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There are few fields where neurocomputational modelling1

is as necessary as in that of attention — a multifaceted and2

elusive process that is at the very core of cognition and con-3

sciousness (James, 1890). While descriptive theories of at-4

tentional functions, relying on a plethora of metaphors (spot-5

light/zoomlens, increased-gain, biased-competition), abound,6

computational models that are simple enough to promote un-7

derstanding of the phenomena and make testable predictions are8

relatively scarce. As models are often criticised for their ability9

to ‘fit everything’, imposing some degree of constraint is essen-10

tial. Neurocomputational models can answer this challenge by11

taking on neurophysiological constraints and by addressing not12

only behavioural but also physiological data. I start with some13

functional considerations of the attention process, followed by14

examples of models that help to explicate these processes and15

some suggestions for future work.16

The most central characteristic of attention, common to17

all its subtypes, is a limited capacity bottleneck (Broadbent,18

1958; James, 1890). The nature of this bottleneck, however,19

is likely to vary with the various types. One aspect of the20

bottleneck (the late one) involves the selection of information21

for transfer (consolidation) to (in) short-term memory (Chun22

& Potter, 1995; Duncan, 2006). Target selection is thought to23

involve a type of top-down control characterised by biased-24

competition (Desimone & Duncan, 1995) and is subject to25

capacity limitations. The bottleneck is demonstrated in multiple26

target paradigms (Duncan, 1980), where a strong interference27

takes place (unlike in single target with multiple distractors28

paradigms). In the attentional blink (AB) paradigm (Raymond,29

Shapiro, & Arnell, 1992), for example, the detection of the30

second target (T2) is considerably depressed when it follows a31

previous (detected) target (T1) up to intervals of about 500 ms.32

Interestingly, when the interval between the two targets is only33
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100 ms, the interference is minimal, posing stringent constraint 34

on computational models. Finally, a different (earlier) type of 35

bottleneck appears to be involved in bottom-up processing, 36

where visual attention seems to have the function of enhancing 37

the rate of information accrual (Smith, 2000) and of enhancing 38

spatial resolution (Carrasco, Williams, & Yeshurun, 2002), via 39

a gain-enhancing type of mechanism. A number of models 40

addressing these processes have been developed in the last 15 41

years; due to space limitations, only a few of these important 42

models are addressed. 43

1. Biased-competition 44

The principle of biased-competition (Desimone & Duncan, 45

1995) has been explicitly explored in a number of computa- 46

tional models. Usher and Niebur (1996) have shown that a sys- 47

tem using lateral inhibition between object representations can 48

make use of top-down input (or bias), corresponding to goal 49

information, in order to select a target among multiple distrac- 50

tors in an effective way. The model accounts for physiological 51

data (Chelazzi, Miller, Duncan, & Desimone, 1993) and shows 52

that the selection time depends on the similarity between the 53

target and the distractors (Duncan & Humphreys, 1989). More 54

recent models have examined precise physiological measure- 55

ments of attentional enhancements in V2/V4 (Deco & Rolls, 56

2005; Reynolds & Desimone, 1999). The most precise of these 57

models, recently proposed by Deco and Rolls (2005), relies on 58

biologically realistic simulations of neural activity in the V2/V4 59

areas and demonstrates that within a very specific area of the 60

parameter-space (intra- and inter-area connectivity) one can ex- 61

plain, both, the various attentional modulations and their inter- 62

actions with top-down factors (contrast). The model (like that of 63

Usher and Niebur) assumes that bias is implemented via an ad- 64

ditive synaptic input. This poses the problem of avoiding ‘hallu- 65

cinations’ (responses in the absence of input), a problem which 66

can be solved with multiplicative schemes (Spratling & John- 67

son, 2004). However, as demonstrated by Deco and Rolls, an 68
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additive synaptic bias (complemented by the nonlinearity inher-1

ent in the neural response function) goes a large way towards2

solving this problem, as the largest effect of the bias is at in-3

termediate levels of contrast (Martinez-Trujillo & Treue, 2002;4

Reynolds & Desimone, 2003). A different type of top-down5

attentional control, involves control over stimulus dimensions6

(rather than features). This type of control is exercised, both in7

tasks that make explicit reference to the dimensions (such as8

Stroop) and in tasks where the dimensions are implicit (such as9

visual search; Weidner, Pollmann, Müller, and von Cramon (in10

press)). Although more work is needed to explore this type of11

control, it is remarkable that one of the earlier and most success-12

ful models of attentional control relies on additive dimensional13

bias (Cohen, Dunbar, & McClelland, 1990).14

2. Attentional blink15

A number of recent models have addressed the nature of16

the capacity limitation inherent in the blink phenomena (Bat-17

tye, 2003; Bowman & Wyble, in press; Frogopanagos, Kock-18

elkoren, & Taylor, 2005; Nieuwenhuis, Gilzenrat, Holmes, &19

Cohen, 2005). One interesting idea is that the blink reflects the20

opening and closing of a transient attentional gate (Weichsel-21

gartner & Sperling, 1987). The nature of the gate mechanism22

was proposed to reflect neuromodulatory responses in the Lo-23

cus Coeruleus (LC) in response to salient/target information24

(Nieuwenhuis et al., 2005; Usher, Cohen, Servan-Schreiber, Ra-25

jkowsky, & Aston-Jones, 1999), which boosts the neural re-26

sponses and may contribute to the process of consolidation in27

STM. Alternatively, the gate may reflect a mechanism of creat-28

ing online episodic token representations (Bowman & Wyble,29

in press), which is distinguished from the type-representations30

(this can help for the encoding sequences with repeated items:31

same type but different tokens). These models account for the32

lack of interference at 100 ms post T1 (lag-1 sparing), as a33

result of having both targets benefiting from the attentional34

gate (which last for about 100 ms). Moreover, the models35

make a specific prediction: with faster presentation times (of36

50 ms/item) the lack of interference should extend to lag-2, as37

it falls within the gate-window (see Bowman and Wyble for ex-38

perimental results confirming this prediction). Still the models39

need to account for the virtual disappearance of the blink when40

T1 is followed by a blank (rather than a distractor). One possi-41

bility is that targets followed by blanks trigger a stronger and42

faster gate response, which terminates sooner (Bowman and43

Wyble (in press); this should further predict a blink attenua-44

tion when T1 is a salient item, such as the observer’s name).45

It is unclear, however, if such a mechanism is robust enough46

to account for the near abolishment of the blink with T1+blank47

stimuli. Alternatively, the attention-gate may be triggered by48

the distractor that follows T1, in order to protect it from inter-49

ference (Shapiro, Raymond, & Arnell, 1994). If the gate has a50

width of about 100 ms, this can also explain the lag-2 sparing51

in fast 50 ms/item sequences. This idea was implemented in an52

interesting model, which assumes a fast system that monitors53

conflict and modulates lateral inhibition to protect the targets54

from interference (Battye (2003); see also, Usher and Davelaar55

(2002) for a model where inhibition is neuromodulated to sat- 56

isfy task demands). 57

3. Bottom-up processing 58

Attention enhances visual processing even in the absence 59

of top-down (target) information. A number of models have 60

addressed this type of attentional enhancement and I will only 61

mention two approaches. The first one involves an increase in 62

the gain-function mediated by competitive interactions between 63

alternative detectors. This approach was used by Lee, Itti, Koch, 64

and Braun (1999), who demonstrated that the best account 65

for the attentional enhancement of discrimination thresholds, 66

obtains in a model where a second layer of detectors sharpens 67

the response tuning of simple responses; such sharpening can 68

be the result of a type of shunting inhibition. Increasing the 69

gain (or the lateral inhibition) can optimise choice, in situations 70

with mutually exclusive stimuli (e.g., vertical vs horizontal 71

gratings; see also Bogacz, Usher, Zhang, and McClelleland (in 72

press)). However, there are situations where such a strategy 73

will be counterproductive (when plaid stimuli have to be 74

observed). Thus, a fruitful idea for further exploration is 75

that the level of lateral inhibition is modulated to optimise 76

task demands. Attention may also enhance processing via a 77

more sophisticated mechanism than gain-enhancement, which 78

involves active recruitment of representational resources. This 79

idea is now incorporated in the various versions of the TVA 80

theory (e.g., Bundensen, Habekost, and Kyllingsbaek (2005)). 81

Finally, more work is also needed to examine the relation 82

between attentional allocation and visual grouping. Models 83

based on neural synchrony may play an important role in 84

bridging these two processes (Gross et al., 2004; Singer & Gray, 85

1995). 86
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