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We show that,  in a relativistic quantum theory in which the mass 
shell is not sharp, and positive and negative energy states are ad- 
missable, causal propagation is possible, and Hegerfeldt's theorem 
can be avoided. The conditions under which this is true have simple 
physical interpretation. 
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Hegerfeldt [1] has shown that a wave function which represents 
a particle localized according to some reasonable definition (for ex- 
ample, in the sense of Newton and Wigner [2]), propagates non- 
causally under relativistic free evolution. This effect is due to the 
non-analyticity of the form of the energy as a function of momen- 
tum E = v /p  2 + m 2. The relativistic description of quantum states 
used implying this result assumes that the system has only positive 
energy and a definite sharp mass. In the following we shall use 
a manifestly covariant representation of quantum states in which 
these constraints are relaxed to a certain extent and show that 
causal propagation can be achieved. 
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Although non-causal propagation has been shown to occur for 
functions with rapid decrease [3] as well, we review here the ar- 
gument of Hegerfeldt [1], for the case in which the initial state 
represented by ¢(x, t)lt=0 has compact support in a region V, i.e.~ 

(¢(x, 0), N(V)¢(x ,  O)) = 1, 

where N(V)  is the projection operator into states with support in 
V. 

Causality implies that  if, at time to the particle state is localized 
in this way, then there is an rt such that, at time t > 0, the wave 
function, when translated by a, [a[ > r~, has no support in V. It 
then follows that  

(U(-a)U(t)¢o,  N(V)U( -a )U( t )¢o t  = O. 

Since N(V)½ is self-adjoint, one sees that  the scalar product of the 
displaced wave function has to be orthogonal to the initial one, i.e., 

[¢(p)l 2 expi (p  • a - ÷ rout) = 0, (1) 
d3p 

4;, + 

where ¢(p) is the momentum representation of the initial state. The 
coefficient of exp ip • a in the integral must therefore be an entire 
function of p. This is clearly not possible for all t (see, however, 
the discussion of [4]). 

In the framework that we shall use, the quantum state of a 
particle is described in terms of a wave function for events in space- 
time ¢~(x)(z .~ x, t) , as proposed by Stueckelberg [5], Schwinger 
[6] and Feynman [7]. This function corresponds to the amplitude 
for finding a local event at the spacetime point ~; it is paralnetrized 
by a universal "proper time" r .  Its evolution is governed by the 
equation [5] 

_ ( 2 )  
0r  

where K is an operator analogous to the Hamiltonian of the non- 
relativistic Schr6dinger theory. The quantum mechanical equations 
corresponding to the classical Hamilton equations 

d~" OK alp" OK 
dr - Op,' dr - Oz, (3) 



Localizability and Causal Propagation 291 

a r e  

dzu dp t' 
dr  - i [K 'z" ] '  dr  = i[g'Pu]'  (4) 

where the canonical commutation relations are 

[qU,p,~] = ig"". (5) 

The variables (x, t) are considered as dynamical variables of 
the theory; the complementary variables (p, E) are also indepen- 
dent dynamical variables and hence the particle is not restricted 
to a precise mass-shell. It is possible, nevertheless, to impose the 
condition that the distribution of m s ~ E 2 - p2 is as sharp as one 
wishes. 

The Fourier transform function ¢,-(p)(p -= pU) may have sup- 
port on both positive and negative energy. The negative energy 
components can be understood according to (3) (for the Ehrenfest 
motion of the wave packet), where, for example, for the free particle 
with invariant Hamiltonian, 

K = Ko - P~'Pu (6) 
2 M '  

one obtains 
dt E 

- (7) 
dr M '  

For E < 0, the motion of the wave packet is in the negative direc- 
tion of t when r increases. This was interpreted by Feynman and 
Stueckelberg as a representation of the antiparticle (one can show 
that the CPT conjugate of the wave function describes a particle 
with opposite pU and charge). The particle and antiparticle occur 
as different aspects of the same entity; wave functions with sup- 
port on positive and negative energy may occur in superposition. 
Many subsequent investigations of the manifestly covariant quan- 
tum theory associated with this framework have been carried out 
[8,9,10,11]. 

As a function of r ,  a free wave packet has the form 

f 
iPtt~tt --i ~ M 4 = j ¢(p)d p. (8) 

To discuss the question of causal propagation, we must define 
the locality properties of ¢~(z). This function corresponds to a 
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wave packet in spacetime which moves with Ehrenfest motion along 
a diffusely defined world line with r.  What is in question is the the 
possibility of obtaining a positive response to a position measure- 
ment in some region at a specific time, independently of v. This 
question can be formulated more precisely by recognizing that the 
occurrence of an event at (x, t) at some r with probability density 
(on d4x) t¢~.(x,t)l 2, implies the possibility of registering a signal 
at some space point at a given time, say to, which lies on a (vir- 
tual) extrapolating world line passing through the even~ xi L The 
operator whose spectrum provides this information is [8] 

1 p 
XNW(t0) = x - -  ~{t  -- to, X},  (9) 

where we have appended the subscript NW, to indicate that this 
operator corresponds to the Newton-Wither position operator [2] 
for each value of m = V ~ - p2, in a mass shell decomposition. In 
fact, 

f d4p¢,(p)(i - 1 p 

f f - i 
+ t0P]¢(p), 

(lo) 

where we have changed variables and redefined the derivative __o 
0 p  ' 

so that it acts on p0 = !V/p~ + m 2. The expression in the square 
brackets is the momentum representation of the Newton-Wigner 
operator at to. 

We now define the projection operator Nt 0 (V) for which 

is the probability for the Newton-Wigner position to lie in the space 
volume V, at time to. This probability is independent of r, when 
¢~- develops according to the free evolution (6), since 

[XNw(t0), Ko] = 0. (11) 

The projection operator Nt0 (V) provides the characterization of 
a position measurement independent of r. We then follow Hegerfeldt 
[1] to define a criterion of causal propagation for the case of a state 
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with compact support (in the Newton-Wigner sense that we have 
defined above) at some initial time. 

The procedure previously followed (to obtain (1)), now appears 
in the following form: Let (independently of r )  

(12) 

where eaxnt  is the space time translation of ¢(p) , and let ¢(p) 
have Newton-Wigner support in [XNw(t0)[ < Rt0, i.e., 

N,o(V)¢(p)  = ¢(v) .  (13) 

Let us now study the position resulting from a measurement at 
a time tl > to. As for (1), it follows that  if this wave function has 
the property of causal propagation in space-time, then there should 
exist at a later time tl,  a Ax(tl) > R~, such that 

= o 

where At = tl - to and therefore 

f d4p¢(p)*elp'ax-iEa~¢(p) = O. (14) 

for [Ax[ > R,. The Fourier transform then implies that  

F (p )  = / dE¢(p)*e-iEat~b(p). (15) 

must be entire in p. 
If we assume that the support of the wave function admits an 

integration over E that is independent of p, e.g., if the wave func- 
tion has a factorized form, then there would be no explicit non- 
analytic behavior in p, and hence no contradiction with causality. 
If we define the variable m ~ = E 2 - p~, it is clear that ¢(p) would, 
in this case, contain tachyonic components. In the covariant quan- 
tum theory we are using, the wave function could develop tachyonic 
components (corresponding to pair creation and annihilation) dur- 
ing the process of localization. 

On the other hand, it is possible to construct an analytic F (p )  
with strict causal propagation, and no tachyonic components. To 
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do this, we change the integration variable from E to m2; setting 
E 2 = p2 + m 2, one obtains 

f dm 2 
F(p)  = J + t¢+(p)t 

(16) 
where ¢± contain positive and negative energies respectively. We 
shall use to represent these functions, the generalized eigenfunctions 
of the Newton-Wigner operator[2], which are the solutions of 

i.e., 

P P E i(0,  + ~ 0 E  - ~-kZ)¢Nw(p, ) = x0¢Nw(P, E),  (17) 

CNW(p,E) = ± ~ e l p ' x ° X + ( E 2  - p~), (18) 

for to = 0 (for to # O, one must multiply by e -~Et° ). If we assume 
that the initially localized wave function is a superposition of such 
localized functions, within the domain described by Nto(V), they 
are in fact solutions of Nto (V)¢ = ¢. 

The balance of positive and negative energy components in the 
localized wave function, with which we test the notion of causal 
propagation, can be interpreted in terms of the action of a localizing 
filter. Passage through a position filter, corresponding to localiza- 
tion of a particle, can be thought of as the successive annihilation 
and creation of the particle by the filter. The annihilation of the 
particle is, however, equivalent to the creation of a particle in a 
negative energy state, and conversely; hence the process of testing 
for locafization should result in an equally weighted occurrence of 
positive and negative energy parts of the wave function (the no- 
tion of filtering will be discussed further elsewhere). In. this case 
iX+ [2 = IX-[2, and one obtains, 

1 f + m2t)x (m ) ' F(p) = 5 (19) 

The function x(m 2) can have a very concentrated support; we see 
that F (p )  is indeed analytic since unlike the exponent of the square 
root [1], cos(v/~ + m2t) is analytic for every t. 

To the extent to which causal propagation is observed, we see 
that the wave function must carry tachyonic components (if non- 
analytic behavior, due to branch points caused by the restriction 
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to E ~ - p~ > 0 is not removed by the integration over E), or a 
balance of positive and negative energies. Eberhardt and Ross [12] 
have argued that acausal effects must be suppressed in QFT, due to 
the vanishing of the commutator of local observables, in space-like 
regions. The balance of ~ energies in the localized wave-function 
is analogous to the two terms of the commutator. 
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