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Abstract

We present a model for the attentional neuromodulation of decision and selection processes. The model assumes that phasic responses in

the brain nucleus Locus Coeruleus modulate, via the transmission of norepinephrine, the synaptic efficiency of neural circuits, at specific

(stimulus and task dependent) time intervals. The model is applied first, to a task of perceptual choice, simulating attentional fluctuations and

accounting for a series of behavioral and neurophysiological data. Second, the flexibility of information processing, whereby the parameters

of the local circuits are modified online, is illustrated in the application of the model to a task of selection from short-term memory. q 2002

Published by Elsevier Science Ltd.
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1. Introduction

Neuromodulators such as norepinephrine (NE) and

dopamine are often assumed to mediate the attentional

control of cognitive processing (Arnsten, 1998; Cohen &

Servan-Schreiber, 1992). In a previous article (Usher,

Cohen, Servan-Schreiber, Rajkowski, & Aston-Jones,

1999) we have presented neurophysiological and beha-

vioral data (see also Aston-Jones, Rajkowski, Kubiak, &

Alexinsky (1994)) showing that changes in NE responses

of the brain nucleus Locus Coeruleus (LC) correlate with

behavioral responses in awake monkey and we presented

a neurocomputational model addressing the attentional

mechanism of NE neuromodulation. In this paper, we

extend and develop this computational model for NE

neuromodulation to a wider domain of cognitive tasks

that require decision and response selection. The first

domain corresponds to perceptual choice situations,

being a direct extension of the LC model presented in

Usher et al. (1999). To do this we review data on

attentional phases of LC responses in the LC, and show

how a simplified model for LC response, functionally

similar with the one derived by Gilzenrat, Holmes,

Rajkowski, Aston-Jones, and Cohen (2002), can account

for a variety of behavioral findings and leads to novel

predictions. The second domain corresponds to a more

complex cognitive process that involves memory main-

tenance followed by a probe-triggered response

selection.

2. Attentional control and LC responses in perceptual

choice

Previous behavioral studies of LC neuromodulation

involved a simple go–nogo task (Aston-Jones et al.,

1994). In this task monkeys are presented with a long

sequence of stimuli, one type of which is designated as

a ‘target’ that requires a lever-release, while all the

other types are designated as ‘nontargets’ (or distrac-

tors) requiring to withhold responses. Typically, the

target has a low frequency and the monkey needs to

maintain vigilance in order to respond as fast as

possible to targets without producing false alarms

(FA—responses to nontargets). After training, the

monkeys perform the task at a high level of accuracy.

Nevertheless, during long behavioral intervals, signifi-

cant fluctuations in the level of performance occur

spontaneously in a remarkable correlation with the

response pattern of the LC neurons (Usher et al., 1999).

During, ‘good’ behavioral periods when the number of

FAs is low, the spontaneous level of LC (tonic)

response is also low but the evoked (phasic) responses,

specific to targets, are peaked and pronounced. In

0893-6080/02/$ - see front matter q 2002 Published by Elsevier Science Ltd.

PII: S0 89 3 -6 08 0 (0 2) 00 0 54 -0

Neural Networks 15 (2002) 635–645

www.elsevier.com/locate/neunet

1 www.psyc.bbk.ac.uk/staff/mu.html

* Corresponding author. Tel.: þ44-207-631-6312; fax: þ44-207-631-

6201.

E-mail address: m.usher@bbk.ac.uk (M. Usher).

http://www.elsevier.com/locate/neunet
www.psyc.bbk.ac.uk/staff/mu.html


contrast, during ‘poor’ behavioral periods when the

level of FAs is relatively high, the tonic LC response is

higher while the phasic response to targets is reduced

(Fig. 1, bottom). Importantly, the reduction in the level

of FA is not due to a speed-accuracy tradeoff, as it is

not accompanied by an increase in response time (RT).

Nevertheless, a very specific pattern of RT distribution

distinguishes responses in good versus poor behavioral

intervals. While the two distributions have similar mean

RT, the distribution of responses during the good

behavioral periods is narrower as shown in Fig. 4

(top). In our previous model, these changes in the level

of performance and in LC response patterns were

explained as resulting from variations in the coupling

of the LC neurons via gap-junctions (Usher et al.,

1999). The model for the LC used in that work was

based on a complex integrate-and-fire model with 250

units with electrotonic coupling as well as chemical

interactions with different time scales. Although the

model was able to explain all the behavioral and LC

response patterns with a change of a single parameter—

the electrotonic coupling—its complexity affects the

transparency of the explanation. Here we develop a

simplified model for the LC neuromodulation, which

inherits most of the response properties of the original

model (see also Gilzenrat et al. (2002)) and we show

how it can be used to account for the effects of

attentional neuromodulation in a wider set of cognitive

tasks.

3. A ‘functional’ model for LC modulation

3.1. Model

The functional LC model described in this section is

embedded in a behavioral model for perceptual choice and

for selection from memory. Since the same LC model is

used in both of these tasks, we first describe its mechanism

and its attentional modes that are designed to account for the

neurophysiological data in the LC described earlier.

The functional model for the LC is not attempted to be

neurophysiologically realistic but only to provide an

equivalent functional behavior to that found in the data

and captured in our previous LC model (Usher et al., 1999).

A formal reduction of that model to an effective nonlinear

system with two variables is presented by Gilzenrat et al.

(2002), on the basis of the FitzHugh–Nagumo oscillator.

The simplified model of the LC we use here is based on

another nonlinear system with two variables: the Wilson–

Cowan (excitatory–inhibitory) population system (Wilson

& Cowan, 1972). The model is, however, functionally

equivalent to the formally reduced model (see Gilzenrat

et al., 2002 in their Appendix).

The main features that the functional model was required

to satisfy are: (i) phasic responses to target stimuli with a low

tonic baseline, (ii) a parameter that corresponds to attentional

modulation (or to the gap-junction coupling in our previous

model) that controls these attentional modulations, (iii) for a

value of the parameter that corresponds to high alertness, the

Fig. 1. Top: LC response (x-unit) for the x-unit (bold solid line), the y unit (dotted bold line) and the NE-response (thin dashed line) for high and low gain

values, in response to an input (of 0.2) applied at t ¼ 500: Bottom: responses in the LC to targets during good (left) and poor (right) behavioral intervals. (From

Usher et al. (1999), Science, 283, 549–554. Permission pending.
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phasic response should be pronounced and the baseline

reduced and (iv) for a value of the parameter corresponding to

low alertness, the phasic response is reduced while the

baseline increases (Fig. 1, bottom).

The model, satisfying these requirements, is given by the

following equations that characterize its dynamics in

discrete time steps (see Section 3.3 for the differential

form of the equations):

xðt þ 1Þ ¼ lxxðtÞ þ ð12lxÞF½gðaxxðtÞ2byðtÞ þ IxðtÞ2uxÞ�;

yðt þ 1Þ ¼ lyyðtÞ þ ð1 2 lyÞF½gðayxðtÞ2 uyÞ� ð1Þ

where F is the logistic sigmoidal function FðxÞ ¼ 1=ð1 þ

expð2xÞÞ: The x and y variables correspond to excitatory/

inhibitory populations,2 with decay parameters lx and ly

ðly q lxÞ and with thresholds ux and uy, respectively.

Among these variables, x reflects to the instantaneous LC

activation, which we compare with that found in neuro-

physiological recordings, while y is only an auxiliary

variable. The output of the system, is the NE released by the

LC which is computed from the LC-activation, x: NEðt þ

1Þ ¼ lNENEðtÞ þ ð1 2 lNEÞxðtÞ: NE is thus a delayed and

integrated measure (with exponential decay) of the

instantaneous LC activation, xðtÞ and Ix is the input to the

LC. The main parameter that affects attentional manipu-

lation, is the gain of the sigmoidal function, g.

3.2. Results

In the following, the LC model was presented with input

(corresponding to a target in the perceptual choice task used

in the experiment) at t ¼ 500 iterations of the computer

simulation (Ix is increased by 0.2) and the response of the

LC model is reported for two levels of the gain-parameter,

g, that controls the slope of the logistic function, F. The two

values of gain used here are: g ¼ 1 for low gain and g ¼ 3

for high gain. The other parameters, which were kept

constant in all the simulations, are reported in Appendix A.

The LC responses, xðtÞ; yðtÞ; and the output NEðtÞ for these

two cases are shown in Fig. 1 (top).

One can observe that higher g-values results in

pronounced phasic responses and reduced baseline, while

low g-values in high baseline with reduced phasic

responses, reflecting the pattern found in the experimental

data for high/low attentional modes. In the following we

will relate to these two attentional modes as: the phasic

mode (high-gain) and the tonic mode (low-gain).

3.3. Discussion

The key to understand the behavior of this system is to

distinguish between the ‘fast’ variable x ðtx ¼ 1=ð1 2 lxÞ ¼

14Þ and the much slower variable y ðty ¼ 1=ð1 2 lyÞ ¼

200Þ: This allows the use of an adiabatic approximation,

where one solves first the one-dimensional dynamics of the

x variable (assuming a constant y ) towards its equilibrium

x p. Using the differential form of the iterative equations, Eq.

(1) (see also Gilzenrat et al. (2002) or Usher & McClelland

(2001)) this can be formulated as:

dx

dt
¼ 2x þ F½gðax 2 by þ Ix 2 uxÞ� ¼ 0 ð2Þ

After determining the stable solution of this equation, xpðyÞ;
one examines how the equilibrium, x p, depends on the slow

variable, y, whose equilibrium point is monotonic in the

value of x p ½yp ¼ Fðayxp 2 uyÞ�: This qualitative analysis is

Fig. 2. The steady state solutions for the x-dynamics are intersections of the z ¼ Fðg; x; Ix; yÞ curve (solid lines) with the identity map, z ¼ x (dashed). Left: high

gain, g ¼ 3 and Right: low gain, g ¼ 1: The three solid lines correspond to small changes in the input, Ix : 0:45; 0:3; 0:05:

2 Those variables do not correspond to excitatory/inhibitory populations

in the LC but are abstract variables that capture the functional behavior of

the system.
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shown in Fig. 2 for high gain (left panel) and for low gain

(right panel), where three solutions are shown correspond-

ing to the combined value of Ix 2 by: The middle solid

curves are obtained for Ix 2 by ¼ 0:3 and correspond to the

stationary state before the application of the input (t ¼ 500

in Fig. 1, where y is close to zero).

One can observe, that while the high gain system is

bistable [it has two stable solutions—the extreme intersec-

tions between the identity line (z ¼ x; dotted) and the z ¼

FðxÞ curve (solid middle line)—the lower one being

consistent with the y-equation] the low gain system has a

single stable solution. A relatively small increase in the

input to the LC, Ix ¼ 0:45; moves the z ¼ FðxÞ curve to the

left. Since this destroys the lower solution, the systems

shoots towards the upper solution, corresponding to the

phasic LC response in Fig. 1 (left panel). This leads to a

slower increase in y that modifies the input Ix 2 by to the

lower value of 0.05 and sends the x-variable to a new steady

state solution at low x, corresponding to the termination of

the phasic response. This scenario, does not occur for low

gain, where small changes in input lead only to correspond-

ingly small changes in the steady state values of x (reduced

phasic response, in Fig. 1, right panel). A more rigorous

analysis of this system as well as of the FitzHugh–Nagumo

one, based on two-dimensional phase-plane techniques in

presented by Gilzenrat et al. (2002) in their Appendix.

4. Behavioral model for the perceptual task

In this section, the model is applied to a straightforward

extension of the go/nogo task described earlier—a forced

choice between two response alternatives, both targets that

require a response and which need to be distinguished from

distractors that require the withholding of response (e.g.

‘respond to digits: 1 vs. 2 with the corresponding button and

ignore letters’). The computational model used to address

this task is shown in Fig. 3. It includes an input layer, a layer

of perceptual representations (for both the targets and the

distractors) and a layer of response representations (only for

the two targets) corresponding to motor responses. The LC,

which is modeled as described earlier, receives input from

the two perceptual target representations (these links are

assumed to be learned during practice with the task), IxðtÞ ¼P
i¼1;2 fi; and projects neuromodulation, NEðtÞ; to all the

units in the perceptual and response representations.

4.1. Neural dynamics and activation functions

The equations used for the dynamics of the neural

activation, x, in the system, follow a stochastic version

(Usher & McClelland, 2001) of the classical cascade

(McClelland, 1979) and Brain-State-in-a-Box (Anderson,

Silverstein, Ritz, & Jones, 1977) equations:

xðt þ 1Þ ¼ lxðtÞ þ ð1 2 lÞIðtÞ ð3Þ

where l , 1 is a neural decay coefficient, which is related to

the decay time constant, t, ðl ¼ 1 2 1=tÞ of the corre-

sponding differential equation dx=dt ¼ 2ðx=tÞ þ I: From a

neurophysiological perspective, the activation corresponds

to a dynamical input current that is subject to exponential

decay (Abbott, 1992; Amit & Tsodyks, 1991). The output

(or firing rate), f, is related to the input (or activation) by a

sigmoidal activation function, f ¼ GðxÞ: The activation

function we use here is given by:

GðxÞ ¼ 0; for x , 0

GðxÞ ¼
x

1 þ x
; for x . 0

ð4Þ

The response function G is similar to the threshold linear

function (Anderson et al., 1977; Usher & McClelland, 2001)

with the addition of a saturation nonlinearity: x=ð1 þ xÞ: As

discussed in Usher and McClelland (2001), the threshold

nonlinearity is important for preventing negative activations

(that have no biological reality but could appear in a linear

system due to noise and lateral inhibition) from producing a

Fig. 3. Scheme of the computational model. Solid arrows correspond to excitatory links, solid circles to lateral inhibition and open squares to neuromodulation.
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spurious enhancing of activation when multiplied by

inhibitory weights. Logistic activation functions also

bound the activation to the positive range, but as discussed

in Usher and McClelland (2001), threshold-linear activation

functions produce better fits to the neurophysiological

recordings at low firing rates than the more often used

logistic functions (Ahmed, Anderson, Douglas, Martin, &

Nelson, 1995; Ahmed, Anderson, Douglas, Martin, &

Whitteridge, 1998; Jagadeesh, Gray, & Frester, 1992;

Mason & Larkman, 1990). The nonlinearity used here, has

the advantage of being close to linear for small input ðx , 1Þ

and of showing a gradual saturation towards a maximum

activation level of one (corresponding to maximal firing

rate) at large input ðx . 1Þ: In previous work, this activation

function was shown to be useful in modeling the

maintenance of neural activation in the pre-frontal working-

memory (WM) system (Davelaar & Usher, 2002; Haarmann

& Usher, 2001; Usher & Cohen, 1999; see also O’Reilly &

Munakata (2000), pp. 46–49 for a more detailed textbook

explanation of this activation function (labelled XX1)).

4.2. The network

4.2.1. Perceptual units

The perceptual units are clamped at the stimulus onset with

values that depend on the stimulus shown. Here we used a

simplified localistic scheme that takes feature overlap between

representations into account. When a stimulus is present, its

input is clamped to I ¼ 0:45 while the input of the other two

units are clamped to I ¼ 0:275 (sum of the inputs is normalized

to unity). During the interval before input is presented, a

background input, I0 ¼ 0:2 is assumed for all units.

The dynamic equations for the perceptual units are given

below in terms of discrete time step iterations:

piðt þ 1Þ ¼ lpiðtÞ þ ðw0 2 lÞ

£

"
ð1 þ cNEðtÞÞIiðtÞ þ ðap þ cNEðtÞÞGðpiðtÞÞ

2ðbp þ cNEðtÞÞ
X
j–i

GðpjðtÞÞ þ noise

#
ð5Þ

where pi is the unit activation, l , 1 is a decay constant for

neural activity, w 0 (which is set to unity, w0 ¼ 1) is a

feedforward synaptic projection to the perceptual layer and

the coefficients a and b correspond to recurrent excitation

and lateral inhibition, respectively (Usher & McClelland,

2001).

The variable NEðtÞ corresponds to the neuromodulation

contributed by the LC, which we assume to increase the

magnitude of both the excitatory and the inhibitory weights

(Cheun & Yeh, 1992; Devilbiss & Waterhouse, 2000; Sessler

et al., 1995; Waterhouse, Mouradian, Sessler, & Lin, 2000) in

proportion with the NE level and c is a neuromodulation

coefficient. Finally, zero mean Gaussian noise, with standard

deviation, sp, sr (for perceptual/response units), is indepen-

dently added to each unit at each time iteration.

4.2.2. Response units

The dynamic equations for the response units follow

similar equations

riðt þ 1Þ ¼ lriðtÞ þ ð1 2 lÞ

£

"
ðW rp þ cNEðtÞÞGðpiðtÞÞ þ ðar þ cNEðtÞÞGðriðtÞÞ

2ðbr þ cNEÞ
X
j–i

GðrjðtÞÞ þ noise

#
ð6Þ

Here the output of the perceptual units GðpiÞ multiplied by a

Table 1

Gain 1.0 3.0

% RT(SD) % RT(SD)

Target Correct response 97.6 89(37) 99.2 91(24)

Incorrect response 2.4 28(24) 0.8 52(38)

Distractor False alarms 20.7 160(118) 9.4 188(112)

Correct rejections 79.3 – 90.6 –

Fig. 4. Top: RT distributions to targets during good/poor behavioral

intervals (From Usher et al. (1999), Science, 283, 549–554. Permission

pending. Bottom: RT distributions for correct responses in the model with

high gain, g ¼ 3 (solid) and with low gain, g ¼ 1 (dashed).
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synaptic weight, W rp; provides the input and a separate set

of excitation/inhibition parameters ar and br is used. A

response is generated when the first response unit reaches an

activation criterion (Usher & McClelland, 2001), z, which is

fixed to the value of z ¼ 1:

4.3. Results

Examples of the LC responses for high/low levels of gain

in a single trial of this simulation were shown in Fig. 1. In

order to examine the behavioral patterns, sets of 10 000

simulation trials were run for target and for distractor

stimuli at the two levels of gain. The results are presented in

Table 1, with regards to accuracy (percent correct responses,

incorrect responses and FAs) and RTs. As we only attempt

to obtain a qualitative explanation of the data patterns, the

RTs are reported in ‘steps of the computer simulation’ (or

iterations).

We observe that increasing the gain leads to a significant

decrease in FAs and a slight increase in the fraction of

correct responses (this fraction is already close to ceiling,

however, as is to be expected for a perceptual choice with

clearly distinguishable stimuli; this is also found in data of

the go–nogo task where the hit rate is close to ceiling

(Usher et al., 1999)).

The RT distribution for high gain is narrower than for the

low gain, (Fig. 4), while the mean RTs are equivalent. This

pattern reflects the RT distributions in the experimental

data, for intervals with high and low phasic responses.

4.4. Discussion

The NE response and the activations of the perceptual

and response units for a single trial (with a target stimulus

presented at t ¼ 500 iterations) for low and high gain levels

are shown in Fig. 5.

We observe that at stimulus presentation, t ¼ 500; there

is an increase in the activation of all three perceptual units

(the two targets and the distractor). The correct response

unit receives stronger input and inhibits the activations of

the incorrect target and distractor unit. This residual

response, however, can help the pre-stimulus noise

activation of the response units to generate an incorrect

choice (the incorrect unit reaching the response criterion

Fig. 5. Top: NE responses in the computer simulation of the perceptual choice task. Middle: firing rate ðGðpiÞÞ responses of perceptual units; Bottom: firing rate

ðGðriÞÞ of response units, for low gain (left) and high gain (right). The stimulus is presented at t ¼ 500 iterations.
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before the correct one; this happens in only 2.4% of trials).

Increasing the gain (right) has two major effects on the

activations. First, the lower tonic activation of the LC unit

reduces the noise activation of the response units in the pre-

stimulus interval, leading to a reduction in anticipatory or

incorrect responses (including FAs). Second, the pro-

nounced phasic response, amplifies the activations of all

the units (due to amplification of synaptic input, including

the input) and it also amplifies the amount of competition

(which is affected by both the recurrent excitation and the

lateral inhibition parameters) between the representation

units. With high gain, one can observe that, following the

transients; the activation of the incorrect units is strongly

suppressed. This complex pattern of phasic neuromodu-

lation has the effect of reducing the error rate and the rate of

FAs without a sacrifice in RT. The phasic neuromodulation

enhances processing and narrows it down around the

stimulus presentation, explaining the reduction in the tails

of the RT distribution.

The computer simulations, described earlier were done

with parameters that provide a high level of performance in

the choice of targets (less than 3% errors) even in the

nonphasic mode. This corresponds to an easy type of

discrimination as was the case in the experimental studies of

neuromodulation we address here (Aston-Jones et al.,

1994). In order to explore the effect of the phasic mode on

a wider range of performance levels, we conducted a

different set of simulations where we increase the level of

noise over the perceptual and over the response units. The

comparison between the high-g and the low-g neuromodu-

lation modes on performance is shown in Fig. 6. As the

noise level increases, the choice accuracy decreases as

expected. Importantly, the advantage of high-gain modu-

lation on task performance is maintained at all levels of

noise.

5. Response selection and memory maintenance

The cognitive task described earlier can be fully

characterized as a choice of one out of many alternatives.

In a recent work (Usher & McClelland, 2001) we have

proposed that lateral inhibition between competing repre-

sentations is a powerful mechanism suited to perform this

type of winner-take-all selection. There are other cognitive

tasks, however, where a winner-take-all selection is not

advantageous. A simple example for such situations is a

short-term memory (STM) test, where participants are

presented with a sequence of items (say words) that have to

be maintained in order to answer a memory probe test

presented later on. Assume, for example, that following a

sequence of four words (each chosen from a distinct

semantic category), a cue corresponding to one of the four

categories is presented and participants are required to

produce the word that belongs to that category from the

current trial (see, e.g. Exp. 2 in Haarmann and Usher

(2001)). Although the task requires a winner-take-all

selection, this selection needs to be delayed until the cue

appears. Before this event, a system with a moderate level of

inhibition that can maintain few items in active memory

(Cowan, 2001; Haarmann & Usher, 2001; Usher & Cohen,

1999; Usher, Cohen, Haarmann, & Horn, 2001) can be of

better use. At cue presentation, however, the task demand

changes from a memory maintenance to one of selection. A

flexible cognitive system needs, not only to be able to

perform each of these tasks separately, but to perform them

together in a synergistic way. Here we show that the

mechanism of neuromodulation offers a simple way to

achieve such flexibility, by enabling the online modification

in the values of network parameters, such as lateral

inhibition and recurrent excitation, in relation to task

demands.

5.1. Modeling semantic cued recall in STM

To model the situation described earlier, we use a model

with the same type of architecture as the one described in

Section 4. The scheme for this model is shown in Fig. 7.

Here, the middle representation corresponds to a WM

system assumed to reside in the pre-frontal cortex (Usher &

Cohen, 1999) and to mediate the activity found in delayed

match to sample tasks in this cortical area (Goldman-Rakic,

1992; Miller, Erickson, & Desimone, 1996). The units of

representation in this module have a high value of recurrent

excitation ða ¼ 1:9Þ that enables the maintenance of

activations after stimulus offset and they compete via lateral

inhibition (as in Section 4).

xiðt þ 1Þ ¼ lxiðtÞ þ ð1 2 lÞ

� aGðxiðtÞÞ2 b
X
j–i

GðxjðtÞÞ þ IiðtÞ

2
4

3
5 ð7Þ

5.1.1. Active maintenance and capacity

In a previous work (Usher & Cohen, 1999) we showed

that when the recurrent excitation parameter is larger than

unity ða . 1Þ; the capacity can be easily derived, when the

Fig. 6. The effect of perceptual and response noise on the accuracy of

choice in the model for high (solid) and for low (dashed) gains.
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activation function is given by Eq. (4). Two properties of

this system may be important to review here. First, as

more items, n, are maintained in active state without

input, their activation decreases as: xðnÞ ¼ a2 1 2 bðn 2

1Þ: Thus the activation of an n-state solution decreases

linearly with n. Second, when the number of activated

units exceeds a boundary (that depends on a and b, the

solution xðnÞ loses its stability and as a result one of the

units is deactivated.3 These two properties of the system

are shown in Fig. 8.

The system has thus a limited capacity, consistent with

experimental findings in human short term memory

(Cowan, 2001). In our present model, the WM represen-

tations compete via lateral inhibition which is set at a value

b ¼ 0:2: This creates a moderate level of competition that

allows only few items, n, (in this illustration n ¼ 2) to be

maintained in this system together.

5.1.2. Response representations

As in the model used in Section 5.1.1, the WM

representation feeds into a response representation (verbal

or motor). Finally, the LC is activated by a separate

(perceptual) representation of the semantic probe (gray unit

in Fig. 7) that decelerates exponentially towards an

asymptote ½IðtÞ ¼ ILð1 2 expðt 2 tprobeÞ� and its output

modulates all the inputs (including the lateral and recurrent

connections) to the WM and response representations. The

probe also sends a weak input, Iprobe, to the unit that is

consistent with its category (Fig. 7). The full specification of

the model parameters is given in Appendix A.

Unlike the model presented in Section 4, this model is

not aimed to reproduce quantitative aspects of data (see,

however, Haarmann & Usher (2001)), but rather to

demonstrate the use of neuromodulation in flexible response

selection.

5.2. Results and discussion

The behavior of the system in a typical trial is shown in

Fig. 9 for three types of neuromodulation scenarios. The left

column corresponds to a lack of neuromodulation (coupling

coefficient, c ¼ 0), while the middle and right columns

correspond to neuromodulation with low-gain (tonic mode;

middle) and high-gain (phasic-mode; right panels). The

upper row corresponds to the NE response generated by

the LC whereas the middle and bottom rows correspond to

the perceptual and response layers, respectively. In all the

simulations, four items are presented sequentially (for 500

iterations, each) and after a delay of (1600) the response cue

is presented at t ¼ 4000:
In the absence of neuromodulation the network para-

meters are fixed. We observe that before the presentation of

the probe, two out of the four WM representations

(corresponding to items 3 and 4) are still active. When the

probe (for item no. 3) is presented, the weak input from the

Fig. 7. Scheme of the computational model. Solid arrows correspond to excitatory links, solid circles to lateral inhibition and open squares to neuromodulation.

Fig. 8. Stable solutions for a ¼ 2 and b ¼ 0:1; with a maximum of n ¼ 5

co-active memory states (solid line), and a ¼ 2 and b ¼ 0:2) with a

maximum of two co-active states (dashed line).

3 The capacity, n is related to the a and b parameters via the inequality:

aþ b=½a2 bðn 2 1Þ�2 , 1: Only n values that satisfy this inequality show

stability (Usher & Cohen, 1999).
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semantic probe, together with the moderate level of lateral

inhibition generates a difference in the activation of the third

unit (that corresponds to the probe’s category) relative to the

activation of the fourth unit (that corresponds to an incorrect

response). This difference, however, is small, and as

observed in the response activation it is not sufficient to

trigger a selection between the two activated units.

With neuromodulation, the selection is enabled, but

important differences appear between the high and the low

gain conditions. With low gain, the tonic activation of the

LC is more elevated and its phasic response is reduced,

relative to the high gain (compare middle and right

columns). Since NE is assumed to increase both the

inhibitory and the excitatory weights, it has an effective

outcome of increasing the competition between the

representations (Usher & McClelland, 2001). The elevated

tonic LC response in the low gain condition increases

therefore the competition in the interval before the cue is

given. This effectively decreases the capacity of the WM

system (the system now has difficulty maintaining both units

in active state) and triggers a premature selection (in the

wrong direction) in the response layer. The reduced phasic

response triggered by the cue, is only marginally able to

trigger the selection. As opposed to that, for the high gain

neuromodulation, the tonic activity of the LC and

the competition level triggered in the interval before the

presentation of the cue is lower, which prevents the

undesired reduction in the capacity of the WM system,

and allows both of the response representations to be in a

partially activated state that is optimal for choice. The

enhanced phasic neuromodulation triggered by the cue,

increases the competition at the relevant moment enabling a

robust and correct selection.

In order to quantify these effects we ran a set of computer

simulations, while varying the strength of the coupling

coefficient, c, for three levels of gain, g ¼ 1; 1:5; 3: The

performance is measured by the relative signal strength,

defined as the ratio of the correct unit activation over the

total activation in the response units during the 500

iterations time interval following the response cue.

We observe that, indeed the selection quality improves

with the neuromodulatory coupling (Fig. 10). More

Fig. 9. Neural responses in the selection from memory model. Four items are presented sequentially for 500 iterations each, followed by a delay of 1600

iterations with no input. The probe is presented at t ¼ 4000: Left: no neuromodulation ðc ¼ 0Þ; Middle: low gain neuromodulation (g ¼ 1; c ¼ 1:8). Right:

high-gain neuromodulation (g ¼ 3; c ¼ 1:8). Top: NE responses, Middle: firing rate responses in the WM layer ðGðmiÞÞ; Bottom: firing rate responses in the

response layer ðGðriÞÞ:
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importantly, there is an advantage for the high gain mode

which is amplified at higher values of coupling. In addition,

for the low gain value of g ¼ 1; the effect of coupling

strength is nonmonotonic. The reduction in performance at

around c ¼ 1:4 is due to its detrimental effect of reducing

the capacity of the WM layer during the delay interval,

which leads to a premature and random selection (Fig. 9,

middle column).

6. General discussion

Attentional modulation of LC responses can be con-

sidered at two levels, a molar/descriptive level and a

micro/mechanistic level. At the molar level, the LC

modulation has been described by a gain hypothesis

(Cohen & Servan-Schreiber, 1992). Accordingly, NE

enhances or reduces the cortical responsivity in the high

and low range, respectively. The aspect of neuromodulation

explored in this paper is the dynamical modification of

network parameters and input efficiency, which when

triggered by online stimuli relevant to the task demand,

can significantly improve the flexibility and computational

power of a neural system. The NE system in the LC shows

dynamic traces (phasic responses) that are phase locked to

relevant stimuli and is therefore well suited to mediate this

type of neuromodulation (Aston-Jones et al., 1994).

In our previous work we provided an account for the

difference between the two attentional modes, correspond-

ing to phasic/tonic responses in the LC, via changes in the

level of gap-junction induced synchronization among the

LC neurons (Usher et al., 1999). Here we show that, similar

to the gain hypothesis of Cohen and Servan-Schreiber

(1992) these two phases can be functionally reproduced by

changing a single parameter that corresponds to the gain in a

Wilson–Cowan circuit. Clearly, this is only a simplification

of what we believe to be a more complex neurophysio-

logical mechanism (Usher et al., 1999) and it can also be

viewed as a change in a coherence parameter (Gilzenrat

et al., 2002).

This simplified account of neuromodulation, has allowed

us to explore the effects of NE attentional modulations on a

wider range of cognitive tasks. In addition to the amplifica-

tion of stimulus input at relevant processing time windows,

the neuromodulation affects changes in the parameters of

the lateral inhibition and of the recurrent excitation of the

local neural circuits. In previous work we have shown that

lateral inhibition and recurrent excitation can improve the

efficiency of information processing in perceptual choice by

balancing the detrimental effect of neural leakage (Usher &

McClelland, 2001). Flexible information processing may

require, however, not only the existence of competitive and

reverberatory mechanisms, but also the ability to control

online their magnitudes. The task discussed in the second

part of this article corresponds to a typical situation where

the optimal processing strategy requires a variable degree of

competition, which starts moderate (to enable memory

maintenance) and ends high (to enable an effective

selection).

Within this paper, we addressed the two modes of LC

functioning and their computational characteristics, but not

the sequential effects between trials and the processes that

trigger transitions between these modes. Recently, a wide

variety of sequential effects in choice and attentional tasks

(e.g. slower and more accurate responses after errors), have

been accounted for, by Botvinick et al. (2001), on the basis

of a conflict monitoring mechanism associated with the

anterior cingulate (AC) that controls parameters determin-

ing the information processing in other cortical areas. We

suggest that the transient changes in the values of lateral

inhibition and of the recurrent excitation, mediated by the

LC, provides (in conjunction with the AC) a powerful

mechanism for online control that can explain such

sequential effects.

In this work we implemented the mechanism for NE

neuromodulation, by assuming the enhancement of both

excitatory glutaminergic and of inhibitory GABAergic

synapses (Cheun & Yeh, 1992; Devilbiss & Waterhouse,

2000; Sessler et al., 1995; Waterhouse et al., 2000). Our

specific implementation—an equal increase in the magni-

tude of the inhibitory and the excitatory weights pro-

portional to the NE released by the LC—is only a

preliminary exploration, intended to demonstrate the

general feasibility of the approach and showing that

neuromodulation can enhance the flexibility of online

information processing. Future work should examine

predictions that result from more detailed and specific

effects of NE on the excitatory and inhibitory parameters of

the neural circuitry.
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Appendix A

The full list of model parameters used in the simulations

are given below:

LC : lx ¼ 0:93; ly ¼ 0:995; lNE ¼ 0:98; ax ¼ 2; ay ¼

3; b ¼ 4; ux ¼ 1:25; uy ¼ 1:5; c ¼ 1 (neuromodulation

coupling).

Selection from perception

Perceptual layer: l ¼ 0:95; ap ¼ 0:8; bp ¼ 0:22; sp ¼

0:05 (noise SD), I0 ¼ 0:2:
Response layer: l ¼ 0:95; ar ¼ 0:2; br ¼ 0:2; sr ¼ 0:9;

response criterion, z ¼ 1; W rp ¼ 1:5 (perceptual-response

weight). A response deadline of 900 iterations (400 from

stimulus onset was used).

Selection from memory

Memory layer: l ¼ 0:98; am ¼ 1:9; bm ¼ 0:2; sm ¼ 0;
Ii ¼ 0:33 (presented sequentially for 500 iterations).

Response layer: l ¼ 0:98; ar ¼ 0:3; br ¼ 0:3; sr ¼ 0:2;
WMR ¼ 0:2 (weight from memory to response layers). The

probe is presented at 1600 iterations from end of last

memory item, with an input to the third memory unit of

Iprobe ¼ 0:06 and an input to LC, IðtÞ ¼ ILð1 2 expðt 2

tprobeÞ; with IL ¼ 1:5 that is terminated after 200 iterations.
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