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It is commonly assumed that temporal synchronization of excitatory 
synaptic inputs onto a single neuron increases its firing rate. We inves- 
tigate here the role of synaptic synchronization for the leaky integrate- 
and-fire neuron as well as for a biophysically and anatomically detailed 
compartmental model of a cortical pyramidal cell. We find that if the 
number of excitatory inputs, N, is on the same order as the number 
of fully synchronized inputs necessary to trigger a single action po- 
tential, Nt, synchronization always increases the firing rate (for both 
constant and Poisson-distributed input). However, for large values of 
N compared to Nt, “overcrowding“ occurs and temporal synchroniza- 
tion is detrimental to firing frequency. This behavior is caused by the 
conflicting influence of the low-pass nature of the passive dendritic 
membrane on the one hand and the refractory period on the other. If 
both temporal synchronization as well as the fraction of synchronized 
inputs (Murthy and Fetz 1993) is varied, synchronization is only ad- 
vantageous if either N or the average input frequency, fin, are small 
enough. 

1 Introduction 

It has long been postulated that the synchronous firing activity of cor- 
tical neurons is a crucial stage underlying perception. The psychologist 
Milner (1974) first proposed that neurons responding to a ”figure” fire 
synchronously in time, while neurons responding to another figure or to 
the “ground“ fire randomly: the “primitive unity of a figure” would be 
defined at the neuronal level by synchronized firing activity. 

Several years later, von der Malsburg (1981) formulated his influen- 
tial correlatiori theory of brain function on the basis of the importance of 
synchronized activity. How this theory could be used to temporally seg- 
regate patterns was demonstrated by von der Malsburg and Schneider 
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(1986). Using computer simulations, they showed that from an initially 
totally interconnected set of tonotopic neurons two distinct groups of 
neurons-corresponding to two distinct voices-arise. The mechanism 
of this segmentation is the temporal synchronization of simultaneously 
active cells using a fast Hebbian synaptic modulation mechanism. This 
idea has been extended by Crick and Koch (1990,1992), who postulated 
that synchronized and oscillatory firing activity in a subset of cortical 
neurons constitutes the neuronal correlate of visual attention and aware- 
ness. 

Over the last 10 years, a small but growing community of electro- 
physiologists has focused on the synchronized electrical activity among 
two or more simultaneously recorded neurons in the cortex of cats and 
monkeys (Toyama et al. 1981a,b; Abeles 1982, 1990; Ts’o et al. 1986; Aert- 
sen et al. 1989; Nelson et al. 1992; Kreiter and Singer 1992; Murthy and 
Fetz 1993). Remarkably, in some of these studies, cross-correlation among 
two cortical cells reveals a central peak with a width of less than 1 msec. 
These studies were brought to the forefront with the discovery (based on 
Freeman’s earlier work; Freeman 1975) of 40 Hz oscillations in the visual 
cortex of cats (Eckhorn etal .  1988; Gray and Singer 1989) and the crucial 
demonstration that these oscillatory responses can become temporally 
synchronized in a stimulus-dependent manner (Gray et al. 1989). In the 
cat, the oscillations can be phase-locked with a phase-shift of +3 msec 
around the origin at distances up to 7 mm (Engel et al. 1992). The exis- 
tence and strength of the 40 Hz oscillations in the awake monkey appear 
to be highly variable (some laboratories routinely observe them while 
others do not). In consequence, recent theoretical studies focus on syn- 
chronized neuronal activity-rather than oscillations-as the basis for 
figure-ground segregation (Bush and Douglas 1991; Koch and Schuster 
1992; Tononi et al. 1992). 

The principal idea underlying these studies is the belief that synchro- 
nized neuronal firing in large populations of pyramidal cells causes a 
higher firing rate in postsynaptic target cells (after suitably accounting 
for axonal and synaptic delays; Manor et al. 1992; Abeles 1982). This, 
in fact, is already inherent in the McCullough and Pitts (1943) neuron: 
if one such binary “unit” has a threshold of two, the simultaneous ac- 
tivity of two presynaptic neurons is required to bring the unit above 
threshold. However, it has rarely been asked to what extent more real- 
istic and biophysically plausible models of neurons prefer synchronized 
to desynchronized, excitatory synaptic input. Are there physiologically 
meaningful conditions under which temporally synchronized input leads 
to less effective postsynaptic firing than less synchronized activity? This 
is the question we address here and we find that under many conditions 
synchronized firing is not optimal for the cell in terms of generating the 
largest number of spikes. We shall leave aside the interesting question of 
how synchronized activity arises in neural populations (see Abbott 1990, 
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1993; Mirrollo and Strogatz 1990; Sompolinsky et al. 1990; Hansel and 
Sompolinsky 1992; Usher et al. 1993). 

To our knowledge, only a single paper has investigated the possible 
“negative” effect of synaptic synchrony on postsynaptic firing frequency 
(Murthy and Fetz 1993). Their numerical study varies the fraction of 
cells that is perfectly synchronized among each other, concluding that 
synchronization increases the postsynaptic firing frequency only under 
certain conditions. In our more general investigation, we use both an an- 
alytically treatable neuron model (from the family of integrate-and-fire 
models) as well as computer simulations of a biophysically very realistic 
cortical pyramidal cell to investigate the effect of single-shot and repeti- 
tive synaptic input at various synchronization levels. The principal-and 
most limiting-assumption we make here is that the dendritic tree of cells 
is passive and does not contain special, fast voltage-dependent nonlin- 
earities, which are limited to the cell body. 

The degree of synaptic correlation in the input varies in accordance 
with two independent factors: the temporal spread of synchronization, 
T, referred to as the desynchronization interval and the fraction of neu- 
rons that is synchronized, r. As we shall see, these two factors affect the 
postsynaptic firing frequency in different ways. In the first two sections 
of the paper, we will investigate the effect of the desynchronization in- 
terval on the firing rate, assuming that N synapses are each activated 
only once, under two extreme assumptions: (1) the input is Poisson- 
distributed throughout T with, on average, N synaptic inputs and (2) the 
input is constant, approximating the situation of regular input activity 
every TIN msec. In Section 4, we will deal with the added complication 
arising from repetitive synaptic input. 

2 Synchronicity in Integrate-and-Fire Models 

We will first consider different variants of the integrate-arid-fire (I&F) 
model neuron (Knight 1972; Fig. la), under the assumption that N 
synapses are activated only once (single-shot case). 

In its simplest version, discrete synaptic inputs arriving at times t ,  
place an identical charge Qo onto a capacitance C, charging up the mem- 
brane potential across the capacitance by AV = Qo/C. When the voltage 
reaches a fixed threshold value, V,, a point-like pulse is generated and 
the potential V ( t )  is reset to 0. Two important modifications to this model 
include a membrane leak conductance G and an absolute refractory pe- 
riod Tr,. The leaky orforgetful integrate-and-fire model has finite memory: 
since the membrane potential decays exponentially between synaptic in- 
puts (with time-constant 7, = C/G), events that occurred in the past 
are less effective than more recent ones. The effect of T,, is to hold the 
potential V(f) to 0 for the duration Trp after the model has generated 
a spike, rendering all synaptic inputs ineffective during this time. The 
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Figure 1: The two neuronal models used in our study. (a) The leaky integrate- 
and-fire (I&F) model with optional membrane leak G and refractory period Trp. 
Synaptic input can be modeled either as a conductance change Gsyn (shown) or 
as a current source lsyn (not shown). (b) Compartmental model of a morpho- 
logically reconstructed layer V pyramidal cell from cat cortex (Bernander et al. 
1991), using 400 passive dendritic compartments and a soma containing eight 
voltage- and time-dependent Hodgkin-Huxley-like currents. 

main virtue of this family of models is their simplicity, allowing us to 
study some of their properties analytically. 

2.1 Regular Synaptic Input. We here assume that the synaptic input 
arrives at a constant rate X = N I T ;  in other words during the interval T, 
N synaptic inputs arrive in a regular manner, spaced T I N  msec apart. Let 
Tspike be the time required to charge up the membrane from rest (V = 0) 
to Vt. The total number of output spikes, Nsp, generated during this 
interval T will be the largest integer n for which 

that is 

T s p i k e  + Trp 
Nsp = Floor 

where Floor[x] is the largest integer smaller than or equal to x .  For an 
analytical treatment it is more convenient to use a continuous approxi- 
mation: 

(2.3) 
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Table 1: Analytical Expressions for the Time Tspike Required for Constant Synap- 
tic Input Arriving at Rate X = N/T to Reach Threshold, Assuming a Continuous 
Approximation of the Discrete Input." 

~ 

Case Model Synaptic input Tqpike 

Y 
h 1 I&F Current lo = CXAV 

2 I&F Conductance -~ In(I - 2) 
3 Leaky I&F Current lo = CXAV - r m  ln(1 - 

4 Leaky I&F Conductance c+x,),, ln(1 - AF,y~G,,, - 

hC.,,, 

c V C  -__ 

"See Appendix A for derivation. 

We also assume that Nt = V,/AV, that is, the number of simultaneous 
current inputs required to reach threshold is an integer. 

The only quantity that needs to be evaluated in equation 2.3 is Tsplkl.. 
Case 1 is an integrate-and-fire model with a constant rate X = N/T of 
identical synaptic input pulses, each one dumping the charge Qo = CAV 
onto the capacitance. This is equivalent to injecting the constant current 
l o  = CXAV onto the capacitance. In the third case, the same current lo is 
injected into the leaky integrate-and-fire model. In the other two cases, 
the input is treated as a conductance input Gsyn > 0 in series with a 
synaptic battery E5,, = 70 mV, for the standard (case 2) or for the leaky 
I&F model (case 4). This is equivalent to a single effective conductance 
of value XG,,, that is activated during the interval T. 

We derive in Appendix A an analytical expression for Tsplke in the 
fourth and most general case (see Table 1). If the synaptic conductance 
is small compared to the membrane leak conductance G, the input can 
be treated as fixed synaptic input current Isyn = XCAV = XEsynC,yn and 
we arrive at Tzplke for current input (case 3). The time to spike for the 
standard I&F model can be obtained by setting the leak term G = 0. 
While conductance inputs are more relevant to the physiological situa- 
tion where massive synaptic input fires the pyramidal cell at high rates 
(Bernander et al. 1991), further analysis is simplified if current inputs are 
used. 

We evaluated equation (2.3) for the case of conductance inputs to the 
I&F model with N = 1000 inputs and either no or a fixed refractory 
period (T,, = 2 msec; see Fig. 2) and used values for G, C, TrF, and N, 
that mimic the values observed in cortical pyramidal cells (see below). 

For the standard integrator (with T,, = 0 and G = 0; top curve), the 
number of output spikes, Nsp, is independent of T. In fact, Nsp is always 
independent of the arrival times of the input but only depends on the 
total number of inputs: N,, = N/Nt for the I&F model with an infinite 
memory. When a membrane leak G is introduced, the number of output 
spikes decreases with T because earlier inputs leak away with a time 
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Figure 2: Temporal dispersion of synaptic input and its effect on firing rate 
for different single cell models. A fixed number of identical excitatory inputs 
N is evenly distributed along the interval T and the number of output spikes 
N,, is computed as a function of T. (a) Leaky integrate-and-fire model with 
N = 1000 conductance inputs. The leak conductance G is either 0 or 58.8 nS, 
and the refractory period T,, is either 0 or 2 msec. The membrane leakage "pulls 
down" the right end of the curve, while the refractory period pulls down the 
left end of the curve. AV = 0.25, Vt = 15 mV, r,,, = 17 msec, and Nt = 

60. These parameters are similar to those of the detailed model. The optimal 
value of T, ToFt, is marked on the bottom curve. (b) Compartmental model 
of layer V pyramidal cell. N = 200-1000 excitatory, fast AMPA synapses were 
distributed throughout the cell. Nt = 66 synchronized somatic synaptic input 
are required to trigger one action potential. For N = 1000 the I&F model with 
refractory period and conductance inputs is in good qualitative agreement with 
the compartmental model. The principal result of our study is that for N >> Nt, 
synchronization of synaptic input causes the cell to fire fewer spikes than if the 
synaptic input is temporally dispersed (i.e., the optimal T > 0). 

constant r,,, zz C/G. This is at the heart of the traditional argument for 
the advantage of synchronizing synaptic input in terms of eliciting the 
maximum number of postsynaptic spikes: temporal dispersion of synaptic 
input reduce their eflecectiveness (e.g., Abeles 1982). However, when a refrac- 
tory period, T,, is introduced into the leaky I&F neuron (lower curve in 
Fig. 2a), the initial part of the curve is "pulled down," so that for small 
desynchronization intervals T, N,, will increase with T .  The reason for 
this "overcrowding" effect is that synaptic input in excess of Nt will be 
"wasted." Synaptic inputs arriving during the refractory period do not 
contribute to the excitability of the cell. Thus, for N > Nt, desynchro- 
nized synaptic input increases the spiking rate, or high synchronicity of 
massive synaptic input reducesfiring rate. The optimal T is a compromise 
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between the effects of G and T,, and is about 60 msec for N = 1000 as  
shown in Figure 2. 

Substituting current inputs for conductance inputs had only a minor 
effect on the I&F models. If the parameters were adjusted to give similar 
values of N,, for small T, then current inputs give slightly larger values 
for large T (graphs not shown). 

It is conceivable that the peaked form of N,, could be due to synap- 
tic saturation. Rather than inputs being "wasted" during the refractory 
period, an increased resting potential would reduce the driving force 
E,,, - V ( t )  for the excitatory synapses. Such saturation effects exist only 
if the synaptic input is treated as a conductance change and could, in 
principle, reduce N,, for high input rates X = N / T  and small values of T. 
However, rfN,,/dT < 0 for case 4 with T,, = 0 msec, independent of Esyn, 
and therefore no peak can occur (see monotonically decreasing curve in 
Figure 2a). 

2.2 Optimal Desynchronization Interval. How does TL,Ft, the opti- 
mal value of T ,  that is the desynchronization interval at which N,, is 
maximized, depend on the various parameters? To find T,,pt, we com- 
pute dN,,/dT for the leaky I&F model with current inputs and set this 
derivative to zero (see Appendix B). This expression cannot be solved in 
closed form since it is of the formf(y) = log( 1 - y). Instead we show the 
numerically obtained value of T,,,t in Figure 3. Note that all three axes 
are in dimensionless variables: T q t / T r p ,  Tm/Trp, and N/Nt. 

As can be seen, Tort is almost exactly linear in N/Nt,  except for val- 
ues of N/N, in the neighborhood of 1. This is not surprising, since at 
high input rates T,,pt becomes much larger than T,,~ and a dynamic steady 
state condition prevails during most of the single-shot. In other words, 
for N >> Nt there exists an optimal input rate fill = N/T,,,, (see Ap- 
pendix B). For our parameter values in the leaky I&F model, this rate 
is approximately 10 inputs/msec. I f  Jll is increased above this 10 kHz 
rate, the refractory period will reduce N,,, while if fin is decreased below 
10 kHz, the membrane leak causes a reduction in 

T",, increases with T,, = C/C but not in a linear fashion due to the 
opposing effects of T,, (favoring larger values of T,,,J and G (favoring 
smaller values). 

2.3 Synchronicity for Poisson-Distributed Input. Up to now we con- 
sidered synaptic input that arrives at a constant rate. Let us now analyze 
the more realistic situation of Poisson-distributed current inputs with a 
mean rate X = N/T to the leaky integrate-and-fire model over a fixed 
temporal interval of duration T. 

Due to the stochastic nature of the input, the membrane potential 
V executes a random walk-like trajectory. When the potential reaches 
Vt a pulse is generated and V ( t )  is reset to zero. While the probability 
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Figure 3: The optimal value of T ,  TOFt, in units of TC,,t/Trp, in the leaky integrate- 
and-fire model for current input as a function of the normalized number of 
inputs N/Nt and normalized time-constant rm/TrF. ToFt is almost linear in N 
for N >> Nt = 60; for example, if the number of inputs N doubles, they should 
be spread out over twice as long an interval T as before in order to maximize 
firing frequency. 

distribution function for the entire interspike interval distribution is not 
known for the leaky I&F model, it is possible to compute the mean time to 
threshold, TSplke (known as the first time to passage problem). Following 
Ricciardi (1977; see Appendix C for details), we compute the mean value 
of Tsplkr from the equilibrium probability distribution of the membrane 
potential by using Siegert’s recursion formula: 

where the limits of integration are 

(2.4) 

The average number of output spikes N,, can now be calculated from 
equation 2.3 and is plotted in Figure 4 as a function of the desynchro- 
nization interval T. Comparing N,, for this stochastic input with the 
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Figure 4: Number of output spikes (from equation 2.4) for Poisson-distributed 
(thin lines) and for constant synaptic input (thick lines) for the leaky integrate- 
and-fire model with current input (see case 3 in Table 1) as a function of the 
desynchronization interval T. The different curves are for different values of 
N ,  that is, the average number of synaptic inputs arriving during the interval 
T .  For N < N t  = 60 or for T > Tcutc,fl, fluctuations in the random input can 
always push the potential above threshold, while the model ceases to respond to 
constant input. For T < Tcutoff and N > N t ,  that is, for large input rates X = N / T ,  
the two models agree closely. For N 5 N t ,  the analytical approximation deviates 
significantly from the numerical one due to truncation error and only the latter 
is shown for N = 55 and 60. 

superimposed functions for the constant input we can see two impor- 
tant differences at the two extremes of the axis. One major difference is 
when on average less than Nt inputs are present. For constant synaptic 
input, no spikes are generated for N < Nt = 60 and N,, # 0 only for 
T = 0 at N = 60. However, for Poisson-distributed input, there always 
exists a nonzero probability that stochastic fluctuations in the input will 
carry the potential above threshold. Likewise, Poisson input can in prin- 
ciple, for large values of T,  always exceed the threshold N,, while this 
is not possible for regularly timed input (where the cutoff value of T is 
given by Tcutoff = Tl,N/Nt), resulting in a "tail" for large values of T.  For 
all other values of T < Tcutoff and N > Nt, the constant synaptic input 
closely approximates Poisson-distributed input. In other words, for large 
enough values of the synaptic input rate X = N I T ,  Poisson input can be 
approximated by constant input (case 3 in Table 1). 
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3 Synchronicity in a Detailed Model of a Pyramidal Cell 

To what extent are our results due to the very simple neuronal model 
we have been using? After all, I&F neurons have a fixed threshold, 
no dendritic tree, no voltage- and time-dependent conductances, and 
no synaptic dynamics. In order to address this issue, we simulated a 
detailed compartmental model of a morphologically reconstructed layer 5 
pyramidal cell from visual cortex in the anesthetized adult cat (Douglas 
et a / .  1991; see Fig. lb; for details of the model see Bernander rf al. 1991, 
1992). 

Briefly, the dendritic tree consists of about 400 passive compartments 
(with C, = 1 pF/cm2, R,, = 100 k12-cm2, R, = 200 52-cm, and Erest = 
-66 mV). The membrane resistance and reversal potential for each com- 
partment is adjusted to mimic a 0.5 Hz “background” activation of 4000 
excitatory, fast AMPA (or non-NMDA) synapses and 1000 GABAergic 
inhibitory synapses. Since each synapse corresponds to a small conduc- 
tance change, the effective membrane resistance is reduced to 10-50 kl2- 
cm2. The soma contains 8 active currents, including two sodium cur- 
rents (IN, and IN,,,), four potassium currents, one of which is calcium- 
dependent ( I D R ,  IA,  IM, and IAHp), one calcium current (Icd), and an anoma- 
lous rectifier (IAR). The A current allows the cell to spike at low frequen- 
cies over an extended range and the combination of Ic,, and 1 ~ ~ 1 ’  causes 
the firing rate to adapt by a factor 2-3 (for medium and high firing rates). 
The input resistance in the presence of synaptic background activity is 
15 Mi2 and the time constant 17 msec. The peak voltage of the spikes 
drops below 0 mV at approximately 500 Hz, suggesting an absolute re- 
fractory period of about 2 msec. 

A simulation was run on the full model for N = 200 to 1000 fast, 
excitatory, voltage-independent AMPA synapses distributed throughout 
the dendritic arbor in accordance with the known anatomical distribution 
(Fig. 2b). For N = 1000 the same basic effect is observed as in the leaky 
I&F model with refractory period. In the case of total synchronization, 
T = 0, only two spikes are produced due to overcrowding. A maximum 
of 5 spikes is obtained for T = 25-65 msec and the response decreases to 
0 spikes for T = 200 msec. When N is reduced to 300 synapses or less, 
the peak in N,, disappears. Note, however, that now N,, is essentially 
flat around the origin, implying that the cell is not highly tuned to small 
T (for the r, = 17 msec used here). 

To assess to what extent this behavior is due to the fact that synap- 
tic input increases the membrane conductance-rather than injecting a 
current into the cell-we approximated this condition by reducing the 
synaptic conductance change G,,, for each synapse by a factor 10, while 
increasing the driving force Ere, - V by a factor 10. This removed any 
saturation in the dendritic tree, and thus more current was injected dur- 
ing stimulation (curves not shown). The main difference was that a few 
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more spikes were obtained at every T, while the N,, still peaked for 
approximately the same values of T. 

Substituting NMDA synapses for half of the AMPA synapses had the 
effect of broadening the peak, as well as making it less pronounced. This 
can be explained by the much slower time course of the NMDA synapses 
(T, , ,~~,~, = 40 msec), which is conceptually similar to desynchronizing the 
much faster AMPA synapses. No obvious cooperative effects were seen 
due to the negative input conductance of the NMDA synapses. 

4 Correlated Synaptic Input 

In the previous sections, we assumed that N independent synapses were 
each activated only once (single-shot case). However, synaptic input is 
repetitive (cells fire more than once) and can be correlated. How are 
our previous results affected by such correlated activity? The degree of 
correlation in the input may vary in accordance with two factors: the 
temporal spread of synchronization (T as expressed by the width of the 
cross-covariance function between input neurons), and the fraction of 
neurons, r, that is synchronized. By varying each of the factors inde- 
pendently, one can interpolate between a fully synchronized and a fully 
desynchronized input. 

If each of the N input neurons is firing with a Poisson probability 
distribution with mean rate fill, two extreme situations can be considered: 

0 If none of the neurons is correlated ( r  = 0), the input consists of 
a single Poisson process of events of height AV and rate X = Nfin. 
The mean interspike interval and output firing rate can then be 
estimated from equation 2.4 and will be denoted byfi,ut.o. 

0 When all ( r  = 1) neurons are perfectly correlated (T = 0), the input 
is equivalent to a single Poisson stream of events of height NAV 
and rate X =fin. Assuming N > Nt (otherwise the neuron will rarely 
fire), each synchronized event triggers one spike (the refractory pe- 
riod prevents multiple spikes for such synchronized input currents) 
and the output frequency is equal to the input frequency All. 

The intermediate situation (rN neurons perfectly correlated with T = 0, 
and the rest independent) interpolates between these two limiting cases 
as shown in Figure 5. Thus increasing the number of perfectly synchro- 
nized and correlated neurons is advantageous only if the response in the 
uncorrelated case is lower than fill, that is if fout,"(N.fin) < fill. We derive 
the border between these two domains by finding those values of N and 
fin where this inequality turns into an equality. As we saw in Section 2.3, 
if X is large enough, the value of Tsp,ke for Poisson input is well approx- 
imated by that of constant input given by case 3 in Table 1. Using this 
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Figure 5: Simulation results for the response ratefi,,t of a leaky I&F neuron with 
current input (T,,, = 17 msec, T,, = 2 msec, and Nt = 60) to a varying fraction 
rN of correlated inputs out of a total population of N = 200 input neurons. The 
bold curves in (b) and (c) highlight the response when the correlated neurons 
are perfectly synchronized (T = 0 ) ,  while the thin lines correspond to nonzero 
values of the desynchronization interval T as indicated. (a) Border in thefi,, - N 
plane delimiting the parameter range for which perfect synchronization at T = 0 
reduces the firing rate from the opposing situation (see equation 4.1, diamonds 
represent simulation results). For small values of either N (as long as N > N,) 
or fin synchronization always increases foul. (b) For fin = 5 Hz, synchroniza- 
tion always increases the firing frequency. ( c )  For larger values of the input 
frequency, here fin = 20 Hz, too much or too little temporal synchronization 
decreases fi,ut. 

latter result as well asfoul." = l/(T5,,ke + T,,) and X = Nfin w e  arrive at 

(4.1) 
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This expression, then, demarcates the two domains. For values of N and 
hll below and to the left of this border (Fig. 5a), increasing the number 
rN of correlated neurons enhances the output rate while above and to 
the right of this curve increased synchronization reduces the output rate. 
The latter effect is due to the fact that at higher N and jl,, input spikes 
are rendered ineffective due to the refractory period. 

For low values of the input frequency relative to the leak term, that 
is, when f,,, << l /~", ,  the f;,, term in the exponent in the right hand of 
equation 4.1 side can be neglected, leading to an inverse relationship 
between N and fin and to a hyperbolic curve for small values of Jll in 
Figure 5a. 

What effect does the temporal width of the cross-covariance function 
T have on postsynaptic firing frequency? We approached this question 
by numerically evaluating ft,Llt for a variety of different settings in the 
relevant four-dimensional space spanned by Y, T, N, and fin. In the simu- 
lations shown in Figure 5b,c, we computefOut as a function of the number 
of synchronized inputs using the leaky I&F model with current inputs. 

Figure 5b shows the response rate for a population of N = 200 input 
neurons, all firing with a mean input rateJ, = 5 Hz. We are here well 
in the domain (see the lower cross in Fig. 5a) where perfect (T = 0) 
synchronization will lead to an increase in the firing rate. If none of the 
inputs is correlated, we are in the first of the limiting cases discussed 
at the beginning of the section withJ,l,t,o = 0. As rN increases, the unit 
starts to fire. At perfect levels of temporal synchronization, fUut steeply 
rises in the neighborhood of rN FZ N, and saturates for large values 
of rN at the firing rate Jll (second limiting case discussed above), since 
all 200 inputs fire at once, causing only a single postsynaptic spike per 
input volley. For a finite desynchronization interval, here T = 10 and 
20 msec, the steep rise in j ,u t  occurs at somewhat larger values of rN 
than for perfect synchronization. However, as Y continues to increase, the 
firing rate increases to almost twice the frequency compared to perfectly 
synchronized input (T = 0), expressing the fact that two spikes are fired 
on average per input volley (due to the temporal spread of all 200 inputs 
over 10 or 20 msec). For larger desynchronization intervals (here 50 and 
200 msec), the leaky membrane limits the response of the I&F unit and 
the postsynaptic response remains small. 

Figure 5c illustrates the reverse case when the input rate is so high 
(heref,,, = 20 Hz), that temporal synchronization leads to a reduction in 
postsynaptic response (see the upper cross in panel a). Here, increasing 
the fraction of perfectly synchronized neurons rN causes a drop in fOrlt, 

except when a T = 10 msec desynchronization interval is being used 
for large values of rN. The fact that when all neurons are correlated at 
the endpoints rN = 200 of Figure 5b,c, the optimal desynchronization 
interval is between 10 and 20 msec and can be understood from our 
analysis of the single-shot case in Section 2. 
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5 Discussion 

A number of proposals for linking neuronal firing with higher-level 
"emergent" properties explicitly or implicitly assume that synaptic in- 
put synchronization always leads to an increase in postsynaptic firing 
frequency compared to the desynchronized case (see the Introduction). 
We here investigate this hypothesis in detail. Before we summarize and 
interpret our results, let us state the principal limitations of our study. 
We investigated the firing properties of two distinct neuronal models: the 
analytically treatable integrate-and-fire (I&F) family of integrator models 
(Knight 1972) as well as a biophysically detailed compartmental model 
of an anatomically reconstructed cortical pyramidal cell (Bernander et 
al. 1991, 1992). This model assumes that no voltage-dependent mem- 
brane currents are present in the dendrites (with the exception of the 
voltage-dependent NMDA synaptic input) and that the normal comple- 
ment of ionic currents (eight in our model) generates the responses seen 
in a typical, regular-firing pyramidal cell (McCormick et al. 1985; Connors 
and Gutnick 1990). We did not consider bursting cells that can gener- 
ate two or more fast spikes in response to an appropriate synaptic input 
nor voltage-dependent sodium or calcium currents in the dendritic tree 
(Llinas 1988). Both situations render any analysis such as the one carried 
out here considerably more complex. Sufficiently fast and strong den- 
dritic nonlinearities, such as postulated by Softky (1994), can in principle 
render the cell susceptible to specific temporal arrangements of synaptic 
input (i.e., specific values of T )  and would invalidate our analysis. Given 
that Softky and Koch (1993) postulate such dendritic nonlinearities to ex- 
plain the high variability of the firing rate of cortical pyramidal cells, we 
plan to investigate the dependency of such a cell to synchronized synap- 
tic input in a later study. We here provide the baseline against which the 
performance of more complex neuronal models need to be evaluated. 

We assume that synaptic input is either constant or distributed accord- 
ing to a Poisson process. Our detailed analysis of the power spectrum, 
interspike interval distribution and firing variability of nonbursting corti- 
cal cells in the awake and behaving monkey firing at high rates supports 
the Poisson hypothesis (Softky and Koch 1993; Bair ef al. 1993). Finally, 
we here consider only the effect of excitatory synaptic input, neglecting 
the effect of synchronization of inhibitory synaptic input. However, in as 
far as steady-state conditions are met (i.e., for large enough values of A), 
the current due to the inhibitory synaptic input can be subtracted from 
the excitatory current, yielding a net effective input current (or input rate) 
and all of our arguments apply. 

Both the I&F models as well as the detailed biophysical model dis- 
play the same behavior: if the entire excitatory synaptic input is corre- 
lated (Y  = 1; single-shot case), temporal synchronization (small values of 
T )  increases the output firing rate only if the average number of spikes 
(as characterized by a Poisson process with rate X = N / T )  is lower than 
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the number of input N, needed to reach threshold (Fig. 2).' For rates 
significantly larger than N , / T ,  there will be a nonzero, optimal desyn- 
chronization interval. As witnessed in Figure 3, this optimum interval 
increases linearly with N/Nt and sublinearly with r,,,/Trp. For desyn- 
chronization intervals larger than Top,, the response is reduced due to 
temporal dispersion induced by the membrane leak, while the refrac- 
tory period limits the usefulness of high synchronization. Any neuronal 
model with a refractory period will display such a tendency against ozw-  
crozudiiig of synaptic inputs. It should be noted that such overcrowding 
can occur at what is believed to be physiological levels of synaptic input; 
1000 synaptic inputs (constituting about 10% of all excitatory synaptic in- 
puts; Larkman 1991) impinging onto our pyramidal cell within 50 msec 
give rise to twice the number of spikes than the same number of inputs 
applied instantaneously (T = 0). 

Because the similarity between the I&F and the detailed models, we 
only use the former when we investigate the more complex situation aris- 
ing during repetitive input when only a fraction Y of the N input synapses 
is correlated (with the width of the central peak in the cross-covariance 
function characterized by T). This is the situation Murthy and Fetz (1993) 
studied, assuming always T = 0. They conclude that synchronization is 
useful only when N, AV, orf,, are not too large. We explicitly found 
(Fig. 5a) the domain in N.f,,, space for which correlated inputs enhance 
the response. For values of fill and N below the border displayed in Fig- 
ure 5a, and if the number of correlated inputs YN < Nt (N, is about 60 
as estimated by biophysical parameters from our reconstructed neuron) 
perfect temporal synchronization (with a zero-width peak) is advanta- 
geous (Fig. 5a). In this regime, the assumption that high levels of firing 
synchronization-as expressed by sharp peaks in the cross-covariance 
function-play a significant role in various perceptual processes is valid 
(Milner 1974; von der Malsburg 1981; Abeles 1982, 1990; Gray c>t nl.  1989; 
Crick and Koch 1990; Kreiter and Singer 1992). I f  rN > N,, perfect syn- 
chronization ceases to be optimal due to overcrowding. In this regime, 
small enough values of the average input frequency fin in combination 
with small desynchronization intervals (T = 10-20 msec; Fig. 5b,c) en- 
hances the response rate compared to perfect or no temporal synchro- 
nization. Thus, cross-covariance functions with pronounced but wide 
peaks can indeed be more advantageous than extremely narrow central 
peaks in the cross-covariance (e.g., cell pairs of the T type in Nelson ct nl .  
1992). We conclude that (in the absence of fast and powerful active den- 
dritic conductances) if the synchronization of the firing of cortical cells 
is indeed a crucial signal underlying higher-level perceptual processes, 

'We would likc to notc in passing that both in this study and in our analysis o f  
the firing variability, characterized in terms of both the variability of the number of 
spikes and the variability of the interspike intervals (Softky and Koch, 1993), the le'iky 
integrate-and-fire model (Knight 1972) is in good qualitative agreement with the bio- 
physically detailed pyramidal cell model with passive dendrites. 
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the brain must take care to ensure that only some minimal number of 
neurons are simultaneously active. 

Appendix A: Tspikc for Constant Inputs in the Modified I&F Model - 

We derive here the time T,plke it takes for a constant conductance input, 
XGsyn, to charge the membrane from 0 to Vt in the leaky integrate-and-fire 
model (case 4 in Table 1). 

The input is approximated by a constant synaptic conductance in- 
crease in series with a synaptic battery Esyn (here, EsynGsyn = CAV). Re- 
placing the two parallel conductances G and XG,,, with a single equiv- 
alent conductance G’ = G + XG,,, and replacing the battery Esyn with 
E’ = EsynXG,,,/G’ we arrive at a first-order, ordinary differential equa- 
tion: 

dV 
dt 

C- + (V - E’)G’ = 0 

Solving this and setting V to Vt and t = Tsplke leads to 

which can be rewritten as 

The expression for current inputs (case 3) can be obtained as a limiting 
case by setting 10 = X A V  = XEsynGsyn and letting Gsyn -+ 0 and Esyn + 

03, keeping GsynEsyn constant. Tspike for the nonleaky I&F model (cases 1 
and 2) can be simply obtained by setting the membrane leak G to 0 [and 
exploiting ln(1 + d x )  = d x  for small values of d x ] .  

Appendix B: Optimal Desynchronization Interval 

For current inputs, the number of output spikes is 

T + Trp 

Nsp(T) = T,, - T, log[l - (NtT/T,N)] 

where Nt = Vt/AV is the number of simultaneous EPSPs necessary to 
reach threshold. If we define the dimensionless variables 171 = N/Nt.a2 = 
T,/T,,, and y = NtT/(NT,), take the derivative of equation B.l  and set 
the resulting expression to zero, we obtain 
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Note that y depends only on the two dimensionless quantities n l  and 
02. No closed-form expression exists for the solution of y(uI.aZ), which 
was therefore solved numerically. When ? / (a , .  az) is graphed (not shown), 
i t  is almost independent of a1 except for small values of 1 1 ~ .  Because of 
the linear relationship between Tc,pt and y, the optimal desynchronization 
interval Topt is linear in N for most parameter values, given constant T", 

and Trp. 

Appendix C: Poisson Inputs 

We here present a brief derivation of the mean first-passage time in equa- 
tion 2.4 (for details see Ricciardi 1977). If a leaky integrator with time 
constant r,,, receives a stream of Poisson-distributed EPSPs of rate X and 
depolarization AV, the transition probability density function satisfies 
the following equation: 

(C.1) f ( V . t  + A f  I u. t )  = [l - XAf]h(U,)  - V) + X A f h ( U ]  - V) 

with 
At  U,] = u - ur 

The first term is associated with relaxation of the membrane potential 
if no input reaches the cell during time At and the second with one 
EPSP reaching the cell at time A, (with At, + At2 = At). In the limit 
of At  -+ 0 one can manipulate these expressions to obtain the following 
differential-difference equation: 

Assuming that the amplitude of a single EPSP is small compared to the 
threshold Vt (Vt/AV sz 60), equation C.2 is expanded in a Taylor series. 
Keeping the first two terms leads to the Fokker-Planck equation: 

where A I ( V )  = -V/T", + AAV in the first term accounts for the determin- 
istic part (constant mean current and leakage) while A 2 ( V )  = o2 = XAV' 
is the variance of the input stream and accounts for the fluctuations. The 
associated steady-state distribution W( V) is then 
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The mean interspike interval (first-passage-time) is then obtained using 
Siegert's recursion formula (Ricciardi 1977): 

T$plke = iV'2[Azlz)W(-)]- 'dz l: W(y)dy (C.5) 

Joint application of equations C.3-C.5 leads to equation 2.4. 
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