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Abstract The issue of optimal performance in speeded two-
choice tasks has played a substantial role in the development
and evaluation of decision making theories. For difficulty-
homogeneous environments, the means to achieve optimality
are prescribed by the sequential probability ratio test (SPRT),
or equivalently, by the drift diffusion model (DDM). Biases in
the external environments are easily accommodated into these
models by adopting a prior integration bias. However, for
difficulty-heterogeneous environments, the issue is more elu-
sive. I show that in such cases, the SPRT and the DDM are no
longer equivalent and both are suboptimal. Optimality is
achieved by a diffusion-like accumulation of evidence while
adjusting the choice thresholds during the time course of a
trial. In the second part of the paper, assuming that decisions
are made according to the popular DDM, I show that optimal
performance in biased environments mandates incorporating a
dynamic-bias component (a shift in the drift threshold) in
addition to the prior bias (a shift in the starting point) into
the model. These conclusions support a conjecture by Hanks,
Mazurek, Kiani, Hopp, and Shadlen, (The Journal of
Neuroscience, 31(17), 6339—6352, 2011) and contradict a
recent attempt to refute this conjecture by arguing that opti-
mality is achieved with the aid of prior bias alone (van
Ravenzwaaij et al., 2012). The psychological plausibility of
such “mathematically optimal” strategies is discussed. The cur-
rent paper contributes to the ongoing effort to understand optimal
behavior in biased and heterogeneous environments and corrects
prior conclusions with respect to optimality in such conditions.
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Having ordered fresh fish rather than game for both you and your
sweetheart, the only thing that is needed for a perfect dinner is
the appropriate wine! When you are just about to obey the
dictum, “White wine accompanies fish, red wine-meat” and
order a bottle of Chardonnay, as if to make your life more
complicated, the wine waiter begins to bombard you with indis-
pensable information. He informs you that the red Merlot won
the gold medal in the last wine festival in Venice, that the white
Riesling is especially effective in creating a romantic atmo-
sphere, that the fish you ordered has a supreme aromatic taste,
etc. This baffling situation demonstrates the real-life necessity to
combine prior general knowledge (white wine is generally more
appropriate with fish) with situation-specific novel information.

In the cognitive laboratory, participants face similar, albeit
generally less romantic, situations. Consider a perceptual,
speeded-choice task in which participants are asked to choose
which of two lights flickers with a higher rate. Suppose that
participants are informed in advance that on 75 % of the trials
the left, rather than the right-side, light corresponds to the
correct answer. As the trial onsets, participants should
integrate trial-specific perceptual (flickering) evidence
with the advance information with respect to the external
bias. What is the optimal way to make decisions in such
situations?

The standard or ideal of “optimality” has exerted a funda-
mental and prolonged influence on research, guiding both the
development and evaluation of cognitive as well as of norma-
tive decision-making models (e.g., in psychology, econom-
ics). In addition, optimal problem-solving contributes im-
mensely to the development of algorithms in the computer,
neural networks and artificial intelligence sciences. Despite its
importance, the issue of optimality suffers from misinterpre-
tations that may lead research efforts astray. The purpose of
the current paper was to contribute to the ongoing effort to
understand optimal behavior in biased and heterogeneous
environments (see below) and to correct prior conclusions
with respect to optimality in such conditions.
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The current research is grounded in the framework of
sequential sampling, which has been playing a pivotal role
in the study of optimality. Generally, sequential sampling
theories assume that participants sample continuously the
(perceptual) stimulus, gathering with each “time frame” a
novel piece of evidence. This information is accumulated in
favor of each of the response alternatives, until some threshold
level is reached. This threshold can correspond either to a
relative (in the drift diffusion model; DMM; e.g. Ratcliff,
1978; Ratcliff & Rouder, 2000; Wagenmakers, 2009) or an
absolute (in race models; e.g. Brown & Heathcote, 2008;
Vickers, 1979; Usher & McClelland, 2001") level of evidence
in favor of one alternative or the other. Within this framework,
it is assumed that prior knowledge with respect to the correct
decision biases the response (Diederich & Busemeyer, 2006;
Ratcliff & McKoon, 2008; Mulder et al., 2012).

Before identifying the optimal decision rule, the term
should be clearly defined. In the current paper, I focus on
two definitions of optimality that have been dominating the
decision-making literature. According to the first definition
(Wald, 1947; Wald & Wolfowitz, 1948), henceforth “Wald
optimality” (WO), a decision-making rule is optimal if it
minimizes the mean response time (MRT) while achieving a
desired level of accuracy. Thus, any other decision rule that
achieves the same level of accuracy is necessarily more time-
consuming (in the mean). A dual perspective on the WO
decision rule is that it maximizes accuracy for a given MRT.
The second definition of optimality, henceforth “reward rate
optimality” (RRO), pertains to maximization of the reward
rate (RR). According to this definition, behavior is optimal
when the decider maximizes the average reward per time-unit
(Gold & Shadlen, 2002). RRO is probably a more ecological-
ly valid concept of optimality than WO in that it describes
better the goals and incentives of animals and humans in
decision tasks (Balci et al. 2011).

The concept of WO has traditionally been associated with
the models that achieve it, the sequential probability ratio test
(SPRT; Wald and Wolfowitz, 1948; Laming, 1968) and the
drift diffusion model (DDM). Recently, however, it has been
shown that alternative models are more efficient than DDM
with respect to reward rate. Such models include the urgency
gating model (Cisek et al., 2009; Thura et al., 2012) and a
simplified variant of a Bayesian model (Deneve, 2012).
Nevertheless, these models also are reward-rate suboptimal.
Drugowitsch et al. (2012) applied the method of dynamic
programming to show that RRO is achieved by a strategy of
integrating information according to a diffusion-like

"In Usher & McClelland’s Leaking Competing Accumulators model
(LCA; 2001), the evidence in favor of each alternative is taxed by mutual
inhibition from the other alternative.

mechanism. Critically, however, the RRO strategy mandates
adjusting the choice threshold within the course of individual
trials, unlike DDM in which the choice threshold is constant
within trials. In summary, RRO optimization is attained via
combining a diffusion-like integration with a within-trial,
temporally flexible stopping rule.

The fact that the two notions of optimality, WO and RRO,
are associated with different models may lead to the erroneous
conclusion that these are two unrelated concepts of optimality,
each subserved by its own optimality achieving model(s).
However, such interpretation must be avoided. Indeed, in the
first part of the paper, I will show that WO and RRO are
intimately related, in fact equivalent, concepts. Consequently,
achieving one form of optimality satisfies the other as well (for
an appropriate selection of parameters, as explained below).

If WO and RRO are equivalent forms of optimality, then
how come they are associated with different models? The key
to the answer pertains to the distinction between homoge-
neous and heterogeneous environments. In the context of the
current discussion, an environment is simply a set or a “block”
of experimental trials. A block of trials is hiomogeneous or
heterogeneous (with respect to difficulty) if the difficulty level
across trials in the block is constant or variable respectively. In
discussing heterogeneous environments, I assume that the
difficulty level is random, that is, unbeknownst in advance
(i.e., on trial-onset) to the decider. However, the distribution of
difficulty levels, across trials, is assumed to be known to the
observer. For example, if across all experimental trials the two
flickering rates are maintained at constant levels, the block of
trial is homogeneous. Otherwise, if the flickering rates are
subject to random across-trial variability, it is heterogeneous.

Taking the heterogeneity of the environment into account,
the confusing association between the two equivalent forms of
optimality, WO and RRO, and the various optimal models is
resolved as follows: the model that adjusts the choice thresh-
old within the time course of a trial (Drugowitsch et al., 2012)
is generally optimal, i.e., it is optimal for both homogeneous
and heterogeneous environments. The precise form of choice-
threshold adjustment is identified with the aid of a dynamic
programming method” and varies as a function of environ-
mental properties (e.g., the distribution of difficulty levels
across trials). When the environment is heterogeneous,
SPRT and DDM are not equivalent models and furthermore,
neither model is optimal. However, when the environment is
homogeneous, the dynamic-programming solution requires
no threshold adjustment within a trial (Drugowitsch et al.),
and thus the model reduces to the standard DDM. Finally, in

2 Drugowitsch et al. (2012) allowed for the possibility that integration of
information is associated with a temporal cost c(¢). Throughout the paper,
I ignore such costs i.e., assume that c(£)=0.

@ Springer



40

Psychon Bull Rev (2015) 22:38-53

such cases (homogeneous environments), the SPRT and DDM
also are equivalent, and hence, all three models are equivalent
and optimal.

In summary, RRO is equivalent to WO and thus both
are attained by the same model(s). The dynamic pro-
gramming approach identifies the generally optimal
decision rule in any environment and it reduces to the
DDM (and SPRT) in homogeneous environments. The
goal of the first part of the paper is to clarify these mislead-
ing issues, which have confused researchers over the past few
years.

To illustrate this confusion, consider the Bayesian reader, an
influential model of word recognition (Norris, 2006; Norris,
2009). Norris has successfully applied this model to account
for performance in the lexical decision task, i.e., the
task of deciding whether a letter-string is an eligible word
or a non-word. In a nutshell, during a lexical decision, the
model continuously executes a Bayesian computation of
the log likelihood ratio (LR) that a probe letter-string is
a word vs. a non-word (see Eq. (5) in Norris, 2009) and
commits to a decision as soon as the LR reaches an
upper (word) or a lower (non-word) choice threshold.
Thus, for the lexical decision task, the model is equivalent to
SPRT.

Norris (2006, 2009) argues that the Bayesian reader
achieves WO for lexical decisions. It is noteworthy that the
notion of optimality plays a vital role in the conceptual frame-
work of the ideal observer (Geisler, 2003) in which the
Bayesian reader is grounded. Indeed, according to Norris,
optimality is a virtue of the Bayesian reader qua theory of
behavior, as it enables the theory to account not only for sow
people behave, i.e., how behavior is produced, but also for
why they behave as they do (both the how and the why are
hallmarks of a good theory). Optimal models provide a
straightforward answer to the why question: optimal behavior
reflects optimal adaptation to the environment. Many alterna-
tive (to the Bayesian reader) suboptimal models, however, are
confined to explaining the how.

Most relevantly, lexical decision task consists of a hetero-
geneous environment (unless a single word and a single non-
word are tested across trials). For example, the higher a word’s
frequency, the easier it becomes to discriminate it from
non-words (Norris, 2009). Thus, lexical decision tasks
that mix words of varying frequency within an experimental
block, such as the tasks studied by Norris, are heterogeneous.
Consequentially, the SPRT and thus the Bayesian reader,
is a suboptimal rather than an optimal decision strategy.

Indeed, as Drugowitsch et al. (2012) show, there are
two equivalent ways to describe the information-
integration process in their optimal model, either as a
diffusion-like integration of evidence or as an online
calculation of the belief, that is, the probability that the
observer assigns to the correctness of each response-
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alternative.> Additionally, beliefs are equivalently de-
scribed by the LR ratio between the correctness of both
response alternatives (because there is a one-to-one map-
ping between the probability that option A is correct and
the LR of alternative A vs. B). Importantly, both the
evidence and the belief formulations require an adjust-
ment of an (evidence or belief) choice threshold during
the trial. Returning to the question of whether the
Bayesian reader attains optimality in the lexical decision
task, I note that likelihood ratios are updated by utilizing
the Bayes rule and, as such, Bayesian beliefs (such as the
beliefs formed by the Bayesian reader) are instrumental
to attaining optimality. Critically, Bayesian formations of
beliefs are not a sufficient condition for optimality, be-
cause optimality mandates an appropriate temporally
flexible stopping rule. The Bayesian reader does not
satisfy this requirement as it maintains a rigid response
threshold during the trial (as SPRT).

Interestingly, Norris (2009) argues that a DDM model
applied to the lexical decision task (Ratcliff, Gomez &
Mckoon, 2004) also achieve WO. However, this claim is
incorrect as the DDM model is not optimal in heterogeneous
environments as well (again, due to the lack of threshold
adjustment along the trial). Similar claims about the optimality
of both the Bayesian reader and the DDM in heterogeneous
lexical decision tasks were made by other researchers as well
(Wagenmakers, Ratcliff, Gomez & Mckoon, 2008). It thus
seems timely to clarify such confusions and particularly to
direct attention to the essential distinction between homoge-
neous and heterogeneous environments.

In the second part of the paper, I will limit my focus to the
DDM (rather than consider all potential decision rules). DDM,
arguably the most influential of the sequential sampling
models, has been highly successful in accounting for perfor-
mance in heterogeneous environments in a vast plethora of
decision tasks (Ratcliff & McKoon, 2008). Thus, it is instru-
mental to examine the more modest question of identifying
the optimal behavior in heterogeneous environments given
that the DDM is the processing architecture. This investiga-
tion will emphasize biased heterogeneous environments, be-
cause such environments have been in the center of a recent
interesting debate, which will be described shortly. An envi-
ronment is called biased if the a priori probabilities that the
two response-alternatives are correct are unequal. I assume

3 Note that the term evidence refers to the variable that is being integrated
by the diffuser in order to make a decision (e.g. perceptual samples). Once
the statistical properties of such evidence, i.e. its distribution under both
response alternatives is specified, the observer can form his or her belief,
i.e. calculate the probability of the correctness of each response alternative
(or the likelihood ratio), given the stream of evidence that has been
collected (see Appendix B). Both processes, integration of evidence or
belief-update are subsumed under the general term ‘integrating
information’.
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that the bias is known to the decision-maker in advance. The
question of optimality in biased heterogeneous environments
restricted to the DDM reduces to the identification of the
optimizing DDM parameters (see below).

With respect to DDM, two mechanisms have been sug-
gested for implementing environmental bias: prior and dy-
namic bias. Prior bias manifest when the observer lowers the
criterion level of evidence that suffices for choosing the more,
relative to the less, a priori likely alternative. Dynamic bias,
on the other hand, takes effect if each piece of accumulated
evidence is slanted to some extent in favor of the more a priori
likely alternative. I dub the aggregated effect of both prior and
dynamic bias on evidence accumulation as integration bias (to
distinguish it from the external bias in the environment).
Whereas prior bias is fixed at a constant level along a trial,
dynamic bias builds up the integration bias continuously with
the passage of time.

How should bias in decision making be implemented if the
decision maker is to behave optimally (in the DDM)? In a
recent interesting paper, Hanks et al. (2011) suggested that
when the environment is heterogeneous, optimal behavior
mandates the accommodation of advance information (of an
environmental bias) in the form of a dynamic bias in addition
to prior bias. While providing no formal proof for their con-
jecture, these authors offered a compelling intuition: first, the
longer the trial lasts without reaching the decision threshold,
the more it becomes likely that the trial is difficult rather than
easy. Second, the more difficult the trial, the less informative
the perceptual evidence is (because the perceptual signal to
noise ratio is lower), relative to the advance information and
hence, more emphasis should be put on the latter. Putting these
pieces together, the later into the trial, the more the advance
knowledge of bias should be amplified. The dynamic bias
implements such a strategy, because it increases the
integration bias with the passage of time.

However, this intuition has been challenged by van
Ravenzwaaij et al. (2012). These authors purported to
demonstrate that this conjecture is wrong and that in fact,
even when a biased environment is heterogeneous,
optimality is achieved by incorporating prior bias alone. In
the current paper, I show that in accordance with the Hanks
et al. (2011) conjecture, performance is optimized by accom-
modating both prior and dynamic bias as components of the
integration bias. I will show that the analysis of van
Ravenzwaaij et al. suffered from a few shortcomings and that
consequentially, their dismissal of Hank’s conjecture was pre-
mature. My reanalysis yields an affirmative support for the
Hanks et al. conjecture.”*

“ I note from the outset that the van Ravenzwaaij et al. article consists of
both a theoretical study of optimal behavior (in both homogeneous and
heterogeneous biased environments) and an empirical study of actual
behavior. Here, I question only the conclusions with respect to the
theoretical analysis of the heterogeneous environments.

Drift diffusion model

As much of the current discussion is rooted in the framework
of the DDM, I provide a very brief description of this model
(for elaboration the reader is referred to Ratcliff, 1978; Ratcliff
and Rouder, 2000; Wagenmakers, 2009). In DDM, a single
accumulator is updated continuously (in time) as a stream of
noisy perceptual evidence is incoming. The state of the accu-
mulator corresponds to the net balance of evidence in favor of
one alternative over the other. Two response thresholds corre-
spond to the two response options and are set at evidence
levels 0 and a (a is dubbed the boundary separation and
corresponds to the response caution of the participant). As
soon as the accumulated amount of evidence reaches either of
the response thresholds, the corresponding decision is execut-
ed. The threshold-reaching time corresponds to the decision
latency. The observed response time includes a component of
residual time that corresponds to decision-extrinsic processes,
such as the initial perceptual encoding of the stimulus, the
motor response execution time, etc. However, it is assumed to
be an additive component that is independent of the decision.
Therefore, any WO decision rule minimizes simultaneously
the decision and the observed RT (for a given accuracy rate).’

The dynamics of the DDM proceeds as follows: it is
assumed that at time 7= 0, the starting point of the accumulator
is x(0) =z, 0 <z < a. For t > 0, it is assumed that the
accumulator dynamics evolves according to the equation
dx(f) = vdt + sdW(f), where W(f) represent a Wiener noise
process (“an idealized Brownian motion”), s represents the
standard deviation of that noise process,® and v represent the
evidence drift rate.

Interrogation vs. free response tasks In the current paper, I
will discuss two types of tasks: interrogation vs. free-RT task.
The core difference between these two types lies in the locus
of control of the response time. Whereas in interrogation
paradigms, the participants have to respond as soon as the
experimenter issues a response signal, in the free-RT task
participants are free to respond when they “feel ready.”
Below, I will discuss optimality with respect to both tasks. It
turns out that identifying the optimal strategy is simpler for
interrogation tasks.

In discussing DDM, I always assume that in free RT tasks,
the thresholds are temporally constant, i.e., do not change
within the time course of trials. Furthermore, I assume that
in interrogation tasks, the observer integrates evidence until a

> Note that this residual time components is subsumed in the term t, in
the definition of reward rate, see Eq. (1) below.

® Throughout the paper I follow the customary convention and fix s =0.1.
This practice reflects the assumption that the noise level is identical across
all conditions (difficulty levels, in the current case). However, mathemat-
ically speaking, this procedure poses an ‘over-constraint’ on the model
(Donkin, Brown & Heathcote, 2009)
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response signal is issued at time 77 and a decision is made
according to the sign of x(7).

Biases in the DDM How are prior and dynamic biases imple-
mented in the DDM? Prior bias is implemented by the param-
eter z. When z =%/, , the starting point is located in the
midpoint between the response thresholds and thus reflects
no bias towards either of the response alternatives. However,
if z>“/,, then the starting point tends towards the upper
threshold, reflecting a prior bias towards the response option
that is represented by that threshold. Similarly, z < ¢/, re-
flects a prior bias toward the response option represented by
the lower threshold.

Dynamic bias, on the other hand, is implemented by en-
hancing the drift rate in favor of one of the alternatives, by
adding a constant v.® to the drift. For example, consider a trial
with drift rate v (prior to dynamic biasing). If the trial corre-
sponds to the upper “positive” threshold, then its total drift rate
(including the influence of the dynamic bias) is v + v,, whereas
if the trial corresponds to the lower “negative” threshold, its
total drift rate (towards the negative threshold) is v — v,.. In the
following analysis, I will assume that the upper positive
threshold represents the more a priori likely alternative.
Thus, a positive value of v, reflects a dynamic bias towards
the more a priori likely alternative.

Optimality of decision rules
The relationship between Wald and reward rate optimality

A decision rule specifies at each moment in time whether an
additional sample of evidence should be taken, or else the
collection of information (for the current trial) is terminated
and one of the two response alternatives is selected. To reca-
pitulate, WO (Wald optimality) is achieved by minimizing
MRT (across all possible decision rules) while achieving a
desired level of accuracy, or equivalently, by maximizing
accuracy for a mean decision time. Denote by ACy..(t,) the
maximal achievable accuracy level for a mean decision
time ¢;. By definition, 4Cp,;4(t,) is the accuracy achieved by
a Wald-optimal decision rule (with mean decision time #;).

RRO (reward rate optimality) is maintained by maximizing
the reward rate (RR). Here, I define reward rate of a decision
rule as:

7 This in effect assumes no integration costs. When there are such costs,
integration may terminate prior to the interrogation time 7 (see
Drugowitsch et al., 2012). See also Footnote 2.

8 Here I make the assumption that the dynamic bias is time-constant and
hence that the integration bias, § —z + v.t, builds up linearly during the
trial. More generally, v, could be a function of time, but I do not consider
this possibility here.
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= tL , (1)

d t tres
where AC denotes the expected accuracy level of the decision
rule, z; denotes the mean decision time of the decision rule and
t,., denotes the “residual time” that includes all nondecision
components that contribute to the lag between consecutive
trials, e.g., the motor response production time and an inter-
trial interval. It is assumed that the decision rule affects only
AC and t, but not t,,..” Denote by ACRR(tres), ta rRR(tes) TESPEC-
tively the accuracy and mean decision time that are achieved
by the RR-optimal decision rule, for a given environment and
a mean residual time ¢,,.

Appendix A shows that these two forms of optimality are
equivalent in the following sense. First, if a decision rule
maximizes the RR, then it is also a WO rule (Bogacz et al.,
2006; Bogacz, 2009). In other words, 4Cgg(t,.,) must be the
maximal level of accuracy that is possible given the mean
decision time p gr(ty.s). Thus,

ACRR(tres) = ACWald (tD.RR(tres))y (2)

Second, given a mean value of the decision time 7, and its
associated WO accuracy ACyt;) there exists a value of
mean residual time #,,, such that Eq. 2 holds. In other words,
any WO combination of accuracy and mean decision time is
RRO, for an appropriate value of the residual time.

The upshot of the current discussion is that the two forms of
optimality are equivalent in that the same decision rules
achieves both types of optimality. Therefore, by identifying
the optimal strategy with respect to one of these definitions of
optimality, one also can identify the optimal strategy for the
other optimality type. For example, the problem of identifying
the WO strategy for some 7, can be reduced to the equivalent
problem of identifying the RRO strategy for the same envi-
ronment and for the appropriate 7. This problem, in turn, can
be solved with the dynamic programming approach
(Drugowitsch et al., 2012).

Optimality in homogeneous environments

The free-RT task When the environment is homogeneous, the
SPRT (Wald and Wolfowitz, 1948; Laming, 1968) model
achieves WO (and hence also RRO for an appropriate #,.).
In this model, the decision variable corresponds to the loga-
rithm of the likelihood ratio (LR) between the alternatives.
The log-LR is updated online according to the Bayes rule as
perceptual samples are incoming. Biased environments (e.g.,
75 % of the correct decisions are “A” rather than “B”) are

% Some formulations of the reward rate assume that errors are followed
with negative-reward penalties and/or an increase in the inter-trial tem-
poral interval. Here, for simplicity, I assume that no such penalties exist.
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easily accommodated into the model without sacrificing opti-
mality. This is achieved by adopting a prior bias (i.e., the
“starting point”- the initial likelihood ratio from which inte-
gration of perceptual evidence begins) that reflects the exter-
nal bias between the response alternatives (Edwards, 1965).
Furthermore, in such (homogeneous and biased) environ-
ments, the DMM is equivalent to the SPRT (Gold and
Shadlen, 2007; see Bitzer, Park, Blankenburg, & Kiebel,
2014 for the equivalence between the DDM and Bayesian
models). In conclusion, the DDM with a prior bias is both the
WO and RRO decision rule.

One caveat should be mentioned. In some applications of
DDM (e.g. Ratcliff & Mckoon, 2008), across-trial variability
parameters in the drift rate and in the starting point are ac-
commodated. Importantly, the SPRT is equivalent to the DDM
without such across-trial variability (Gold and Shadlen, 2007).
When such sources of variability are introduced into the
model, DDM is no longer equivalent to SPRT and hence, the
DDM ceases to be optimal.

Furthermore, across-trial random variability in drift rates
can result from either a subjective fluctuation in the level of
psychological variables, such as attention and alertness, even
when the environment is homogeneous, or from a real, objec-
tive heterogeneity of the environment. Because these two
cases are indistinguishable from the viewpoint of the DDM,
in the current paper [ attribute all variability in drift-rate to
environmental-heterogeneity. In other words, any form of drift
rate variability is subsumed under the following section
(Optimality in heterogeneous environments), in which hetero-
geneous environments are discusses. In particular, when a
single objective difficulty level (homogeneous environment)
is paired with subjective variability of drift rate across trials,
the optimal decision rules can be identified by studying the
equivalent heterogeneous environment, in which the underly-
ing variability in drift-rate is considered to be objective.

The interrogation task Because the integration time is under
the control of the experimenter in interrogation tasks (see
Footnote 7), the optimal strategy (both WO and RRO) con-
sists of updating the log-LR until the response signal is issued
(rather than until a criterion level is met) and selecting the
more likely alternative. Equivalently, this strategy could be
implemented by updating a diffuser x(7) until the response
signal is issued and deciding based on the sign of x(f). An
external environmental bias is accommodated in the same way
as in free-RT tasks: a prior for the log-LR calculation or a
starting point for the diffuser.

Optimality in heterogeneous environments
The free-RT task Crucially, when the environment is hetero-

geneous optimality of SPRT or the DDM ceases to be the case.
In such cases, optimality (RRO or WO) is achieved by

integrating information according to a diffusion-like dynamics
while adjusting the choice-threshold during the course of a
trial (Drugowitsch et al., 2012). Equivalently, the integration
process could be described as an online calculation of the log
LR for the correctness of the two response alternatives and
maintaining a temporally flexible threshold on the log LR.
The precise form of this threshold adjustment (either in terms
oflog-LR or in terms of perceptual evidence) is found with the
aid of a dynamic programming method. Importantly, the op-
timal strategy does not terminate when the total amount of
integrated evidence x(f) (as in DDM) or the log-LR (as in
SPRT) has reached a fixed threshold (see Drugowitsch et al.).
Consequently, neither SPRT nor DDM are optimal.'°

It also is instructive to note that unlike homogeneous
environments, in heterogeneous environments, the SPRT is
no longer equivalent to the DDM. In this case, the SPRT is
equivalent to a diffusion model with temporally increasing
threshold separation. Indeed, when environments are hetero-
geneous the decision variable of the DDM (i.e., the total
amount of accumulated evidence) no longer determines
uniquely the posterior likelihood ratio for the choice alterna-
tive (see Footnote 3 for the difference between evidence and
the LR). Thus, SPRT and DDM are no longer equivalent.
Rather, the likelihood ratio depends also on the integration
time. This fact is proved formally in Appendix B, so here I
only sketch an intuition (see also Kiani & Shadlen, 2009;
Drugowitsch et al., 2012).

First, for homogeneous environments, the transformation
between accumulated evidence (DDM) to likelihood ratio
(SPRT) depends on the difficulty level (drift rate). For exam-
ple, ifx(f)=c, then the likelihood ratio at time ¢ is an increasing
function of the drift rate (when c is held at a constant level).
Equivalently, the higher the difficulty level, the higher the
amount of evidence that is needed to achieve a target level
of likelihood ratio at time ¢. Second, when the environment is
heterogeneous, easy (high drift) trials tend to terminate earlier
than hard (low drift) trials. Hence, as time unfolds and a trial is
(still) undecided, likelihoods for high rather than low difficul-
ties increase. This indicates that with the passage of time, a
higher “conversion rate” between evidence and likelihood
ratios should be adopted. In conclusion, the longer into an
undecided trial, the more the threshold separation should
increase (if the desired level of likelihood is to be obtained),
reflecting the increasing likelihood of high difficulties.
Alternatively, if a constant choice threshold is maintained then
the likelihood ratio, when the threshold is reached, is a mono-
tonically decreasing function of the threshold-reaching time.

1% For a homogeneous environment, no threshold adjustment is necessary
according to the dynamic-programming based decision rule (See
Drugowitsch et al., 2012) and hence both the DDM and the SPRT are
optimal.
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Let me now make the “ideal observer” assumption that par-
ticipants are fully aware of the prior mixture of difficulties in the
heterogeneous environment. In this case, rather than simply
accumulating evidence, participants may utilize the Bayes rule
to update an online calculation of the likelihood ratio and decide
when that ratio achieves a criterion level—the SPRT model.

Consider the “Gaussian environment” case where the prior
difficulty is distributed according to a Gaussian. I assume that
across trials v~N(£vo,77) where v, corresponds to the mean
drift rate and 7 (dubbed drift rate variability), to the standard
deviation of the Gaussian drift rate distribution. The + corre-
sponds to the two response alternatives. It is assumed that the
observer knows the parameters vo,7”. The task is to identify,
based on an incoming stream of evidence, the correct alterna-
tive that is, whether the current-trial drift rate was generated
from the N(vo,nz) or from the N(—vo,nz) distribution.

As shown in Appendix B, in this case the SPRT can be
implemented by the following mechanism: observers inte-
grate evidence with a diffuser, but adopt a linearly temporally
increasing threshold separation, rather than constant (i.e., time
invariant) thresholds. Specifically, participants respond as
a (32 + 772[)

soon as x(t) = z———

, corresponding to the lower de-
a(52 +7]21)
2vy

creasing threshold, or x(¢) =z + corresponding to
the upper increasing threshold. Here, o = log (1%1) where A4 is

the desired level of accuracy (here I assume that the environ-

ment is unbiased. For the general biased case, see Appendix B).

In summary, in heterogeneous environments integration up to
a constant level of the likelihood ratio (as in SPRT) is equivalent
to a diffuser integrating to threshold, where threshold separation
is temporally increasing, rather than constant as in the DDM. To
conclude this section, note that the Gaussian environment (stud-
ied above) is indistinguishable from a homogeneous environ-
ment paired with subjective Gaussian drift rate variability across
trials. Thus, given subjective variability in drift rate, SPRT is no
longer equivalent to DDM, even for a homogeneous environ-
ment (see Optimality in homogeneous environments).

The interrogation task For interrogation tasks, matters are
simpler. The optimal strategy is to integrate the log-LR (taking
into account the distribution of difficulties) and to choose the
more likely alternative upon arrival of the response signal.

Appendix B shows how this log-LR is calculated for
Gaussian environments. This calculation could be performed
based on the diffusion dynamics x(#) with z=0. According to
Eq. (B7)

~ 2x(t)v
T = anol) + T, (3)

where 7,70 are the prior and posterior log-LR of both alterna-
tives respectively and the drift rate is distributed ~N(2vo,7%)
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(the £ correspond to the “positive” and “negative”
alternatives).

Interestingly, optimal behavior is based on a temporally
decreasing amplification of the total accumulated evidence by
a factor of ﬁ’i% . The intuition behind this finding is as
follows: consider two cases where a given level of accumu-
lated evidence say x(7) = 1, is collected by time # = 10 or
alternatively by ¢ = 1. The former case is more indicative of a
low drift rate than the latter. The lower the drift rate the less
informative the evidence is relative to the prior bias 7 (because
the perceptual signal to noise ratio decreases). Hence, x(7) = 1
should be given less weight in the former case. In conclusion,
the amplification of the evidence should decrease monotoni-
cally as a function of #.

The upshot of this discussion is that for biased heteroge-
neous environments, decisions are optimally based on the sign
of the posterior log-LR 7t , which is not always identical to the
sign of x(¢). In other words, deciding based on the sign of x(¢)
is suboptimal (once again, this is also true for homogeneous
environments with subjective drift rate variability). The am-
plification mechanism is necessary to attain optimality. When
the environment is unbiased, however, 7=0 and hence x(f) and
7t are identical in sign. Therefore, for the unbiased case,
choosing based on the sign of x(¢) yields optimality.

Optimality restricted to the DDM

Rather than trying to identify the generally optimal decision
rule (when all potential decision rules are considered), I now
focus on a narrower, more modest, question. I assume that the
processing architecture implements the DDM and ask, what is
the optimal choice of the strategic/controllable model param-
eters (including prior and a dynamic bias)? Note that this is not
a question of general optimality, but rather a question of
optimality restricted to the DDM. Of focal interest is the
conjecture made by Hanks et al. (2011): is the optimal dy-
namic bias parameter indeed positive?

The free RT task

A recent analysis by van Ravenzwaaij et al. (2012) provided a
negative answer for the above question, thus supporting the
conclusion that optimality in DDM is obtained with the aid of
prior bias alone. Unfortunately, these analysis and conclusion
require revision, as I now show. Incidentally, it is interesting to
note that in their analysis van Ravenzwaaij et al. assume that
the DDM is the generally optimal decision rule for heteroge-
neous environments. This explains the fact that these authors
only focused on identifying the best selection of bias param-
eters within the framework of DMM. However, this attempt
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bypasses the question that was central in the first part of the
current paper, whether DDM provides an optimal decision-
mechanism in the first place. The answer is negative, as we
now know. Consequently, the van Ravenzwaaij et al. study is
better described as a study of optimality limited to the DDM,
rather than general optimality.

van Ravenzwaaij et al. (2012) considered a given set of
diffusion parameters: the external bias across alternatives, i.e.,
the a priori probability that the alternative corresponding to
the positive threshold is correct (denoted [3), the threshold
separation a, the diffusion noise s, and a Gaussian distribution
of drift rates v~N(£vo,77) (corresponding to a mixture of
difficulty levels). Correctness of choices was determined ac-
cording to the generative distribution of the drift v for a given
trial (i.e., the “upper” threshold is the correct choice if and
only if the drift on a given trial was generated according to
N(vo, 1) rather than N(—v,7%)). Next, they determined a de-
sired level of accuracy (e.g., 90 % or 95 %). Finally, they
identified the prior and dynamic bias parameters, z and v, that
minimize MRT while maintaining accuracy at the desired
level.

Whereas such an analysis could reveal the “optimal” bias
parameters for the chosen threshold separation a, it overlooks
the fact that a also is a free parameter that is under the control
of the participant. Therefore, the search for the optimal pa-
rameters should be conducted over a three- rather than a two-
dimensional parameter space (but see General discussion for a
different view and for further discussion of this issue). The
three dimensions consist of the prior bias z, the dynamic bias
v., and the threshold separation a. The desired level of accu-
racy defines an iso-accuracy surface (in this three-dimensional
parameter space) and the optimal triplet of parameters mini-
mizes MRT on this surface.

Instead, van Ravenzwaaij et al. (2012) chose an arbitrary
value of the response threshold @ and then searched for a
combination of biases that minimized MRT for that value of
a (while maintaining accuracy at the desired level). They
found that for the optimal pair of biases, the dynamic bias
was zero. Hence, they concluded that optimality is obtained
by the sole incorporation of a prior bias. To recapitulate, the
limitation in this approach is that the decision threshold « also
should be optimized as part of the search in the parameter
space and not be set to an arbitrary value. The oversight in the
approach of these authors is far from trivial, because it is not
obvious from the outset that qualitative conclusions about the
biases depend on a. But as I show below, they do.

There was an additional oversight in the analysis of van
Ravenzwaaij et al. (2012), which deserves mentioning, for the
benefit of future researchers. When searching for the best
combination of biases, the authors considered only combina-
tions with a positive dynamic bias (Wagenmakers, personal
correspondence). However, there are also bias combinations
with negative values of the dynamic bias that achieve the

target level of accuracy. It is thus important to consider these
combinations as well, when minimizing MRT. Interestingly,
when I repeated the analysis for the same (nonoptimal) value
of choice threshold a that the authors considered, I found
better (i.e., lower MRT) bias combinations with negative
dynamic biases! By focusing on the theoretical prediction by
Hanks et al. (2011), who specifically postulated a positive
dynamic bias, van Ravenzwaaij et al. overlooked the possi-
bility that dynamic bias can be negative and hence they failed
to find the optimal parameter combination (Wagenmakers,
personal correspondence). Had they considered negative
values of dynamic bias as well, they would have noticed that
their bias combination falls short of optimality.

Thus, I reanalyzed the examples that van Ravenzwaaij et al.
(2012) considered in their paper with the following changes:
1) mine was a three-dimensional (rather than two-
dimensional) search, and 2) the dynamic bias was uncon-
strained, so the search also included negative values of dy-
namic bias (full details of the analysis are provided in
Appendix C). The results are strikingly different than those
that were reported by van Ravenzwaaij et al.

Consider the following example (studied in van
Ravenzwaaij et al., 2012): the drift rate is distributed across
trials N(0.3,0.12), the diffusion noise is s = 0.1 , the external
choice bias is § = 0.8, and the desired accuracy level is 4 =
95%. The current results are displayed in Fig. 1 (compare with
the right panels in Ravenzwaaij et al., Figure 7). The top panel
depicts the tradeoff between the dynamic bias (the ordinate) and
the prior bias (as a percentage of the threshold separation a; the
abscissa) that generate the desired accuracy level. Note that this

drift rate variability example
0.15 T T T T T T T

_DDS 1 1 1 L 1 1 1
06 0.65 07 0.75 0.8 0.85 09 0.95 1

Bias: z/a

0.145 T T T T T T T

0125 1 1 1 ' & 1 1 1
06 0.65 0.7 0.75 08 0.85 09 0.95 1

Bias: z/a

Fig. 1 The optimal biases for the Gaussian drift rate distribution exam-
ple. The top panel depicts the tradeoff of prior bias (in percentage of
decision threshold; abscissa) and dynamic bias (ordinate) that maintain
accuracy at the desired 95 % level, when the response threshold is at its
optimal level @ = 0.111. The bottom panel depicts MRT as a function of
prior bias (accompanied by the corresponding dynamic bias). The asterisk
corresponds to the optimal performance
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tradeoft is depicted for threshold separation @ = 0.111. This
value was not selected arbitrarily but rather it was obtained
as the a coordinate of the optimal parameter triplet (this value
of a is different from the value considered by van
Ravenzwaaij et al.).

The bottom panel of Fig. 1 depicts the MRT as a function of
the prior bias (when it is accompanied with the corresponding
“top panel” dynamic bias), for the same value a. The asterisk,
which is the point of minimum MRT, corresponds to optimal
performance. As can be read from the top panel, the optimal
bias combination features a positive dynamic bias parameter
v. = 0.02 in addition to a positive prior bias z. Crucially, in
violation of the conclusion of van Ravenzwaaij et al., opti-
mality in DDM mandates accommodating a positive dynamic
bias component in the integration bias (in addition to prior
bias). Interestingly, had van Ravenzwaaij et al. considered
other values of the threshold separation a they would have
found (e.g., for a = 0.11 as well as for other values), that the
“two-dimensional optimal dynamic bias” (i.e., for this specific
value of a, when only the bias-parameters are optimized) is
positive.

To probe the issue further, I simulated other scenarios in
which the drift rate distribution was discrete rather than
Gaussian (i.e., across trials the drift rate was drawn from a
finite set of values). In one such example, I mixed two drift
rates ve {0.02,0.05}, assuming that each difficulty level ap-
pears in 50 % of the trials and that the same external bias § =
0.65 applies to both difficulty levels. Setting the desired
accuracy level at 4 = 80%, I searched for the optimal (a,z,
v.) triplet. Here, I obtained v, = 0.024—a bias that is compa-
rable in magnitude to the nonbiased drifts! The upshot of this
example is that in such cases too (discrete rather than Gaussian
mixtures of difficulties), optimal combinations of biases (and
threshold separation) feature a positive dynamic bias. Thus,
this discrete mixture case also provides support for the con-
jecture of Hanks et al. (2011) and contradicts the conclusion of
van Ravenzwaaij et al. (2012).

Can a negative DDM dynamic bias be optimal? The analysis
thus far suggests one puzzling question: is it possible that for
some biased heterogeneous environments the optimal dynam-
ic bias in DDM is negative? This question is interesting,
because such environments would contradict the Hanks
et al. (2011) conjecture that postulated a positive dynamic
bias. Therefore, a treasure of novel knowledge about the
mechanisms of integration biases may be exposed if such
environments are discovered.

Importantly, all the examples of heterogeneous environ-
ments that were explored in the current paper (as well as in
several other examples that I simulated and that are not re-
ported here) yielded a positive dynamic bias. Nevertheless, in
some of these examples when I manually fixed the threshold
separation a to a value that was much higher than optimal, and
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searched for the “best” pair of bias parameter for that arbitrary
a—the “best” dynamic bias was negative. To reiterate, this
bias is nonoptimal, because a should also be part of the
optimization. Nevertheless, this result highlights the question
of generality with respect to the positivity of the dynamic bias
in DDM. I leave this question open for future study, which
would either prove the generality of this result or identify
puzzling contradicting examples.

The interrogation task

In studying the interrogation task, I stress once more that the
globally optimal strategy for Gaussian heterogeneous envi-
ronments, which is based on log-LR calculations and de-
scribed in the first part of the paper, involves a multiplicative
temporally decreasing amplification of the accumulated evi-
dence rather than using an additive dynamic bias. In the
current section, I explore the optimal strategy that is feasible
with the aid of a prior and an additive dynamic bias alone. In
this case, decision is based on the sign of the total accumulated
evidence (including the prior and dynamic bias components).
In analyzing the Gaussian environment (v ~ N(£vo, 7)), van
Ravenzwaaij et al. (2012; p. 6) showed that the optimal pair of
prior (z) and dynamic (v,.) biases must satisfy the equation:

(s? +n°T)log (%)

z+v.T =

: (4)

2\/0

where T'is the interrogation time. These authors noted that for a
given T, z, and v, tradeoff in that various combinations of these
parameters satisfy Eq. 4. One such combination is obtained by
setting the dynamic bias to zero v, = 0, and the prior bias, z to
the right hand side of Eq. 4. Thus, optimal behavior in the DDM
can be achieved with the aid of prior bias alone.

Critically, the validity of this conclusion is limited to the
case where the interrogation time 7 is fixed to a known
constant value across trials. What are the optimal prior and
dynamic biases when the interrogation time T varies randomly
across trials? The key insight in finding the optimal decision in
this case is noting that, by an appropriate selection of a pair of
biases, Eq. 4 can be solved simultaneously for all values of T.
Indeed, both sides of Eq. 4 are linear in 7. These two lines
coincide and equality holds for all values of T if and only if:

i) .

2\1()

5
i7log (T)
yom— M/ (6)
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Using this pair of biases (Eqs. 5-6), guarantees that for any
T that realizes on a given trial, the participant behaves opti-
mally, as if 7'was known in advance! On the other hand, if an
alternative pair of biases is selected, Eq. 4 will be violated for
at least one value of 7' (as long as more than a single value of T
is intermixed in the block)."" For such 7%, the violation of
Eq. (4) manifests in a lower accuracy level relative to the
accuracy level that is achieved with the Egs. (5-6) pair of
biases, which satisfies Eq. 4. Therefore, any alternative pair of
biases is inferior to the optimal pair defined by Egs. 5-6.
Notably, to achieve optimality, the observer does not even
have to know how T distributes across trials, because the
optimal pair of biases is invariant with respect to this
distributions.

Finally, according to Eq. 6, v. > 0 (assuming that 5> 0.5).
The upshot is that when interrogation time varies randomly
across trials, a positive dynamic bias is mandatory for achiev-
ing optimality, in accordance with the conjecture of Hanks
etal. (2011).

General discussion

When biased environments are homogeneous with respect to
difficulty level, optimal performance is achieved by the se-
quential probability ratio test (SPRT) with a prior bias
(Edwards, 1965) or equivalently by the drift diffusion model
(Gold and Shadlen, 2007). Unfortunately, shifting to hetero-
geneous environments complicates matters immensely. The
current analysis shows that: 1) reward rate-optimality is equiv-
alent to Wald optimality; 2) in heterogeneous environments,
the SPRT is no longer equivalent to the DDM model, because
the likelihood ratio is a function of both the total accrued
evidence (the decision variable of the DDM) and the integra-
tion time. Rather SPRT is equivalent to a diffusion model with
temporally increasing threshold separation; and 3) in hetero-
geneous environments, both the SPRT and DDM are subop-
timal, even for unbiased environments. Rather, optimality is
achieved with the aid of a diffusion-like integration of infor-
mation (or by updating log-LR calculations), while adjusting
the choice threshold, within the course of a trial (Drugowitsch
et al., 2012).

Next, I restricted focus to the issue of identifying optimal
performance within the framework of the highly popular and
successful DDM. Because this model provides an accurate
account for decision making in a wide range of choice-tasks, it
is instrumental to study the question of optimality under its

! The two linear functions of 7, in both sides of Eq. 4 either coincide (for
biases that are selected according to Eqs. 5-6) or otherwise intersect for at
most a unique value of T.

auspices. Specifically, I attempted to identify the optimal
ensemble of boundary separation, the prior bias and the dy-
namic bias parameter-triplet, given the features of the envi-
ronment (the external bias and the distribution of drift rates).
found that optimality in a free RT task requires a non-zero
dynamic bias parameter. That is, rather than being time-
invariant, the integration bias builds up with the passage of
time. This conclusion is consistent with the conjecture, that in
heterogeneous biased environments, both a prior and a dy-
namic bias are necessary if optimality is to be achieved (Hanks
et al., 2011). These conclusions also contradict prior conclu-
sions by van Ravenzwaaij et al. (2012), according to which
optimality is achieved with the aid of prior bias solely.
Additionally, while a dynamic bias is not necessary to achieve
optimality in interrogation tasks that feature a single known
interrogation time, it is mandatory, when interrogation time
varies randomly across trials. The conjecture by Hanks et al.
thus seems viable, at least as long as DDM is the decision
mechanism.

Psychological plausibility of optimal models

The discussion thus far was purely theoretical in that it studies
optimal performance disregarding the question whether such
(optimal) behavior is achievable. Next, I discuss briefly the
psychological plausibility of the optimal algorithms/strategies
that were presented in the current paper. Can the mathemati-
cally optimal models transcend the mathematical realm and
take the form of a psychological reality?

One unreasonable assumption casts doubt on the plausibil-
ity of the optimal strategies that have been discussed thus far.
The mathematical implementations of the optimal strategies
take advantage of perfect and full knowledge of the distribu-
tion of drift rates across trials. In other words, these
implementations assume that observers are omniscient with
respect to the statistical properties of the environment.

While the assumption that human observers may have
fairly accurate (albeit not perfect) statistical representations
in highly trained and familiar environments may be reason-
able, this assumption is certainly invalid for many of the novel
and unfamiliar tasks that participants encounter in the cogni-
tive laboratory. Thus, it is more realistic to expect participants
to approximate optimality, only following a training period
during which participants learn to represent the environment.
Conceivably, as people experience with a task, they form a
gradually improving representations of the statistical features
of the environment, which in turn, allow them to execute
increasingly successful choice strategies. Consistent with this
idea, several algorithms, which learn to represent probability
distributions functions have been presented in the literature
(see Turner, Van Zandt and Brown, 2011, for a dynamic
stimulus driven model for signal detection tasks, and see
Rao, 2004, for a recurrent network architecture).

@ Springer



48

Psychon Bull Rev (2015) 22:38-53

Do the optimal models become psychologically plausible
once observers have faithfully represented (following exten-
sive learning) the statistical properties of the environment?
Even if we assume that an observer is omniscient with respect
to the environment, we soon bump into the computation
hurdle. To illustrate, my own calculations of the optimal
DDM parameter-triplet and let alone, the Drugowitsch et al.
(2012) calculations of the optimal threshold adjustment poli-
cies, all relied on highly complex computational algorithms
(i.e., dynamic programing and a simplex search in a parameter
space). Can we realistically assume that human observers
have such complicated algorithms at their cognitive disposal?

Consider first the more modest issue of optimality restricted
to the DDM model. One possibility that bypasses altogether the
need to form complex statistical representations of the environ-
ment or to execute extremely complex computations may be
reinforcement learning. Participants may use an adaptive ad-
justment procedure: different parameter triplets are sampled, the
effects on performance are then observed across numerous trials
(e.g., the reward rate or the ensuing speed-accuracy combina-
tion) and further parameter adjustments are implemented (e.g.,
according to a gradient-based reinforcement learning).

Myung & Busemeyer (1989) and Busemeyer & Myung
(1992) showed that by applying such an algorithm participants
achieve close convergence (albeit slowly) of their choice
threshold to its optimal value.'?> Admittedly, DDM-
optimality in heterogeneous and biased environments is
computationally more complex as observers should optimize
on a triplet of parameters, rather than on a single parameter.
Nonetheless, reinforcement learning algorithms warrant
optimism with respect to the plausibility of converging on a
triplet that comes close to optimal.

Shifting focus to the threshold adjustments algorithm of
Drugowitsch et al. (2012), it is more difficult to see how
adaptive adjustment procedures can approximate optimality.
The reason is that the time-course of the threshold should be
adjusted continuously during a trial. Suppose that people
approximate such a continuous adjustment by adjusting their
threshold every temporal interval Az. On the one hand, A¢
should be small if a close approximation to the optimal con-
tinuous adjustment procedure is to be achieved. On the other
hand, a minute A¢ manifests in a highly dimensional param-
eter space.'® Because the complexity of parameter-space
search algorithm inflates as the parameter-space dimensional-
ity increases, effective searches in the parameter space become
enormously time-costly. Future studies should explore wheth-
er human observers can approximate optimality in their

12 These studies used a different criterion for optimality namely, the
Bayes Risk (BR) which minimizes a weighted sum of the mean RT and
Error rate (Wald & Wolfowitz, 1948).

13 For example, if an observer adjusts his or her threshold every 100 ms
during a two second interval then 20 parameters are required to describe
the adjustment procedure.
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threshold adjustments policies (assuming that they can apply
threshold adjustment policies in the first place) and if they can,
which algorithms guide such adjustments.

Can people optimize on their choice threshold?

The model of Drugowitsch et al. (2012) assumes that ob-
servers optimize on their choice threshold by adjusting it
during the time course of a trial. In studying optimality re-
stricted to DDM, I made the much weaker assumption that
observers optimize on their choice threshold by setting it to a
constant level (both within and across trials) that is tailored to
the statistical properties of the environment. An alternative
view posits that, perhaps even this assumption is too liberal
and that it may be more psychologically plausible to assume
that participants cannot or are unwilling to optimize on their
choice threshold (Don van Ravenzwaaij, personal correspon-
dence). For example, the choice threshold may provide
certainty about the identity of the stimulus and observers
may set the choice threshold to attain a desired target level
of certainty. Thereafter, observers try to maintain optimality in
heterogeneous and biased environments by adjusting only the
pair of prior and dynamic biases.

Interpreted in this light, the analysis of van Ravenzwaaij
et al. (2012) identifies the optimal strategy, under the assump-
tions that DDM is the processing model and that the a param-
eter is excluded from the optimization (note however, that the
possibility of a negative dynamic bias was overlooked). If
optimality is thus defined, my conclusions with respect to
the dynamic bias alter: The optimal dynamic bias can obtain
positive but also zero and even negative values for different
settings of the threshold in a given environment (see
section Optimality restricted to DDM). The last two cases
conflict with the conjecture of Hanks et al. (2011), which
envisioned a positive dynamic bias.

I argue, however, that from a psychological perspective it is
more instrumental to relieve this constraint. The perceptual-
choice literature consists of ample evidence that the choice
threshold is under the cognitive control of people, and that
participants can and do adjust their choice thresholds across
different blocks of trials as a function of the experimental
instructions (stressing speed choice or speed accuracy).
Furthermore, as discussed earlier, there is evidence that par-
ticipants can optimize on their choice threshold via reinforce-
ment learning (Myung & Busemeyer, 1989; Busemeyer &
Myung, 1992; see also the section Threshold Setting
Algorithms in Bogacz et al., 2006). Finally and perhaps most
relevantly, observers adjust their choice threshold as a func-
tion of the distribution of stimulus-difficulty in the environ-
ment (e.g., the blocking effect; Mozer, Kinoshita, & Davis,
2004). Therefore, I find no compelling reason to exclude a
priori the choice threshold from the optimization parameter
set, while keeping the pair of biases in.
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In summary, my perspective is that intransigent post-
training deviations between the optimal and the actual choice
thresholds represent failures of optimality. If empirical data
reveals that such failures occur, then the question of why they
occur emerges. A variety of potential answers should then be
considered. For example, the choice threshold could optimize
a psychological goal that is different from the goal, which is
subsumed under the focal optimality criterion (e.g., it satisfies
a desired certainty about the identity of the stimulus, a goal
that is absent from the definitions of WO or RRO). Another
possibility is that participants use parameter adjustment (rein-
forcement learning) algorithms, but they fix their choice
threshold at a constant level to decrease the complexity (the
dimensionality of the search space) of the adjustment process.
These are only two of the numerous potential causes for
optimality failure (is it possible that the observer is not relying
on a diffusive integration of information?).

Conclusions

The current discussion highlights some of the reasons for the
prominence of the concept of optimality in guiding the study
of decision making. Optimality serves as an important stan-
dard, benchmark, and yardstick in evaluating human choices.
When people are found to perform optimality, probing their
behavior advances our understanding with respect to zow their
(optimal) behavior is produced, for example, which process-
ing algorithms are executed and/or which adaptation mecha-
nisms are used. Hopefully, such principles can be leveraged
and applied in additional spheres of behavior. However, be-
cause organisms are generally “expected” to adapt efficiently
to their environment, deviation from optimality may some-
times be even more striking than compliance with optimality
(Tversky & Kahneman, 1974, for an example from a different
domain: The “Heuristics and Biases” approach). When agents
violate optimality, we must account not only for zow behavior
is produced but also for why such behavior is produced
(Norris, 2006, 2009). In other words, we face the question
pertaining to the causes underlying non-optimality. This in-
quiry, in turn, paves the way for a plethora of follow-up
research directions: did we misidentify the agent’s goal when
in fact, she is optimizing on a different goals? Or perhaps we
identified correctly the agent’s goals, but she is limited in her
resources or in her ability to represent faithfully the environ-
ment? And so on and so forth. The pursuit of answers for such
questions is a powerful driving force, contributing to the
advancement and to a refinement of our understanding of
behavior.
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Appendix A: Relationship between Wald and RR
optimality

In this appendix, I show that WO and RRO are equivalent.
This means that a decision rule which achieves one form of
optimality achieves also the other, as specified below.

An RRO decision rule is also WO

In this section, I show that if a decision rule maximizes the
reward-rate then it is also a Wald optimal strategy (Bogacz
et al., 2006; Bogacz, 2009). Denote by D a decision rule that
achieves a maximal reward rate for a given environment and
for a given value of mean residual time ¢,,,. The accuracy and
mean decision times for D are ACrp(tres) and t; pp(tres) Te-
spectively. 1 argue that D is also Wald optimal in that
ACgp(ts) must be the maximal possible accuracy (among

all decision rules) with mean decision time #;gr(?res)-
That is:

ACR(tres) = ACwaia (tarr (tres)), (A1)

To see this, note that the reward rate that a WO decision
rule, with mean decision time #, gr(%.) achieves is given by
ACwaa (ld.RR(tres))

ta.RR (tres )+ Lres
accuracy for a given mean decision time,

. Since the Wald rule provide the maximal

ACWald (td,RR(tres>) > ACRR(tres)7 (AZ)
Thus the reward rate of the Wald optimal rule is:
ACwaialt tres ACRp(tyes ~
Wld(d,RR( )) > RR (Lres) :RR(D), (A3)
z‘d.,RR(tres) + tres td,RR(tres) + tres

In words, the RR of the Wald optimal rule (with mean
decision time #, gr(t,.s)) is at least as large as the reward rate

obtained by D . However, by definition D is the RR-optimal
rule and therefore an equality must hold in Eq. A3 and thus in
Eq. A2 as well. Hence Eq. Al is satisfied.

WO decision rule is also RRO

In the current section I show that, given a target mean value of
the decision time 7, there exists a positive mean residual time
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£r,s for which the WO rule (with mean decision time ¢,
and its associated Wald-optimal accuracy ACpy,(t))
maximizes the reward rate. To simplify notation, hence-
forth 1 denote the mean decision time by 7 (instead of
t;) and the maximal accuracy by A(¢) (instead of
ACwa1a(ta)

The function A(f) has several important properties. First, by
taking 0 decision time an observer can achieve a max-
imal accuracy of max{p;,1 — p;} where p; is the a-priori
probability that option ‘1’ (rather than ‘2”) is correct. Without
loss of generality we can assume that p; > 0.5 and hence
A(0) = p1.

Second, A(?) is a monotonically increasing function of ¢.
Indeed, if #; > £, then one potential decision rule with
mean decision time #; is to adopt the WO decision rule
for a mean decision time #, and then ‘sit and wait’ for a
duration of #; — #, before issuing a decision. This will yield
accuracy of A(#,). Of course, waiting without integrating
information is suboptimal because observers can collect
further information which will facilitate accuracy. Therefore
A(t) > A(L2).

Third, A(¥) is a concave function of 7. This means that for all
t,t and \€[0,1]:

ANt + (1=N)12) 2 M (1) + (1-N)A(5a), (A4)

Indeed, Consider the following ‘mixture’ decision rule:
With probability Ae[0, 1] the observer follows the Wald opti-
mal decision rule for mean decision time ¢; and otherwise (i.e.
with probability (1 — X)), the observer follows the Wald
optimal decision rule for mean decision time #,. This mixture
rule provides accuracy that is equal to the right hand side of
Eq. A4 and its mean decision time is Af; + (1 — A\)5,. By
definition, A Wald-optimal decision rule for mean deci-
sion time At; + (1 — M), will provide at least the same
accuracy, and so Eq. A4 is satisfied. If the Wald optimal
decision rule will be more efficient than the mixture rule then
strict concavity is obtained (i.e. in A4. we will have strict
inequality).

Assuming A(f) is a differentiable function, the monotonicity
and concavity properties translate too

A1) >0,4"(t) < 0 (A5)

AC
[

know, from the previous subsection, that any rule that maxi-
mizes the RR is a Wald optimal strategy. Therefore, the
optimal reward rate is achieved by maximizing with respect
to ¢ the reward function:

Consider next the reward rate, RR =

. We already

A1)
ottt

R(2) (A6)

@ Springer

Taking derivatives with respect to t we find that

A(2)(t+ tres) —A(2)

R(t) = (A7)
(t+ tres)’
And the condition for stationary points is thus:
A (1)(t+ tes)—A(2) = 0, (A8)

Consider a target mean decision time #, > 0. I next show
that there exists some positive £ for which 7, is a stationary
point. Indeed, defining

A(t)

brog =~

res /(IO)_t()v (A9)

We note that ¢, solves Eq. A8. So it remains to be seen that
£, is indeed positive:

x A(to)_loA/(tO) _ <A(O) + /OA,(T)dT>_tOA/(tO)
A'(to) ’
(AIO)

res A’ (t())

Noting that A'(7) is a decreasing function of 7(4''(7) <0

according to Eq. 5), we obtained that [[' 4’ (7)dr > 194’ (1) .
Thus, continuing Eq. A10,

to
A(0) + A (T)dr—10A4' (1
oo ( ) /0 (7') Tl (0) >p1+toA/(to)—toA/(t0) _ P o
res A/(to) A/(to) A/(Io) )

(Al1)

Next, I show that the stationary point #, is a maximum
point. Indeed, taking another derivative from Eq. A7 we
obtain that:

A0+ b)) =20+ 1) [A (1) (¢ + tre)=A(1)]

RN(I) (t n tm)4

(A12)

Evaluating Eq. A12 at the stationary point 7, simplifies to
R”(t()) . AN([O)

T totHres
point of the reward rate.

Next, I show that #, is in fact a global maximum. If we
assume it is not, then Eq. A8 has another root (stationary
point) at the global maximum. Thus, Eq. A8 has at least two
different roots. But this means that the derivative of Eq. A8
must also have a root. Thus there exists a positive # such that
A" (D)t + ts) = 0, which is impossible because 4''(f) < 0 and
t+ to > 0. Therefore, 7, must be a global maximum.

To conclude, given a target mean decision time ¢y, I found a
mean positive value of the residual time, 7., (Eq. All) for

< 0 which shows that #, is a local maximum
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which the WO decision rule (with mean decision time #, and
accuracy A(fy)) is RR-optimal.

Appendix B: SPRT in Gaussian environments

In the current Appendix, I extend the SPRT model to Gaussian
heterogeneous environments. I assume that the on each trial,
the difficulty level is drawn from a Gaussian distribution. The
unique source of uncertainty concerns which of the two re-
sponse alternatives is correct. On each temporal interval df a
new independent perceptual sample is generated and is dis-
tributed ~N(vdt,s*dr) where s* is the variance rate, and v is the
drift rate for the current trial. The participant needs to decide in
favor of one of two hypotheses:

Hy: The current drift rate v was generated from a N(vo, 1)
distribution or:

H,: The current drift rate v was generated from a
N(—vo,17°) distribution.

Importantly, the positive parameters v, and 7, which corre-
sponds to the mean and to the standard deviation of difficulty
distribution respectively are known.

Denote by x(¢) and x(¢) respectively the entire stream of
accumulated perceptual evidence and the total accumulated
evidence obtained by time # (thus x(¢) is simply the state of x(¢)
at time ). According to Bayes’ rule the posterior odds is the
product of the prior odds and the Bayes factor (BF):

Pl ) o) N
(i) P (5w ) PE

Let us next focus on the numerator term P(x(¢)|Hy) . It can
be shown (see Drugowitsch et al., 2012, Eq. 10) that condi-
tional on a drift rate v:

2x(1)v— 12

P(’i(t)‘v) - D(az(z))e (B2)

Where D(X(¢)) depends on the specific stream X(¢) but not
on the drift rate v.

Reading the following derivation, throughout the section
proportionality (=) denotes equality up to a multiplicative term
that is invariant with respect to v, (and its sign) but may
depend on the specific stream x(¢) . Note that, P(x(¢)|Hy) is

obtained by integrating P(x(z)|v) over the drift distribution.
Thus:

()

PoH) [ PROWe

2
D a2 _(v=0)

Yo
e 7 e 2 dv

—o0

dv=D(X(1)) /

(V r/zr([)+\2\’0>
—
, S22t
A A 22,2
—e 27 e 221
—00

(Pr(o)+52v0)
e 222 (2 4+21) dv

2
Px(t)+52vg
X0V
2

7& N zJ;,%(:):UJr\“% © gy
e 272 222 (s2+21) e 2 dv
—00

(B3)

Examining the integrand in the final term we note that it is
proportional to the probability density function of a Normal

T . _ 1Px(0)+s*v s*n
distribution with mean = “5r=m= Pl

Therefore this integral is independent of v, so we obtain:

and variance =

Vo 22x(nvg+s? v%

P(E(t)‘Ho) we 7 ) (B4)

We can now derive the term P(x(¢)|H;) by replacing in
Eq. B4 vy by —v, to obtain:

2 2 12,2
0 27 x(t)vy+s i

P(}c’(t)‘Hl) we 22T REAA) (B5)

Equations A4—AS5 share the same proportion factor, hence
returning to the BF, it follows that

P(ROI) _ xe
P(5(0)|my) -

Finally, taking logarithms of Eq. B1 and using Eq. B6, we
obtain:

~ 2x(t
ﬂ:7x()vo +

@ 1) (B7)
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where 7 and 7t are the log-prior and log-posterior odds
respectively.

In SPRT integration of perceptual evidence occurs until the
posterior reaches a target level +a, a=In (ﬁ) , where 4 is a
target level of accuracy. From Eq. B7 it follows that integra-

tion occurs until

x(t)s{_sz(a +m) 17 (a+m) ; s*(a—n) . 7 (a—7) t} (BS)

2vg 2vo T 2w 2vy

This means that a diffuser (with starting point x(0) = z) will
terminate all trials with the same posteriors level of £« if the
time-variant response thresholds are set at distances

—Srz((;—Jrﬂ—"z(‘;—*W)t (the lower threshold) and 52(2“—77) + "Z(Q(ﬂ t
Vo Vo Vo Vo

(the upper threshold) from the starting point. Note that the lower
and upper response thresholds respectively are linearly decreasing

and increasing functions of time and that the boundary separation
increases with rate ’7:—0“ . Additionally, in the particular case that the
environment is unbiased (i.e. 7 = 0) both thresholds change with

n2 . . . .
equal absolute rates % but in opposite direction.

Another implication of Eq. B7 is that in the DDM, where
integration stops when either of the (constant) thresholds is
reached (located in distances —z or a—z from the starting point)

2v__ for the lower boundary

&

and 7T = 2&?;;2:;] + 7, for the other threshold. Recall, that the

logs odds are formulated in terms of the “upper’ (H,) choice-
alternative relative to the ‘lower’ (H;) choice-alternative. If
instead, the log odds are formulated with respect to the chosen
relative to the non-chosen alternative, the log-odds for the lower

then the log odds are: 7 = 71—

threshold is obtained by flipping the sign: 7T = ( 20— Note

(7 +1P1)
that the log odds for both alternatives decrease monotonically as

a function of ¢, tending towards the prior odds (+7) as t— 0.

Appendix C: Simulation methods

In this appendix 1 describe the method I used for finding the
optimal triplet (a,z,v.) for the DDM in biased heterogeneous
environments. For a single difficulty level v, the accuracy and the
MRT are given by (c.f. Eq. 8—12 in van Ravenzwaaij et al. 2012):

2a(v+ve) 2(a—z)(vtve)
e 2 —e )

2a(v+ve)
e <7 —1

Acc(v|a,z,ve, B,s) = 3 (

@ Springer

_ 2z(vtve)
z a (e 2 = 1)

- + 2alvve)
V+ v (V-‘FVC) (67 5 _1>

_2a=2)(v=ve)
2 —
a—z a <e s 1)

MRT(v|a,z,v., 3,5) = 3

When the environment is heterogeneous so that drift is
distributed ~f(v) I found the accuracy and MRT by integrating
the corresponding terms over the distribution f. The two cases
that are explored in the paper are a Gaussian and a discrete f
with two equi-probable drift rates. For the Gaussian
case the integration was performed by numerical integration
and the discrete integration was handled by arithmetic
averaging.

The optimization problem can now be formulated as

(a,z,v.) = argmin/ MRT (v|a,z,v., 3,8)df (v)

(C3)
5.t /Acc(v|a,z, Ve, B3,8)df (v)> A4

where 4 is the desired accuracy level. Note that for the optimal
triplet the constraint is always satisfied with equality, other-
wise a sufficiently slight reduction to the threshold separation
a would diminish MRT while maintaining accuracy above the
desired level, contradicting the optimality of the triplet.
Defining:

F(Q,Z7V£,ﬁ,s) = .
jMRT (Vla,z,ve, B,8)df (v) j Ace(vl|a,z,ve, B, s)df (v)=A
® , j Ace(v|a,z,v., 3,5)df (v) < A4
(C4)

the optimal triplet is defined by (a,z,v.) = argminF(a,z,v., 3,s).

I took considerable measures to avoid local minima in the
search for the triplet that minimizes F. This search was con-
ducted with a combination of genetic algorithms and the
iterative Nelder-Mead (Nelder & Mead, 1965) Simplex meth-
od, (implanted by the routines “ga,” “fminsearch” available in
Mathwork’s MATLAB). I repeated the following steps 10,000
times. First, | minimized the objective function by running the
genetic algorithm. The output triplet was then fed as the
starting point for the simplex algorithms. The simplex algo-
rithm in turn was iterated several times; each iteration started
with the parameters obtained from the termination of the
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previous iteration.'* This was repeated until the objective
function improved by less than 1e-5 on two consecutive runs.
The triplet that minimized the objective function more than
10,000 iterations of a genetic algorithm followed by a se-
quence of simplex iterations was considered to be the optimal
triplet.
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