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Abstract Making decisions based on relative rather than ab-
solute information processing is tied to choice optimality via
the accumulation of evidence differences and to canonical
neural processing via accumulation of evidence ratios.
These theoretical frameworks predict invariance of decision
latencies to absolute intensities that maintain differences and
ratios, respectively. While information about the absolute
values of the choice alternatives is not necessary for choosing
the best alternative, it may nevertheless hold valuable infor-
mation about the context of the decision. To test the sensitivity
of human decision making to absolute values, we manipulated
the intensities of brightness stimuli pairs while preserving ei-
ther their differences or their ratios. Although asked to choose
the brighter alternative relative to the other, participants
responded faster to higher absolute values. Thus, our results
provide empirical evidence for human sensitivity to task irrel-
evant absolute values indicating a hard-wired mechanism that
precedes executive control. Computational investigations of
several modelling architectures reveal two alternative ac-
counts for this phenomenon, which combine absolute and
relative processing. One account involves accumulation of
differences with activation dependent processing noise and
the other emerges from accumulation of absolute values

subject to the temporal dynamics of lateral inhibition. The
potential adaptive role of such choice mechanisms is
discussed.

Keywords Computational modeling . Judgment and decision
making . Response timemodels . Inhibition

Introduction

A central goal of the cognitive, economic, and biological sci-
ences has been to uncover the mechanism underlying human
and animal decision-making behavior. Decisions are made
based on a set of values that characterizes the choice alterna-
tives (e.g., monetary rewards, likelihoods of events, perceptu-
al properties or subjective utilities). However, when aiming to
select the best out of a given set of alternatives, processing
information about the absolute value of each alternative can be
considered superfluous. Indeed, leading theories of human
decision making postulate that task irrelevant information
about absolute values is discarded in favor of relative value
representations. This relativity of information processing in
decision making is crucial for producing context effects and
has been formulated both in terms of differences between
values (Ratcliff and Rouder 1998; Roe et al. 2001; Tversky
and Simonson 1993; Usher and McClelland 2004) and value
ratios (Brown and Heathcote 2008; Louie et al. 2013).
Concurrently, other theories used to describe decision making
in both humans (Usher and McClelland 2001) and
decentralized biological systems (e.g., bee colonies; Pais
et al. 2013) suggest that some sensitivity to absolute values
is, in fact, retained. Value sensitive mechanisms have also
been argued to exhibit adaptive advantages, such as breaking
decision deadlock between equally valued alternatives faster
for high value alternatives than for low value alternatives
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(Pirrone et al. 2014). Two questions are thus begged in this
study: (a) Does human decision making retain sensitivity to
absolute information values, above and beyond their relative
properties? and if so (2) by means of what underlying mech-
anism do absolute value sensitivity and relative value repre-
sentation coexist?

Ample evidence from psychology and biology indicates
that choices and their latencies are the result of a process that
sequentially accumulates samples of noisy, momentary, evi-
dence values towards an internal decision criterion (Marshall
et al. 2009; Meyer et al. 1988; Ossmy et al. 2013; Ratcliff and
Rouder 1998; Ratcliff 1978; Teodorescu and Usher 2013;
Usher and McClelland 2004). In this sequential sampling
framework, a relative model is one that either accumulates
relative momentary values (e.g., momentary evidence value
differences) or, alternatively, accumulates absolute values but
implements a relative stopping rule (e.g. stop when the differ-
ence between accumulators crosses a criterion amount).While
values often are associated with economic rewards, perceptual
values also constitute an informational basis for decision mak-
ing and perceptual decision-making manifests many biases
and context effects associated with economic decision making
(Trueblood et al. 2013; Tsetsos et al. 2012). For binary deci-
sions, accumulation of value differences as in the Drift
Diffusion Model (DDM; Ratcliff 1978), has been related to
choice optimality, as a mechanistic implementation of the
Bayesian Sequential Probability Ratio Test (Wald and
Wolfowitz 1948 but see Drugowitsch et al. 2012; Moran
2014). The DDM has been successful in fitting a plethora of
experimental results and has been suggested as a unifying
framework for both perceptual and economic decisionmaking
(Basten et al. 2010; Ratcliff and McKoon 2008; Towal et al.
2013). Similarly, fractional normalization—an algorithm that
divides each individual input value by the sum of all input
values,1 thus discarding absolute values in favor of ratios—
has been recently proposed as a canonical neural computation
that permeates all levels of brain functions (Carandini and
Heeger 2012; Louie et al. 2011; Louie et al. 2013). In this
study, we focused on these two relative processes.

When considering the type and degree of information pro-
cessing relativity in different model architectures, distinct de-
pendencies between absolute model inputs and model outputs
become readily evident. Specifically, both pure difference
(pure DDM) and ratio (pure normalization) relations are

invariant to manipulations that maintain the difference or the
ratio of absolute input values, respectively. In this study, we
use a binary perceptual decision paradigm, requiring decision
makers to choose the brighter out of a pair of fluctuating gray
patches (i.e., evaluate relations between brightness stimuli
while ignoring absolute values). Brightness value manipula-
tions were specifically designed to test different types of rela-
tivity in the processing of decision information. Despite the
relative nature of the task, we present results demonstrating
surprising sensitivity of human choices and choice-latencies
to task irrelevant absolute information values. An extensive
computational investigation of corresponding accumulation
models demonstrates that the observed sensitivity to absolute
values conforms to neither pure difference nor ratio relations.
Begging a principled synthesis, we put forth the proposition
that the observed sensitivity to absolute values can be captured
by two plausible, although as wewill show, apparently incom-
patible, origins: (a) the dependence of processing noise on
input intensity (Brunton et al. 2013; Lu and Dosher 2008)
when implemented within a DDM framework or (b) response
competition produced by lateral inhibition between evidence
accumulators and the resulting temporal dynamics
(Teodorescu and Usher 2013; Usher and McClelland
2001, 2004).

Experimental methods

To test the invariance predictions of purely relative informa-
tion processing assumptions, we manipulated, in two experi-
ments, the mean overall brightness intensity of two simulta-
neously presented, spatially separated, temporally fluctuating,
gray patches (Fig. 1a and b). Critically, compared to a baseline
condition (upper panel; Fig. 1b), the manipulation maintained
constant either the difference of the means (additive-boost
condition; middle panel; Fig. 1b) or their ratio (multiplica-
tive-boost condition; lower panel; Fig. 1b). All conditions
were randomly intermixed and on each trial, subjects were
asked to choose the brighter patch as fast and as accurately
as possible but were not given any information concerning the
existence of different intensity conditions. To control for the
differences in mean stimulus onset brightness between the
experimental conditions, in Exp. 2 all trials initiated with a
matching 100 ms (6 frames) baseline period after which, de-
pending on condition, mean brightness values were identical
to the ones in Exp. 1

Participants

Eight Tel-Aviv University undergraduate students participated
in Exp. 1 and eight in Exp. 2, in exchange for course credit.
Each participant was tested in two, 60-minute sessions (on
different days but no more than 4 days apart). One subject in

1 Note that fractional normalization is a specific case of normalization that
is purely relative. Mechanistically, this is achieved through inputs
inhibiting each other so that only momentary ratios are accumulated.
Normalization in its general definition, however, also includes a satura-
tion parameter that allows an adaptive, continuous transition between
purely relative, fractional normalization, and asymptotically absolute
values. This issue will be addressed more thoroughly in the Methods
and Computational sections.
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Exp. 1 was excluded from the analyses due to experi-
menter error (the subject performed both sessions con-
secutively on the same day and consequently RTs were
more than 3 standard deviations slower than the rest of
the group). One subject in Exp. 2 did not complete the
second session and was also excluded from the analy-
ses. Exclusion of these subjects did not affect the gen-
eral pattern of our results, and all reported data in the
remainder of the paper are from the remaining seven
participants. All participants had normal or corrected to
normal vision. The projects were approved by the depart-
ment’s ethical committee.

Materials

All stimuli in this experiment were presented on a ViewSonic
Graphics Series G90fB 19^ CRT monitor. The monitor was
gamma corrected so that physical brightness outputs (in lu-
mens) are linear with respect to MATLAB RGB values where
zero represents the minimum screen brightness and one

represents the maximum screen brightness. Note that the
range of available screen brightness is only a small section
of the full brightness range from no light up to some extremely
high value like the brightness of the sun (higher than the max-
imum screen brightness). Gamma correction was performed
using a TES-1332A photo meter. Experiments were coded in
MATLAB and were realized using Cogent Graphics toolbox
developed by John Romaya at the LON at the Welcome
Department of Imaging Neuroscience. The stimuli on each
trial were composed of two homogenous, round (1.2 cm di-
ameter), temporally fluctuating gray patches with indepen-
dently sampled gray-level on each monitor frame refresh.
The two gray patches were presented on a black back-
ground and were positioned to the right and to the left
of a fixation cross (total width from right edge of right
patch to left edge of left patch: 5 cm). The head posi-
tion of the subjects was fixed at approximately 60 cm
using a standard chinrest. For baseline trials, gray levels
of the target and non-target were normally distributed
around means of 0.4 and 0.3 (on a 0 to 1 (maximum screen

Fig. 1 Top left (a) time course of an experimental trial demonstrating a
sequence of evidence samples presented (at a 60-Hz refresh rate) until
response. Bottom left (b) Brightness value distributions in each condition
for the target (blue) and non-target (red) alternatives. In the baseline
condition the means of the brightness distributions (normal with equal
variance, top panel) were set to 0.3 and 0.4 (on a 0-black to 1-white scale),
for the nontarget and the target, respectively. The baseline mean bright-
ness difference was Δ=0.1 and the ratio of the means was P=4/3 (top
panel). The baseline condition acted as a reference point for the other
boost conditions. The brightness means for the additive-boost condition

were generated by increasing both baseline distribution means by 0.2
([0.4, 0.3]+0.2 = [0.6, 0.5]), thus preserving the Δ=0.1 difference be-
tween these means while decreasing the ratio of means to P=6/5; middle
panel). The multiplicative-boost brightness means are generated by mul-
tiplying both baseline mean brightness values by a factor of 1.5 ([0.4,
0.3]*1.5 = [0.6, 0.45]) thus preserving their P=4/3 ratio while increasing
the difference to Δ=0.15 (bottom panel; see also Teodorescu and Usher
(2013), Exp. 3). Right (c) experimental results: mean correct RT (top
panel) and accuracy (bottom panel). Error bars represent within subject
standard errors (Cousineau 2005), within each experiment
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brightness) scale in MATLAB) respectively. In Exp. 1, gray
levels of the target and non-target stimuli for the multiplica-
tive-boost condition were normally distributed around means
of 0.6 and 0.45 respectively maintaining the 4/3 ratio but
increasing the difference from 0.1 to 0.15 compared with
baseline. In the additive-boost condition, gray levels of the
target and non-target were distributed around 0.6 and 0.5,
respectively, maintaining the difference of 0.1 but decreasing
the ratio from 4/3 to 6/5 compared with baseline. In Exp. 2,
the multiplicative-boost condition began the same as a
baseline trial, but 100 ms into the trial both target and non
target mean gray levels increased from 0.4 and 0.3 to 0.6 and
0.45, respectively, maintaining the 4/3 ratio but increasing the
difference from 0.1 to 0.15. The additive-boost condition was
similar only that after 100-ms gray levels of the target and
nontarget increased from 0.4 and 0.3 to 0.6 and 0.5, respec-
tively, maintaining the difference of 0.1 but decreasing the
ratio from 4/3 to 6/5. For all conditions in both experiments,
on each frame the gray level for each individual patch was
separately and independently recalculated as the sum of its
designated mean plus a Gaussian random variable N(0,0.12).
Occasional below threshold brightness samples might create
the appearance of flickers where the stimulus appears to dis-
appear and immediately reappear. Importantly, these flickers
are more likely to occur for stimuli with lower mean bright-
ness, potentially providing alternative strategies for
performing the task (e.g., choose the one that flickers less).
Thus, final brightness values below a value of 0.1 were
truncated to 0.1 (a clearly visible, above threshold bright-
ness value) to prevent obvious flickering of the stimuli
that might attract attention to it in a bottom-up fashion.
Because a brightness of 1 represents the maximum bright-
ness afforded by the screen, final brightness values above
1 also were truncated to 1. Refresh rate was set at 60 Hz
(16.6 ms per frame) with new brightness levels indepen-
dently resampled for each frame and for each stimulus
location. Tests were run to evaluate the probability of
dropped frames, and no frames were dropped after a full
hour of continuous presentation. The location of the target
(right/left) was randomly drawn on each trial.

Procedure

Responses were given on the 1 and 3 keys of the keyboard
number keypad for the left and right responses, respectively.
Subjects were instructed to use the right index finger for the 3
key and the same finger on the left hand for the 1 key. The
stimuli stayed on until the response was entered, after which a
1-s Inter-Stimulus-Interval (ISI), preceded the next trial. All
trials were randomly assigned to one of three possible condi-
tions: baseline, multiplicative boost, and additive boost.
Participants were presented with 10 blocks of 60 trials per
session for a total of 1,200 trials per participant. Each block

consisted of 40 %, 30 %, and 30 % of randomply intermixed
baseline, multiplicative boost, and additive boost trials, re-
spectively. Feedback on error responses was provided in the
form of a 1-second loud beep immediately following the re-
sponse. No feedback was provided after correct responses.
After each block, there was a self-timed intermission to allow
the subject to rest. During each of these breaks, the average
accuracy and RT for the last block were presented on the
screen. The participants were instructed to try to maximize
their performance (try to respond as fast and as accurately as
possible), such that if they reached 100 % accuracy they
should try to respond faster and were given a 30-trial practice
block. Subjects also were told to keep their eyes focused on
the fixation cross throughout the trial. Maintaining a constant
fixation facilitates performance of the task by allowing simul-
taneous monitoring of both patches, while maintaining con-
stant retinotopic mapping between stimulus and response.
Nevertheless, in the absence of an eye tracker, there was no
way to verify that they actually complied with this request.
The experiment was held in a partially darkened room, and
subjects were acclimated to the lighting conditions during the
practice.

Results

Experiment 1 results

The intensity manipulations in Exp. 1 yielded significant ef-
fects on both correct RT (F(2,12) = 10.676, p<0.01; repeated
measures ANOVA) and accuracy (F(2,12) = 23.81, p<0.0001;
repeated measures ANOVA. RTand accuracy results are illus-
trated in Fig. 1c. A post-hoc analysis (Tukey HSD test) of the
accuracy data revealed that subjects were less accurate in the
additive boost condition (M=0.77, SD=0.04) compared with
both the baseline (M=0.86, SD=0.04; p<0.001) and multipli-
cative boost condition (M=0.86, SD=0.04; p<0.001).
Accuracy levels in the baseline and multiplicative boost con-
ditions were practically identical (p=1). A post-hoc analysis
(Tukey HSD test) of correct RTs revealed that compared to
baseline condition (M=0.95 s, SD=0.19) subjects responded
faster in both the additive boost condition (M=0.87 s, SD=
0.16; p<0.02) and the multiplicative boost condition (M=
0.83 s, SD=0.15; p<0.01). In a previous study (Teodorescu
and Usher 2013), we found slower RTs in a condition similar
to the additive boost compared with a condition similar to the
multiplicative boost. On this basis, we performed a planned
comparison for this contrast alone and indeed found slower
RTs in the additive compared with the multiplicative condi-
tion2 (F(1,6) = 7.75, p<0.05, planned comparison).

2 Note that this contrast was not excluded from the Tukey HSD test. Thus,
our Tukey HSD statistics represent a conservative significance test.
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Experiment 2 results

The manipulation yielded significant effects of both correct RT
(F(2,12) = 35.96, p<0.00001; repeated measures ANOVA)
and accuracy (F(2,12) = 21.67, p<0.001; repeated measures
ANOVA; Fig. 1c). A post-hoc analysis of the accuracy data
revealed that subjects were less accurate in the additive boost
condition (M=0.81, SD=0.088) compared with both the
baseline (M=0.88, SD=0.056; p<0.001; Tukey HSD test)
and multiplicative boost condition (M=0.88, SD=0.082;
p<0.001; Tukey HSD test). Accuracy in the baseline andmul-
tiplicative boost conditions were nearly identical (p=0.97;
Tukey HSD test). A post-hoc analysis of the RT data revealed
that compared to baseline (M=1.004 s, SD=0.188) subjects
responded faster in both the additive boost condition (M=
0.914 s, SD=0.175; p<0.001; Tukey HSD test) and the
multiplicative boost condition (M=0.860 s, SD=0.157;
p<0.001; Tukey HSD test). Last, as in Exp. 1, consistent
with our previous study (Teodorescu and Usher 2013), we
also found slower RTs in the additive compared with the
multiplicative condition (F(1,6) = 9.59; p<0.05; planned
comparison).

Discussion of experimental results

Strikingly, these findings demonstrate that both common
forms of invariance predicted by purely relative models were
violated. For RT, invariance held for neither equi-difference
nor equi-ratio intensities (faster RTs in both boost conditions
compared to baseline). For accuracy however, intensity in-
variance was violated with respect to differences (lower accu-
racy in the additive boost compared to the baseline condition)
but not with respect to ratios (equal accuracy in the multipli-
cative boost compared to baseline condition). As we will
show below (Computational Modeling section), neither the
pure DDM nor the pure normalization model can capture the-
se qualitative patterns.

Additionally, comparing the additive and the multiplicative
conditions, we note that the brighter channel is identically
distributed in both conditions (mean=0.6), whereas the dim-
mer channel is, on average, brighter in the additive boost con-
dition (0.5) than in the multiplicative boost condition (0.45).
The finding of slower RT’s in the additive versus multiplica-
tive boost condition indicates competition and thus violates a
fundamental prediction of independent race models
(Teodorescu and Usher 2013). Independent race models, are
Bpurely absolute^ in that they are driven solely by absolute
input values in contrast to competitive models, in which the
interaction between the input values also contribute to the
integrated evaluations (Teodorescu and Usher 2013). Thus,
the current results speak against Bmodel purity^ either in the
relative or the absolute sense. As we show in the following
modeling section, only Bhybrid^ models, which maintain

sensitivity to both the relative and absolute aspects of
the stimuli, can satisfactorily account for our findings.
To anticipate our computational modeling results, we
find two ways of accounting for the joint observation
of absolute and relative processing. The first is an LCA
account, which combines absolute and relative evidence
dynamically, and the second is a diffusion account, in which
the stopping rule is based on differences (thus relative) and a
separate component, the processing noise, increases with the
magnitude of the input (thus absolute).

Computational modeling

Our results indicate a need for computational models of deci-
sion making to possess mechanisms for absolute value sensi-
tivity in addition to relative processing. In this section, we
investigate how different sources of sensitivity to absolute
values interact with different relative decision processes. To
this end, we first consider potential sources for absolute value
sensitivity that are independent of the modeling framework.
We then proceed to explore three model families. The first two
originate from a purely relative conceptualization of the deci-
sion process based on either ratios (as in the normalization
model) or differences (as in the DDM model). Within each
of these families, we consider both a purely relative version
and a hybrid version where relative processing is not pure but
varies parametrically on a continuum between purely absolute
and purely relative extremes. We explore a third model family,
dynamic relativity (as in the LCA model; Teodorescu and
Usher 2013; Usher and McClelland 2001), which is of an
intrinsically hybrid nature. The LCA model is related to
differential relativity, but here relativity emerges dynami-
cally over time as a result of lateral inhibition. We then
test the ability of the different models to account for our
results by fitting the models to empirical joint distributions
of response probability, correct RT, and error RT from
Exp. 1. We conclude by discussing insights from the model
fitting exercise and explore model predictions for hypothetical
input spaces.

Value sensitivity

Three sources for sensitivity to absolute values are examined.
The first two are general in the sense that they are independent
of specific model assumptions and thus can be implemented in
any model. These sources relate to the well-established obser-
vation that, for above threshold values, sensitivity to equal
differences decreases with intensity according to psychophys-
ical laws. Lighting the 111th candle makes less of a difference
than the 11th, and people will drive farther for a $30 discount
on $100 than for the same discount on a $1,000 product.
At the most basic level, this effect has been attributed to
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constant processing noise on top of a compressive, nonlinear
relation between objective values (e.g., physical, numerical)
and their corresponding representation as neural activations
(Geisler 1989). To capture the nonlinear relationship between
the momentary intensity at each stimulus location (i.e., sepa-
rately for brightness fluctuations of the right and left gray
patches in our paradigm) and their corresponding internal
representations, the momentary input values Ii(t) feeding
the decision process were modeled as:

I i tð Þ ¼ Si tð Þγ ð1Þ

Si(t) has the same distribution as the momentary physical
stimulus value (brightness) at location i (left/right) and γ>0 is
a power coefficient representing the nonlinear nature of the
perceptual (or neuronal) transformation.3

Diminishing value sensitivity also can be accounted for by
assuming that the processing of higher neural activations is
accompanied by higher variability (Geisler 1989). The seg-
regation of processing noise into two components: one for
constant general noise and another for activation dependent,
multiplicative noise has been instrumental in several recent
studies (Brunton et al. 2013; Louie et al. 2013; Lu and
Dosher 2008). To test this relation, processing variability
ξi(t) in channel i was modeled as a function of input inten-
sity Ii(t) according to:

ξi tð Þ∼N 0; πI i tð Þð Þ2
� �

þ N 0; σ2
� � ¼ N 0; πI i tð Þð Þ2 þ σ2

� �
ð2Þ

σ stands for the magnitude of general, stimulus independent
processing noise, and π represents the sensitivity of stimulus
dependent input noise to input intensity.4 Multiplicative noise
and psychophysical transformations introduce value sensitivity
at the level of the input and thus are independent from assump-
tions about the type of information processing relativity in the
decision mechanism.

Computational choice-RT models traditionally have been
pure in the sense that they were either purely absolute
(independent race model; Usher, Olami & McClelland,
2002; Van Zandt et al. 2000; Vickers 1970) or implemented
difference and ratio relations in their pure form. However,
purely relative and purely absolute processes do not represent
discrete states but rather two extremes on a continuum. The
balance between absolute and relative processing can be pa-
rameterized to interpolate between the two states. The form of
this interpolation depends on the type of information

processing relativity assumed in the decision stage. Thus, this
third mechanism for sensitivity to absolute values will be
treated separately for each model family in the following three
sections.

Fractional relativity: a normalization model analysis

To test the fractional relativity assumption, we implement a
full normalization model (Louie et al. 2013) where a decision
is made when one of the accumulated normalized inputs (i.e.,
input ratios)Xi crosses a predetermined threshold. The dynam-
ics of Xi are described by:

X i t þ 1ð Þ ¼ X i tð Þ þ INi tð Þ þ ξi tð Þ
INi ¼ I i tð Þ

λþ
X

I i tð Þ

8><
>: ð3Þ

Ii(t) is the momentary input (Eq. 1), Ii
N(t) is the normalized

momentary input, ξi(t) is the momentary processing noise,
independent over time and across channels (Eq. 2), and the
semi-saturation parameter λ≥0 allows the model to transition
continuously between a purely relative ratio (or normalization)
model (λ=0) and an asymptotically purely absolute indepen-
dent race model (λ≫∑I).

Differential relativity: a diffusion model analysis

We conceptualize the DDM as two independent accumulators
with the stopping rule applied to the difference (for a recent
application of this algorithm to simultaneousmodeling of both
perceptual and economic decisions, see Towal et al. 2013).
This architecture allowed us to model the flow of information
from the momentary perceptual values of each stimulus alter-
native (right and left brightness patches) through two separate,
parallel processing channels. Thus, a decision is made when
the momentary difference in accumulated evidence D(t)
crosses a predetermined threshold. For two alternative choices
this process is described by:

D tð Þ ¼ max X i tð Þf g−αmin X i tð Þf g
X i t þ 1ð Þ ¼ X i tð Þ þ I i tð Þ þ ξi tð Þ

�
ð4Þ

D(t) is the relative decision module tracking the momentary
differences between the accumulated evidence in favor of the
two response alternatives, 0≤α≤1 is the partial relativity coef-
ficient that allows the model to transition between a purely
relative DDM (α=1 implies: stop when the difference crosses
a threshold) and purely absolute independent race model (α=0
implies: stop when the largest independent accumulator crosses
a threshold; cf. Moreno-Bote 2010; Zylberberg et al. 2012),

3 Note that only clearly visible, above threshold brightness values were
used in the experiments. Thus, in Eq. 1 and all that follow, the perceptual
threshold value for brightness and the unique dynamics of sub-threshold
brightness perception are neglected.
4 A model corresponding to the Poisson assumption with ξi(t)∼N(0,
πIi(t)+σ

2) also was tested but did not perform as well.
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Xi(t) are the accumulated evidence values at time t corre-
sponding to the target and non-target alternatives and ξi(t)
is the momentary processing noise, independent over time
and across channels (Eq. 2).

Dynamic relativity: a leaky-competing accumulator model
analysis

The Leaky Competing Accumulator model (Bogacz et al.
2007; Usher and McClelland 2001) provides a different ap-
proach to partially relative information processing, and vari-
ants of this model have been used to study decision making in
both humans (Teodorescu and Usher 2013) and social insect
colonies (Marshall et al. 2009). The LCA model is based on
a basic race architecture but assumes in addition that at each
time step, accumulators lose information (neural leak) and
inhibit each other, both in proportion to the accumulated acti-
vation value in each processing channel. Thus, the accumula-
tors are described by the equation:

X i t þ 1ð Þ ¼ max 0; kX i tð Þ þ I i tð Þ−β∑
j≠i
X j þ ξi tð Þ

( )
ð5Þ

0<k<1 is the proportion of activation that remains after neural
leak, β is the proportion of lateral inhibition between accumu-
lators, and the max function is a neurally inspired nonlinearity
preventing neural activation from attaining negative values.
Because inhibition is proportional to total activation, it plays
only a minor role early in the trial (when activation levels are
still low compared with the absolute input values), approxi-
mating an independent race. However, as activation is accu-
mulated, the amount of inhibition in the system increases until
it overshadows the absolute input values and leads to diffu-
sion-like5 process that, granted enough time, terminates with
Bwinner-take-all^ dynamics (Bogacz et al. 2006; Marshall
et al. 2009). Whereas one accumulator continues to grow (as-
ymptotically limited by leak), the other is suppressed towards
zero (see Fig. 2 for example LCA trajectories for the additive-
boost manipulation).

Modeling methods

The present section deals with practical, theoretical, and ex-
perimental assumptions required for computational modeling

and fitting of choice RT data in general and for this study in
particular. The first subsection, BModeling Assumptions,^ is
less technical and is instructive with regards to the nature of
the relation between experimental design and computational
modeling. The rest of the subsections, however, are more
technical and can be safely skipped, either entirely or partially.
Those not interested in the technical details presented in this
section can continue reading from the Modeling Results
section.

Modeling assumptions

In the following model fits, input values were sampled from
the same distributions used to generate the stimuli in the ex-
periment (Si(t) Eq. 1), so that the models Bexperienced^ the
exact same external environment as the subjects. This
constrained approach to modeling the experimental setting is
crucial in discriminating between models that could otherwise
closely mimic each other (Teodorescu and Usher 2013), espe-
cially in view of recent concerns regarding the falsifiability of
response-time models (Jones and Dzhafarov 2013). However,
constrainingmodel inputs to the same distribution as the phys-
ical stimulus intensities is a nontrivial assumption that may be
unsuited for many experimental paradigms. In fact, the com-
mon practice when fitting choice RTmodels to data is to allow
input values to vary freely between conditions and assign free
parameters for each input and condition combination. What
allows us to assume a more constrained relationship between
physical stimulus values and input strengths relates directly
to the choice of stimuli and the design of the experimental
paradigm, which in turn are motivated by neural con-
straints. In our design, the stimuli are such that pre-
decisional neural interactions between the channels are min-
imized. This is achieved by choosing a low-level perceptual
modality (brightness or contrast is arguably the lowest level
of visual processing) while maintaining spatial separation
between the perceptual evidence streams (for a comprehen-
sive discussion see Teodorescu and Usher 2013).

In addition, the use of highly overlapping, temporally var-
iable stimuli distributions, intermixed within blocks justifies
the assumption of constant decision thresholds between ex-
perimental conditions. A common selective influence assump-
tion is that under such conditions, only drift-rates should be
allowed to vary between conditions (Ratcliff and Smith 2004).
However, having the model inputs linked directly to the phys-
ical properties of the stimuli allowed us to derive (rather than
fit) condition dependent drift-rates (Teodorescu and Usher
2013). All of this resulted in zero free parameters being
allowed to vary between experimental conditions. Model free-
dom was confined to general model parameters, thus forcing
the models to predict the pattern of results for all experimental
conditions with a single unique set of parameters.

5 More technically, under certain assumptions, the LCA can be mathe-
matically decomposed into two components Y1=X1+X2 & Y2=X1−X2

(Bogacz et al. 2006; Heathcote 1998; Marshall et al. 2009). The former
(Y1) is an absolute component predominant in the initial stages of accu-
mulation, the latter (Y2) is a differential relativity component dominating
the final stages. The absolute component Y1 represents the speed with
which the process approaches the threshold in the initial stagees of accu-
mulation which will be achieved faster when absolute input values are
higher. Thus, the LCA also can be conceptualized as a DDM-like process
with lower thresholds for conditions with higher absolute input values.
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Note that these constraints do not imply that drift rates were
fully determined by the physical stimulus values. As men-
tioned earlier, parametric assumptions were introduced into
all the models regarding the psychophysical transformations
of physical (energy) values into psychological (perceived)
values (Eq. 1) as well as the dependence of processing noise
on stimulus intensity (Eq. 2). In addition, assumptions about
the relationships between inputs, such as constraining the sum
of all drift-rates to equal a constant, also were captured para-
metrically by incorporating continuous partial relativity pa-
rameters. Having drift-rates constrained by the physical prop-
erties of the stimuli also allowed us to use computational sim-
ulations, based on the results of the model fits, to generate
input space mappings, which produce model predictions for
a continuum of possible empirical manipulations.

Model parameters

Standard parameters

Following the above experimental and theoretical consider-
ations, no parameters in our models were allowed to vary
between experimental conditions. Specifically, 4 standard free
parameters were included with all models: (1) threshold (Th)
that represents response caution such that higher thresholds
lead to slower but more accurate decisions; (2) general pro-
cessing noise (σ2) representing the intrinsically noisy nature of
neural processing; (3) nondecision time (Tnd) corresponding
to the time it takes to process all nondecision components,
such as perceptual encoding and response generation processes;
and (4) a time-step parameter (Ts), which is a scaling parameter
that determines the equivalent duration in milliseconds for one
computational iteration. The last two parameters are needed
to transform all simulated RTs (RT’; expressed as discrete

time steps) to real-world RTs (expressed in milliseconds)
such that RT = Ts*RT′+Tnd.

In addition, all models included two parameters that describe
the dependence of model inputs on the physical properties of
the stimuli. Momentary drift-rates Ii(t) for each channel
(I = left/right) were directly derived from the momentary
physical brightness values Si(t) by transforming them through
a psychophysical power law (Eq. 1) and perturbing the ensu-
ing value by intensity dependent random variability (Eq. 2).
The psychophysical transformation required one parameter, a
power-law coefficient (γ) representing the concavity of the
psychophysical transformation (Eq. 1). The intensity depen-
dent random input variability required an additional parame-
ter, an input-noise coefficient (π), representing the sensitivity
of the standard deviation of stimulus dependent input-noise to
the momentary perceived stimulus intensity (i.e., post psycho-
physical transformation; Eq. 2).

Between-trial variability parameters

In order for sequential sampling models to be able to describe
correctly the form of both correct and error RT distributions, it
is common practice to add some sources of between-trial var-
iability. One source of between-trial variability, starting point
variability (SPV), was applied to all models in the same man-
ner. In all our simulations, the accumulation process for each
alternative i began at an arbitrary baseline activation level of
0.4 to which we added a uniformly distributed random vari-
able U(0, SPV) independent across channels. All models, ex-
cept for the LCA, also traditionally require an additional
between-trial drift-rate variability parameter (η) to account
well for the form of response time distributions (Ratcliff and
Rouder 1998). This was implemented in the models as a
Gaussian random variable N(0, η2) that is drawn once for each
trial and independently for each channel i and added to all

Fig. 2 Baseline vs. additive boost activation trajectories for the target and
non-target accumulators (X1 & X2, respectively) with identical noise
sequences for representative models. Left: DDM. Center: independent
race model; Right: LCA model. The green lines represent the absolute
thresholds on accumulation, and the green parentheses represent the

relative threshold on the difference between accumulated evidence.
While the independent race and LCA reach the threshold faster for
higher but equi-difference absolute inputs, the DDM is invariant to this
manipulation
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inputs Ii for the duration of that simulation trial. The
normalized race model predicted distributions that were too
symmetrical, so following Ratcliff and Smith (2004) and
Teodorescu and Usher (2013) we augmented it with a param-
eter for between trial exponential variability in response
criteria (τ) such that for each trial, response criteria were
drawn from an exponential distribution Th + exp(τ).

Relativity parameters

To control the degree of processing relativity in the normali-
zation and DDM models, we also included a partial-relativity
parameter, which was implemented differently for the normal-
ization and DDM models (see λ & α in Eqs. 3 and 4,
respectively). The LCA model also required two additional
parameters for leak (k) and inhibition (β). The inhibition pa-
rameter (β) is considered the partial relativity parameter for
the LCA model, because in its absence (β=0) the model re-
duces to a purely absolute, independent, leaky race model.
Note, however, that the LCA is fundamentally value sensitive
and it does not have a purely relative form. For the LCA, some
sensitivity to absolute input values is retained early in the
process for any value of β.

General optimization algorithm

To evaluate the models’ ability to account for response time
distributions and response accuracy, we fit the models to the
empirical data of Experiment 1. Models were fit to individual
participant data as well as to aggregate dada representing the
average observer. To optimize model parameters and to deter-
mine how well the models fit the data, we used Quantile
Maximal Likelihood (QMPE; Heathcote et al. 2004;
Heathcote and Brown 2004). In QMPE, for each model, the
parameter space is searched for a set of parameters that max-
imizes the likelihood of the empirical data once precise RT
values are censored to bins defined by RT quantiles (see be-
low). Technically, this search was achieved by using the SIMP
LEX algorithm (Nelder and Mead 1965) as implemented by
the Bfminsearch^ function in MATLAB. The full algorithm
consisted of repeated simplex optimizations with 10,000 iter-
ations per model evaluation, the first beginning with a random
starting point, and each ensuing simplex beginning with the
parameter set obtained by the previous simplex. This process
continued for as long as the goodness of fit (likelihood) im-
proved. The process terminated at the first occurrence of a
simplex optimization, which failed to improve on the likeli-
hood achieved by its predecessor. The parameters from the
last optimization are likely to be the result of a random drift
away from the local minima due to the stochastic nature
of the models. These parameters were therefore discarded,
and the one-but-last set of parameters was used as the

starting point of a final Bfine-tuning^ simplex optimization
with 100,000 iterations per model evaluation. The Bfine-
tuned^ parameter set was retained for model comparison pur-
poses. For each model, the above procedure was repeated with
10 starting points for the group (aggregate) data set and 5
starting points for each of the individual data sets, yielding 10
candidate-parameter sets for the group data and 5 for each of
the participants. The reported best fitting parameters (Tables S1
& S2, SupplementaryMaterials) are the ones achieving the best
average likelihood out of the identified candidates. Average
likelihood was calculated for each candidate parameter set
based on 20 repeated simulation runs. Starting points for the
group data fits were generated by initially finding a reasonable
parameter set for each model and then taking random values
between 60 % and 140 % of the original parameters. Starting
points for the individual fits were generated in a similar manner
only with the best fitting parameters identified at the group
level acting as the initial parameter set. While some logical
and theoretical constraints apply to the final parameter values,
no constraints were imposed on parameter values during the
optimization procedure, allowing parameters to assume values
outside the original range of the starting points. This method
provided a reasonable compromise between computational
complexity and fit quality. Using this method, we achieved
good fits for all models except for the fits to individual data
for the most complex model (the full normalization model;
model 2 in Tables 1 and 2). Due to the higher complexity, this
model had difficulties converging for some of the individual
subjects. For this model, additional explorations were conduct-
ed with different starting points, including the best-fitting
(group as well as individual) parameters for a submodel (the
pure normalization model; model 1, Tables 1 and 2) The final
performance of this model was evaluated according to the best
parameter sets identified over all optimization results.

Error function

To generate the QMPE, for each of the seven participants, we
collapsed across right and left responses6 and calculated the
0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles and response propor-
tions for each of the three experimental condition (baseline/
additive boost/multiplicative boost) and for each of the two
response types (correct/error) resulting in 6 sets of 5 quantiles
for each participant (a total of 2 (correct/error) * 3 (condition)
* 5 = 30 quantiles). Thus, for each participant and for each
condition and response type combination, six bins can be de-
fined using the 5 quantiles as borders. To estimate model

6 The experiments were fully randomized, containing exactly the same
number of right and left trials. In addition, feedback was the same for right
and left trials and no rewards were provided. Thus, no bias for right or left
response was expected and consequently all data were collapsed over
right and left responses.
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predictions for a given set of parameters, we simulated 10,000
or 100,000 (for fine tuning) trials and calculated, for each of
the experimental conditions, the proportion of trials that fall
within the bounds of each of the 12 bins corresponding to
choice accuracy and RT quantiles (6 bins for correct re-
sponse and 6 for errors; note that for each condition these
12 proportions sum to 1). Denoting the number of empiri-
cal observations in a particular bin i by ni and the proba-
bility predicted by the model for a particular bin i by Pi,

the likelihood L of the data given the model is defined as:

L ¼ ∏
i
Pi

ni

where i rangers over the entire set of 36 bins. In addition to
fitting the models to individual participants, we fit the models
to Baverage observer data.^ For the average observer data,
quantiles were calculated by averaging the corresponding indi-
vidual participant quantiles and bin frequencies were obtained

Table 1 Model goodness of fit scores for group data

Mean likelihoods and SDs are based on 20 repeated simulations for each model with the best fitting parameters (100,000 iterations per simulation). AIC
and BIC are calculated based on the mean likelihoods with N=8,400 (the total number of observations over all subjects). The colors indicate normalized
magnitude within each column (green indicates smaller values – better fit or lower variability for the SD column; red indicates larger values – poorer fit or
higher variability for the SD column). Note that the LogLikelihood values obtained formodels 1, 2, and 3 are higher than either the AIC or the BIC values
obtained for models 4 and 5. In other words, because penalty for complexity in AIC and BIC is added to the LogLikelihood value, these results
demonstrate that models 1, 2, and 3 would have performed worse than models 4 and 5 even if they had no free parameters. This result
renders exploration of simpler, submodels of models 1, 2, and 3 unnecessary

Table 2 Model goodness of fit scores for individual participants

Mean likelihoods and SDs are based on 20 repeated simulations for each model with the best fitting parameters (100,000 iterations per simulation). AIC
and BIC are calculated based on the mean likelihoods with N=1,200 (the total number of observations per subjects). The colors indicate normalized
magnitude within each column (green indicated smaller values – better fit; red indicates larger values – poorer fit)
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by summing the corresponding bin frequencies across partici-
pants (Moran et al. 2013).

The objective of the optimization procedure was to find, for
eachmodel, a parameter set that maximizes the likelihood L of
the data. In practice, this was achieved by minimizing twice
the negative log-likelihood:

−2ln Lð Þ ¼ −2
X

i

niln Pið Þ

Optimizing the models to predict binned response propor-
tions allows us to test the models on their ability to simulta-
neously account for both RT distributions of correct and error
responses as well as accuracy (i.e response probabilities).

Model comparison

We fit the models to both group (average observer) and individ-
ual participant data. The results are reported in Tables 1 and 2,
respectively. Because model comparisons based on individual
fits are in close agreement with group, average observer fits, in
the remainder of the paper we focus our discussion on themodel
comparisons based on fits to group data. This choice is moti-
vated by our desire to focus the discussion on general qualitative
differences between the models rather than on individual differ-
ences (Ratcliff and Smith 2004).

AIC and BIC scores

To compare model performance, we provide two goodness of
fit measures that penalize models for extra complexity: (1)
The Bayesian Information Criterion (BIC; Schwarz 1978);
and (2) Akaike Information Criterion (AIC; Akaike 1974).
Complexity, in these methods, is operationalized as propor-
tional to the total number of free parameters and the two
methods differ with respect to the magnitude of this penalty.
Generally, AIC being more liberal and BIC more
conservative.

BIC was calculated as:

BIC ¼ −2ln Lð Þ þ kln Nð Þ
and AIC was calculated as:

AIC ¼ −2ln Lð Þ þ 2k

where k is the number of free parameters for each model. N is
calculated differently for the average observer and individual
subject fits. For the average observer, N is the total number of
trials across all participants, whereas for each individual par-
ticipant, N is the total number of trials for that specific partic-
ipant. The BIC is a relative measure where a difference in
scores that is greater than 10 can be considered substantial
(Raftery 1995).

Modeling results

Fractional relativity

In its purely relative form (λ=0) and in the absence of
intensity dependent noise and psychophysical transforma-
tions (π=0; γ=1), fractional relativity would predict com-
plete invariance to the multiplicative boost manipulation.
We first fit the purely relative model with flexibility in the
form of the psychophysical transformation (γ≥0) to the
data from Exp. 1. In this form, the model captured the
accuracies of the different conditions well but missed all
RT effects, both quantitatively and qualitatively (Tables 1
and 2, Model 1; Fig. 3 left column; for all models see SI
Figure S1 for Quantile Probability Plots (QPF; Ratcliff
and Smith 2004) describing the full choice and RT distri-
butions for correct and error responses for the best average
observer fitting parameters of all models; see also Table S2 for
average observer best fitting parameters and Table S1 for in-
dividual participant best fitting parameters). To test the roles
of the three sources of absolute value sensitivity within the
fractional relativity framework, we fit the full normalization
model (Eq. 3). This form (i.e., λ≥0;π≥0;0≤γ≤1) achieved
better results (Tables 1 and 2, Model 2), but for the average
observer this was obtained with λ≅79≫∑I indicating no role
for normalization (i.e., asymptotically independent race mod-
el; Fig. 2, central panel, for example trajectories of an inde-
pendent race model demonstrating the RT speedup effect).
While naturally sensitive to absolute input values, indepen-
dent race models cannot capture the slower responses in the
additive compared with the multiplicative-boost condition
(Teodorescu and Usher 2013). Even with all forms of value
sensitivity, the normalization model was not able to simulta-
neously capture all the qualitative patterns in our data. Thus,
our results support neither form of fractional relativity (pure or
partial) nor purely absolute processing.

Differential relativity

In its most widely used form the DDM is purely relative
(α=1), and in the absence of intensity-dependent noise
and psychophysical transformations (π=0; γ=1) would
predict complete invariance to the additive boost manipu-
lation (see Fig. 2, left panel for example trajectories dem-
onstrating this). Fitting the purely relative model with γ
free to vary, the best fit was achieved with γ=0.49<1
(typically γ~0.5 for brightness stimuli; Geisler 1989) leading
to a compressive psychophysical transformation. Thus, the
DDM Bperceived^ the brightness difference between the two
alternatives7 in the, high intensity, additive-boost condition as

7 BPerceived^ difference is equivalent to drift-rate in the classic formula-
tion of the DDM model.
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smaller than the equivalent physical difference in the,
lower intensity, baseline condition leading to higher
mean RT for the additive-boost condition in contradic-
tion to our data (Fig. 3 column 2; Tables 1 and 2,
Model 3).

To test the roles of the three sources of absolute
value sensitivity within a differential relativity frame-
work, we fit the full DDM model (Eq. 4) to the data
from Exp. 1. The model captures all the data well both
qualitatively and quantitatively (Tables 1 and 2, Model
4; Fig. 3). Interestingly, the best fit was achieved with a
degenerate partial relativity coefficient α=1 reducing to
a model where the sensitivity to absolute values comes

solely from the noise component (π=0.69). Thus, within
a DDM framework, our model fits provide support for
the dominant role of multiplicative noise over partial
modulation of stopping rule relativity.

Dynamic relativity

The LCAmodel (Eq. 5) captured all the empirical effects both
qualitatively and quantitatively (Tables 1 and 2, Model 5;
Fig. 3, rightmost column). Interestingly, the fit was achieved
with π<10−4 indicating no role for input dependent noise in
contradiction to the DDM interpretation.

Fig. 3 Top: meanRT (upper panel) and accuracy (lower panel) model fits
(models 1, 3, 4, and 5, Table 1) to group data from Exp. 1 (red lines =
model; black ‘x’s = data, with gray error bars representing within subject
standard errors according to (Cousineau 2005). While model fits were
performed on quantile data to simultaneously capture accuracy and RT
distributions (for correct and error trials), only mean overall RT and
accuracy are shown to highlight the qualitative effects. Bottom: Model
predictions for 2AFC perceptual input spaces (I1 = Y axis; I2 = X axis)
based on simulations with the best fitting parameters for eachmodel (as in
Table S1). The upper panel corresponds to mean overall RT and the

bottom panel to the proportion of I1 responses (white = high values;
black = low values; to maximize the visibility of the contours, the color
range was normalized separately for each panel and all RT values>
1,100 ms were trimmed). The circle, square, and diamond markers
respectively represent the mean brightness values used in the baseline,
multiplicative-boost, and additive-boost conditions in experiment 1.
Contour lines are only included in the bottom (response probability)
row to accentuate the relatively subtle differences compared to the more
pronounced contour differences in the upper (RT) row
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Input space analysis

To better understand the dynamics and predictions of the dif-
ferent models, we performed a simulation-based computation-
al investigation of input spaces. The best fitting average ob-
server parameters for each model (as in Table S1) were used
for these simulations. Using tractable transformations of phys-
ical stimulus values into model input values allowed us to
derive model predictions for a continuum of possible stimulus
value combinations, including the values used in the experi-
ment (Fig. 3, bottom panel). The first observation that stands
out is that models differ only minimally in their predictions for
accuracy contours. Except for the purely relative DDM (mod-
el 4; Fig. 3, second column) where accuracies are approxi-
mately constant for equal differences (contours parallel to
main diagonal), predictions of all models maintain approxi-
mately constant accuracies for constant input ratios (fanning
out contours compared to the diagonal). The second observa-
tion is that RT dynamics vary qualitatively between different
relative architectures. Purely fractional relativity leads to a fan
like pattern that approximately maintains ratios (normalized
race model; Table 1, model 1; Fig. 3, first column). Purely
differential relativity predicts approximately parallel diagonal
lines (DDM; Table 1, model 3; Fig. 3, second column) that
maintain constant differences. Unlike purely relative models,
RT dynamics for both the partially relativemodels (DDMwith
input dependent noise and the LCA model (Table 1, models 4
and 5; Fig. 3, two rightmost columns correspondingly) predict
RT contour lines that are approximately parallel when the
stimuli are clearly discriminable (far from the main diagonal)
yet converge towards the main diagonal (rather than fanning
out) for less discriminable stimuli. In other words, both par-
tially relative models make the testable prediction that the size
of the additive-boost RT speedup effect would be larger for
less discriminable stimuli. The curvature of the heat contours
suggests that there are quantitative differences between the
two partial relativity architectures in the rate with which RT
changes as a function of absolute input values. This provides
an avenue for stronger future tests of the models by using
several Bboost^ levels (e.g. baseline; baseline*5/4;
baseline*3/2; baseline+0.1; baseline+0.2; bold represents
current mean brightness values in Exp. 1 & 2).

Discussion

In this study, we focused on assumptions regarding the rela-
tivity of information processing and its sensitivity to absolute
values in order to learn about the mechanisms underlying
perceptual decision making. Critically, our experimental re-
sults demonstrate a sensitivity of response latencies to both
additive and multiplicative boosts in brightness intensity
values, which was not predicted by purely relative models:

RTs speeded up with boosted brightness levels, even when
the differences or the ratios were maintained. These effects
constitute violations of value invariance predicted by purely
relative models of decision making. The ratio and difference
theoretical frameworks discussed in this study can be regarded
as purely relative in that they forfeit all information about, and
thus any sensitivity to, the absolute values representing the
choice alternatives. Because successful performance in our
discrimination task only requires attending to the relation of
the two stimuli (i.e., which one is brighter relative to the oth-
er), this pure relativity assumption can be considered rational,
at least in the sense that the absolute values are irrelevant to
task performance.

Value sensitivity, as it was observed in this study, is remi-
niscent of Pieron’s law whereby higher intensities lead to
faster responses (Geisler 1989). However, previous demon-
strations of Pieron’s law have confounded higher intensity
with higher signal to noise ratio (Van Maanen et al. 2012).
This resulted in decisions being easier for the higher intensity
conditions, as in the multiplicative boost condition in this
study, thus allowing for a natural account within standard
choice RT models. In the absence of specific constraints on
the relationship between physical stimulus values and model
inputs, higher signal to noise ratios are commonly associated
with higher drift-rate differences (in DDM models) or higher
drift-rate ratios (in normalization models). This, given a con-
stant decision threshold, directly leads to faster RTs in most
models. However, in our experiments, RTs were faster even in
the additive boost condition where the signal to noise was not
larger than the baseline condition. Therefore, our results con-
stitute the first demonstration that Pieron’s law holds even for
conditions where higher intensity is associated with equal or
lower signal to noise ratios compared with the lower intensity
conditions. In addition, we replicate the results of Teodorescu
and Usher (2013), demonstrating slower RTs for higher non-
target stimulus values, in contradiction to purely absolute
models (i.e., independent race models), which predict the op-
posite pattern. Thus, our experimental framework provides a
theoretically motivated benchmark manipulation for simulta-
neously testing multiple decision-making theories.

We contrastedmodels that varied with respect to the type of
relative information processing (differential vs. fractional), the
degree of relativity (on a purely absolute to purely relative
continuum), lateral inhibition (an alternative neural mecha-
nism for partially relative evidence integration) and the type
of noise (constant or input dependent). The results of the
model comparison rule out purely absolute (independent
race) models, purely relative models of the differential
type based on the integration of (psychophysically transformed)
differences, and both pure and partially relative models of the
fractional type based the integration of (psychophysically trans-
formed) normalized inputs. Interestingly, fractional relativity
captures the accuracy results quite well, and its failure applies
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almost exclusively to RTs, demonstrating the importance of
fitting multiple dependent measures. In a recent study, normal-
ization was used to explain relative effects of value manipula-
tions on accuracy (Louie et al. 2011). The authors showed that
increasing the value of a third, nonpreferred alternative changed
the proportion of choices between the two preferred alternatives
in favor of the second-best alternative. However, in our study
the stronger nontarget value in the additive compared with the
multiplicative boost produced slower RTs in addition to lower
accuracy. While predicting the accuracy effect correctly, the
normalization model did not produce an adequate RT slow-
down. Thus, our results suggest that a reexamination of the
Louie et al. dataset with respect to choice RTs might provide
additional insights into the mechanisms underlying the decision
process. Note that we rule out a normalization scheme that is
plausible and prevalent in the literature. However, other nor-
malization schemes can be potentially designed based on dif-
ferent principles other than ratios, which might be able to better
account for our results. Nevertheless, our results demonstrate
that any such scheme should incorporate some measure of ab-
solute value sensitivity and cannot be purely relative.

Due to its purely relative nature, the DDM has been
claimed to be incompatible with trial by trial sensitivity to
absolute values as previously associated with models of social
colony decision making (Pirrone et al. 2014) and now, as per
our results, also with findings for human decision making.
However, the neurally plausible assumption that processing
noise is proportional to momentary input values, coupled with
a differentially relative decision mechanism, resolves this
challenge. The results of this study imply that the dependence
of processing noise on input values is not by any measure just
a technical assumption but one that has direct theoretical im-
plication for the underlying psychological mechanism. The
segregation of general processing noise into general and input
dependent, multiplicative noise components also is consistent
with the modeling work of Brunton et al. 2013 (cf. Lu and
Dosher 2008). Interestingly, Brunton et al. found zero general
processing noise and a major role for input dependent noise.
However, their conclusion is contingent on using a differential
relativity framework to fit accuracy data. In our computational
study, the differential and dynamic relativity frameworks cat-
egorically disagreed regarding the role of multiplicative noise.
Thus, beyond stressing the added value of fitting RTs, the
current work suggests that conclusions about properties of
internal processes such as the roles of general versus multipli-
cative noise can critically depend on the, often arbitrary,
choice of modeling architecture.

Indeed, dynamic relativity also captured our results well,
both quantitatively and qualitatively. The LCA model can be
conceptualized intuitively as a dynamic amalgam of both ab-
solute and differentially relative processing occurring at early
and late stages respectively. Under some assumptions, the
LCA is asymptotically equivalent to a DDM (Bogacz et al.

2006; Bogacz et al. 2007;Marshall et al. 2009), but with lower
decision thresholds for conditions involving higher input
values. Interestingly, the two models provide two incompati-
ble accounts for our data. Specifically, the DDM used a purely
relative stopping rule such that input dependent multiplicative
noise was solely responsible for producing intensity related
RT-speedup effects. Conversely, multiplicative noise played
a detrimental role in the LCA, where speedups were uniquely
produced by value sensitivity during the initial stages of the
gradual transition from purely absolute to increasingly relative
processing as a result of lateral inhibition. Conceptually, the
account provided by the LCA can be considered intrinsic to
the architecture of the decision mechanism as the RT speedup
is produced by sensitivity to absolute values during the early
stages of evidence accumulation. On the other hand, the ac-
count provided by the DDM can be considered extrinsic, be-
cause it is based on the scaling properties of neural noise,
which are independent from the decision mechanism.
Indeed, both accounts could be the end products of evolution-
ary pressures. However, while the former seems to suggest an
evolved value sensitive design feature, the latter is more
compatible with a mechanical limitation of information
processing, not eliminated through natural selection due
either to a lack of a better alternative or to the benefits
of value sensitivity (expedited decisions for higher values)
overweighing its disadvantages (lower accuracy for equally
discriminable higher values).

More generally, this study provides an observation of what
could be considered an involuntary, value dependent, bottom
up, speed-accuracy tradeoff (SAT; Heitz 2014; Pirrone et al.
2014). We found that for equal or lower stimulus discrimina-
bility, high-intensity stimuli bias decision making towards
faster decisions at the expense of higher error-rates.
Deliberate, top-down SATs have been the subject of extensive
investigation in psychology, traditionally studied by manipu-
lating either the subject’s goals (e.g. respond fast vs. respond
accurately) or by controlling the subjects RT directly via re-
sponse cues (Heitz 2014). However, such voluntary criterion
modulations are relatively slow, effortful, and require execu-
tive control based on intricate understanding of the context,
making them inefficient for dealing with trial by trial varia-
tions in decision values.

Although the sensitivity to absolute values appears to vio-
late Brationality^ in the narrow sense, it is possible that it has
an adaptive value in a broader ecological sense, which in-
cludes typical tasks and environmental contingencies. This
relates to a different kind of tradeoff, the speed-value tradeoff,
which has been recently suggested as more appropriate out-
side the laboratory (Pirrone et al. 2014). Most decisions in
naturalistic environments involve value, rather than accuracy
based rewards, whereby the agent is rewarded in proportion to
the value of the chosen alternative and not with constant re-
wards for objectively correct (Bbest^ alternative) responses. In
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such environments, there are several reasons why decisions
between high-value alternatives may warrant expedited re-
sponses (i.e., speed-value tradeoff). First, the set of available
alternatives is not always static, which often is the case in the
laboratory. Thus, taking a long time to choose might allow for
additional alternatives to present themselves (Pais et al. 2013;
Pirrone et al. 2014). If the values of the alternatives considered
are low, a new alternative is more likely to be better than the
existing ones. In contrast, in a situation where the existing
alternatives are already high valued, new alternatives are un-
likely to provide benefits but existing (high-valued) alterna-
tives could expire. Second, unlike monetary rewards, which
can be infinitely hoarded, many natural resources relevant to
survival and reproduction have a short lifespan. Take for
example a hungry agent deliberating between two unoccu-
pied, fruit-laden patches of berries on opposite sides of a
valley. When such perishable resources are abundant (high
value of redness), it is unlikely one could take advantage or
consume all of the reward, making deliberation over differ-
ence in the absolute quantities less relevant and favoring a
quick decision over a slow but objectively Bcorrect^ one. In
addition, intense perceptual values can indicate abundance
but are also more salient and thus more likely to attract
competition. Consequently, dallying for too long in deciding
could result in these alternatives being occupied by someone
else and leading to loss of resources or potential conflict.
Alternatively, when dealing with negative rewards that are
to be avoided, high-stimulus intensities also could serve as a
cue for danger (e.g., the fast motion of an incoming projec-
tile or predator; the loud noise of a stampeding herd or rock
avalanche, etc.). The potentially high cost of not reacting in
time to such high intensity stimuli, could again support
quick and frugal reactions over making an Baccurate^ re-
sponse too late.

Therefore, a mechanism that allows speeded reactions to
high intensity situations in a bottom-up fashion, might be
meta-optimal in the sense that, beyond providing satisfying
decision quality in most everyday situations, it also captures
the merit of expedited decisions under certain unexpected
situations characterized by high intensity stimuli. Our
study provides evidence for violations of invariance to
absolute values and suggests that partially relative infor-
mation processing is both necessary and sufficient for pro-
ducing the observed value sensitivity.

Recent studies on decentralized decision making in biologi-
cal systems, such as house hunting bees, revealed parallels be-
tween neural mechanism responsible for decision making in the
human brain and collective decision making in social colonies
(Seeley et al. 2012). Indeed, insights from modeling human
decision making with lateral inhibition as in the LCA model
have proven useful in modeling bee colony behavior (Marshall
et al. 2009; Pirrone et al. 2014). These parallels suggest similar
evolutionary pressures across species whereby retaining

sensitivity to absolute values in addition to relative ones might
hold adaptive advantages (Pais et al. 2013). The mechanism
underlying value sensitivity in both humans and social colonies
could be the result of an evolved advantage mediated by lateral
inhibition or an accidentally beneficial side effect of mechanical
limitations on the variability of information processing. Either
way, distinguishing between these two hybrid theoretical frame-
works would require an integrated approach. To this end, future
investigations, in which the type of noise and the nonlinearity
are measured via more complex psychophysical procedures
(Brunton et al. 2013; Lu and Dosher 2008) could be used in
conjunction with dedicated intensity manipulations of the type
presented in this study.
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