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Matter More Than Sums?
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An enduring debate in decision-making and social cognition concerns the algorithm
governing the formation of intuitive preferences and attitudes. Here we contrast 2
principles that are considered central to such judgments: averaging versus summation.
Participants in 4 experiments were prompted to rely on their intuition when rating the
Hall of Fame eligibility of basketball players, or their liking of athletes, lecturers or
slot-machines, on the basis of rapid numerical sequences that represent performances,
class feedback, or rewards. Experiment 1 showed that participants are sensitive to the
sequences’ averages, and prefer alternatives with high averages over those with high
sums. Experiment 2 replicated these findings, and further showed that in a comparison
between several models such as averaging, summation and the Peak-End heuristic,
averaging type models account best for participants’ preferences. Experiment 3 indi-
cated that these evaluations are mediated by automatic/intuitive processes. Based on
computational considerations we propose that the critical variable, determining whether
preferences are more sensitive to sums or to averages, is the presentation and evaluation
format: one by one versus grouped. This prediction is confirmed in Experiment 4.
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Intuitive preferences and attitudes can be
viewed as “evaluative summaries” that deter-
mine our behavioral tendencies toward persons
and objects and thus are an indispensable con-
struct for understanding human judgment and
decision-making (Allport, 1935; Fazio, 1989).
Although much research has been dedicated to
controlled information integration, viewed as a
capacity constrained sequential adjustment of
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an estimate toward a criterion (Hogarth & Ein-
horn, 1992; see review in Juslin, 2015), a num-
ber of studies demonstrated that attitudes can
also be formed in an implicit and automatic way
(Schneider & Shiffrin, 1977). For example, in
two seminal studies, Betsch and colleagues
have demonstrated that human observers can
form accurate attitudes toward alternatives
(stocks characterized as sequences of returns),
which are presented as distractors and without
an explicit task of evaluation (Betsch, Kauf-
mann, Lindow, Plessner, & Hoffmann, 2000;
Betsch, Plessner, Schwieren, & Giitig, 2001).
Similar automatic mechanisms are indicated by
studies of retrospective evaluations of affective
episodes (Diener, Wirtz, & Oishi, 2001; Kah-
neman, Fredrickson, Schreiber, & Redelmeier,
1993; Redelmeier & Kahneman, 1996).

The principle that underlies such automatic
evaluations is subject to debate. On the one
hand, the information-integration theory has
suggested that attitudes reflect an averaging
principle (Anderson, 1981). A similar sugges-
tion is the Peak-End rule—a special version of
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an averaging model—which accounts for retro-
spective evaluations of affective episodes (Die-
ner et al., 2001; Kahneman et al., 1993; Re-
delmeier & Kahneman, 1996). On the other
hand, Betsch and colleagues have recently pro-
posed that attitudes toward a stream of value-
charged pieces of information about alternatives
(stock returns) reflect a summative principle
(Betsch et al., 2006, 2001).

It is important to note that both of these
principles—averaging and summation—can be
subsumed under the more general principle of
additive integration, which is usually contrasted
with the nonlinear integration that is required in
normative accounts of probability judgment
tasks (Juslin, 2015)." To illustrate the tension
between the averaging and the summation prin-
ciples, consider the case of Michael Jordan’s
comeback. Jordan is widely considered to be the
greatest basketball player of all-time (National
Basketball Association official website, 2015).
He retired on the highest note possible, having
just won his final championship and scoring the
winning basket in his final game. His list of
accomplishments speaks for itself: during the
13 years he wore the Chicago Bulls uniform,
Jordan won the regular season’s Most Valuable
Player award 5 times, the NBA Finals Most
Valuable Player award 6 times, 6 NBA cham-
pionships, gained 12 All-Star selections and 10
All-NBA First Team selections. However, after
spending 3 years away from the court, Jordan
decided to make a comeback in the uniform of
the Washington Wizards. Despite playing well
for a 40-year-old, the two years he spent with
the Wizards were not nearly as successful,
prompting sports writer Bill Simmons to name
it as one of the most depressing comebacks in
NBA history (Simmons, 2010). However, none
of Jordan’s previous achievements were taken
away during that comeback. If anything, Jordan
still managed to add two additional All-Star
selections and 3,000 points to his resume. The
sum total of his achievements only got bigger.
Obviously, this is a case in which the two prin-
ciples diverge: whereas summation should pre-
dict an enhanced appreciation after the come-
back, averaging predicts depreciation (Jordan’s
career averages dipped).”

The aim of this article is to examine the
nature of the mechanism that mediates intuitive
and automatic preferences (or attitudes) by con-
trasting between these two operating principles

and examine the role of individual differences.
Toward this aim we carried out four experi-
ments, in which participants were exposed to
rapid sequences of value-charged stimuli (nu-
merical values of performance) about a number
of alternatives and were asked to convey their
liking of each, on an analog scale, by relying on
their intuition. Previous studies have shown that
instructing participants to adopt a certain mind-
set (Horstmann, Ahlgrimm, & Glockner, 2009;
Pham, Lee, & Stephen, 2012; Rusou, Zakay, &
Usher, 2013; Usher, Russo, Weyers, Brauner, &
Zakay, 2011) and using stringent time-con-
straints (Horstmann, Hausmann, & Ryf, 2010)
are effective manipulations for inducing auto-
matic/intuitive decision modes (but see Exp. 3,
for additional validation).

To anticipate our results, in our first three
experiments we found that, in opposition to
what we find when similar evaluations are made
in an self-controlled format (see Discussion of
Exp. 1-3), a clear domination of the averaging
principle emerges, and the third experiment pro-
vide further support that the evaluations are
indeed made under an automatic/intuitive mode.
Based on these results and on neurocomputa-
tional considerations, we propose that a critical
difference that determines whether intuitive
preferences are dominated by averaging versus
summation is the presentation and evaluation
format (one-by-one vs. grouped). This predic-
tion is confirmed in our fourth experiment.

Experiments 1 and 2

The experimental task was designed as a se-
ries of evaluations (30 decisions in Experiment
1 and 96 decisions in Experiment 2) about the
eligibility of basketball players to the Hall Of
Fame. Prior to each decision, the participants
viewed a sequence of 6-12 numbers (ranging
from 5 to 50), which represented a player’s
career, with each number corresponding to
the average number of points he scored during

! Thus data showing additive integration (e,g., prior ne-
glect) do not distinguish between them, as to do so one
needs to compare attitudes for alternatives that differ in the
number of samples.

2 We use Jordan’s example for illustrative purposes and
do not claim that his evaluation change was actually based
on intuitive (nonanalytical) judgments. In the experiments,
however, we aim to provide conditions that engage intuitive
preferences.
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Figure 1. (A) Time flow of sequence presentation in Exp.
1 and 2. (B) Evaluation scale.

one season (Figure 1A). At the end of each
sequence presentation the participants had to
indicate how much they feel the player de-
served to be inducted into the Basketball Hall
Of Fame, by rating him on an analog attrac-
tiveness scale (Figure 1B).

In both experiments, we intended to engage
intuitive judgments by instructing the partici-
pants to rely on their intuition and general im-
pression of the numbers (Horstmann et al.,
2009; Pham et al., 2012; Usher et al., 2011) and
also by employing a fast presentation rate
(Horstmann et al., 2010). The players which the
participants had to rate (one per trial) were
divided into two types: (a) regular players, test-
ing participants’ sensitivity to averages and to
sequence length, and (b) critical players, con-
trasting between averages and sums by setting
them in opposition. Whereas in Experiment 1
(which was aimed to test the basic paradigm) the
additional seasons always came at the end of the
sequence, in Experiment 2 (which was aimed to
replicate the results with a larger sample and ex-
amine individual differences), we extended this
design by inserting the additional seasons at three
additional temporal locations. Experiment 2 also
tested the sensitivity of intuitive evaluations to one
additional factor: the temporal bias, which is an
important component in the Peak-End heuristic
(Kahneman et al., 1993).

Materials

A total of 30 players were presented in Exp. 1,
20 regular players and 10 critical players, each
presented as a numerical sequence for evaluation
in one experimental trial. The regular trials were
constructed based on two factors, which were

manipulated orthogonally: (a) sequence’s average
(10, 25 or 40) and (b) sequence’s length (8, 10 or
12). Thus, the regular players averaged 10, 25 or
40 points per game throughout their careers,
which lasted for 8, 10, or 12 seasons. The 10
critical players were constructed as pairs, in which
one player had a short but successful career, in
which he averaged 40 points per game in 9 sea-
sons (“High-Average, Low-Sum” player), while
the other player had the exact same first 9 seasons
as the former, but with three additional seasons
with diminished (though still above-average — 28
points per game) performance, for an overall av-
erage of 37 points per game over 12 seasons
(“High-Sum, Low-Average” player; see Suppl.
Information e.g., of critical trials). Thus, although
the second player has lower career average, he
dominates the first one in terms of total career
achievements (higher sum) and therefore should
be favored based on a summation principle.

In Exp. 2, the participants saw and evaluated a
total of 96 players: 72 regular players and 24
critical players. The 72 regular players were con-
structed based on a factorial design with 3 factors:
(a) sequence average (10, 20, 30, 40), (b) se-
quence length (6, 9, 12) and (c) temporal bias
(primacy, balanced, recency); the numbers in the
sequence were arranged so that either the larger
numbers appeared in the first half (primacy pro-
file), the second half (recency profile), or roughly
equally (balanced profile), see supplemental infor-
mation for additional details. The 24 critical play-
ers were constructed in six quadruplets. The first
two players—the “High-Average” and the “High-
Sum End” were similar to the critical players in
Experiment 1 (this time the “High-Average”
player averaged 40 points per game over 8 seasons
and the “High-Sum End” player averaged 36
points per game over 11 seasons). The two new
players in a quadruplet had the same career as the
“High-Sum End” player, but the additional
three seasons appeared either at the beginning
of the player’s career (“High-Sum Begin-
ning”) or at the middle of the career (“High-
Sum Middle”); see suppl. information.

Method

Participants. Twelve students from Tel-
Aviv University (7 females, age: 19-31, M =
24.3) participated in Experiment 1, and 29 stu-
dents from Tel-Aviv University (20 females,
age: 19-36, M = 23.6) participated in Experi-
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ment 2. All the participants received either
course credit or payment, and all had normal or
corrected to normal vision.

Procedure (Experiments 1 and 2). Partici-
pants were told that they are about to see se-
quences of the numbers that would be presented
at a fast pace, and thus doing various calcula-
tions in the experiment is nearly impossible.
They were therefore instructed to make the
evaluations of the players intuitively, by relying
on their general impression of the numbers (Ru-
sou, Zakay, & Usher, 2016). In both experi-
ments the participants were told that the maxi-
mum amount of points the players score is 50,
and an “example player,” which was not eval-
uated, was shown. Each trial presented one
player, and the trials’ order was randomized
once, and then kept the same for all participants.
When a player had to be evaluated, his “career”
was presented sequentially. The numbers ap-
peared in green color at the center of a black
screen for 500 ms, followed by a blank screen
for 100 ms before the next number of the se-
quence. The evaluation was done on evaluation
sheets for Exp. 1 (see Figure 1) and on the
computer for Exp. 2. Exp. 1 took approximately
15 min and Exp. 2 took approximately 30 min.

Analysis. First, the ratings of the regular
trials in Experiments 1 and 2 were used to test
if participants are sensitive to averages and to
sequence length. We carried out a repeated
measures ANOVA analysis on the regular play-
ers, with “average” and sequence length (“num-
ber of seasons”) as within-participant variables

(all factors and interactions were tested for the
sphericity assumption, and when violated, a
correction for the degrees of freedom was ap-
plied, using the Greenhouse-Geisser correc-
tion). Experiment 2 had an additional within-
participant variable, the “temporal profile”
(primacy/recency/balanced). Second, partici-
pants’ ratings in the critical trials were con-
trasted to test the average versus the summation
principles. In Exp. 1 the critical trials were
contrasted via a paired 7 test, in Exp. 2 this was
done via repeated-measures ANOVA. Finally,
we examined individual differences in Exp. 2
by carrying out quantitative analysis that con-
trasts a number of competing models of intui-
tive evaluations, which are based on various
combinations of the sequence properties, such
as (a) average, (b) sum (or length of sequence),
(c) last item, (d) peak-item.

Results and Discussion

Group-level results.

Regular trials. The average ratings of the
regular candidates, as a function of sequence-
average, and sequence length, are shown in Figure
2 for Exp. 1 and in Figure S1 (for Exp. 2). F2

In both experiments, the results indicate a
strong effect of the average (Exp. 1: F(2, 22) =
97.14, p < .001; Exp. 2: F(1.92, 53.70) =
539.13, p < .001). The effect of sequence-
length was less consistent. While no effect was
found in Exp. 1, F(2, 22) = 0.75, p = .49,
sequence-length was significant in Exp. 2, F(2,

Hok

MeanRatings

8

. ——

10 12 \
25

Main Units - Averages; Secondary Units - Sequence Length

Figure 2. Mean ratings in Exp. 1 for the regular players, by average (10/25/40) and number
of seasons (8/10/12). Error bars correspond to within-participant 95% confidence intervals.

“p< .05 p< 0l
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56) = 15.85, p < .001; this however was
smaller in magnitude, compared with the effect
of the average, as discussed below. Post hoc
Tukey’s tests revealed that that participants
gave higher ratings to each successive increase
in the players’ points average (Exp. 1: M,, =
0.88, SD,, = 1.02; M,5 = 4.13, SD,5 = 0.37,;
My, =743, 8D,y = 1.11; Exp. 2: M,;, = 1.31,
SD,, = 0.61; M,, = 2.97, SD,, = 0.68; M3, =
5.11, SD5, = 0.66; M, = 7.48, SD,, = 0.67).
Post hoc Tukey analyses on sequence length in
Exp. 2 revealed that participants gave higher
mean ratings to players who played 9 or 12
seasons than to players who played 6 seasons
(no difference in the ratings between 9 seasons
and 12 seasons; M, = 3.96, SD, = 0.60; M, =
4.30, SDy = 0.32; M,, = 4.40, SD,, = 0.43).
No interaction between average and sequence
length was found in Exp. 1, F(4, 44) = 1.29,
p = .29, but was found in Exp. 2 (see Fig. S1):
F(4.42, 123.78) = 10.43, p < .001. Post hoc
Tukey analyses revealed that participants as-
signed higher ratings to players with 9 or 12
seasons than to players with 6 seasons—when
the player’s average was 30 or 40, but the
number of seasons had no effect when the play-
er’s average was 10 or 20. Analysis of the
players’ temporal profiles in Exp. 2 revealed no
main effect for the temporal profile, F(1.63,
45.77) = 2.27, p = .123, as well as no interac-
tion between the temporal profile and the aver-
age, F(4.08, 114.35) = 2.25, p = .066, the
length, F(4, 112) = 0.87, p = .483, and no
three-way interaction, F(6.08, 170.15) = 1.26,
p = .277, see suppl. information.

Critical trials. As illustrated in Figure 3A,
in Exp. 1 the “High-Average, Low-Sum” play-
ers received higher ratings on average (M =
7.34, SD = 1.89) than the “Low-Average, High-
Sum” players (M = 6.87, SD = 2.02; «(11) =
3.54, p = .005), suggesting that participants’
evaluations were more consistent with an aver-
aging process rather than a summation one,
supporting the “Jordan-effect.”” In Exp. 2, a
main effect was found, F(3, 84) = 3.57, p =
.017. Post hoc Tukey’s tests revealed that par-
ticipants gave the highest mean ratings to the
“High-Average” players (M = 7.31, SD =
0.84), which were higher than the ratings given
to the “High-Sum End” players (M = 6.81,
SD = 0.96). The “High-Sum Beginning” play-
ers (M = 7.04, SD = 0.77) and the “High-Sum
Middle” players (M = 6.99, SD = 0.75) re-

ceived similar ratings, which were also not dif-
ferent from the “High-Average” players or the
“High-Sum End” players (see Figure 3B).

The group-level results (Figure 2, Figure 3
and Fig. S1) indicate a similar pattern. Partici-
pants differentiated between the regular players
based on their averages (an increase-ratio® of
1.64 (6.55/4) in Exp. 1 (6.55/4) and of 1.54
(6.17/4) in Exp. 2). The impact of sequence-
length was less consistent (no effect in Exp. 1,
and a very small effect, an increase-ratio of
0.22 (0.44/2) in Exp. 2); a summation model
predicts increase-ratios of the same magnitude.
The participants also preferred the “High-
Average” player over the “High-Sum” player
when the additional seasons were added in the
end (see Figure 3), providing further support for
the “Jordan-effect.” However, the additional
critical players added in Experiment 2 failed to
provide a clear-cut support for either the Aver-
aging principle (which predicted higher rating
for the High-Average compared with High-Sum
Beginning/Middle) or for the Peak-End heuris-
tic (which predicted higher ratings for the latter
two compared with the High-Sum End). In ad-
dition, the temporal bias factor was not signif-
icant in the regular players’ analysis, suggesting
that the impact of the temporal bias to the eval-
uation is smaller than that of the average, and
subject to variability, which may involve indi-
vidual differences. We thus carried out a quan-
titative analysis of individual participants, in
which we contrasted a number of competing
models that are based on various combinations
of the sequence-average, number of seasons, the
peak-season and the last-season.

Quantitative model comparison and indi-
vidual differences. To examine which model
best describes the participants’ ratings, we sub-
jected the participants’ ratings in Exp. 2 to nine
linear regression models, and estimated how
well they account for the data. Our central aim
was to contrast between summation and aver-

* We define the increase-ratio as the ratio of the increase
in rating (e.g., in Exp. 2 the increase in ratings for the
average was 7.48 — 1.31 = 6.17) divided by the ratio of
increase between the lowest and the highest values of the
independent variable (average or sequence length). For ex-
ample, in both experiments, the average increased by a
factor of 4 (40/10), and in Exp. 2, sequence-length increased
by a factor of 2 (12/6). We divide the ratio of the corre-
sponding ratings by these factors.
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High Average
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(A) Mean ratings given to the “High-Average, Low-Sum,” and the “High-Sum,

Low-Average” critical players in Exp. 1. (B) Mean ratings given to the critical players in Exp.
2. Error bars correspond to within-participant 95% confidence intervals. * p < .05, ™ p < .01.

aging-based models and also to distinguish be-
tween averaging and Peak-End Heuristics.
Therefore, the models were selected so that the
first four are variants of the averaging principle:
Whereas Model 1 is a pure averaging model,
Models 2—-4 include the average together with
some additional factors that may be thought to
contribute in addition to averaging, such as (a)
the last value, (b) sequence length, N, (c) both
of the above. The next three models are variants
of the summation principle: Model 5 is a pure
summation model, while Model 6 is a modified
sum model, in which the summation is carried
out relative to a reference—R: Y = a; X X
(x; — R) + b (when R = 0 the model acts as a
regular summation model,* whereas for R in the
midrange it predicts an interaction between av-
erage and N). Model 7 includes summation to-
gether with the end item, and Model 8 is the
traditional Peak-End model (Kahneman et al.,
1993). Note further that Models 3 and 4 are
intermediate between averaging and summa-
tion, as they allow the number of elements to
impact the evaluation, but depending on the
N-coefficient this impact may be much smaller
than expected from a summation model. The
final Model 9 is the anchor and adjustment
model (Hogarth & Einhorn, 1992), which is
associated with controlled updating and was
used to account for temporal order effects (see
Table 1).

All the models were fitted to the data of each
participant, by regressing the ratings that the
participant produced in each trial, on the model-
properties of that trial (e.g., Average and End-

value, for Model 2). The regression was carried
out in Matlab (by using the LinearModel fit
function), which produced the model coeffi-
cients that minimize the least square distance
between model prediction and data and pro-
vides the likelihood of data given the model (at
its best parameters).” This likelihood was used
to compute the Bayesian Information Crite-

rion (BIC = — 2-1n(i) + k-In(n); Wasserman,
2000), which penalizes for extra free param-
eters. The aim of the analysis was to find, for
each participant, which of these models best
accounts for the ratings, using BIC (see Table
S1 in suppl. information for individual BIC
values for each model).

As illustrated in Table S1, the various aver-
aging models provided the best BIC-fit for 21 of
the 29 participants (~72%), with the pure av-
eraging model (A) accounting best for 18 of
them (~62%); see Fig. S2 in the Suppl., for the
data fit of these participants in the filler trials.
An averaging model which also includes the
number of items in the sequence (A + N) pro-
vided the best fit for two of the participants, and
an averaging model which includes the last item
(A + E") provided the best fit for one partici-
pant. While no subject was accounted best by

4 The R value corresponds to an implicit reference, and
we allowed the model the flexibility to assume that it can
vary among the participants. For each participant we tested
41 different values of R (0-40), to find the value which
provides the best fit—the highest explained variance.

> For Model 6, we also varied R on a grid (0-40, in steps
of 1).
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Table 1
AQ:10  The Nine Models Examined in Experiment 2
Model name Notation Y: Dependent variable (evaluation)
1. Average A Y = a,"average + b
2. Average & End A + E* Y = a,"average + a,"(end-average) + b
3. Average & N A+ N Y = a,"average + a, number of items + b
4. Average & End & N A + E"+N Y = a,"average + a,"(end-average) + a;"number of items + b
5. Sum N Y = a,"sum + b
6. Sum” S* Y = a,*sum*+ b; sum* = X,(x; — R)
7. Sum & End S+ E Y = a,"sum + a,"end + b
8. Peak & End P+ E Y = a,"peak + a,"end + b
9. Anchor & Adjustment An & Ad Y=a/S+ b, S;=S8_+ o*S;_*(X; — R) forX; =R
S; = Si-y + B = Si)*(X; = R) forX; > R

Note. N = number of seasons; End = last item; Peak = largest item of each sequence; Sum” = summation relative to

a reference. Because in our sequences the average and the End values are strongly correlated, we entered their difference
in the regression, when the two appear together in the same model. S in Model 9 corresponds to the end of the iterative
process at i = n (length of sequence).

the pure summation model, the summation rel- nale that detecting and acting on negation is a
ative to a reference model (S) provided the best  distinguishing property of the rule based ana-
fit for 5 of the participants; see Fig. S2 in the lytical/controlled system (e.g., Deutsch,
suppl., for the data fit of these participants and Gawronski, & Strack, 2006; Gawronski &
for a demonstration that the models capture Bodenhausen, 2006). If the evaluations are me-
actual differences. Finally, the Peak-End model diated by an automatic/intuitive process, we
(P + E) provided the best fit for two of the should expect participants to be unable to filter
remaining participants, while the anchor and or ignore values enclosed by red-squares, and
Fn6 adjustment model to only one.® those to-be-ignored values should receive equal
The results of the model comparison confirm  weight as other values. For example, if the to-be
the Group ANOVA results, by indicating the ignored value has a lower value than the aver-
pure averaging model to be the main determi- age of the others in the sequence, we expect that
nant of the intuitive evaluations. Recency also this will reduce the evaluation given to that
appears to have some influence on the evalua- athlete, despite the increase in the sequence’s
tions, but this was observed for only 3 partici- sum (a type of “Jordan-effect”).
pants (two of which were accounted best by the
Peak-End heuristic and one for whom the end Method
item together with the average, was part of the
best-fitting model). Finally, the modified sum-
mation relative to a reference accounted best for
F7  five participants.’

Participants. Nineteen students from Tel-
Aviv University (13 females, age: 19-26, M =
23.4) participated in the experiment, in ex-
change for course credit. All the participants
had normal or corrected to normal vision and
normal color vision.

Materials. The participants were asked to
evaluate (on a scale of 0—10) performances of
athletes competing in a six-event track & field

Experiment 3

The aim of Exp. 3 was to extend the average
dominance effect with a different task-framing
(preference for athletes competing in a six
events track field contest), while also testing a
property that is associated with automaticity ¢ If we consider differences in BIC values that are smaller
and intuitive processing. To do so, the partici- than 1 to be a tie, the various Averaging models provide the
pants were informed that occasionally the bestfitin 28 instances of 36_ (78%, pure averaging model —
« . s . 18/36), followed by summation relative to reference — 5/36,

computer generates incorrect values,” which
X X . and the Peak-End model — 2/36.
are enClosed.m a Sahem r.ed square, and WhI.Ch 7 R values for these five participants were 13, 15, 16, 19, and
they should ignore. This is based on the ratio- 26, which for the majority are below the midrange of 25.
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Figure 4. Mean ratings given to the different athletes’
types in Experiment 4. The x axis represents the actual
averages, including the “erroneous” values. Error bars cor-
respond to within-participant 95% confidence intervals. The
red-squares marks correspond to the “‘computer errors” con-
ditions. The actual evaluations of those alternatives are on
the regression line, and significantly differ from the evalu-
ation given to the “50” alternatives (dashed line), which had
the same average (excluding the “errors”). See the online
article for the color version of this figure.

contest (100-m dash, long jump, etc.). The eval-
uations had to be based on the marks (range:
0-100) each athlete receives on the six events.
The regular athletes (without computer errors)
had averages of 36.7, 50, and of 63.3. The
critical athletes had six values with an overall
mean of 50, and the seventh (the computer
error) chosen around 10 or 90, thus bringing the
overall average to 44.3 or 55.7, respectively
(See suppl. information and Table S2 for de-
tails).

Procedure. The procedure was similar to
that of Experiments 1-2. When an athlete had to
be evaluated, her marks were sequentially pre-
sented and the participant had to rate her before
moving on to the next athlete. All the numbers
appeared in green color at the center of a black
screen for 500 ms, and were followed by a
blank screen for 100 ms before the next number
appeared. An additional seventh value, which
appeared for 120 critical athletes, was enclosed
inside a prominent red square and its location
within the sequence was randomized. Partici-
pants were told in advance that they will en-
counter such “computer error” instances and
that they should ignore them. Thus, each athlete
had only six values that should influence her
evaluation. At the start of the experiment par-
ticipants saw examples of three athletes with
average marks of 50/37/63. They were also told
that the marks range from 0 to 100. After that

participants completed 300 trials in six blocks
of 50 trials each and with short breaks between
the blocks. The whole procedure took approxi-
mately 60 min.

Analysis. A one-way repeated measures
ANOVA was carried out, with average (36.7,
44.3, 50, 55.7, 63.3) as a within-participant vari-
able.

Results

As shown in Figure 4, the average factor was
highly significant, F(1.30, 23.36) = 187.61,
p < .001. Post-Hoc Tukey’s tests revealed that
all the possible pairs of comparisons yielded
significant results; that is, participants gave dif-
ferent ratings to each level of the ‘“average”
factor and in particular the critical athletes were
rated differently from the ones with an average
of 50, indicating that participants were not
able to filter out the 7th (“incorrect’”) value. For
the case in which the extravalue is lower than
the average (i.e., the 44.3 sequence) the results
provide further support for averaging compared
with summation. Furthermore, the ratings were
highly linear with the nominal average values
that include the “computer error,” showing that
participants gave the same weight to the com-
puter error as to the other values. This took
place despite the fact that all the participants,
when debriefed, reported seeing the values en-
closed by the red-squares and expressed confi-
dence that they ignored them.

Experiments 1-3: Discussion

The results of Experiments 1-3 provide
strong support for the averaging principle, as a
determinant of preferences between alternatives
characterized by rapid numerical sequences
(basketball players that are candidates for Hall
of Fame and competing athletes). In a follow-up
experiment (reported as Exp. 5, in the Suppl.)
we show that the range of the average-
prevalence effect extends to sequences of slot-
machine rewards® (see also Exp. 4). In all these
experiments the participants preferred alterna-

% In this experiment we find that participants are sensitive
not only to the sequence average but also to its variance,
with both determining the preference as suggested by a
prominent economic model (risk-return; Markowitz, 1952;
see also Weber, 2010).

F4

Fn8



APA NLM

| tapraids/dec-dec/dec-dec/dec99917/dec0190d17z | xppws | S=1 | 6/14/17 | 11:00 | Art: 2016-1222 | |

WHEN AVERAGES MATTER MORE THAN SUMS 9

tives with higher average and lower sums over
alternatives with higher sums and lower average
(an analog of the “Jordan-effect”). This conclu-
sion is supported by the model comparison car-
ried out in Experiment 2 on the individual par-
ticipants. For the majority of the participants,
the pure average was the dominating predictor
for their evaluations, even when among the al-
ternative models we included the Peak-End
Heuristics (and some variants of the summa-
tion) which shares properties with the average.

As we presented the information at a fast rate
(600 ms/sample) and as the instructions empha-
sized intuitive evaluations, we attribute the un-
derlying process to one that is characteristic to
automatic/intuitive processes (Horstmann et al.,
2009, 2010). This interpretation is consistent
with two supporting results. First, models of
controlled (step-by-step) processing, such as the
adjustment and anchoring model (Hogarth &
Einhorn, 1992) provided a less good account of
the data. Second the results from Exp. 3 showed
that for the rapid sequential presentation we
used, participants gave the same weight to to-
be-ignored values as they gave to regular val-
ues. As the ability to act on negation is one of
the characteristics of controlled processing
(Deutsch et al., 2006; Gawronski & Boden-
hausen, 2006), this supports an automatic/
intuitive mechanism.

Although more research is needed to fully
establish automaticity in our experimental
setup, it is important to highlight that these
results are remarkably different from those ob-
tained in a fully analytical set up. In a control
experiment for the Hall of Fame experiment, we
asked the participants (N = 29) to evaluate
candidates that correspond to the critical players
in Exp. 1, using self-controlled evaluations, in
which the alternatives were presented together
in a table format and without time limits (see
Control Experiment in suppl. information). The
results were markedly different from those of
Exp. 1-2. In strong contrast to our previous
results, here most participants (21/29, p = .012;
two-tailed binomial test for difference from
50%) ranked the “High-Sum, Low-Average”
player as more eligible for induction to the Hall
Of Fame, compared with his “High-Average,
Low-Sum” counterpart (see suppl. information
for details). This indicates that under the most
optimal conditions, most (though not all) par-
ticipants believe that alternatives that are equiv-

alent to Jordan after his comeback should not be
devalued relative to the precomeback status.
Although it is beyond the scope of this paper to
address the normativity of these principles
(which requires a separate investigation), we
believe that the results provides a lab analogue
to the cold water experiments of Kahneman and
colleagues (Kahneman et al., 1993; Redelmeier
& Kahneman, 1996), in which the intuitive
judgments favor the alternative that adds to total
discomfort, but reduces its average.

While evidence that attitudes are determined
by an averaging principle is not new (e.g., An-
derson, 1981), the results differ from those ob-
tained by Betsch et al. (2006, 2001), and which
supported a summative evaluation principle.
This is important since the Betsch studies,
which highlighted the automaticity of the atti-
tudes by presenting participants a single trial in
which the sequences’ values were framed as
irrelevant distraction, were one of the major
motivations of our investigation. Thus, if we are
to make some progress in understanding the
process involved, it is necessary to better un-
derstand the source of this difference. On the
basis of computational considerations (dis-
cussed below) we suggest that one important
factor is the mode of presentation and evalua-
tion: one alternative at a time (in our experi-
ments) versus all alternatives presented and
rated together (in Betsch et al.’s studies). In our
final experiment we test this prediction, but first
we briefly outline its motivation.

A Neurocomputational Prediction: The
Presentation/Evaluation Format

Establishing averaging as a mediating princi-
ple for intuitive preferences in Experiments 1-3
is only a first step in explaining the mediating
process or mechanism. Unlike summation,
which is naturally mediated by a variety of
accumulator (or diffusion) models® (Brown &
Heathcote, 2008; Busemeyer, 1985; Busemeyer
& Townsend, 1993; de Gardelle & Summer-
field, 2011; Forstmann, Ratcliff, & Wagenmak-

° Each alternative is associated with a neural accumulator
that integrates the information samples that correspond to it.
Although such models are usually (and naturally) employed
in accounting for decisions, they can also generate “liking”
ratings, if we assume that activations are systematically
(albeit arbitrarily) converted onto an analog scale.

Fn9
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ers, 2016; Kiani, Corthell, & Shadlen, 2014,
Stewart, 2009; Vickers, 1970; Zeigenfuse,
Pleskac, & Liu, 2014), averaging appears to
require a more complex process. As discussed
by Betsch and colleagues (2001), averaging re-
quires tracking both the sum and the number of
samples for each alternative (and dividing ac-
cordingly, which is not very plausible for the
rapid presentation conditions of our experi-
ments in which the number of samples varies).
The accumulator models described above, for
example, are unable to extract averages as they
cannot distinguish between the same activation
that is the result of few large values or a larger
number of smaller ones. A variant of such mod-
els based on leaky accumulators (Busemeyer &
Townsend, 1993; Hogarth & Einhorn, 1992;
Tsetsos, Chater, & Usher, 2012; Usher & Mc-
Clelland, 2004; Yechiam, Busemeyer, Stout, &
Bechara, 2005) can interpolate between a sum-
mation principle (at small N) and an averaging
principle (at large N). Such models, however,
predict temporal weights (i.e., order effects) that
are not consistent with our data (e.g., Exp. 2).
Research on explicit numerical averaging,
however, indicates that human participants are
quite good at averaging sequences of two or
three digit numbers, even at rapid presentation
rates of 2 per seconds (Brezis, Bronfman, &
Usher, 2015; Malmi & Samson, 1983) and has
started to address the mediating mechanism.
Malmi and Samson, for example, explicitly dis-
cussed two hypotheses regarding the averaging
mechanisms: One is a running-average (a type
of online updating with a decreasing weight for
each new item; see also Hau, Pleskac, Kiefer, &
Hertwig, 2008) that only maintains the running-
average and discards distributional properties of
the values sampled, and the other is a value-
distribution account, which maintains the distri-
bution of values (a type of histogram) and com-
putes the average offline as its balance-point or
“fulcrum” (p. 552) and they provided support
for the latter. This idea was further developed in
two neurocomputational studies, in which it was
suggested that numerical averaging for rapid
numerical sequencing is mediated by a popula-
tion coding mechanism (Brezis, Bronfman, Ja-
coby, Lavidor, & Usher, 2016; Brezis et al.,
2015; see also Jazayeri & Movshon, 2006) that
operates an analog/intuitive or approximate
pathway, in which Arabic numerals are rapidly
and automatically translated from their digital

code into a noisy quantity code on a “mental
number line” (Dehaene, 1992, 2007; Dehaene,
Molko, Cohen, & Wilson, 2004).

If indeed numerical averaging of rapid se-
quences is mediated by a population-averaging
mechanism that operates on the representation
of the sampled value distribution, one may ex-
pect that this mechanism will be easier to de-
ploy in the one-by-one evaluation and presen-
tation condition, which we used in our
experiments, but more difficult in the grouped
presentation conditions of Betsch et al. (2001),
which require the maintenance of multiple dis-
tributions, one for each sequence presented in
parallel, to generate distinct population aver-
ages (without being contaminated by the oth-
ers).'? Assuming task adaptivity (Payne, Bett-
man, & Johnson, 1988; Tsetsos et al., 2016), we
predict that in the grouped presentation/
evaluation condition, most participants employ
an accumulator-based mechanism that results in
preferences that are dominated by the summa-
tion principle (Betsch et al., 2006, 2001), or
exhibit a balance between the two. Indeed, this
is a result we obtained in a preliminary experi-
ment (M. Brusovansky, MA thesis), in which
we presented four sequences of values in a
randomized order and required the participants
to make the evaluations for each at the end of
the presentation as in Betsch et al. (2006, 2001).
We test this prediction is Exp. 4, which presents
each participant the same sequences for evalu-
ation, once in a one-by-one format (session-1)
and once in a grouped format (session-2, coun-
terbalanced).

Experiment 4

To test this prediction and to extend the pre-
vious results to new domains, we carried out an
experiment, in which each participant viewed
the same numerical sequences (now framed as
possible outcomes of various slot-machines
(4a), or as ratings given by students to lecturers
(4b)) and made liking ratings under two condi-
tions: one-by-one, versus grouped.

10 This is similar to the limitation that participants have in
maintaining more than one signal detection criterion when
trials of different difficulties are randomly mixed within a
block (Gorea & Sagi, 2000).
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Method Procedure. In the one-by-one evaluation

.. . condition, the sequences were presented sepa-
Participants. Twenty-six students (21 fe- d P P

males, age: 19-38 years, M = 22.5) from Tel
Aviv University participated in two sessions of
the study, in exchange for credit. All partici-
pants had normal or corrected vision. One par-
ticipant in the grouped session of Exp. 4b only
completed 2/3 of the trials. Removing this par-
ticipant did not affect the results.

Materials. The experiment was conducted
over two sessions, which were run one week
apart (order was counterbalanced), once in a
one-by-one and once in a grouped format. Each
session included two parts (4a and 4b), which
were administered as different blocks. Apart
from the format factor, part 4a (slot-machines)
consisted of a factorial 2 X 2 design of average
(40/56) and sequence-length (6/12). Part 4b
consisted of filler and critical trials, similar to
Exp. 1, with one critical sequence correspond-
ing to a “High-Average, Low-Sum” condition
(6 items with an average of 65), while the other
corresponding to a “Low-Average, High-Sum”
condition (6 items with an average of 65 and
additional 3 items with an average of 50, which
were placed randomly in the sequence). “Filler”
alternatives with a low average (40) and a mod-
erate set size (7 items) were included, to make
the “critical” sequences less conspicuous. In all
the sequences the numerical values were in the
range 1-99 and were drawn from a Gaussian
distribution with an average determined by the
factorial design and a fixed SD of 13.

A One-by-one condition

Machine A

Machine A

n

Machine A

Sequence length= 6/12

rately, one per trial, as illustrated in Figure 5
(left panel). In Exp. 4a, the task was framed as
involving outcomes of slot machines and each
trial corresponded to a single slot-machine,
whose rewards were displayed sequentially at
the center of the screen, with a presentation rate
of 1/sec. Following each trial, participants were
asked to indicate their “liking” of the slot-
machine by using the mouse cursor on a con-
tinuous (0—10) scale. Each session started with
a practice phase presenting eight slot-machines.
Following the completion of Exp. 4a, partici-
pants received instruction for Exp. 4b, in
which the task was framed as an evaluation of
lecturers based on rating scores given by their
students in previous years. Overall, in part 4a
96 slot-machines were displayed during the
test phase (24 slot-machines for each of the
four average X set size conditions), and in
part 4b 60 lecturers (15 pairs of 30 critical
alternatives and 30 fillers).

In the grouped evaluation condition (Exp. 4a)
participants were told that they would see dif-
ferent “rooms” (one per trial), each one with
four slot-machines (see Figure 5, right panel).
The four slot-machines presented in each trial
corresponded to the 4 average X set size con-
ditions (i.e., there were two sequences with six
values and two with 12 values). To facilitate
differentiation between the four slot-machines
in each “room,” each machine was presented in

B Grouped condition

Machine A

Machine B
Machine C

Machine D
1s
1s .
—=
Sequence length = 36 1s

(6x2 + 12x2)

Figure 5. Exp. 4, one-by-one (A) and grouped (B) evaluation presentations of numerical
sequences, followed by evaluation scales. In (A) the sequences were presented in the middle
of the screen, while in (B) they were presented in the four quadrants (two sequences with six
and two with 12 values, each with a different color) in a pseudorandom order with the
constraint of never displaying two outcomes successively from the same sequence. See the
online article for the color version of this figure.
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a different corner of the screen, and had a
unique color (red, green, blue or yellow; see
Figure 5 right panel). Each trial presented a
sequence of 36 (6 X 2 + 12 X 2) outcomes, in
a random order, subject to the constraint of
never displaying two outcomes successively
from the same slot-machine (screen-corner). At
the end of each trial, four visual analogue scales
ranging from O to 10 were displayed, one in
each quadrant, and participants were asked to
evaluate the corresponding slot-machine. The
order of the machines’ evaluations was not con-
strained, and participants were free to choose
which machine they would prefer to evaluate
first (a rectangle around each scale, colored
either red, green, blue, or yellow, indicated
which of the scales was currently operated). The
session started with a short practice phase, in
which two rooms were presented. After com-
pleting Exp. 4a participants received instruc-
tions for Exp. 4b, in which a similar procedure
was executed, but now the participants were
instructed that they would view different
“courses” taught by four different lecturers (two
of the four were a critical pair and two were
fillers; participants were not informed of the
critical alternatives). Each trial presented a se-
quence of numerical values corresponding to
the ratings the 4 lecturers received in past years,
after which participants were asked to evaluate
(on a scale of 0—10) how much they wish to
study with each lecturer.

Experiment4A
6.4

54

P

Results

Exp. 4a. We carried out a repeated mea-
sures ANOVA with average (low vs. high), set
size (small vs. large) and evaluation format
(one-by-one vs. grouped) as within-participant
variables. Consistent with results from Experi-
ments 1-3, the effect of average was highly
significant (high averages: M = 6.22, SD =
0.13; low averages: M = 4.16, SD = 0.15); F(1,
25) = 97.00; p < .0001). The predicted inter-
action between evaluation formats and se-
quence-length was also highly significant, F(1,
25) = 15.33; p < .0005. Post hoc Tukey’s tests
indicated that participants gave higher rating to
large sequence-length in the grouped condition
(»p < .0005), but (as in our previous experi-
ments) exhibited no sensitivity to sequence-
length in the one-by-one condition (p = .999).

Exp. 4b. We carried out a repeated measures
ANOVA solely on the critical sequences’ data,
with average-sum (“Low-Average, High-Sum”
vs. “High-Average, Low-Sum”) and evaluation
format (one-by-one vs. grouped) as within-
participant variables. Main effects of evaluation
formats (F(1, 25) = 7.34; p = .012) and of aver-
age-sum (F(1, 25) = 19.15; p < .001) were found,
but critically, we found the predicted interaction
between evaluation formats and average-sum
(F(1, 25) = 13.92; p < .001; see Figure 6B). A
post hoc Tukey’s test revealed that in the one-by-
one condition, participants prefer the “High-

Experiment 4B

6.3

44

LowN High N

——One-by-one - - Grouped

Figure 6.

33

High-A-low-N Low-A-high-N

——One-by-one -~ - Grouped

(A) The slot-machines’ average ratings in Exp. 4a, showing an interaction

between presentation format and set size collapsed across average. (B) The lecturers’ average
ratings in the critical sequences in Exp. 4b, showing an interaction between presentation
formats and average-sum conditions. Error bars correspond to within-participant 95% confi-
dence intervals. See the online article for the color version of this figure.
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Average, Low-Sum” alternatives to the “Low-
Average, High-Sum” one (a replication of our
“Jordan-effect”; p < .001), but no difference in
preference between the two was found in the
grouped condition (p = .867).

General Discussion

The results of Exp. 4 confirm the predicted
presentation/evaluation-format effect. In Exp.
4a we find that while increasing sequence-
length had no effect on the evaluations in the
one-by-one condition (see Figure 6A, blue line),
it did increase the evaluations in the grouped
condition (see Figure 6A, red dashed line), con-
sistent with a transition from an averaging to an
accumulator model. In Exp. 4b, we replicated
the “Jordan-effect” in the one-by-one condition
(see Figure 6B, blue line), extending it to a
different domain. However, we find that this
effect disappears in the grouped condition (see
Figure 6B, red dashed line), where both the
average and the sequence-length appear to in-
fluence the evaluations, consistent with the re-
sults reported by Betsch et al. (2006, 2001)."!
Moreover, this preference change was demon-
strated in the same group of participants, who
viewed the same alternatives under the two con-
ditions. This presentation/evaluation format ef-
fect is somewhat reminiscent of the joint versus
separate evaluation effect in description-based
multiattribute decisions (Hsee, 1996). While in
the latter, the choice bias is the result of differ-
ential difficulty to evaluate one of the two attri-
butes (as participants lack knowledge of the
expected range of values on that attribute), the
effect which we report here takes place in ex-
perience-based decisions, in which the range of
values is specified.

We have proposed that this presentation/
evaluation-format effect is the result of an adap-
tational change in the preference construction
mechanism. While under the one-by-one condi-
tion, participants rely (mostly) on a population-
averaging mechanism, in the grouped condition
they rely (mostly) on an accumulator (or sequen-
tial sampling) mechanism. While the latter is a
standard assumption in many models of prefer-
ence construction (e.g., Busemeyer, 1985; Buse-
meyer & Townsend, 1993; Stewart, 2009; Tsetsos
et al., 2012, 2016; Usher & McClelland, 2004;
Zeigenfuse et al., 2014), the population-averaging
mechanism was used less in the decision making

literature. Note, however, that such a mechanism
was proposed to account for performance in tasks
of explicit numerical averaging (Malmi & Sam-
son, 1983; Brezis et al., 2016; Brezis et al., 2015).
Furthermore, such a mechanism was proposed to
account for the impressive ability of human ob-
servers in the evaluation of summary statistics of
perceptual stimuli (Alvarez & Oliva, 2008; Ariely,
2001; Bronfman, Brezis, Jacobson, & Usher,
2014; Chong & Treisman, 2003, 2005; de
Gardelle & Summerfield, 2011). While perceptual
summary studies involve the averaging of percep-
tual stimuli (size, color, orientation, etc.), here we
suggest that a similar mechanism may apply to
intuitive evaluations of numerical values, an idea
consistent with Kahneman’s suggestion that intu-
ition operates at the interface between perception
and cognition (Kahneman, 2003), and with recent
suggestion that perceptual and preference-based
decisions processes share cognitive machinery
(Busemeyer, Jessup, Johnson, & Townsend, 2006;
Summerfield & Tsetsos, 2012).

Here we have argued that the prevalence of the
accumulator type mechanism in the decision-
making literature results from its dominant reli-
ance on methods that present groups of alterna-
tives for choice or for grouped evaluations, which
generate a representational bottleneck of maintain-
ing multiple value-representations without mixing
them. This challenge, however, is not posed in the
one-by-one evaluation condition, for which the
population-averaging is an efficient mechanism
that allows an automatic (and effortless) way to
compute an approximate average. Furthermore,
population-averaging allows the (approximate) es-
timation of higher order statistics, such as the
variance, opening the way for a mechanism to
implement a well-known economic theory of risk
preference: the risk-return model (Markowitz,
1952; see also Weber, 2010). According to this
model, risk preferences are generated by a tradeoff
between the estimated average and variance of an
alternative (see Exp. 5 in the Suppl. for an illus-
tration of this model to alternatives made of nu-
merical sequences). Here we suggest that risk bi-
ases will only follow the risk-return model (whose
signature is that risk biases do not depend on the
average) under conditions of one-by-one evalua-

""Our data indicate individual differences in the ten-
dency of the participants to deploy an accumulator or an
averaging mechanism.
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tion and that they will conform to an accumulator
type model in grouped evaluation conditions (Va-
nunu, Pachur & Usher, 2017).

Based on these results, we propose that the
preference construction mechanism is adapta-
tionally contingent on the type of presentation
and evaluation format, with a population-
averaging mechanism favoring one-by-one con-
ditions that results in average-based preferences
and risk-return type biases (see Suppl.), and
with an accumulator type mechanism favoring
grouped decisions (Tsetsos et al., 2012, 2016;
Vanunu et al., 2017; Zeigenfuse et al., 2014).
Although this characterization is framed at the
group-level and focuses on the effects on task-
framing, the results also indicate important in-
dividual differences (see Table S1 in the
Suppl.). Thus, in addition to task-contingency,
the preference mechanism is also subject to
individual differences; some individuals may
have a tendency to rely on one type of mecha-
nism more than on the other in both conditions.
Future research will be needed to investigate the
nature of these individual differences, their in-
teraction with the task demand and their depen-
dence on cognitive resources (e,g., WM-
capacity, or resistance to memory interference).

If correct, this distinction between one-by-
one and group evaluations and decisions may
have an important impact on the quality of daily
decisions. Although most research has focused
on choices between pairs of alternatives, and
demonstrated marked deviations from norma-
tive principles, some of which resulting from
attentional biases (Shafir, 1993; Tsetsos et al.,
2012, 2016; Zeigenfuse et al., 2014), it is quite
possible that reliance on a one-by-one evalua-
tion mode (as we do here and as done in some
older studies on attitudes; Anderson, 1981) may
uncover a reduction of such deviations (but see
Hsee, 1996 for cases of multiattribute decisions
from description). If this is the case, one may
prefer, in order to reduce biases in choices be-
tween consumer products (e.g., clothes or cell-
phones), to examine and evaluate each in isola-
tion, rather than in parallel, as is often the case
when we shop.

To conclude, we suggest that averaging and
summation are principles that characterize com-
plementary neural mechanisms, which partici-
pants employ in attitude formation, and whose
prevalence depends on the task complexity. Fu-
ture research is required to validate this hypothesis

and to test whether reliance on these mechanisms
is adaptive to the nature of the task. While the
normative preferences in the tasks we used here
were intentionally ambiguous, future studies can
manipulate the framing to favor either summation
or averaging in terms of the objective reward.
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