived from the full model, at three different times after the stimulus

5The symmetry can be verified by checking that the OU d′ time-accuracy functions Equation 9 are invariant under [1 −
exp(−Kt)] → [exp(Kt)− 1]:

1−exp(−Kt)√
1−exp(−2Kt)

=
exp(Kt)−1√
exp(2Kt)−1

.
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presentation, in three different situations, all of which involve |K| = .2. The first case involves what might
be called pure dissipation: The unitwise effective decay leads to gradual information loss k = λ−α = .2 and
the inhibition β is set to 0. The second case involves what might be called pure self-enhancement: β is set
to 0 as in the first case, and setting k = −0.2 (which could arise if the hidden self-excitation parameter α
were slightly greater than the hidden passive decay λ), we see growth of activation through self excitation.
The final case involves dissipation coupled with lateral inhibition, k = .2 and β = .4.

We observe that for the purely dissipative case, the distributions remain bounded, while for the self-
enhancement case, they diverge. In the second case the mean of the distribution moves quickly towards the
correct response side, but the standard deviation increases in a corresponding manner, so that their ratio
(which determines d′) is the same in the two cases. For the final case with dissipation and lateral inhibition,
we observe a new phenomenon. Although d′ and P are the same in the previous two cases, the distribution
becomes bimodal. This is due to the fact that with inhibition, eventually one of the units is suppressed to
zero. When this happens, due to the non-linearity, the effect of inhibition on the active unit disappears, and
thus the active unit remains subject only to dissipation.

This analysis shows that a system incorporating leakage, competition, and a simple truncation non-
linearity is able to generate what amounts essentially to a binary decision. Although the time-accuracy
curve is unaffected (the area at the right of the origin remains the same) the non-linearity might make an
important difference to actual RTs. The assumption under which the time-accuracy curves discussed above
were obtained was that the subject simply chooses the unit that is most active at the moment of decision.
However, this assumption is an idealization; in cases where the difference is small, the response selection itself
might be subject to error, and/or it might itself take time. Because the segregating effect of competition
tends to eliminate cases in which the difference in activation between the two alternatives is small, this
process might actually make it easier to make a quick decision. Note also that this separation is a process
that takes place over time. Future work might examine whether the lack of separation early in processing
could be partially responsible for the relatively long response latencies (measured from the response signal)
at short signal lags that are typically observed in time-accuracy experiments.

Comparison of the Effects of Leakage and Drift Variance

As explained in the introduction, the bounded value of performance obtained with long information
integration times can be addressed by assuming that the drift parameter ν is subject to variance σd from
trial to trial (Ratcliff, 1978). With this assumption, Ratcliff showed that the time-accuracy function becomes

d′DDV (t) =
dasy√

1 + σ2

σd
2t

. (12)

We emphasize that this function describes the sensitivity of the information accumulation process as a
function of time, and does not take into account the possible effects of use of decision boundaries that can
terminate processing if one is reached before the presentation of a response signal (Ratcliff, 1988). For the
present, we wish only to contrast the sensitivity-dynamics that result from assuming drift variance to those
that result from the assumptions of our model and to consider how well each approach can account for the
shapes of time-accuracy curves without further assumptions. We return to a consideration of the role of
decision boundaries below.

In Figure 6 we display the normalized time-accuracy function (i.e., d′/dasy) for the OU process (Equa-
tion 9: long-dashed line) and for diffusion with drift variance (Equation 12: short-dashed line) for the
same asymptotic value of performance. Although the two types of functions have some similar qualitative
properties (a gradual increase to asymptotic value), one can clearly see that the OU curve is close to a
pure exponential (solid line), while the DDV curve approaches the asymptote faster at the beginning and
more slowly toward the end (compared to the exponential). A further comparison of these curves (using
logarithmic scales) is displayed in Appendix C.
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Figure 6: Normalized time-accuracy functions for the diffusion with drift variance (DDV) model ( σ
σd = 1;

dotted line), the Ornstein-Uhlenbeck process (K = .93; dashed line), and Wickelgren-type exponential curve
(solid). Observe that the DDV curve is farther away from the exponential curve than the OU curve, both
at small and at large times. No value of σ

σd
can bring the DDV curve closer to the exponential.

Shape of Empirical Time-Accuracy Curves

Studies examining accuracy of performance as a function of processing time have generally found that
performance improves and then levels off following a function that can be approximated as a shifted exponen-
tial approach to asymptote (Busey & Loftus, 1994; Corbett & Wickelgren, 1978; McElree & Dosher, 1989;
Townsend, 1981; Wickelgren & Corbett, 1977). When processing time is controlled by a response signal or
deadline procedure, it has frequently been observed that time-accuracy curves (measured in terms of sensi-
tivity, d′) are generally well-approximated by a shifted exponential (Wickelgren, 1977). That is, responses
made at very short times after stimulus onset have only chance accuracy. Accuracy begins to rise after some
time lag T0, and then follows an exponential approach to asymptote. Since the DDV model predicts a shifted
curve that has a shape that is somewhat different from the exponential, it is worth asking whether the shifted
exponential or the DDV curve provides a more accurate characterization of experimental data. McElree and
Dosher (1989) compared the fit of the shifted exponential and the shifted DDV curve (Equation 12) to data
from a time-controlled version of the Sternberg task. Consistently within all experimental manipulations,
the exponential curves gave slightly better fits to the data. The DDV curves seem to approach asymptote
more slowly than the data, leading to systematic deviations in the fit. Since OU-shaped curves are very
similar to the exponential, the findings provide a possible indication that actual time-accuracy curves may
be more consistent with our leaky competing accumulator model. Of course this is only the most tentative
indication about the possible adequacy of the leaky-competing accumulator model. For one thing, there is a
literature suggesting that Wickelgren’s shifted exponential may not provide the best fit to the early portion
of time-accuracy curves. Since the OU and the DDV curves both deviate from the shifted exponential in this
portion of the curves, it is important to understand whether either or both models can address this aspect
of the data. More generally, the adequacy of the (shifted) OU and DDV curves has never been compared
directly, and therefore it will be useful to provide such a comparison. Finally, the OU curve is only an
approximation to the complete, non-linear model, and therefore it is important to verify through stochastic
simulations that the model can in fact simulate the obtained findings from actual experiments.

First we consider the initial portions of empirical time-accuracy curves. As one can observe in Figure 6,
at short times (t < T = 1/K) the OU (as well as the DDV) time-accuracy curve shows some deviation
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Figure 7: Transmitted information, I for three time-accuracy curves. i) OU process (solid line), ii) Shifted
exponential (long dashed line), iii) DDV (short dashed line). For all the three processes the asymptotic
accuracy was d′asy = 5, the offset was T0 = 50ms., and the time constant was τ = 300ms ( σ2

σd
2 for the DDV

model, Equation 12).

from a pure exponential (full and dashed lines). The OU has a slight deflection upwards, which (at very
brief times) could be detected in perceptual choice experiments with high discriminability. A large number
of such studies performed using a speed-accuracy tradeoff (SAT), where responses are required within a
time window, have reported a linear relationship between the amount of transmitted information, I =
P log2(P ) + (1 − P ) log2(1 − P ) + 1, and the time available for response (Hick, 1952; Pachella & Fisher,
1972; Salthouse, 1981). In particular, Salthouse (1981) compared a number of performance measures such
as the information transmitted, I, (Hick, 1952), raw proportion correct, P , d′, d′2, and log-odds (log( P

1−P )),
in the attempt to find which one provides the best linear fit to SAT data. Although the differences were
not big, the use of information transmitted led to the best linear fit. The OU model can explain the linear
trend in information transmitted at short times. This arises directly from the upward initial deviation of the
OU time-accuracy curve from a pure exponential. A similar behavior is obtained using a diffusion process
without drift variance. The diffusion process with drift variance results in a linear trend over a somewhat
smaller time range. This is shown in Figure 7, where we plot I (in bits of information) for three time-accuracy
curves: OU (solid line), Wickelgren’s exponential (long-dashed line) and DDV (dotted line).

One can observe that unlike the OU and the DDV curves, the exponential curve shows a strong deviation
from linearity in I at short times. Since the exponential time-accuracy curve (Wickelgren, 1977) is linear at
short times, it becomes bilinear when transformed to a measure of transmitted information.6 On the other
hand the OU and the diffusion models have characteristics that cancel out the bilinearity in the transmitted
information expansion, resulting in a linear trend in I. For the OU model, the range over which the linear
approximation holds is limited by the time constant, 1/K. A typical time constant of 300 ms (consistent
with the range of values from fits of our model discussed below) provides a linear regime of about 150 ms.,
consistent with the range over which linear information SAT curves are reported in experiments (see, e.g.,
Luce, 1986, pp 243).

We next consider how well the OU and the DDV curves can be fitted to the actual shapes of complete time-
6This can be understood (see also Appendix D) by developing the formula for the transmitted information, I = P log2(P )+

(1−P ) log2(1−P )+1 (see e.g., Hick, 1952) in a power series, in terms of the deviation δP around the guessing value of P = .5,
and noticing that the lowest order term is bilinear in δP .
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accuracy curves. To our knowledge such a comparison has not previously been carried out. Although McElree
and Dosher’s comparison of the fit of the shifted exponential and of the DDV time-accuracy curves suggests
a possible advantage for the leaky-competing accumulators, the quantitative advantage of the exponential
was very small, and it is not known whether the advantage would actually still be found in a comparison of
the fit of the DDV to the curves expected under the leaky competing accumulator model, since these are not
exactly exponential in shape. Moreover, the data fitted by McElree and Dosher (1989) come from memory
search tasks and not perceptual choice, which is the focus of the present analysis.

To address these limitations, we have sought to explicitly compare the fits of curves based on the DDV
function with those based on the OU function on time-accuracy data from a binary perceptual choice task.
Since the difference between the OU and the DDV time-accuracy curves is larger at longer times, we need a
set of data on binary perceptual choice where the asymptotic level of performance is manipulated well below
perfect performance levels, and responses at long time intervals are obtained.

Experiment 1: Time-Accuracy Curves in Binary Perceptual Choice

Relevant data are available from an experiment conducted by the second author. The experiment made
use of a difficult perceptual judgment: Similar to Swensson (1972), each subject was required to decide on
each trial if an almost-square tilted rectangle is longer toward the upper left or the upper right. Each subject
was induced to respond at different times after the onset of the display by the use of response signals. Three
levels of difficulty were tested at each of 10 different signal lags.

Methods

Materials and Apparatus. Subjects were seated in front of a Tektronix 602 point-plotting oscilloscope,
on which all of the displays were presented. A forehead rest bar was used to maintain head position at a
distance of 37 cm from the oscilloscope face. The displays were six rectangles based on a square tilted 45%.
Each side of the base square had length of 1000 in the nominal units of the plotting system, and subtended a
visual angle of approximately 2 cm on the face of the oscilloscope. The six stimuli were formed by increasing
the lengths either of the two sides pointing to the upper left or of the two sides pointing to the upper right
by 1, 3, or 5 points over the base length of 1000 points.

Procedure. At the beginning of each trial, a fixation point was presented at the center of the display. 500
ms later, the rectangle was presented, centered at fixation, and remained on the screen until the occurrence
of the response signal. A two-button response box was used, and subjects were instructed to respond by
pressing the left (or right) button to indicate the judgment that the rectangle was tilted toward the upper
left (or upper right). A response signal in the form of a beep occurred at one of 10 intervals following the
onset of the stimulus. Subjects were asked to respond within 200 ms of the onset of the response signal, and
within this constraint to be as accurate as possible. Their pay included a base amount per session, plus a
bonus based on the number of correct responses within 200 ms of the response signal. Visual feedback was
used to indicate whether the response occurred within the 200 ms and whether or not it was correct.

Subjects. Three subjects with normal or corrected to normal vision were tested in the experiment. They
were tested for approximately an hour a day over a period of about two weeks. They received a base payment
for participation in each session, plus a small bonus for every correct response within 200 ms of the response
signal.

Design. Each subject was tested on all three discrimination levels. For each discrimination level, there
were ten response signal lags. Within each session, all combinations of discrimination level (1, 3, or 5 parts
per 1000), stimulus (longer toward the upper left or upper right), and signal lags were randomly intermixed.
The lags used were: 0, 50, 100, 200, 300, 400 600, 800 1000 and 2000 ms.

Data collection began following several sessions of practice, during which Ss mastered the response signal
method and became familiar with the stimuli. In the data collection phase of the experiment, two subjects
received 190 trials per lag x discrimination-level, amounting to a total of 5700 responses and one subject
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received 140 trials per lag x discrimination-level amounting to a total of 4200 responses. For each trial, the
computer software recorded both RT and response accuracy.

Results

Preliminary inspection of the data from this experiment revealed that subjects’ response times measured
from the onset of the response signal tended to be relatively long for the shortest signal lags. Response times
decrease to a minimum at intermediate lags and then increase very slightly again for the longest lags (Reed,
1976). The latter effect is small enough to be safely ignored, but the former effect can influence accounts of
the data depending on how it is interpreted. One possibility is that with very short lags subjects actually
continue integrating information for a longer period after the response signal, and the longer RT reflects this
longer integration. Another possibility is that continuation of integration after signal onset is independent
of lag, but that the time it takes to actually emit the response is longer at short lags (perhaps because it
takes longer to initiate a response based on weaker of less differentiated activations, as discussed above).
According to the first view, information integration time is equal to lag plus RT less a fixed offset; according
to the second, integration time is equal to lag alone less a fixed offset. We do not have a theoretical stance on
which of these possibilities is correct, so we analyzed the data both ways. Since the fits of both the OU and
the DDV curves were somewhat better using lag + RT as the measure of integration time, we concentrate
on this case, mentioning only summary results from the other case in passing.

We have plotted in Figure 8 the probability of a correct response against the mean time of occurrence
of the response relative to the onset of the stimulus (lag + RT). Together with the experimental results we
display best-fitting curves obtained using the OU function (Equation 9, solid curves) and the DDV function
(Equation 12, dashed curves), assuming that processing time equals the temporal lag + RT , minus some
fixed offset TO. The data are shown with error bars reflecting the standard error (SE) of each data point,

based on the binomial distribution (SE =
√

p(1−p)
N where p is the probability correct and N is the number

of trials contributing to the data point).

Data Fits and Model Comparison

Our strategy in comparing the fit of the leaky competing accumulator model with the DDV model
makes use of the fact that the OU function provides a simple mathematical formula that gives a very good
approximation to the form of the time-accuracy curves expected under the full nonlinear model. This greatly
simplifies model fitting, since it is possible to derive exact shapes of time-accuracy curves immediately from
given parameter values. Both the OU and the DDV time-accuracy predictions are characterized by simple
mathematical formulas with three parameters (an asymptote, a rate-variable, and an offset). Therefore it is
possible to perform a direct comparison between the goodness of fit of the two predictions, using standard
curve-fitting methods. Also, the OU and the DDV curves have the same number of parameters, further
simplifying comparison. Thus, we begin our analysis with a comparison of the fit provided by the OU and
DDV functions. We then demonstrate that indeed the full leaky competing accumulator model can be fit
to the data just as well as the OU model, using the obtained parameters from the OU fit to constrain the
parameters of a final non-linear simulation. It should be noted that this final step is very time consuming,
since the simulation is stochastic, so that many simulation trials are required to get accurate estimates of the
predicted results for a given set of parameters. The existence of the simple linear approximation becomes
crucial in fitting the full model to data, since it allows us to find optimal parameters quickly and without
having to rely on intrinsically noisy assessment of predicted results for given choices of parameters.

Comparison of OU vs DDV fits. In fitting and comparing the OU and DDV functions, two measures of
goodness of fit have been used, providing consistent results. The first measure is the more standard least-
square measure,

∑
i

(datai−modeli)
2

V ari
, where i indexes the various signal lags, and V ari is the variance in the

model’s prediction for lag i. A second, more exact method consists of selecting for each model the parameters
that maximize the likelihood of the data given the model, P (data|model), then comparing the likelihoods.
For the special case where the probability of the data given the model has a Gaussian form, this is equivalent
to the least-square method. Since for this experiment the data consists of counts of the number of correct
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Table 1:

Parameters of Fits to Individual Subject Data from Experiment 1:
Nine Parameters per Subject

Subject P (data|OU)
P (data|DV ) Parameters-OU Parameters-DDV

d′asy 1/K T0 d′asy
σ2

σd
2 T0

S1-high 2.20 3.15 96 286 3.43 126 286
S1-medium 2.51 2.32 139 294 2.54 191 297
S1-low 1.54 1.11 393 337 1.47 1175 339
S2-high 4.72 4.23 190 307 5.19 451 309
S2-medium 1.31 2.99 283 307 3.34 363 351
S2-low 1.29 1.12 209 302 1.14 120 363
S3-high .95 6.05 329 297 8.66 1194 297
S3-medium .77 4.45 401 298 6.01 1222 301
S3-low 1.25 1.47 205 306 1.65 298 328

ALL DATA 62.02

trials per condition, it is possible to calculate directly the probability of obtaining n correct responses out
of a sample of N trials, when the model’s predicted probability correct is p, using the binomial distribution,
P (n, p, N) = N !

n!(N−n)!p
n(1 − p)N−n. Since the analyses produced very similar results, we report only the

results of the more exact method.7

For each function, optimal fits were found by doing a search within the 3-D parameter space of the model,
to maximize either ΠiP (ni, pi, Ni) or

∑
i

(ni/Ni−pi)
2

pi(1−pi)
(where pi depends on the model’s three parameters, and

the index i runs over the data points). The optimization search was based on a Metropolis-type algorithm
explained in Appendix E. First we fitted the OU and the DDV functions by treating each time-accuracy
curve for each subject and each discrimination-level separately, with 3 parameters [dasy, 1/rate (1/K for
OU and σ2/σd

2 for DDV), and the offset, T0] for each curve, producing nine fits, displayed in Figure 8.
Both functions produce reasonably good fits, as can be seen by noticing that only a few of the data points
fall more than one standard error from either model’s predictions (by chance as many as 32% of the points
would be expected to fall more than one standard deviation from its true underlying value).

There is a small but systematic advantage for the fit obtained with the OU model (solid curves). Table 1
shows this by giving the ratio of the likelihood that each of the nine data sets (three subjects by three levels
of difficulty) was generated from the OU function relative to the DDV function, and the parameters for
which the optimal fits were obtained.

Seven of the nine tests favor the OU function relative to the DDV function. Indeed, combining likelihood
ratios across the nine conditions, we can see that the OU function is more than 60 times more likely to
generate the combined experimental data relative to the DDV function (the value of 62.02 is obtained by
multiplying together the likelihood ratios for all 9 fits). Notice also that the rate parameters are more
constant across the discrimination conditions for individual subjects in the OU case; in a few conditions the
optimal fit of the DDV function involves a negligible drift variance parameter ( σ2

σd
2 > 1000) corresponding

to a classical diffusion process. Considering the data subject by subject, the OU function clearly provides a
better fit to the data for S1 and S2, but the two functions appear to be about equally good at fitting the data
for S3 (this is obtained however due to negligible drift variance, σ2

σd
2 > 1000). Similar results were obtained

7For most p-values (except where Np or N(1 − p) are very small, this distribution can be approximated by a Gaussian.
Thus, the least-square method can be seen as an approximation of the more exact method.
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Figure 8: Time-accuracy curves for three subjects in Experiment 1. Experimental data is represented by
symbols and two optimal fits using i) OU model (solid) and DDV model (dashed) are shown for each
discrimination-level condition. Error bars indicate the standard error of each data point, based on the
binomial formula, as described in the text.
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Table 2:

Parameters of Model Fits to Individual Subject Data from Experiment 1:
Five Parameters per Subject

Subject P (data|OU)
P (data|DV ) Parameters-OU Parameters DDV

d′1 d′2 d′3 1/K T0 d′1 d′2 d′3
σ2

σd
2 T0

S1 6.25 3.34 2.28 0.80 135 284 3.73 2.54 0.90 211 287
S2 4.76 4.41 2.82 1.14 223 307 5.34 3.43 1.38 503 308
S3 1.45 6.04 4.13 1.60 325 297 8.41 5.74 2.19 1101 298

ALL 43.14

in the fit of accuracy vs lag only. In that case, all nine of the tests favored the OU function, though some
only did so by a small margin, and overall the OU function was 197 times more likely to have generated the
combined data than the DDV function.

According to the assumptions of our model, the rate parameter of the information accumulation process
and the time offset (T0) parameter would be characteristics of the individual subject that would not vary
between experimental conditions. Therefore, we examined a second way of fitting the data using only 5
parameters per subject: three values of d′asy (one for each discrimination level) but only 1 rate and 1 time
offset parameter. The optimal fits with 5 parameters per subject were used to calculate the likelihood of
the data for both the OU function and the DDV function. These values and the corresponding optimal
parameters [d′1, d

′
2, d

′
3, 1/rate (1/K or σ2

σd
2 ), and T0] are shown in Table 2. Here it is evident that the OU

function provides a better fit to the data from all three subjects, though the evidence is relatively weak in
the case of Subject 3. Overall the OU function is more than 43 times as likely to have generated that data
than the DDV function. Again, similar results were obtained in the analysis of d′ vs signal lag. The OU
model fit the data for each individual subject better than the DDV model, and overall the OU model was
106 times more likely to have generated the data.

Applying the full model to experimental data. To this point we have established that the OU-shaped
time-accuracy curves predicted by the leaky competing accumulator model provides a good characterization
of the time-accuracy data from the reported experiment. Even though we have previously established that
the OU-shaped curves are also produced by the full, non-linear version of our model, it may be useful to
verify that the full model can provide an adequate fit to actual experimental data.

The simulation is based on the following assumptions: Accumulators for the two responses are initialized
to 0 at the beginning of each trial, then integration begins according to Equation 11. Sensory processes
impose a fixed delay Ts in the onset of the information accumulation process. At some time a response
signal is presented. Integration may continue for some period after the onset of the response signal, at which
point the accumulator with the largest activation is chosen. The response is emitted at this point, and
occurs after another delay Tr independent of signal lag. Given these assumptions, the integration time for
a response occurring at the actual time Ta will be equal to Ta − (Tr + Ts). Because they are not separately
identifiable, Tr + Ts collapse into a single variable equivalent to T0 in the OU fits.

Based on this model, we expect a stochastic simulation following Equation 11 to lead to a very close
approximation to the data, when shifted by the fitted value of the parameter T0. For a given subject, we
assume fixed values of k, β, and T0 but we allow different values of ν for each of the three different degrees
of difference between the lengths of the sides of the rectangles. To show that this is indeed the case, we used
stochastic simulations to fit the data from one of the subjects, S2.

To establish values for the parameters of these simulations, we began with arbitrary choices for τ = 100ms,
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dt = 10ms (thus the time scale, τ , is on the order of magnitude of the process measured, i.e., 223 ms for S2
in Table 2, while the Euler integration step is one tenth of it), and σ = 1.58 (the standard deviation of the
random normal deviates ξ1 and ξ2). For each discriminability condition, we used the best fitting value of d′

from Table 2 and solved Equation 10 to find the corresponding value of ν. The values of the parameters k
and β are underdetermined by the fits, since the parameter K of the OU process is equal to k − β. Thus, if
indeed the approxiation is valid, we can choose arbitrarily a value of β and then calculate the corresponding
value of k to achieve the desired value of K. In accordance with the assumptions of the model we chose a
value of β that was greater than 0 and large enough so that the activation of the accumulator that looses
the competition tends to reach 0 if the simulation is allowed to run to asymptote. This then constrained the
value of k to be equal to the chosen value of β plus the fitted value of K from Table 2.

Based on these assumptions, the simulation was run by initializing each accumulator to xi = 0 for each
trial, then beginning the stochastic information accumulation process at t = T0 and continuing until a time
equal to the lag+RT for that condition. For each of the three discriminability conditions, 4000 trials of the
simulation were carried out.

The time-accuracy curves obtained in the simulations (solid, squiggly curves) as well as the time-accuracy
curves based on the best fitting OU curves (dashed curves) are shown in Figure 9, together with the exper-
imental data. The OU and the non-linear fits are very similar, as expected based on our earlier analysis.
The variation of the stochastic simulation varies around the OU curve is expected since the simulation is the
result of a probabilistic sample, and so is subject to fluctuations around its expected value. In the limit of a
large sample size, the simulation is expected to converge to the OU curves to the point of indistinguishability.

Discussion: Leakage and Drift Variance in Two-Alternative Time-Accuracy Experiments

In summary, it appears that the OU function provides a slightly better fit to the shapes of empirical
time-accuracy functions than the DDV function. However, is must be noted that the proposals of Ratcliff
(1988) include the assumption that subjects may employ decision boundaries that sometimes terminate
processing before the response signal occurs. With these response boundaries in place, the full DDV model
produces curves that are closer to the exponential form that characterizes the experimental data. Based on
this, it is still possible that drift variance rather than leakage governs the approach to asymptote at least in
some time-accuracy experiments, even when the time-accuracy curve is approximately exponential. On the
other hand, our analysis shows that there is no need to invoke drift variance in accounts for the shapes of
time-accuracy curves. Indeed, it appears that leakage of information, which imposes a limit on the temporal
window of information integration, provides a good account of the shapes of time-accuracy curves without
invoking additional factors such as the use of decision boundaries in time-controlled experiments.

It seems likely that both leakage and drift variance should be considered as potential factors limiting
performance in time-accuracy experiments.8 The relative magnitudes of the leakage factor that operates
in our model and of the drift variance factor of the DDV model are likely to be task-dependent. It might
be suggested, for example, that the drift-variance would have a material impact in memory experiments of
the sort Ratcliff (1978) originally addressed, where each trial corresponds to a different item. In this case
differences in the strength of items in memory would naturally lead to variations in drift within a given
experimental condition.

Information Controlled RT Tasks with Two Alternatives

In this section we analyze our model’s behavior in standard two-choice RT tasks. Modeling these tasks
differs from modeling time-controlled experiments, in that subjects have to determine themselves the moment
when a response is generated. In most models this is done by assuming an activation-based response criterion

8Introducing a Gaussian distribution of drifts (Ratcliff, 1978) into the OU model leads to d′[t] =
ν(t)√

σdν(t)2+σ2(t)
, where ν(t)

and σ(t) are given by Equations 8.
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Figure 9: Non-linear simulation fit (solid lines) and OU fit (dashed lines) for the time-accuracy data in
Experiment 1 (with symbols). 4000 Monte-Carlo simulation trials in each discriminability condition. The
parameters correspond to the 5-parameters OU fit (S2) in Table 2 (d′asy1 = 4.41, d′asy2 = 2.82, d′asy3 = 1.14,
τ/K = 223, T0 = 307). The simulation parameters are calculated according to the OU linear approximation
for the process described in the text (T0 = 307, σ = .16, K = 0.44843 [k = 0.79843, β = 0.35]. The drift
values ν in the three discriminability conditions are .2333, .152, and .0603 (for the high medium and low
conditions, respectively). Error bars represent the standard error of each data point, as discussed in the
text.
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that is subject to strategic control. In accordance with this scheme, we assume that responses are generated
when either of the accumulators reaches some pre-set criterion value.

The first point to note is that a special case of our model, in which there is neither leakage nor inhibition
(that is, in which k = β = 0), is equivalent to a continuous time version of what we will call the classical
accumulator model (Vickers, 1970; Vickers, 1979; Vickers et al, 1971; Wilding, 1974; see also Audley & Pike,
1965; LaBerge, 1962 for previous versions of this model; and see Van Zandt, 2000; Van Zandt, Colonius,
& Proctor, in press for a recent version based on a race of Poisson processes).9 According to this class of
models, choice reaction time responses depend on a race between two independent accumulators. There is
an absolute response criterion for each accumulator, and as soon as either accumulator reaches its criterion,
the response is triggered, regardless of the state of the other accumulator(s) at that time. This is equivalent
to the assumption of our model.

The classical accumulator model has been the subject of intense analysis and comparison to the family of
random-walk models (Ashby, 1983; Laming, 1968; Link & Heath, 1975; Stone, 1960), or its diffusion variants.
Unlike the accumulator model, in which there are two separate cumulative values, the random-walk/diffusion
model is defined as a process involving a single diffusion variable, representing the difference in the amount
of evidence for each of the two alternatives. In this case, the decision to respond is made when the value of
the diffusion variable reaches either of two decision boundaries, each representing a certain level of relative
evidence for one of the alternatives compared to the other. This difference between the two approaches has
major consequences for the relationship between reaction time and the discriminability of presented stimuli.
In part for this reason, a major focus of earlier research on choice RT models was an examination of the
ability of each of the approaches to account for the effects of stimulus discriminability on response accuracy
and RTs for both correct and incorrect responses. As we shall see, neither of the classical models were fully
adequate as originally formulated, but a more recent implementation of the DDV model (Ratcliff & Rouder,
1998) that incorporates variability from trial to trial in the starting-point of drift (as previously proposed
by Laming, 1968 and by Ratcliff, 1981), in addition to variance in the direction of drift itself, has been able
to account quite well for data on the effects of discriminability on response probability and latency.

In this section we consider the role of leakage and lateral inhibition in accounting for data from studies of
the effect of discriminability on reaction time. We shall see that lateral inhibition provides a mechanism that
allows sensitivity to relative evidence in conjunction with the use of a simple absolute criterion for response
initiation. For some subjects in some experiments, it appears that an additional mechanism is necessary
to account for the fact that error responses to highly discriminable stimuli may sometimes be faster than
correct responses. Starting point variability provides one possible mechanism that can be used to account
for such effects.

Effects of Stimulus Discriminability on RT

For concreteness, we consider a typical binary task that has been used in the literature on the effect of
discriminability on RT (Vickers, 1970): On each trial the stimulus was a pair of vertical line segments, and the
subject was required to indicate with a button press which of two vertical line segments was longer. In this
case, discriminability was manipulated by varying the length difference between the two line segments. One
could tabulate the probability of choosing, say, the right line segment as a function of its length minus the
length of the left line segment. This difference variable would be thought of as being at least monotonically
related to the extent to which the input favors the right over the left response. One could then examine the
mean RT (and other statistics) associated with the right responses in each of the length-difference conditions.
A separate analysis could be performed for the left responses as a function of its length minus the length
of the right line segment. However, in what follows we will follow typical procedure in this literature and

9Historically, several related models have been labeled by the name of accumulator model. For example, Audley and Pike
(1965) used this label to refer to a counter model, where at discrete moments in time a unit is added, either to the counter
representing the first choice alternative (with probability p) or to the counter corresponding to the second choice alternative
(with probability 1 − p), and a decision is reached when one of counters reaches an absolute criterion. Later, Vickers (1970)
used the same label for a model where, in addition to the assumptions described above, the amount of activation that is added
to the counters is not a constant but rather a stochastic Gaussian distributed variable (of variance, say δ). A discrete-time
accumulator model with probability p and noise variance δ, is equivalent (in the limit of small time steps) to a 2-dimensional
diffusion process (as in Equation 5), with drifts ρ1 = p, ρ2 = 1− p and a noise-standard deviation of δ + p(1− p).
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Figure 10: Mean number of steps to reach the upper boundary at N = 10, as a function of the random-walk
probability, p. The mean number of steps, calculated following Cox and Miller (1965) is N(pN−qN )

(p−q)(pN+qN )
, where

q = 1− p.

combine the results of these two analyses. Response probabilities and RT statistics are thus averages over the
responses to the two stimuli representing the same amount of evidence for each. In these combined analyses,
negative length differences always correspond to errors, and positive length differences always correspond to
correct responses. In the following the curves showing response latency as a function of a discriminability
parameter are called latency-discriminability (LD) functions. Such functions are similar to what are usually
called latency-probability (LP) functions (Audley & Pike, 1965, Vickers et. al., 1971, Ratcliff & Rouder,
1998), in which latency is plotted against the probability of making a given response, since the response
probability is a monotonic function of the discriminability parameter.

Previous Models

The classical random-walk model and the classical accumulator model differ in their predictions for the
shapes of LD functions. While it seems counterintuitive at first, the classical random-walk model and the
classical diffusion model with Gaussian noise in the diffusion process predict that the LD functions will be
symmetrical when the two boundaries of the decision process are equidistant from the starting point of the
process. The reaction time will be slowest for the most ambiguous stimuli, and will get faster toward the
extremes, with both the high and the low probability responses occurring more quickly (see Figure 10).
On the other hand the accumulator models predict that the mean RT will increase monotonically as the
probability goes down (Audley & Pike 1965, Vickers et al. 1971).10 In the case where continuous, Gaussian
increments are added to both accumulators on each time step, this same general pattern holds, but with a
small down-turn for the responses with the very lowest probabilities (Vickers et al., 1971).

10The symmetric form of LD functions under the random-walk model can be understood as follows. Consider a random walk
initialized at the origin. On every time step, the process moves either to the right (with probability p) or to the left (with
probability q = 1 − p). The process is terminated when it has progressed N steps, either to the right (A) or to the left (B).
Audley and Pike (1965) observed that the probability of reaching A after exactly N time steps is pN , while the probability of

reaching B in N steps is qN . Thus the ratio of these probabilities is (P (A|N)/P (B|N)) = (p/q)N . For any larger number n > N
of steps to reach either boundary, exactly half of the additional steps will have been toward A, and half will have been toward
B. As a result, the probability of these additional steps will be the same in both cases, and so the ratios of the probabilities
(P (A|n)/P (B|n)) will remain constant at (p/q)N . Thus the two RT distributions differ only by a factor that reflects the fraction
of correct responses, and the probability of reaching either boundary in n steps, relative to the overall probability of reaching
that boundary, is the same for both boundaries.

In the discrete binary case, at every time step a unit is added either to a left counter or to a right counter. Thus the ratio
of the conditional probabilities given that the process has finished after n steps is (P (A|n)/P (B|n)) = (p/q)N−n.) Assuming
p > q, the relative probability for a correct response decreases with n, and thus errors tend to be on average slower than correct
responses. This effect becomes more and more pronounced as p/q grows larger, so that responses become slower and slower as
they become less and less probable.
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These observations show that the choice between the accumulators and the random-walk models can have
empirically testable consequences. The contrasting predictions of these two models led to a series of articles
that examined LD functions in binary choice RT experiments (Audley & Mercer, 1968; Petrusic & Jamieson,
1978, Pike 1968; Vickers et al, 1970, 1971; Wilding, 1974), and recently Ratcliff and Rouder (1998) and
Ratcliff et al. (1999) have reopened this line of investigation. In general these studies report asymmetric
LD functions which increase as the response probability decreases down to a fairly low value and then turn
downward, as shown in Figure 12, which shows data from Vickers et al. (1970); the pattern shown by
subject 4 in this figure is representative of data reported by Audley and Mercer (1968), Vickers et al (1971)
and Wilding (1974). An additional observation (Vickers et al., 1971) is that the LD curves have a more
asymmetric characteristic for the slower subjects, so that RTs tend to increase as probability decreases until
turning down again at the very lowest probabilities. The degree of symmetry is higher for faster subjects.
Participant 4 of Ratcliff et al. (1999) appears to represent the extreme case of this generalization, in that
this subject was by far the fastest overall in their experiment and produced a highly symmetric LD curve.
Symmetry appears to increase as RT decreases with practice (Petrusic & Jamieson, 1978).

The LD functions from some very fast subjects may be consistent with the predictions of the classical
diffusion model, and the LD functions of some very slow subjects may sometimes be consistent with ac-
cumulator models using Gaussian increments. However, the full range of shapes of subjects’ LD functions
cannot easily be encompassed by either of the classical models. The classical random-walk and diffusion
models predict that LD functions will always be symmetric, while the classical accumulator model predicts
LD functions which increase towards the low response probabilities with only a small down turn at low prob-
abilities (when Gaussian noise is added to the accumulators (Vickers et al. (1971)). The pattern of highly
asymmetric and U-shaped curves exhibited by most subjects seems inconsistent with both approaches, and
the range of variation of shape also seems difficult to encompass by either approach alone.

Modifications can be introduced into these classical models to produce U-shaped but asymmetric LD
functions. The addition of drift variance into the classical diffusion model, producing Ratcliff’s (1978) DDV
model, can significantly increase the error RTs, leading to LD functions corresponding to the experimental
data (Ratcliff & Rouder, 1998).11 Asymmetric LD functions can also be obtained assuming asymmetric drift
rates (Ratcliff, 1985), non-Gaussian noise (Link & Heath, 1975) or bias in the decision process (Ashby, 1983).

Starting point variability is another factor that has been considered in stochastic information accumu-
lation models (Laming, 1968). In a recent article, Ratcliff and Rouder (1998; see also Ratcliff et al., 1999)
have used a diffusion model that included both drift variance and starting point variance, and obtained good
fits for a variety of LD profiles. Starting point variability appears to be necessary to account for data from
some subjects, in which error responses to very highly discriminable stimuli can be faster, on average, than
the correct responses to these same stimuli: the effect of starting point variability is to make it possible for
the diffusion variable to be very close to the incorrect response threshold at the start of the information
accumulation process, thereby allowing a few very fast incorrect responses. Such very fast responses will
occur in all discriminability conditions, but they will exert their greatest effects on the mean RT only in
those conditions that otherwise produce very few incorrect responses.

Fitting the Leaky-Competing Accumulator Model

Our effort has focused on an investigation of how well the leaky-competing accumulator model can account
for the patterns of data seen in latency-probability experiments. As a starting place for this analysis we
examine how well this model can do without incorporation of trial-to-trial variability either in drift or in the
starting point of the information accumulation process.

11This arises from the fact that a mixture of different drifts is generated across trials within each experimental condition.
Consider the probability of the error response associated with the upper decision boundary when the drift is negative. The
probablity of such an error decreases as the drift becomes more negative, while the mean RT for such errors paradoxically
decreases (as previously seen in Figure 10). When drift variance is introduced, the less-negative drifts result in a higher
proportion of errors than the more-negative drifts, and the RTs of errors in the less negative cases are longer. The less negative
trials thus contribute more to the error RT distributions, increasing mean RT. For correct responses, on the other hand, the
averaging arising from drift variance leads to a faster mean RT compared to the classical process with the same drift, for similar
reasons.
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The data we have fitted with our model was reported by Vickers (1970). In this experiment, subjects per-
formed choice RT (“respond as accurately and quickly as possible”) in a length discrimination task involving
2 vertical line segments. The left segment was longer on half the trials, and the right segment was longer on
the other half; this manipulation was crossed with five levels of discriminability involving length-differences
of .3, .5, 1.0, 1.5, and 2.5 mm. and trials of all 10 resulting types were randomly intermixed within each block
of trials. Response probabilities and various moments of the RT distributions (mean, standard-deviation
(SD), skewness, and kurtosis)12 were calculated for the various length-difference conditions, combining the
left and right responses for each length difference condition where length difference refers to the difference in
length between the correct and the incorrect choice, so that responses associated with negative differences
constitute errors. Five subjects performed the experiment, each one producing approximately 500 trials per
discriminability condition. On the basis of this large number of responses, each subject provided 50 data
statistics (accuracy and 4 RT moments, in 5 discrimination conditions, for correct and incorrect responses).
Those are displayed with symbols in Figures 11–14.

We modeled this task using Equation 5 and truncating negative activations after each unit is updated.
In keeping with our earlier formulation of the model, we assumed that accumulators are initialized to 0 at
the beginning of each trial, and a response is chosen when either accumulator reaches the response criterion
θ. The actual RT simulated is the number of cycles to criterion times a fixed 10 ms per cycle, plus an
offset T0, corresponding to residual processes. To map the length-difference condition to the drift ν of the
the diffusion process, we assumed here a monotonic sigmoidal relation given by the cumulative Gaussian
integrate, ν = erf(εL) (see also Vickers, 1970 for further considerations), where L is the length-difference
and ε is a subject-dependent coefficient representing the accuracy of spatial encoding. We used five positive
and five negative values of L corresponding to the values used in the experiment, and we recorded the
occurrence and RT of cases in which unit-1 reaches the criterion first, corresponding to selection of the first
alternative. Note that when the value of L is positive such cases correspond to correct responses and when
L is negative they correspond to errors.

Note that the time step used for mapping simulation steps to real time (10 ms in our simulations,
corresponding to the time scale, τ , of 100 ms) is arbitrary. However, once fixed, the time constant obtained
from the free parameter k is relative to it. Thus once the time step is set, the model is specified by six
parameters. For the information accumulation process itself we have the leakage parameter k, the lateral
inhibition parameter β, and the standard deviation of the noise σ. In addition we have the criterion θ, the
time offset T0, and the drift coefficient ε.

For each subject, the six parameters were varied in order to capture that subject’s data. In order to
find parameters that provide a good fit to each individual subject, a Metropolis-type program was run (see
Appendix E), minimizing a cost function that included factors for the discrepancy between the accuracy,
mean and standard deviation of RT of the data and the model. No attempt was made to fit the model to
the skew and kurtosis of the data. Since the parameter space is large (6D) and assessing predicted values
required stochastic simulations of all length conditions for every choice of parameter-set, we were only able
to run 8,000 “swaps” (as defined in the Appendix) of the Metropolis algorithm per subject. As a result, there
is some noise in the fitting process and so the fits obtained are unlikely to be optimal. The final parameters
that were used to fit the data of the five subjects are provided in Table 3. Using those parameters each
discriminability condition was simulated by performing a final assessment block of 10,000 simulation trials
per discriminability condition.

Comparison of Fits to Data

As shown in Figures 11, 12, 13, and 14, the model provides a good fit to the accuracy data and the mean
and SD of the RT for most subjects, and also captures the trends apparent in the data on the skewness and
kurtosis of the RT distributions. The model does not fit the LD functions of two of the subjects (S1 and
S5). However, both of these LD functions are quite unusual, in that both show a dip in the LD function
for moderately discriminable stimuli (moderately negative length differences), contrary to the predictions of

12We thank Douglas Vickers for providing these data. The measure of skewness is γ3/γ
3/2
2 = γ3/SD3, and the measure of

kurtosis is (γ4/γ2
2)− 3, where γi is the ith-moment about the mean.
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Figure 11: Choice probabilities from the latency-discriminability (LD) experiment of Vickers (1970). Symbols
with error bars represent the experimental data, and the curves show fits of the leaky competing accumulator
model. S1, upper left, S2, upper right, etc. Raw data were provided by Vickers (personal communication,
1997) and are presented here with his permission. In this and subsequent figures of this type, responses are
collapsed over the two alternatives. responses to positive length differences correspond to correct responses
and responses to negative length differences correspond to errors.
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Figure 12: Mean (circles, solid curves) and standard deviation (plusses, dashed curves) of RTs from the
latency-discriminability (LD) experiment of Vickers (1970). Symbols with error bars represent the experi-
mental data, and the curves show fits of the leaky competing accumulator model. S1, upper left, S2, upper
right, etc. Raw data were provided by Vickers (personal communication, 1997) and are presented here with
his permission.
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Figure 13: Skewness of RT distribution from the latency-discriminability (LD) experiment of Vickers (1970).
Symbols with error bars represent the experimental data, and the curves show fits of the leaky competing
accumulator model. S1, upper left, S2, upper right, etc. Raw data were provided by Vickers (personal
communication, 1997) and are presented here with his permission.
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Figure 14: Kurtosis of RT distribution from the latency-discriminability (LD) experiment of Vickers (1970).
Symbols with error bars represent the experimental data, and the curves show fits of the leaky competing
accumulator model. S1, upper left, S2, upper right, etc. Raw data were provided by Vickers (personal
communication, 1997) and are presented here with his permission.
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Table 3:

Parameter Values for Fits to Individual Subject Data from Vickers, 1970

Subject θ σ β k ε T0

Subject 1 1.99 .520 0.10 .05 0.74 300
Subject 2 1.14 .560 0.46 .14 0.73 384
Subject 3 2.00 .553 0.05 .05 0.23 340
Subject 4 1.20 .360 1.41 .11 0.33 379
Subject 5 2.05 .577 0.24 .10 0.78 259

all models that we know of. These data are anomalous, and we have no explanation for them. Otherwise,
there are no large or systematic deviations in the fit to the accuracy, mean, and SD data. In particular the
model reproduces closely the sigmoidal accuracy functions, and the non-monotonic mean RT function for
S4 together with the much flatter RT function for S2 and S3. In addition, the fits reproduce the pattern
of longer RT for incorrect than correct responses seen in S1, S3, S4 and S5 and the non-monotonic, inverse
U-shaped functions for the SDs seen in S4 and S5.

The skewness and the kurtosis functions seen in the behavioral data are quite noisy. This is as expected,
since these statistics are extremely sensitive to outliers, as Ratcliff (1979) has shown. No error bars are
available for these data, and it is likely that individual data points could change a great deal if only one
or a few trials were removed from the calculation of the statistic. We consider this data nevertheless since
there are fairly clear increasing trends in both statistics at least in some subjects (S1, S4, and S5). Similar,
monotonically increasing skewness and kurtosis functions have also been reported in two other experiments
(Vickers, et. al., 1971; Wilding, 1974). Interestingly, these trends are also apparent in the fits provided by
the model, even though the parameter fitting process did not explicitly consider these variables in assessing
the goodness of fit.

By inspecting the fitted parameter values for each subject, one can see how each of the parameters affects
the LD functions. For example, it seems that the inhibition parameter increases the U-shapedness of the
mean-RT function (S3, whose mean-function is perhaps the least U-shaped, has the lowest value of the
inhibition parameter, corresponding to a classical accumulator, while S4, whose mean function is the most
U-shaped, has the largest value for the inhibition parameter). In addition, the leakage and the inhibition
parameters increase the value of the skewness and kurtosis (without leakage and inhibition we obtained very
small skewness values, scattered around 0, while in the presence of leakage and inhibition we obtained skew
values typically between 1-2, as in the data, with increasing trends).13

In order to better understand how the model parameters affect the shapes of the LD or LP functions,
we performed a set of simulations where, starting from the classical accumulator model with Gaussian
increments (Vickers et. al., 1971), we modified one parameter at a time. In particular, we examined the
effects of introducing lateral inhibition, leakage, and starting point variability (See Figure 15). Although
the latter variable was not used in our fits, we considered its effects because it has been useful in fitting
data sets when many of the error responses are very fast, as previously discussed (Laming, 1968; Ratcliff
& Rouder 1998; Ratcliff et al., 1999). Each of these simulations was performed for three values of the
response threshold (chosen so as to approximately equate the mean RT for the corresponding conditions
across the four panels), in an effort to see how speed-accuracy tradeoffs are reflected in the various models.

13Although the parameters used in Table 3 are not thought to represent the best possible fits to the data, it might be
instructive to compare the predicted time constants with those found in optimizing the OU time accuracy curves in the fits to
the data from Experiment 1. While the time-controlled optimal fits produced rate parameters within the range of 100-400 ms
(Table 1), the rate parameters that can be computed from the information controlled fits (τ = 10/K = 10/|k − β|), are: 2000,
312, 76 and 714 ms. for S1, S2, S4 and S5 respectively. (subject number 3 has balanced inhibition and leakage resulting in
K=0). Although the range here is larger, one should notice that there is some degree of overlap, despite the fact that the fits
involve different groups of subjects performing different experiments.
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Two additional simulations (shown in Figure 16) were performed to examine the characteristics of combining
the factors considered separately in Figure 15. The first examined the combined effects of lateral inhibition
and leakage, and the second examined the combined effects of these variables plus starting-point variability.
Once again, the simulation was performed at three different values of the response threshold.

For the classical accumulator (upper left in Figure 15), we observed that RTs increase towards low P
values (i.e., errors are slower than correct responses) but with a small down-turn at the lowest P-values.
This down-turn is due to the Gaussian increments, as previously shown by Vickers et al (1971). The effect of
lateral inhibition (upper right) is to make the functions more curved (or less flat) and to increase the down-
turn (see in particular the conditions with medium and faster RTs), while leakage (lower left) affects the
shape of the LP functions to a lesser degree (although slight modifications are visible). The strong impact of
the lateral inhibition can be understood intuitively, since as discussed earlier, it provides a way to interpolate
between the accumulator models that generate more monotonic LP functions with errors slower than correct
responses (Audley & Pike, 1965) and random walk models that generate strongly peaked and symmetrical
LP functions (as shown in Figure 10). One can also see that with both leakage and lateral inhibition (left
panel in Figure 16), LP functions remain asymmetrical, with errors slower than correct responses. One can
also observe that in all the models, faster responses (induced by lower response-criteria, at the expense of
accuracy) result in flatter and somewhat more symmetrical LP functions, as previously noticed by Vickers
et al. (1971) and by Ratcliff and Rouder (1998).

The effect of starting point variability is to pull down the left (error) end of the LP function, relative
to the right (correct response) end. This is as expected based on the work of Laming (1968) and Ratcliff
(Ratcliff & Rouder, 1998; Ratcliff, et al 1999). When added to the classical accumulator (compare upper left
with lower right in Figure 15) the result is fairly symmetric LP functions, or, with extreme values of starting
point variability (not shown), a pattern in which errors are generally faster than correct responses across
all difficulty levels. In the leaky competing accumulator model, moderate values of starting-point variability
(not shown) produce relatively symmetric LP functions, as with the accumulator model. A large value of
starting point variability (as in the case shown in Figure 16, see caption for details) can result a crossover
effect, such that errors to difficult stimuli are slower than correct responses, but errors to the easiest stimuli
are faster than correct responses. This pattern is seen in the data of some subjects in Ratcliff and Rouder
(1998), Ratcliff et al (1999), and Smith and Vickers (1988). The crossover effect is apparent for the highest
threshold, which results in long overall RTs, in line with effects of speed vs. accuracy instructions in Ratcliff
and Rouder (1998).

Experiment 2: Reaction Time Distributions

Although we have fit the leaky competing accumulator model to the effects of discriminability on the
accuracy and the various moments of RT (means, SD, skew and kurtosis), we have not shown that the
model can fit the exact shape of the RT distributions (for the data of Vickers, 1970, only the RT moment
statistics were available). A motivation for considering the RT distributions in some detail comes from the
fact that existing stochastic information accumulation models differ in their predictions for the shapes of
these distributions. The DDV provides very good fits to such distributions, whereas Wilding (1974) reported
that the classical accumulator model predicts distributions that fail to exhibit the long tail to the right that
is characteristic of most RT distributions. The question arises whether the leaky, competing accumulator
model is more like the diffusion model or more like the accumulator model in this regard. While it might
seem that our model’s fit to the skew statistic might address this, higher RT moments are noisy and may be
over sensitive to individual data points (Ratcliff, 1979), and may fail to capture all aspects of the shape of
RT distributions (Ratcliff, 1999, personal communication). For this reason, an explicit test for our model’s
ability to fit RT distributions was required. To provide data for this, we performed a new experiment where
Ss were required to perform a difficult choice RT task with stimuli similar to those used in Experiment 1.

Methods
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Figure 15: LP-functions (mean latency as a function of the response probability) for the classical accumulator
(ACCUM; θ = {1, 1.2, 1.8}, β = 0, k = 0) , the accumulator with lateral inhibition (INH; θ = {.8, 1, 1.2}, β =
.9, k = 0), the accumulator with leakage (LEAK; θ = {.8, 1.1, 1.4}, β = 0, k = .2), and the accumulator with
starting point variability (SP; θ = {1.5, 2.1, 2.7}, β = 0, k = 0, the starting point of each accumulator was
distributed uniformly between 0 and 2/3 of θ), for 3 levels of the response criterion. Response criteria were
chosen so as to obtain LP functions within the same range of mean RT for each model. All other parameters
are as for subject 4 in Table 3.
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Figure 16: Latency-Probability (LP) functions for accumulators with both leakage and lateral inhibition,
for three different values of the response threshold. Top curve: threshold = 1.2; middle curve: threshold =
.9; lower curve: threshold =.6. Left panel: LP functions without starting point variability. Parameters as
for subject 4 in Table 3, except of β = .88. Right panel: LP functions with starting point variability. The
starting point of each accumulator was initialized to a value chosen at random from a uniform distribution
from 0 to 0.8 of the threshold.
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Materials and Apparatus. Subjects were seated in a dark room, in front of a computer monitor were
stimuli were presented. Stimuli were bright rectangles, with nearly equal sides, on a dark background, tilted
by 45% so that they appeared to be of a “diamond” shape. One of the sides was always 200 pixels large,
while the other was smaller by either, one, two or three pixels. The direction in which the larger side was
presented, as well as the level of discriminability was randomized across the trials.

Procedure. At the beginning of each trial, a fixation point was presented at the center of the display. 500
ms later, the rectangle was presented, centered at fixation, and remained on the screen until the occurrence
of the response signal. A two-button response box was used, and subjects were instructed to respond by
pressing the left (or right) button to indicate the judgment that the rectangle was tilted toward the upper
left (or upper right). Both the accuracy and speed were emphasized (“try to respond accurately but as fast
as you can”). Two seconds after their response, the next trial was presented. Trials were presented in blocks
of 96 (32 trials at each level of discriminability). Subjects could rest in between the blocks before continuing
with the next block. A session consisted of 1 practice block followed by 10 experimental blocks (and took
about one hour to perform). A 5 minute break was enforced after 6 blocks. Each subject performed 3
sessions generating a total of 960 experimental responses at each level of discriminability.

Subjects. Two subjects with normal or corrected to normal vision were tested in the experiment. They
were paid £5 for each of the 3 sessions they performed. Two subjects who attempted the experiment were
not used due to failure to produce sufficiently rapid or accurate responses. (One of these Ss had mean RTs
greater than 1.5 seconds and many very slow responses; the other achieved an overall level of accuracy of
less than 70% correct).

Model fitting method. The data were fit using the same optimization procedure as in the previous study.
The cost function included terms for the accuracy, the mean and SD of the RTs and the skew of the correct
RT, at each level of discriminability.

Experimental results and model fits. In figure 17 we present results and model fits for the accuracy and
for the mean and standard deviation of the RT, as a function of discriminability for the two subjects (as
before negative values on the x axis denote incorrect responses). The data show that the subtle changes in
stimuli (differences or 1 or 2 pixels) resulted in detectable and systematic effects upon accuracy and RT,
reproducing the LP patterns reported in Vickers (1970) experiment (U-shaped RT distributions with error
RT slower than correct RTs).

In Figure 18 we show the RT time distributions for correct responses of the two subjects at the 3 levels of
discriminability and the corresponding model fits. These RT distributions are similar to those that have been
reported in many other experiments. The model was not explicitly fit for the shape of the RT distributions.
Nevertheless, once its parameters were fit to the accuracy, mean, standard deviation, and skew of the RT
data, it generated RT density distributions very similar to those seen in the experiment.

Discussion

One of the most stable patterns of the results is that the distributions are strongly skewed (skew larger
than 1) and that the skew values increase with discriminability. Specifically, for difficult, medium, and easy,
respectively, the skew of the correct RT distribution was 1.3, 1.8 and 2.2 for S1, and 1.5, 1.8 and 2.2 for
S2. These results are well predicted by the model, and indicate that the trends of increasing skew with
discriminability discussed in the previous sections and reported in other studies (Wilding, 1974) are not
simply artifacts of noisy estimation of high moment RTs.

The leaky competing accumulator model does not suffer from the same limitations as the classical accumu-
lator models in fitting the shapes of reaction-time distributions. Overall, it appears that the leaky competing
accumulator model can provide a good account of the patterns of data found in latency-discriminability ex-
periments.
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Figure 17: Data (points with error bars) and model fits (lines) for accuracy (top) and for latency (bottom,
solid line) and standard deviation (bottom, dotted line) for two subjects in Experiment 2. Error-bars
represent one standard error of the accuracy and latency data. The model parameters used in the fits for
Subject 1 are θ = 1.608, σ = .426, β = 2.23, k = .06, ε = 0.1575 and T0 = 305. Parameters for Subject 2 are
θ = 1.14, σ = .322, β = 4.0, k = .12, ε = 0.10 and T0 = 300.
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Figure 18: Fits to the RT density distributions at the 3 levels of accuracy.
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Experiment 3: Effects of Information Arrival Time

Up to this point, we have shown that the leaky, competing integrator model accounts for experimental
data from two broad types of experiments. But models that do not adopt the principles of leakage and
competition may also be consistent with much of this data, and so it is important to consider whether the
principles lead the model to predict new findings. Here we describe an experimental paradigm that allows a
test for predicted effects of leakage and lateral inhibitory interactions. This can be done by presenting fast
sequences of visual stimuli chosen from two classes (say, red or green colored lights or the letters H or S), and
requiring subjects to estimate the more numerous or predominant stimulus in the sequence. Experiments of
this sort have been done previously by Erlick (1961) and more recently by Vickers (1995; Pietsch & Vickers,
1997).

Consider a situation where the two response alternatives receive equal support overall (e.g., same number
of red and green flashes, in total) but one type of event predominates either at the beginning of the sequence,
and the other predominates at the end. According to perfect integrator models, such a manipulation should
not lead to any choice bias; counts are integrated whenever they arrive, adding up to the same total. In
contrast, a model based on a leaky accumulation process predicts a choice bias for the type of event that
predominates at the end. Earlier counts are less effective because their impact on the activation of the
accumulators has more time to decay. Lateral inhibition has the opposite effect. The impact of early counts
is larger since they inhibit the activation of competing accumulators activated later on in the sequence.
Depending on the balance of inhibition and leakage, a variety of effects can be obtained. These points can be
obtained analytically for the mean trajectory (averaging over the noise). An illustration based on simulations
with noise included is shown in Figure 20.

In most of the existing experiments of this type, each flashed stimulus may be separately perceived,
and the task extends over several seconds. Therefore the decision process might operate at a different
time scale than ordinary perceptual processes, and may tap accumulation of information in memory rather
than information integration in perception (Pietsch & Vickers, 1997). Vickers (1995; Pietsch & Vickers,
1997) recently reported strong individual differences in studies of this type. Most subjects showed a bias
toward the stimulus predominating at the end of the sequence but a few subjects showed a bias toward the
stimulus predominating at the beginning. Therefore, in this paradigm it is essential to examine individual
rather than averaged RT data. Finally, it is also important to ensure, using an objective measurement, that
subjects are indeed estimating the predominant stimulus. In order to address these issues, we carried out
a new experiment using fast sequences presented at a high rate of 60 stimuli/s, collecting enough data per
subject to examine patterns of performance on a subject by subject basis. To ensure that subjects attempt
to estimate the predominant stimulus, half of the trials in each block had a predominant stimulus, while
the other half were balanced with equal number of S and H stimuli. The critical trials of the experiment
contained an equal number of Ss and Hs overall, but had a short cluster of Hs or Ss at the very end of
the sequence, creating a slight predominance of the other stimulus over the remainder of the sequence. The
critical sequences contained 16 elements, so that they required only 256 ms to present, well within the period
that appears necessary for asymptotic information integration as indicated by the time-accuracy curves from
time-controlled experiments.

In a recent article, Pietsch and Vickers (1997) noted that the primacy effect observed for some subjects
in a similar task may be due to the fact that they select a response before inspecting the whole sequence.
To discourage such a strategy, the critical trials were randomly intermixed with background trials in which
one of the two stimuli predominated. These sequences in the background trials had 40 elements, resulting
in a duration of 640 ms, with one of the stimuli occurring 25 times in the sequence. Since subjects could not
know in advance the duration of a stimulus, we reasoned that they would be discouraged from selecting a
response on only a fraction of the elements in the critical sequences, since such a strategy would result in a
very low performance level on the longer sequences.

Methods
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Materials. Stimuli were presented and controlled on a Silicon Graphics (O2) computer with double
buffer mode, using C code developed for the experiment. The S and the H stimuli were white on a grey
background and at low contrast. The size of stimuli extended for about 2.5 deg., and they were viewed from
a distance of about 1 m, in a dark room. The two types of trials were randomly intermixed. In the critical
trials, two cluster sizes were used, n=4 and n=2. The order of stimuli within a sequence was randomized.
Thus for a specified cluster of size 4, at least the last four stimuli were of the S (or H) type.

Procedure. Subjects were told to press the left-mouse button if the stimulus was predominantly S and
to press the right-mouse button if they thought it was predominantly H. Subjects were not told to respond
rapidly, and reaction times were not recorded. They were told to make this decision in a global way, based
on the entire sequence, and to guess if they were not sure. Subjects were not told that some of the trials
contained clusters. They were told that an auditory beep signal would be provided after error responses to
help learning the task. Once a response was generated the computer program presented the next trial after
a delay of about 2 s. The auditory beep signal was provided after errors only on the background trials (with
predominant stimuli). Subjects first performed a 20-trial practice block, which consisted only of sequences
with predominant stimuli (no clusters). If their performance on this training set was better than 80%, they
proceeded to the experimental blocks. Otherwise they repeated the practice block with a new random series
of trials. Following that, each subject performed 6 blocks of 80 trials. Within each block, there were equal
numbers of critical and background trials. Each stimulus (S or H) predominated in half of the background
trials, and there were also equal numbers of critical trial ending with clusters of 2 or 4 Ss or 2 or 4 Hs in
each block. Finally, subjects completed two control blocks in which the critical trials did not contain any
predetermined clusters (n = 0).

Subjects. Six subjects all with normal or corrected to normal vision, performed in the experiment for
credit or for a payment of £3 .

Data collection and analysis. The computer software collected the total number of correct responses
on background trials and the number of responses in favor of the end-cluster letter on the critical trials.
These scores were pooled over blocks. Despite the response symmetry in the design (equal number of S and
H trials) subjects sometimes showed response biases to one of the responses. In order to obtain bias-free
measures of accuracy and cluster choice the geometric average of the probability of cluster choice for S and
for H trials was computed separately for each subject and experimental condition.

Results

All the subjects performed the task on the background trials with an accuracy larger than 75%; individual
accuracy data on these trials are given in the last column of Table 4 (chance level is 50%). The other three
columns in Table 4 show the fraction of trials in which the subjects chose the end-cluster letter, for cluster
size of 4, and 2 and for the no-cluster control trials. Subjects vary in the pattern of cluster choice probability,
showing three qualitatively different patterns (subjects are grouped and numbered to bring these patterns
out). Two of the subjects (top row in Figure 19) show a choice preference for the end cluster (S1: p < .0001,
z = −4.47 and S2: p < .01, z = −2.68), while two other subjects (bottom row) show a preference against the
end-cluster (S5: p < .001, z = 3.76, and S6: p < .0001, z = 4.47). The remaining two subjects (middle row)
show a more neutral pattern of approximately balanced choice (no significant trend was present in either
case).

It seems likely that the pattern of choice found in the cluster trials reflects the same process of perceptual
estimation that is used to achieve fairly accurate performance on the background trials. Subjects were able to
correctly discriminate the most numerous stimulus from the longer sequences of 40 stimuli on the background
trials, and these trials are randomly mixed with the critical cluster trials. Also, the fact that the clusters of
length 4 produce more marked effects than clusters of length 2 suggests that performance on cluster trials
does not simply reflect a tendency to choose (or not to choose) the response associated with the last element
of the sequence.
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Figure 19: Individual data for Experiment 3. The probability of choosing the end-cluster stimulus, is shown
for cluster size of 4, 2 and 0 (control). Error-bars correspond to the SE in probability. The solid lines
represent fits of the leaky accumulator model (3 parameters were varied: leakage (K), lateral inhibition (β)
and the SD of the noise in the accumulator increment.
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Table 4:

Proportion of Choices of Response Corresponding to End-Letter Clusters (First Three Columns)
and Background-Trial Accuracy (Last Column) in Experiment 3

Subject n=4 n=2 Control Accuracy

S1 .75 .61 .48 .83
S2 .64 .57 .53 .77
S3 .54 .44 .48 .88
S4 .40 .44 .49 .96
S5 .28 .46 .51 .88
S6 .25 .41 .50 .82

Model Fits

In order to model performance in this task, we presented the model with sequences of inputs which obey
the same statistics as the stimulus sequences in Experiment 3. It is assumed that when one of the stimuli
is presented, the accumulator corresponding to that stimulus receives an increment, which is a Gaussian
random variable whose standard deviation is a model parameter. The additional parameters are the leakage
and the lateral inhibition, which operate as described in the previous sections. Choice is determined by
the accumulator that reaches the highest level of activation at the end of the sequence (notice that our
experimental manipulation should have ruled out early-selections). In Figure 19 we show the end-cluster
probability for each subject, together with a fit of the leaky competing accumulator model.

The patterns of performance shown by the individual subjects are consistent with the parameter values
found in fitting the model to the data. The first pattern (preference for the end-cluster) is obtained when
the leakage is dominant over the mutual inhibition; at high leakage the effect of the beginning is fading at
the end of the sequence and therefore the last cluster in the sequence has a larger probability to determine
the choice (Figure 20, left). The opposite pattern occurs when the inhibition is dominant over the leakage;
in this situation the activation received at the end of the sequence is inhibited relative to activation received
earlier on (Figure 20, right). The neutral pattern is found where there is an approximate balance of leakage
and inhibition.

In order to illuminate in more detail the processes leading to the different choice patterns, we show in
Figure 20 the activations of the two accumulators, averaged across 4000 trials using a 4-stimulus end-cluster,
for parameters corresponding to Subject 1 (left) and Subject 5 (right). The solid curve shows the activation
for the unit corresponding to the end cluster, and the dashed curve shows the activation of the unit for the
other choice alternative.

The set of parameters used to fit the individual data in Figure 19 were used a second time to generate
model predictions for the accuracy in the predominant (40 stimuli sequence) trials. These predictions are
shown in Figure 21 plotted against the experimental data. There is a close correspondence between the
predicted and obtained results. In particular, as predicted by the model, the subjects with the more neutral
pattern on the critical trials achieved the highest accuracy on the background trials.

Discussion

Overall, it appears that the data are consistent with models that incorporate leakage and lateral in-
hibition, and that interesting patterns of the relative values of the leakage and inhibition parameters can
account for aspects of individual subjects’ performance. However, it is worth considering other possible
accounts for the patterns seen in the data. As previously discussed, Pietsch and Vickers (1997) reported
individual differences in performance on a similar task, where subjects attended to sequences of two different



Perceptual Choice 49

0

0.25

0.5

0.75

0 4 8 12 16

m
e

a
n

 
a

c
t
iv

a
t
io

n

# stimuli inspected 

 

0

0.25

0.5

0.75

0 4 8 12 16
# stimuli inspected 

 

Figure 20: Mean activation of the noisy trajectories, averaged across 4000 trials of random sequences with
equal number of stimuli of each kind (8), and with a cluster of at least 4 stimuli of type I (corresponding to
the solid curves) at the end of the 16 stimuli sequence. Left: High leakage (K = .22, β = .1), corresponding
to subject 1. Right: High inhibition (K = 0, β = .25), corresponding to subject 5.
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Figure 21: Accuracy in the predominant trials for the individual data (6 subjects) on the x-axis, versus the
corresponding model predictions (y-axis). The subjects that achieved the higher accuracy levels are the ones
who have a relatively flat cluster probability curves (S3-4), corresponding to a balanced profile of leakage
and inhibition.
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colored light flashes and estimated which color occurred more frequently, and they offered different sorts of
interpretations. In their experiment the sequences were long and each item could be individually perceived,
and this may have allowed subjects to selectively attend either to the beginning or the end of each sequence,
and/or to rely on post-perceptual memory processes. However, in our experiment the presentation speed
was much faster, and the stimuli were presented at very low contrast. Inspection of the stimulus sequences
indicated that the elements could not be individually perceived, and, on the critical trials, the sequences
were only 256 ms long, well within the period that seems to be required for integration of perceptual infor-
mation based on fits of our model to the results of other experiments (e.g. for S1 from Experiment 1, the
subject with the fastest integration rate in that experiment, 256 ms allows only enough time to reach 85%
of asymptotic accuracy). Therefore, it seems likely that the task tests primarily integration of perceptual
information. Nevertheless, it is still possible that despite the very short exposure time, some post-perceptual
form of memory is also involved. In addition, it is possible that subjects could attend more to the beginning
or the end of the sequence. Such processes could be incorporated into models that do not assume leakage
or lateral inhibition, and it seems likely that with such assumptions, these models could also account for
the present data. No such additional assumptions are necessary in our model, which inherently incorporates
both leakage and lateral inhibition among the choice alternatives.

It might be noted that models based on differential attention might easily predict both a primacy and a
recency effect. In contrast, the mechanism we have explored cannot produce such an U-shaped effect. The
bias toward early vs late information is a function of the difference between the inhibition and the effective
decay, and when these factors are in balance the approach predicts that information arriving at all times will
have the same impact. Furthermore, our account explicitly predicts that accuracy is highest for subjects who
show no bias for or against the final cluster and falls off as bias increases in either direction. This pattern
is an intrinsic consequence of the dynamics of imbalance of leakage vs competition, and makes it subject to
disconfirmation by later experiments. Such a relationship is not necessarily predicted if the bias arises from
uneven allocation of attention. It should be noted that we do not wish to claim that such uneven allocation
cannot occur. Our only claims are that many effects that might have been attributed to such factors may
arise from the balance of inhibition and effective decay, and that such a mechanism is sufficient to account
for the bias effects seen in the present experiment.

MULTI-ALTERNATIVE CHOICE

Up to now we have compared our model to data from experiments with only two choice responses. In
this section, we consider generalization of the model to the case of multiple distinguishable alternatives
such as letters or positions around a circle (Hick, 1952; Merkel, 1885).14 The model of leaky competing
accumulators applies directly to choice among any number of alternatives, so the extension is automatic.
Classical accumulator models also extend naturally to any number of alternatives, but it is less clear how
to extend random walk and diffusion models. The diffusion model with its single variable is equivalent to
a model in which there are two diffusion variables, one for each alternative, and the decision to respond is
based on the difference between their values. This way of thinking about the model suggests a generalization
to N alternatives in which there is an accumulator for each alternative, and the decision to respond is based
on the difference in activation between the most active accumulator and the next most active. This most-
minus-next criterion has been suggested by a number of investigators, including Ratcliff and McKoon (1997)
and Ratcliff and Rouder (1998).

Hick’s Law

In this section, we consider which if any of these approaches lead to an account for the well-known linear
relationship between RT and the log of the number of alternatives (Hick, 1952, Merkel, 1885; See Figure 22).

14We do not consider cases in which the stimuli are arranged along a single psychological dimension that introduces limits
on the number of alternatives considered (Miller, 1955; see Lacouture & Marley, 1991, for a connectionist model of Hick’s law
in unidimensional absolute identification tasks.)
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Figure 22: Multi-choice reaction times: experimental data from Merkel (1885; choice stimuli are the set
of numerals 1-5 and I-V) and Hick (1952; choice stimuli are lights arranged in an irregular circular array
arranged to prevent grouping). Responses are made by pressing response keys. Data from Hick (1952, Fig.
1); Merkel’s data from a table in Woodworth (1938, pp. 333).

We have chosen to focus on this relationship, widely known as Hick’s law, because it is a well-established and
general fact, and directly confronts the information processing consequences of variations in the numbers of
response alternatives (See Luce, 1986; Teichner & Krebs, 1974, for review). Originally Hick (1952) interpreted
this regularity according to a sequential and hierarchical model of choice which later was strongly criticized
(Laming, 1968). A different explanation of this law on the basis of N parallel and exhaustive processes has
also been developed (Christie & Luce, 1956; Laming, 1966). Although Vickers (1979, ch. 8; see also Vickers
& Lee, 2000) has developed an extension to the case of multiple stimuli arrayed on a single dimension,
stochastic information accumulation models have not been applied to the multi-alternative case (e.g., with
higher dimensional stimuli such as letters or digits) before.

In the following we address RT to make a choice response among N alternative stimuli and consider how
such RTs vary as a function of the number of alternatives N. In developing an account of these findings, a
crucial initial consideration is the effect of set-size on the inputs to units in the network. We have adopted
the assumption that the input to an accumulator produced by a particular stimulus is unaffected by the
number of response alternatives. This seems to be a natural assumption to make within the context of our
model, where the adding more accumulators would not change the connections between the input units and
existing accumulators, but in other frameworks other assumptions may be very natural, and indeed others
have been suggested. For example, in a counter model of multi-choice decision making, Ratcliff and McKoon
(1997) propose that on each time step only one accumulator gets a count. Either a valid count is added to
the correct accumulator with probability p; or with probability 1-p, a count is assigned to any one of the
alternatives (including the correct one) at random. The effect of this is that the rate of accumulation of
counts at a given accumulator varies with the number of alternatives.

For present purposes, we work within the assumption that in all conditions of a particular experiment,
the input to the correct accumulator consists of a signal (ρc > 0) plus noise, while the input to each of
the incorrect accumulators is a smaller signal (0 ≤ ρi < ρc), plus noise. Thus the mean value of the input
from the feature units arriving at any incorrect accumulator is the same for all such accumulators, and is
independent of the number of alternatives. Obviously this is an approximation to the actual conditions of
any real experiment, in which confusability of the stimuli is unlikely to be completely homogeneous. The
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policy just described is consistent with the policy used in our previous analysis of the two alternative case.
For present purposes there was no reason to constrain ρc +ρi to sum to 1, since we are not simulating effects
of manipulating inputs to the alternatives along a continuum, as is done in latency-probability experiments.

As a further constraint on the modeling effort, we take note of a feature of the procedure that Hick
used in his 1952 experiment. Because he was interested in errorless performance, he required subjects to
undergo preliminary blocks with each set size. During these blocks, subjects were instructed to adjust their
performance to eliminate errors while still responding as rapidly as possible. In Hick’s experiment, several
blocks of trials were run at each set size, and the data reported were taken from the block following the first
block of the given set size in which no errors were made. Given this aspect of the procedure, we adopt the
assumption that subjects adjust the criterion as a function of number of alternatives so as to keep accuracy
constant at a high level when the number of stimuli increases. Vickers (1979, ch.8; Vickers & Lee, 2000)
used a similar approach, based on confidence (rather than accuracy) which is self regulated, in his account
of Hick’s law, as it is applied to stimuli arrayed along a single dimension.

It is helpful to begin by considering what would happen if the criterion for responding remained at a fixed
activation value (or a fixed activation-difference value) as a function of set size. When the number of choice
alternatives increases, so does the number of units which integrate noise. With a fixed criterion, the rate
of errors increases for all of the models, because there are more incorrect units whose activation can reach
criterion before the correct alternative through the accumulation of noise alone. In order to compensate for
this, subjects can increase the criterion as the number of alternatives increases.

Here we report computer simulations showing that the policy of maintaining a fixed error rate leads
to a logarithmic relationship between number of alternatives and RT according to all three of the models
mentioned above (see Figure 23): i) the classical accumulator model with an absolute response criterion (ie,
first accumulator to reach criterion is chosen as the response, regardless of activations of other accumulators);
ii) the leaky, competing accumulator model with an absolute criterion, and iii) the classical accumulator
model with a criterion based on the difference in activation between the most active and the next most
active (most-minus-next criterion). In all cases, the value of the criterion is adjusted for each set size to
achieve a specified level of accuracy that is held constant across all set sizes. To explore the generality of
the results, we consider two different choices of the accuracy level, and two degrees of confusability of the
alternatives. In a separate project, we have demonstrated analytically that such a policy of maintaining a
fixed error rate leads to a logarithmic relationship between number of alternatives and RT (Usher, Olami
& McClelland, in preparation) for the special case of model (i), in which the mean of the input + noise is
greater than 0 only for the accumulator representing the correct alternative; for all of the other accumulators,
the input is simply 0-mean Gaussian noise.

Simulation Procedure

For each model, and within each model for each combination of accuracy criterion and confusability, the
goal of the simulations was to find, for each set-size, the value of the response threshold that produced a
particular constant level of accuracy, and to measure the corresponding RT resulting when that threshold
was in use. Hick (1952) reported that subjects in his experiment did not generate more than 4% errors in any
condition, so that they were never less than 96% correct. In the reported simulations we chose two values,
99% and 95%. The parameter ρc was fixed at 1; confusability was varied by considering two values of ρi,
namely 0 and 0.2. The remaining parameters of the model were held constant throughout the simulations
(k = .5, β = .2, σ = .38, dt/τ = .1).

Each simulation trial for each model began as usual by setting the values of all accumulators to 0.
Information accumulation occurred in a series of time steps. In each time step, the input ρc was applied to
one accumulator and ρi was applied to all other accumulators, and values of the accumulators were adjusted
using Equation 4. As soon as the value of any accumulator reached the threshold (see below), the trial
ended and the corresponding response and the number of time-steps taken to reach threshold was recorded.
For each combination of model, accuracy level, and confusability, we ran a series of blocks of 10,000 trials,
adjusting the response threshold after each block until we found a value that produced an accuracy level
within an interval of 0.05% around 95% or 99% (ie, between 94.95% and 95.05%, or between 98.95% and
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99.05%). We recorded the average number of iterations needed for correct trials with this criterion.

Simulation Results

In Figure 23 we show the average number of iterations each of the models needed on correct trials to reach
the threshold that was found to achieve the desired level of accuracy. The RT data are plotted against the
log of the number of alternatives in order to display the logarithmic dependency of Hick’s law as a straight
line. The times to threshold could be converted to predicted RTs by specifying a value for the number
of milliseconds per time step and a value for T0, reflecting fixed delays associated with input and output
processes, but we have not done this since the main focus of interest is on the linearity of the relationship
between log set size and reaction time, which would not be affected by such a conversion. For all the three
models and all combinations of accuracy level and confusability, the simulation results are very close to
linear, indicating a logarithmic relation between set size and RT.

It is interesting to consider the effects of confusability and accuracy level in the various models. As one
might expect, both higher confusability and higher accuracy tend to lead to longer responses (remember that
the accuracy level is maintained by adjusting the response threshold, so that confusability does not reduce
accuracy directly as it would if the threshold were fixed). Interestingly, changing the accuracy level appears
to affect only the intercept of the linear function relating RT to log(n), while changing the confusability
affects the slope and the intercept. While the slope effect appears to be independent of accuracy level, the
effect of confusability on the intercept tends to be larger with the higher accuracy criterion.

We have experimented with a range of different parameter values in simulations, and generally the results
shown here are representative. There are, however, conditions in which the linear relationship breaks down
for the leaky competing accumulator model. This can occur when the leakage and inhibition are not balanced
(K 6= 0), and the response threshold is relatively high compared to the expected value of the asymptotic
activation of the correct response unit. Under these conditions it can sometimes take a very long time for
the activation of the most active unit to fluctuate to a value consistent with the criterion, and this effect is
amplified at large set-size (since due to competition, the activation decreases with set-size). We emphasize
that this problem reflects considerations that arise as discriminability goes down and desired accuracy level
goes up; since discriminability is generally very high in Hick’s law experiments (i.e., accuracy would be
expected to be 100% given unlimited viewing time) we would not expect this issue to arise in fitting data
from standard Hick’s law experiments. In our simulations, we have not otherwise encountered discrepancies
from Hick’s law.

An interesting implication of our results is that it is not necessary to assume any sort of limitation on
information processing capacity or resources to account for the logarithmic increase in reaction time with the
number of response alternatives. Hick’s law instead appears as a compensation for the increased opportunity
for error that arises from an increase in the number of accumulators. Indeed, the results reported above
depend on the use of a constant accuracy policy, under which the criterion is adjusted for each set size to
maintain a fixed level of accuracy. We do not observe Hick’s law behavior in these models when a constant
activation criterion is used independent of the number of alternatives. All of the models show an increase
in error rate as the number of alternatives increases. The classical accumulator actually shows faster mean
RTs as set size increases, since trials that would otherwise have produced longer RTs with a smaller number
of incorrect alternatives are more likely to end with errors as the number of alternatives is increased. In the
other two cases, RT increases with set size, but the increase in RT is not logarithmic. The use of a constant
accuracy criterion is thus a general principle that leads to logarithmic dependency of RT on response set
size, for several stochastic self-terminating models.

It seems likely that subjects do not always maintain the same fixed level of accuracy as a function of
set size; in very many cases, the error rate tends to increase in conditions that lead to larger RTs, and we
would expect that to be the case in Hick’s law type experiments, unless stringent precautions are taken. On
the other hand, we doubt very much that subjects would not make some compensatory adjustment of the
response criterion for the different set-size conditions, since otherwise they would either be excessively slow
with small set sizes or make excessive numbers of errors with large set sizes.

Our analysis highlights the importance of considering the effects of experimental conditions on response
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Figure 23: Multi-choice reaction times in stochastic models as function of set size (on logarithmic scale) for
two levels of accuracy (P = .99 and P = .95) and for two levels of discriminability, ρi (0 and .2). (A) Classical
accumulator; (B) accumulator with leakage (k = .5) and lateral inhibition (β = .2); (C) random-walk model
(difference criterion). The straight lines represent logarithmic fits of the form, RT = a + b log(n). Each
data point corresponds to a block of 10000 trials of simulations that produced an accuracy of .95 or .99,
respectively, with a precision of .001.
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initiation criteria; otherwise, it is impossible to make definite statements about the dependence of reaction
times on experimental conditions. This indeterminacy has been a long-standing source of criticism of RT
experiments (Pachella, 1974; Wickelgren, 1977). Thankfully, it is becoming far more common to use models
that make explicit predictions of both RTs and errors, and to consider both types of data in assessing the
adequacy of model predictions.

Hick’s law is consistent with a wide range of different models. In addition to the models we have
considered here, it is consistent with parallel exhaustive models (Christie & Luce, 1956; Laming, 1966) and
possibly several other approaches (Lacoutre and Marley, 1991). Thus, the fact that the leaky competing
accumulator model is consistent with it does not provide differential support for this approach. As in some
other cases we have looked at in this article, the most we can say at this point is that there are several
models that are consistent with Hick’s law, and the leaky, competing accumulator model is one of the
contenders. Also, we must note that there are qualifications on the conditions under which this statement is
true. We know it is true under the particular conditions of our simulations (threshold adjusted with set size
to maintain accuracy, inputs to accumulators independent of number of alternatives, and threshold below
expected asymptotic activation of the correct response unit).

Visual Word Recognition: The Intersection Principle

Word recognition is a typical task that requires selection among a very large number of possible targets,
and as such it is a good candidate for assessing the adequacy of lateral inhibition as a basis for response
selection. Previously we considered the benefits of lateral rather than bottom-up inhibition in the interactive
activation model of visual word recognition. Another interesting characteristic of lateral inhibition is brought
out by a consideration of the data from an experiment by McClelland and O’Regan (1981).

In their experiment, McClelland and O’Regan tested the benefit in RT that subjects can obtain in a
word identification task from two different sources of information: a very brief parafoveal preview of the
target stimulus and prior semantic context. In the experiment, there was a strong preview condition in
which the preview was the same word as the target; a weak preview condition in which the preview was a
letter string visually similar to the target, and a control preview condition, in which the preview was a row
of Xs. Similarly, there was a strong context condition, in which a prior partial sentence context strongly
suggested the actual target word (e.g. “I like coffee with cream and ...”; a weak context condition, in which
the target word tended to be one of many that were consistent with the context (e.g. “The county sheriff
had a new ...”); and a neutral context condition, which provided no constraint on the possible identity of the
target.

McClelland and O’Regan found that neither the weak preview paired with a neutral context nor the
weak context paired with a neutral preview was sufficient to speed the recognition RT, compared to neutral-
context/neutral-preview baseline. However, a combination of a weak preview together with a weak context
did speed the identification of the target word. A recent experiment by Hinton, Liversedge & Underwood
(1998) produced a similar effect. They used ambiguous partial-word primes together with ambiguous seman-
tic primes, and showed that each type of prime alone did not produce significant priming, but when combined
they produce a reliable priming effect. Such a pattern might be expected if the word recognition system
exploits the intersection of information sources (Humphreys, Wiles & Dennis, 1994). According to this idea,
each weak source activates several alternatives in addition to the target. When two such sources intersect,
the correct alternative will receive support from both sources. Given that context selects a set based on
semantic relationships, and a preview selects a set based on visual relationships, and given that semantic
and visual relationships are approximately independent (i.e., visual similarity is only at best very weakly
correlated with semantic similarity), other words will rarely be consistent with both sources of information,
so the correct alternative will receive two sources of support, and therefore can win out over all the other
alternatives. As we show next, a lateral inhibition scheme can implement this intersection principle, and can
explain why the correct target is boosted when two sources of support intersect, even though there is little
or no benefit when only one source is available.

Consider a system of n leaky, competing accumulators based on Equation 4, where n is the size of the
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Figure 24: Joint effects of context and preview information on the time it takes to read a word target aloud.
Solid line (diamonds), neutral semantic context. Dashed line (crosses), weak semantic context. Dotted line
(squares), strong semantic contexts. Visual preview condition is shown on the x-axis and recognition RT
on the y-axis. Adapted from Figure 2 of “Expectations increase the benefit derived from parafoveal visual
information in reading words aloud”, by J. L. McClelland and J. K. O’Regan, 1981, Journal of Experimental
Psychology: Human Perception and Performance, 7, p. 639. Copyright 1981 by the American Psychological
Association. Permission Pending.
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vocabulary. We assume that each weak source alone sends input to the correct word-alternative and to m−1
other alternatives within the word’s neighbourhood. For simplicity we choose all these inputs to be equal
to each other, and denote their strength by ∆. Second, we assume that the two sources add their input
contributions to the target units, linearly. Thus when two sources of weak input exist, each one projects
input of strength ∆ to m − 1 different word-units, while the correct alternative, activated by both sources,
receives an input of 2∆.

In order to estimate the priming benefit under each condition, we assume that when the word is presented
a strong signal projects to the target unit. The starting point of this unit activity, however, depends on
its pre-stimulus activation which is a function of the preview and context information. We focus attention
here only on the four conditions crucial to the interaction, namely those involving neutral and/or weakly
constraining sources of information, since a single strong constraint appears to be sufficient to produce
facilitation on its own. In order to obtain the simplest qualitative account for the effect, we neglect here the
dynamics of the preview and context information, and assume that when the word target is presented the
corresponding unit is in a steady state of activation that characterizes the pre-stimulus condition.

It is easy to calculate the steady state solutions (obtained by requiring that dxi

dt = 0, for all 0 < i < N)
in Equation 4. Consider first the case of a single weak source. All the units that do not receive input are
inhibited, and are thus suppressed to zero (we assume threshold linear units, so that a negative synaptic
current xi results in a zero activation, or firing rate). All the units that receive input will have the same
steady state (due to the equal input values) of x(m), which satisfies

x(m) =
∆

1 + β(m− 1)
. (13)

Without lateral inhibition, each unit would have a steady state activation of ∆ that reflects the input. The
effect of the lateral inhibition is a reduction in the magnitude of this activation in proportion with the number
of activated units and with the strength of the inhibition.

Consider next the steady state of the units in the condition of two weak intersecting sources. Again, the
units that receive no input are suppressed to zero. All the non-intersecting units that receive input will have
a steady state denoted as xN and the intersecting unit has a steady state of xI , which satisfy

XI = 2∆ −β(M − 1)xN ,
XN = ∆ −βxI − β(M − 2)xN .

(14)

(Here M = 2k − 1.) The solution for the non-intersecting units, xN is XN = x(M)1−2β
1−β . Thus the presence

of the intersecting unit leads to an additional suppression of the M non-intersecting units by a factor of 1−2β
1−β

(the value of 2 in this expression reflects the fact that we use only two intersecting sources). Thus, for any
value of .5 < β < 1, all the non-intersecting units are suppressed to zero (negative synaptic current leads to
zero firing rate), and as a consequence the steady state activation of the intersecting unit is restored to its
value that reflects the input alone, xI = 2∆ (Equation 14).

In Figure 25, we display the deterministic time course of activation for a leaky-accumulator, under the
impact of the same stimulus (reflecting a common asymptote and time constant) but from different starting
positions which reflect the pre-stimulus condition. We observe that the first curve (which reflects a control
condition; zero initial activation) and the second curve (reflecting a single weak information source) are very
similar, and intersect the response criterion at almost the same time. For two weak sources, a significant
speed-up results.

Since the sensory input corresponding to the target is above threshold, the mean RT arising from the
non-linear stochastic information integration process can be well approximated by deterministic (noiseless)
OU trajectories (see, e.g., Fig. 7 in Usher & Niebur, 1996). We confirmed this for the present case by
performing simulations using the stochastic system characterized by the equation 15:

dxi = [Ii − kxi − β
∑

j 6=i

xj ]
dt

τ
+ ξ1

√
dt

τ
. (15)
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Figure 25: Qualitative illustration of priming effect in McClelland and O’Regan (1981) experiment. The
word input has an asymptotic value of 1.2, a time constant of 1, and the response criterion is 1. The lower
curve, which starts at zero, represents the control. The second curve represents a single weak information
source, characterized by x(m) = ∆

1+β(m−1) , β = .5 ∆ = .2 and m = 5 (Equation 13). The third curve
represents a combination of two weak sources leading to a starting point activation of 2∆.

Table 5:

Mean (SD) Simulated Time Steps Needed to Reach Criterion
in Simulation of McClelland and O’Regan (1981)

Control One Weak Prime Two Weak Primes

42.9 (10.0) 42.8 (10.4) 34.7 (10.7)
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Three conditions were simulated, which are distinguished by the inputs to the network during the first 50
simulation steps (corresponding to the prime): (1) A control condition, where the inputs to all units remains
zero during the first 50 simulations steps. (2) A weak prime condition, in which m = 5 units are activated
with the same input, I = .15 for 50 simulation steps. (3) A condition corresponding to 2 independent primes
(visual and semantic context) where 2m − 1 = 9 units are activated with an input of I = .15 and unit 1
is activated with a larger input of I = .3, during the first 50 simulation steps. In all cases, following the
initial 50 simulation steps, the input to unit 1 is increased to I = .5 and the simulation is continued until
the activation of this unit reaches a criterion (chosen arbitrarily as 1). The parameters k and β are chosen
as .3 and .65, respectively. The standard deviation of the Gaussian noise is σ = .079 which ensures that
no errors are generated (at this response criterion). The Euler integration time step, dt

τ is .1. Blocks of
500 simulations have been performed in each of the three conditions. The mean number of simulation steps
needed to reach the response criterion (and their SD) are shown in Table 5.

Thus indeed, the control and the weak prime result in equivalent RT while the intersection of two sources
of priming results in a considerable speedup. A similar result should take place according to the counter
model of Ratcliff & McKoon (1997) which uses a criterion based on the difference in activation between the
most and next-most active units to trigger a response.

GENERAL DISCUSSION

We have presented a model within the classical tradition of stochastic information accumulation models.
Like the classical models, our model assumes that information processing takes place through the gradual
accumulation of intrinsically noisy signals. In previous work, this framework has been exceptionally produc-
tive, both in terms of its ability to provide a fruitful framework within which various principles of information
processing can be explored, and for its ability to capture experimental data.

A fundamental motivation for our work has been the idea that the human information processing system
may not be a perfect integrator of information. Instead, we have explored the possibility that the information
accumulation process may be subject to effects such as leakage and/or amplification of differences (including
differences attributable to noise) due to recurrent interactions among the accumulators. This amplification,
as we explored early on in the paper, can arise either from lateral inhibition between the accumulators or
through recurrent activation processes that feed back a portion of an accumulator’s activation onto itself.

These assumptions contributed directly to two classes of findings that we have reported: (1) successful
fitting of the general shape of time-accuracy curves and of the specific shape of such curves seen in our
own perceptual identification experiment (Experiment 1), and (2) successful tests of two specific predictions
following from the presence of these imperfections: (a) that subjects might be differentially influenced by
early or late elements of a very rapid sequence of elements and (b) that those subjects who show such
differential influence will in general be less accurate than those whose performance more nearly indicates the
ability to maintain a balance between leakage and recurrent amplification.

It should be noted that the classical random-walk and pure accumulator models cannot address either of
these two types of data. Such models predict that accuracy will always grow without bound as information
accumulation continues, resulting in time-accuracy curves that never asymptote. Such models also predict
that information will have the same impact on the outcome of information accumulation, whether it comes
early or late. This prediction is consistent with the behavior of two of the six subjects in Experiment 3, but
not with the behavior of the other four subjects in this experiment.

We have given extensive consideration to one alternative to our way of accounting for the fact that time-
accuracy curves tend to level off below 100% accuracy levels. This alternative is the possibility that the overall
direction of drift may vary from trial to trial within each condition of an information processing experiment,
as suggested by Ratcliff (1978). As noted earlier, we view the idea that there may be such drift variance as
a very plausible one, particularly when it is applied to experiments involving highly inhomogeneous items,
such as items from a memory experiment. In such cases, item differences could easily arise from a number
of sources, including adequacy of study and/or relative similarity of a test item with other studied items,
and these would very likely play an important role. Similarly, in perceptual identification experiments,



Perceptual Choice 60

relatively slow-varying factors such as variation in attention could play a role in altering the processing
systems response to a given input.

Based on the considerations raised above, we suggest that a reasonable approach may be to assume
that stochastic information accumulation processes incorporates both within-trial imperfections in the accu-
mulation process, as we have suggested, and between trial variation in the overall direction of information
accumulation. An interesting issue for further research is to determine which factor dominates in particular
experimental situations. However, it may be difficult to obtain clear conclusions on this matter, due to the
subtlety of the differences between the predictions that arise from imperfect accumulation vs drift variance,
especially within the context of newer versions of the DDV, which assume both starting-point variablity
and the use of decision boundaries to terminate processing before the response signal of some trials in time-
controlled experiments (Ratcliff, 1988; Ratcliff & Rouder, 1998). These factors tend to bring the shapes of
empirical time-accuracy curves predicted by the DDV closer to the shifted exponential shape found in the
experimental data and make it difficult to distinguish from our account based on leakage of information.
Another factor is cascading of several stages of processing, resulting in non-stationary drift (Ratcliff, 1980;
Heath, 1981), which tends to obscure the details of the shape of individual stages of processing, especially
those that are not rate-limiting (McClelland, 1979).

A key feature of our model is its reliance on lateral inhibitory or competitive interactions between ac-
cumulators as part of the information accumulation process. This mechanism may contribute to the effects
discussed above. More fundamentally, it provides a very direct way of allowing the activations of accumula-
tors to reflect the relative support provided to them by the input. We have offered a number of arguments
motivating the exploration of this mechanism, including (a) the existence of physiological evidence that such
a mechanism is used during information processing in the brain; (b) the naturalness of the generalization
of this mechanism to any number of alternatives, and (c) the computational advantages of this mechanism
relative to the use of feed-forward inhibitory mechanisms in the presence of ambiguous inputs. Given these
motivations, two questions that arise are: (a) whether the use of such a mechanism is consistent with the
data and (b) whether there are any behavioral findings that clearly support the lateral inhibition approach
relative to other proposals?

Regarding the first question, it does appear that lateral inhibition is consistent with all of the different
kinds of data that we have considered here. We have shown that models incorporating lateral inhibition
can be used to fit a range of different kinds of data, including time-accuracy curves, latency-probability
data, instances of greater dependence on early-arriving information in a rapid sequence of inputs, data from
experiments on the effects of the number of alternatives on choice reaction time, and data from experiments
on the effects of multiple sources of information on word identification latency.

Regarding the second question, a number of aspects of the available data appear to indicate the existence
of some form of competition between alternatives, without indicating whether the mechanism producing
the competition effect is lateral inhibition or the use of a relative evidence criterion. The pattern of highly
symmetric and deep LP functions that are reported for some subjects (Ratcliff et al., in press, and Fig-
ures 12 and 16, this paper) as well as the interaction between visual primes and semantic contexts in word
identification (O’Regan & McClelland, 1980; see also Hinton, Liversedge & Underwood, 1998) both receive
very natural interpretations under the view that some form of competition is occurring. In the O’Regan and
McClelland word-identification experiment, for example, a single, weak type of prior information—either
context alone or a visual prime similar to the target—produces no priming when presented alone, but prim-
ing does occur when both types of prime are presented together. We showed that a competitive model can
explain this by assuming (a) that each type of prime alone activates a number of alternatives, so that the
competition among them prevents an advantage for the correct alternative; and (b) that two primes together
typically leave only the correct alternative in the set of items primed by both sources. In a pure accumulator
model without competition, one would expect the effects of the primes to be simply additive. Similar logic
applies to a recent experiment by Hinton, Liversedge & Underwood (1998). They used primes consisting of
all but one letter of a target word, and found significantly more priming when the target was the only word
consistent with the prime than in cases where there were several words consistent with the prime. Again,
the result follows naturally from models that include some form of competition, but is not predicted by
non-competitive race or accumulator models.
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Distinguishing between the mechanism of lateral inhibition and the use of a relative evidence criterion
may be more difficult. However, there are three relevant points. First, classical models that use a relative
evidence criterion, either in the standard form of the random walk, where only the difference variable is
maintained, or in the form of independent accumulators with a best-minus-next criterion, cannot account
for the finding we obtained with the two subjects in Experiment 3 whose responses were biased toward
the item that predominated early in a stimulus sequence. Lateral inhibition may not be the only way to
account for this effect (differential attention to the beginnings of sequences, or recurrent self-excitation are
other possibilities), but if lateral inhibition were the mechanism used to account for response competition, no
additional mechanism would be required to account for a bias toward stimuli occurring early in a sequence.

Second, depending on the exact level of lateral inhibition, one might predict that primes that are equally
consistent with at least one incorrect alternative in addition to the correct alternative would result in a dimin-
ished, but not a null, priming effect, while a null effect is predicted by the best-minus-next relative-evidence
criterion. The only experimental results we know of that directly address this issue are not completely
consistent: ambiguous primes show a significant priming effect (relative to the control) in two out of four
conditions tested (Jane Hinton, personal comunication). Further evidence would be useful on this point, but
the data do suggest that ambiguous primes do at least sometimes produce a significant effect, and given that
the effect might be small it is understandable that it might not always be statistically significant.

Third, Vickers (1979) has noted some problems that arise for relative evidence models in experiments
where subjects are asked to indicate their confidence immediately after their choice response. Specifically,
he has noted that classical models using a relative evidence criterion have difficulty accounting for both
of the following findings: i) In standard RT tasks, longer RTs correspond to lower confidence ratings (and
vice-versa). ii) In tasks that control processing time, confidence increases with processing time. Diffusion or
random-walk models that use a single random walk process for all responses of all confidence levels are not
able to account for the first finding, since the relative evidence is assumed to be at the same criterial value
at the moment of response for both fast and slow responses.15 One might suggest that confidence judgments
are based on the reaction time itself in standard RT tasks, with higher confidence going to shorter reaction
times, but Van Zandt (in press) presents data that contradicts this explanation: the RT distributions for the
responses given at different confidence-levels have considerable overlap, and thus RT could not be sufficient
to separate the various confidence responses.

In the classical accumulator model, an absolute criterion is used to generate the response in an information-
controlled task and the response signal or other source of timing information determines the time for gen-
erating the response in a time-controlled task. Vickers (1979) notes that under these circumstances, one
could apply a relative evidence criterion at the moment the response is made, and this would lead to correct
predictions for the confidence findings (i) and (ii) above. In the accumulator model, longer correct RTs
would be associated with cases in which counts arrive relatively slowly at the correct accumulator, allowing
more time for activation to build up at the incorrect alternative, leading to a smaller relative difference that
would be the case for faster responses. Thus, the evidence difference would be greater for faster responses.
On the other hand, when responding is based on elapsed time, more time would lead on the average to a
larger difference in activation of the two accumulators, accounting for the increase in confidence with time
in this case.

When juxtaposed with the reasons given above for thinking that some form of competitive mechanism
must be used, Vicker’s argument poses a dilemma within the classical framework: Some of the evidence
seems to suggest that relative evidence is the basis for responding in RT tasks, but other evidence suggests
that the absolute criterion might be used. The use of lateral inhibition in the leaky-competing integrator
model provides a way out of this dilemma. The model uses lateral inhibition to account for relative evidence
effects, while still using an absolute criterion for the timing of decisions in standard RT experiments. This
allows the model to account for (i) and (ii) above in the same way as the classical accumulator model—that
is, by assuming that the difference in activation between the two accumulators at the time the choice is
made corresponds to the degree of confidence. To show this, we took the two-alternative version of our
model, using leakage and inhibition parameters in the range used in the fits reported above, and examined

15Ratcliff (personal communication) has suggested that different accumulators could be used for responses at different confi-
dence levels. Our argument does not address this case.
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the activation difference between the two accumulators (a) as a function of time to reach criterion in a
standard RT condition, and (b) as a function of processing time allowed in a time-controlled condition.
As with the pure accumulator model, we found that the difference in activation of the two accumulators
decreases for larger RT in the first case but increases for longer processing time in the second case. Thus,
our leaky, competing accumulator model may inherit the advantages of both the relative-evidence and the
absolute evidence models. Like the former, it accounts for effects of competitors on reaction time, but like
the latter, it allows a simultaneous account for confidence and reaction time data. This is due to the fact
that the suppressive effect of one alternative on another is only partial. Such a partial suppressive effect was
also essential in Heuer’s (1987) account of the interaction between stimulus discriminability and response
compatibility. His model employs negative coupling equivalent to feed-forward rather than lateral inhibition,
but shares with our approach the idea that the inhibitory effect may be partial, interpolating between the
classical accumulator and the classical random walk.

CONCLUSION

We suggested at the outset of this article that the leaky competing accumulator model might be a
useful extension of the stochastic information accumulation framework, allowing (a) for imperfection in
the information accumulation process and (b) for a choice mechanism sensitive to relative evidence that
generalizes readily to any number of alternatives. The analysis presented above suggests that this framework
is quite viable as a way of addressing a wide range of relevant findings from perceptual choice experiments.
As noted earlier, the work of Smith (1995) and of Busemeyer and Townsend (1993; Roe, Busemeyer and
Townsend, 1999; see also, Diederich, 1997) suggests that the principles we have explored here also have
relevance across a number of other domains. We also noted earlier that there is evidence from neurophysiology
of a competition process in attentional selection tasks (c.f. Figure 2 from Chelazzi, et al, 1993). Based in part
on this evidence, Desimone and his colleagues have proposed that attentional effects on response selection are
mediated by competitive interactions between neural representations (Desimone, 1998; Reynolds, Chelazzi,
Desimone, 1999). Some aspects of such findings have been addressed in models incorporating competition and
leakage (Usher and Niebur, 1996; Cohen, Servan-Schreiber, and McClelland, 1992). In general it appears
likely that the principles of leakage and competition apply broadly across a wide range of information
processing tasks and are applicable at both the psychological and neurophysiological levels.

Nevertheless, there are important elements of other approaches within the stochastic information ac-
cumulation framework that cannot be neglected. The assumption that there is variance in the drift rate
from trial to trial within the same condition of an experiment is very likely to be correct in many cases.
Furthermore, recent work in models incorporating diffusion with drift variance (e.g., Ratcliff and Rouder,
1998; Ratcliff et al, 1999) shows that a stochastic information integration model that includes variability in
the starting point of the diffusion process (Laming, 1968), as well as drift variance, can readily incorporate a
number of apparently divergent patterns of behavior with relatively few assumptions. Other factors include
drift biases (Ratcliff, 1985) or equivalently, parallel drift of the response boundaries during the information
integration process (Ashby, 1983) and self-regulation of response criteria on the basis of confidence (Vickers,
1979). In the end, in our view, the most satisfactory model is likely to be one that combines these additional
principles with those captured by the leaky competing integrator model. A model integrating all of these
principles would hold great promise for addressing a very broad range of findings within a single, unified
account.
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Figure 26: Trajectories of the 2 response units for a leaky-competing-accumulator model, according to two
schemes for incorporating the non-linearity. In both schemes the same noise is generated according to the
same seed, and the inhibition parameter was β = .4. a) Non-linear model with k = 8.7 and α = 8.5 (K=.2),
B) Approximation with bounded activation at x > 0 and K=.2.

Appendix A: Numeric Integration of Non-Linear Equations

We show below numerically integrated trajectories, for Equation 11, according to two schemes. In the
first scheme, which corresponds more closely to the underlying physiology, the leakage (λ) and the recurrent
excitation (α) terms are kept separate. Thus, when the xi variable becomes negative, the terms αf(xi) and
βxf(xj) vanish and only the leakage term λxi is integrated with the noise. Since in the principal neurons in
the neocortex the synaptic decay (characteristic for glutamate synapses) is very short (5 ms), the value of
λ on the time scale τ = 100ms used in our simulations is very fast, λ = 8.7, corresponding to a decay by a
factor of .13 within one iteration step of 10 ms (dt

τ = .1). This results in a very fast decay of the activation
towards zero, when xi < 0. At positive values of xi, the decay is determined by the value of k = λ− α = .2
which is much slower, corresponding to the time constants in the time-accuracy curves.

According to the second scheme, which we adopt as a simplified approximation to the first one, leakage
and recurrent excitation are lumped together. The fast decay at negative x values is approximated by
resetting x to zero at every iteration when a negative value is obtained. Since x is then bounded x ≥ 0,
one can simplify the equations by eliminating one variable, as leakage and recurrent excitation are lumped
together. As shown in Figure 26 the numerically integrated trajectories obtained by using each of these two
schemes are virtually indistinguishable.

Appendix B: Derivation of d′ and Probability Correct, P .

Assume a binary choice with two target stimuli A and B. Denote by x the difference in activation
accumulated by the two response units (positive x reflect A-choices, and negative x reflect B-choices). Due
to noise, the activation for A and B stimuli, at time t following the input presentation are both normally
distributed random variables. The means of their distributions µ(t) and their standard-deviations SD are
given in accordance to the solutions of the Fokker-Plank Equation (see Ricciardi, 1977) by Equations 8. Thus
d′—the separation between the two distributions—is d′ = 2µ(t)

SD(t) . The probability for a correct response is
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Figure 27: Time-accuracy curves for the Ornstein-Uhlenbeck (OU) model (dashed line) and the diffusion
with drift variance model (DDV) (dotted line). − log(1− d′(t)

dasy
) The stimulus discriminability was dasy = 2.

the integral from zero to infinity over the A-target Gaussian (if x > 0, A is chosen), which relates to d′ as:

P (t) =
1√
2π

∫ ∞

0

exp[− (x− µ(t))2

2SD2(t)
] =

1√
2π

∫ ∞

−d′/2

exp(− x2

2SD2(t)
) . (16)

The probability corrected for guessing is:

Pc =
2√
2π

∫ x

0

exp(− (d′/2)2

2
)dy . (17)

Appendix C: Exponential Behavior in d’ at t > 1/λ

In Figure 6 we have shown that for Kt > 1, d′(t) for the OU process is very close to an exponential. A
more convenient way to test graphically the fit to the exponential is to use a log-linear graph. If some function
g(t) approximates an exponential approach to asymptote of the form 1−exp(−Kt), then − log[1−g(t)] should
be linear with time. Thus the adequacy of the exponential approximation can be assessed by inspecting the
linearity of − log[1− g(t)]. In Figure 27. we display − log(1− d′(t)

dasy
) for the OU diffusion (solid line) and for

the DDV model. The graph shows a linear trend for the OU process. This can be understood by observing
that for t > 1/K, d′ in Equation 9 is dominated by the numerator leading to an exponential approach to
asymptote. Clearly, the approach to asymptote is not exponential in the DDV case.

Appendix D: Transmitted Information

The amount of transmitted information for a binary choice without bias is (see, e.g., Hick, 1952):

I(t) = P (t) log2[P (t)] + [1− P (t)] log2[1− P (t)] + 1 , (18)
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where P(t) is the probability for a correct response after a time t. At zero time, this probability reflects
guessing, P (0) = .5 and therefore (Equation 18) I(0) =0. At short times, t, the transmitted information,
I(t) can be approximated by developing the formula in Equation 18, with respect to small access, δP , from
guessing: P = .5 + δP , and expanding Equation 18 in a power series around P = .5, which results in a
bilinear formula in δP (first order terms cancel):

I(t) = 2.89 (δP )2 + O[(δP )3] .

Therefore, any formula for P(t) (or d′(t); at small t, P (t) and d′(t) are linearly related) which is linear
in t around t=0, such as an exponential function will result in a bilinear form of I(t), illustrated by the
long-dashed curve in Figure 7. It is thus interesting that the square-root dependence of P(t) according to
the diffusion and the OU processes, conspire with the bilinearity of the transmitted information formula,
to result in a linear increase in I(t) with processing time. This linear approximation is valid only at short
times, after which saturation effects appear.

Appendix E: Metropolis Algorithm for Optimization

The aim of the algorithm is to find a set of parameters that generate an optimal match between a
predicted model and experimental data. A swap of the algorithm begins with a set of parameters for which
it computes the model prediction. The prediction is matched against the data using a cost function (sensitive
to the discrepancy, see below). At the next swap, a new set of parameters are simulataneously selected by
using independent Gaussian random variables, distributed around the set of parameters that obtained the
best fit (in terms of the cost function) from all the previous swaps. At every 100 swaps, the SD for the
Gaussian distributions are made smaller by a factor of .99. Thus at the beginning the algorithm makes large
random steps in its search of best parameters, and the search is refined around the best previous fit as the
algorithm progresses.

The algorithm was tested with third-order polynomial functions (using a least-square cost function) and
was shown to converge within .01 of the values of its coefficients, beginning from random values within less
than 50,000 swaps. Consistent results have been obtained by using a Levenberg-Marquardt algorithm for
optimization in Mathematica (Wolfram, 1988).

In fitting the time-accuracy data from Experiment 1, to the OU and DDV models, 10,000 swaps of the
algorithm were used to find optimal parameter values. For both models, the predicted accuracy at each time
point could be deterministically calculated.

In fitting the LP data from Vickers (1971), predicted values cannot be deterministically determined.
Instead, time-consuming and intrinsically noise simulations had to be run instead. Within each swap, 500
simulation trials were performed for each of the 10 drift values (corresponding to the 5 length conditions for
both correct and incorrect responses), except for the three most negative drift values where the number of
trials was larger (1000, 2000, and 3000, respectively) to compensate for the otherwise lower statistical power
at low response probability. At each swap (performed with a set of parameters) the accuracy, the mean and
standard deviation of the RT were compared to the data generated by the subject and were used to calculate
the cost as indicated below.

Cost functions. In the time-accuracy optimizations, the cost function was the conditional probability,
P (data|model), which the algorithm tried to maximize. An alternative cost function was the minimization
of the Euclidean distance (least square method) between the model and the data.

In the LP optimization, the cost function was a weighted Euclidean distance between the model prediction
and the data, for the accuracy (P ), the mean RT (< RT >), and the standard deviation of the RT (SD).
Explicitly, the cost function used was:

400(Pmodel − Pdata)2 +
(< RT >model − < RT >data)2

SD2
data

+ .0002(SDmodel − SDdata)2
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The weight coefficients were chosen so as to bring the three terms to approximately similar scale, while
emphasizing the accuracy and the mean RT.
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