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Classical theory(Guided-Search, Fl, etc)

Stage-1: parallel computation of salience on master salience mag
Stage-2: serial selection of visual items for target/non-targe

identificatior

Explains flat VS set-size functions for easy search, and steeg
slopes for difficult search; the Guidance-parameter (Wolfe, GS
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Challenge: parallel models can produce positive slopes

Serial and parallel models can mimic each other: °
Capacity issues (Townsend:Tweedle-Dee & Tweedle-
dum): larger set-size = lowers processing rates per
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Outline

Formal comparison of a serial (2 stage) and a parallel
(1 stage) model of VS to standard search tasks
Account not only for mean-RT and error-rate but also
for RT-distributions (more constraint for mode
comparison)




VS-data with RT-distributions

Wolfe J.M., Horowitz T.S., & Palmer E.M. (2010). °
Reaction time distributions constrain models of
visual search. Vision Research. 50 (14): 1304-1311.
28 participants (™9 per task)e

Factorial design: 4 set sizes (3,6,12,18)* 2 target °
presence conditions

All 8 cells mixed within blocks.e

~500 trials per cell per participant.e



What is usually reported: mean RT
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And accuracy
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Fig. 3. Mean error rates for each set size and for each task. The four bars for each
task represent the four set sizes. Thus, for example, it can be seen that error rates
are highest for spatial configsuration miss errors and that these rise with set size.



But they don’t usually report
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Rules out naive serial self terminating
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Fig. 7. RT distributions for simulated serial, self-terminating search. Solid lines
represent target present distributions; dashed, target absent. Lighter lines represent
smaller set sizes.
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guided search (Moran et al, 2014; J. of

Stage-1: salience with °V|S|On)
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Methods of model fitting

Quantile Maximal Probability Estimation (QMPE; e
Heathcote, Brown, & Mewhort, 2002)- Maximal
likelihood based on RT-quantiles: accounts
simultaneously for RT distributions and error rates
For both models we developed analytic formulas ®
error rates and RT (Hit, CR) distributions.
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Model-comparison conclusions

Despite less model flexibility (8 compared with 13 ¢
free parameters), CGS accounts better (less
deviance) for the data in all 3 tasks

The parallel model can account for positive or flat e
slopes, but cannot account as well for the
guantitative aspects of the RT-distributions together
with error-rates

Interestingly, the parallel model could not account
well for the zero-slope feature search task: when n-
diffusors go in parallel we have statistical facilitation
for self terminated processes, or slowdown for
exhaustive ones.
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