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We investigate a model for neural activity in a two-dimensional sheet 
of leaky integrate-and-fire neurons with feedback connectivity consist- 
ing of local excitation and surround inhibition. Each neuron receives 
stochastic input from an external source, independent in space and 
time. As recently suggested by Softky and Koch (1992,1993), indepen- 
dent stochastic input alone cannot explain the high interspike interval 
variability exhibited by cortical neurons in behaving monkeys. We 
show that high variability can be obtained due to the amplification of 
correlated fluctuations in a recurrent network. Furthermore, the cross- 
correlation functions have a dual structure, with a sharp peak on top of 
a much broader hill. This is due to the inhibitory and excitatory feed- 
back connections, which cause "hotspots" of neural activity to form 
within the network. These localized patterns of excitation appear as 
clusters or stripes that coalesce, disintegrate, or fluctuate in size while 
simultaneously moving in a random walk constrained by the interac- 
tion with other clusters. The synaptic current impinging upon a single 
neuron shows large fluctuations at many time scales, leading to a large 
coefficient of variation (Cv) for the interspike interval statistics. The 
power spectrum associated with single units shows a l/f decay for 
small frequencies and is flat at higher frequencies, while the power 
spectrum of the spiking activity averaged over many cells-equivalent 
to the local field potential-shows no l/f decay but a prominent peak 
around 40 Hz, in agreement with data recorded from cat and mon- 
key cortex (Gray e t  al. 1990; Eckhorn et  al. 1993). Firing rates exhibit 
self-similarity between 20 and 800 msec, resulting in I/!-like noise, 
consistent with the fractal nature of neural spike trains (Teich 1992). 
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1 Introduction 

A puzzling conflict between standard biophysical theories and the char- 
acteristics of spike trains recorded from cortical cells responding at high 
rates to visual input has recently been pointed out (Softky and Koch 
1993). Experimental evidence shows that the amplitude of an individual 
excitatory postsynaptic potential (EPSP) is on the order of 0.1 mV, about 
two orders of magnitude smaller than the threshold depolarization from 
rest necessary for a pyramidal cell to spike (Komatsu et al. 1988; Mason 
et al. 1991) [for a review see also (Fetz et al. 1991)]. Based on this, Softky 
and Koch showed that the neural firing pattern will be highly regular if 
the neuronal membrane acts as a leaky integrator summing over a train of 
stochastic, uncorrelated EPSPs. In an integrator model, the time to spike 
is determined by the total time in which a critical number of EPSPs ac- 
cumulate. Since the interspike interval is the sum of random variables 
representing the intervals between EPSP inputs, the central limit theorem 
predicts that the output spikes will be highly regular. In other words, the 
shape of the interspike interval histogram will become highly peaked as 
measured by the coefficient of variation, CV,  defined as the standard de- 
viation over the mean of the interspike interval (ISI) distribution. Softky 
and Koch also showed that this central limit result holds for a detailed 
biophysical compartmental model (including seven voltage-dependent 
somatic currents) of a cortical pyramidal cell in the presence of inde- 
pendent synaptic input. However, recordings from cells in V1 and MT 
cortex in the behaving monkey show that the discharge at high rates (up 
to 200 Hz) is highly variable in the length of interspike intervals, with a 
coefficient of variation of around one. 

Softky and Koch (1993) suggested two possible solutions to this dilem- 
ma: the first one requires fast and powerful active Na+ conductances 
sensitive to inputs at the millisecond time scale in the dendrites (as dis- 
cussed in depth by Softky 1993). In this framework, neurons act as coinci- 
dence detectors, firing only if many synaptic inputs arrive simultaneously 
(Abeles 1982, 1991). A second approach, which we will develop here, is 
to solve the discrepancy by challenging the assumption of uncorrelated 
inputs while preserving the standard biophysical model of a temporally 
integrating membrane summing over small EPSPs. Here, interspike in- 
terval variability is a direct consequence of the global network dynamics, 
which create and amplify correlated fluctuations in an irregular fashion. 
This approach is motivated by the fact that extensive axon collaterals of 
pyramidal cells in cortex permit massively recurrent connections between 
neurons, which of necessity leads to strong correlations in the spike out- 
put of cells in the same proximity; however, recurrent connections alone 
do not lead to an increase in variability. In fact, depending on the pattern 
of connections, the opposite may occur. For example, in a recurrent net- 
work cells may entrain themselves into a steady state fixed point or to 
a limit cycle (oscillation) (Amit and Tsodyks 1991a,b; Koch and Schuster 
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1992; van Vreeswijk and Abbott 1993), where the interspike variability 
would be even lower than for uncorrelated input. 

We find that the generation of high variability depends critically on 
the spatial extent of inhibition relative to excitation. One connectivity pat- 
tern that robustly results in high variability is local excitation surrounded 
by inhibition, isotropically distributed across the entire network. Theo- 
retical investigations of such connectivity using continuous firing rate 
models have shown that the translational and rotational symmetry of an 
isotropic network can break spontaneously, leading to localized patterns 
of excitations (Willshaw and von der Malsburg 1976; Amari 1977; Wilson 
and Cowan 1973; Ermentrout and Cowan 1980; Chernjavsky and Moody 
1990) [see also Cowan (1982) for a bifurcation analysis predicting various 
geometric patterns, such as hexagonal or square lattices]. Generalizing 
this approach to a spiking model with noisy input, we find that the pat- 
terns of excitation exhibit metastability with large temporal fluctuations. 

In particular, we find that in the presence of homogeneous and in- 
dependent spatiotemporal input to all cells firing patterns display fluc- 
tuations on many temporal scales, leading to l/f components in the 
power spectra, and high variability in the number of events. Further- 
more, correlation functions between neighboring units display a sharp 
peak around zero, riding on a much broader hill. Such fluctuations of 
the firing behavior across many different time scales have recently been 
reported in neurons from the auditory pathway in mammals and the 
mesencephalic reticular formation by (Teich 1989, 1992; Grueneis et a/. 
1990), who showed that it implies temporal clustering of events and a 
fractal firing pattern. 

In the following, we first review different aspects of the variability 
problem. In Section 3, our model is presented, followed by the results in 
Section 4. Finally, we discuss the relationship between our results and 
typical electrophysiological experiments in monkey cortex as well as the 
implications of our model in the last section. 

2 The Variability Problem 

2.1 Interspike Variability. The interspike interval histogram and the 
coefficient of variation can be easily obtained for a pure integrator that 
receives a stream of Poisson inputs. Consider first the case of pure ex- 
citation in which an integrate-and-fire unit receives Poisson distributed 
EPSPs at rate A. Assuming that the membrane potential is reset to zero 
after each emitted spike and that NO synaptic inputs are required in order 
for the unit to reach threshold, the output interspike interval distribution 
PN,(T) is equal to the probability that NO events will arrive during an 
interval T.  If the arrival times of the incoming EPSPs are exponentially 
distributed, P ( T )  = X exp( -AT), then the probability distribution for the 
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Renormalized Pmbability Density 

Figure 1: Probability density functions of PN# for an integrate-and-fire unit 
requiring NO Poisson-distributed synaptic inputs to fire. The interspike interval 
(1'51) distribution becomes relatively narrower as the number of inputs required 
to reach threshold increases, a consequence of the Law of Large Numbers. The 
x-axis is in units of the mean time to spike (T). Functions are rescaled so that 
integrals under curves are all equal to unity. 

sum of N o  independent identically distributed random variables, PN@ ( T )  
is 

If we denote the mean time between spikes as 

A 

(where ( ) indicates the temporal average), we can introduce the nor- 
malized probability distribution P N ~  ( T / (  7')). Although P N s  ( T )  becomes 
broader with increasing NO, the normalized distribution PN@ ( T / ( T ) )  be- 
comes narrower. In Figure 1, we display PN,(T/(T)) for several values of 
NO,  assuming a constant rate X of inputs. 

From equation 2.1, we obtain the variance and the standard deviation 
divided by the mean (the coefficient of variation Cy): 

(2.2) 
Ne Var(T) = ( ( T -  (7'))2) = - 
A2 

Var(T)1'2 1 -- - 
( T )  

C" = (2.3) 



Network Amplification of Local Fluctuations 799 

We observe that the coefficient of variation decreases with the square 
root of NO. Thus for No = 100, corresponding to a reasonable estimate 
of the total number of EPSPs required to trigger a cortical pyramidal 
cell (Komatsu et al. 1988; Mason et al. 1991), one obtains CV = 0.1, much 
lower than the experimental values for cortical cells firing at high rates, 
for which Cv = 1. This result is simply a consequence of the Law of 
Large Numbers: the sum of a sufficiently large number of independent 
random variables has a gaussian distribution. 

In principle, the variability can increase due to inhibition, which may 
cancel part of the mean rate of the input signal while keeping or increas- 
ing the fluctuation. However, a significant contribution of inhibition to 
variability can be ruled out for biophysical and mathematical reasons. 

First, compartmental simulations (Softky and Koch 1993) show that 
the degree of inhibition required for this is much larger than observed 
in in vivo intracellular recordings in cells in cat striate cortex (Douglas 
et al. 1988; Berman et al. 1991). In the following, we briefly outline a 
mathematical argument. 

Consider a cell receiving a superposition of an excitatory Poisson 
stream (of rate A,) and an inhibitory stream (of rate A; ) of synaptic inputs, 
of equal but opposite magnitude. Under these conditions, the interspike 
interval, interval's mean and variance can be written as (Tuckwell 1988): 

NO 
( T )  = 

The coefficient of variation is: 

Equation 2.4 shows that in order to obtain a Cv of order of one, the 
relation between excitation and inhibition rates should satisfy 

or in terms of the rate of inhibition, 
No - 1 A; Rz - 
NO + 1'' 

For NO = 100, the lnhibition rate should equal A, = 0.98 A,. In other 
words, both excitation and inhibition need to be roughly 50 times larger 
than the net resulting current proportional to A, - A;. No experimen- 
tal evidence exists for such extremely high background currents. This 
scheme requires an unusually high degree of balancing, since a mere 2% 
higher inhibitory rate would totally cancel the excitatory input. Finally, 
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the output rate of such a neuron would be 50 times lower than the input 
rate, since the mean output rate is given by (A, - X,)/Ne = 0.02 &/NO. 

When membrane leakage is taken into account, the interspike inter- 
val histogram associated with the leaky integrate-and-fire unit cannot 
be derived analytically. However, as shown by Softky and Koch (1993) 
in simulations of both integrate-and-fire and a detailed compartmental 
model, leakage leads to an increase in variability only for very low firing 
rates (relative to the reciprocal of the membrane time constant). At high 
output rates (relative to the inverse of the membrane time-constant), no 
significant decrement occurs between spikes, and the Cv is not affected. 
Because cortical recordings show large coefficients of variation even at 
high firing rates (Softky and Koch 1993), the problem of variability re- 
quires a different solution. 

2.2 Variability in the Number of Events. A different measure of the 
”unpredictability” of a cell’s discharge is the variability in the number of 
action potentials the cell fires in response to specific input. 

If action potentials are distributed according to a Poisson point pro- 
cess, the simplest of all stochastic processes, the mean number of spikes, 
should be identical to the variance: Var(N) = N. Yet, experimentally, 
neurons frequently show larger fluctuations, indicating clustering of the 
spike trains. Two different experimental paradigms have been used to 
evaluate this. 

In the first paradigm, the mean discharge rate associated with one cell 
respunding numerous times to one particular stimulus for a fixed interval 
is computed along with the variance about the mean, resulting in one 
[N,,  Var(N;)] pair (Snowden et al. 1992; Vogels et al. 1989; Tolhurst et al. 
1983). This experiment is repeated for different stimuli and different cells 
(always for the same duration). These pairs are then plotted in log-log 
coordinates. For a Poisson process, the slope of the line passing through 
these points should be 1. Yet, different experiments in both V1 and in 
MT of the anesthetized or the behaving monkey using bars, gratings or 
random-dot stimuli have consistently found a scaling law of the type 
Var(N) x N5/4. In other words, the variance in the number of spikes is 
greater than expected for a pure Poisson process. 

A clue to the origin of this high variability comes from a related exper- 
iment, in which long spike trains from neurons responding either spon- 
taneously or to stationary sensory stimuli are partitioned into nonover- 
lapping time windows T,  for which then the mean and variance in the 
number of events are calculated as a function of 7’. When the spike dis- 
charge in response to a constant input in different noncortical neurons is 
evaluated in this manner, the neurons show high variability, leading to 
a power law of the form: 
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Again, for a pure Poisson process, r/ = 1. Sometimes (Teich 1992) an 
equivalent exponent, called the Fano number, equal to v - 1, is used 
instead. For regular spike trains, whose mean interspike interval does 
not diverge, the exponent v has an upper bound of 2 (exponents larger 
than two lead to large and nonconvergent fluctuations in the firing rate). 
On the other hand, exponents v < 1 imply high regularity in the firing 
pattern (e.g., a purely periodic spike train has zero variance and hence 
v = 0). Typical values for r/ range from 1.2 to 2.0 for spike trains from 
auditory nerve fiber (Teich 1989, 1992) and the cochlear nucleus (Shofner 
and Dye 1989),’ while the firing of vestibular neurons is much more 
regular, with v = 1.03 (Teich 1992). 

What are the implications of these power laws? Furthermore, what 
is the relationship between assessing the mean and variability in a neu- 
ron’s response by keeping the time window T constant while varying the 
stimulus intensity (or contrast) and, in a different experiment, varying T 
while keeping the stimulus constant? 

The implication of v > 1 in equation 2.6 can be understood by examin- 
ing the fluctuations in the firin ratef = N(T)/T, which can be described 
in terms of AN(T) = 4 4 :  

W T )  Af = - T 
N”/2-1 

For a Poisson process, where v = 1, the rate fluctuations decay with 
increasing time windows as That is, recording four times longer 
doubles the signal-to-noise ratio. Values of v bigger than 1 imply persis- 
tent firing rate fluctuations and clustering of the spiking process: fluctu- 
ations in the instantaneous firing rate will be partially preserved when 
the rate is averaged over increasingly longer intervals. In the extreme 
case of v = 2, the ratio of signal to noise remains constant no matter how 
long one averages. 

The random walk described by the deviation from the mean number 
of spikes in an interval T ,  that is N ( T ) -  ( N ( T ) ) ,  leads to a different way to 
understand the significance of the v exponent. The standard deviation of 
this walk is proportional to T”12. Thus, multiplying the time interval by 
a factor of 2 scales the walk deviation by a factor of 2”/2. Such processes 
are called self-u@efvactals, and 1//2 is called the roughness (or Hurst) 
exponent (Feder 1988). For the case of v = 2, the walk is itself-similar 
and scales by the same factor as the time interval, showing self-similarity. 

Two important statistical measures of spike trains related to the ex- 
istence of self-similarity and persistent fluctuations, as reflected in the 
power law discussed above, are the interspike interval distribution P( t )  

‘In a preliminary study, we have found similar power-law exponents for long spike 
trains recorded from the parietal cortex of monkeys performing delayed matching to 
sample tasks in the laboratory of J .  Fuster (Zhou and Fuster 1992). 
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and the autocorrelation function A( t ) .  These two measures relate comple- 
mentary statistical properties of spike trains: while P( t )  measures statis- 
tics of intervals between consecutive spikes and is order independent, 
A ( t )  measures the fraction of spikes separated by time t and is related to 
statistics of intervals of all orders. 

While a power law decay (with exponent between 0 and 1) in thc 
autocorrelation function implies that the spike train fluctuations in N( t )  
are persistent and self-affine (characterized by I /  exponents between 1 and 
2 ) ,  we shall show that a power law decay (with an exponent between 
1 and 2 )  in the interspike interval distribution indicates that the point 
process is a true fructul with a noninteger dimension D between 0 and 1. 

Consider first the interval distribution P(  t ).  Following Mandelbrot 
(1983), the fractal dimension of an infinite recursive point process (dust) 
is defined via the number of covering intervals of length h,  N( h ) ,  needed 
to cover all the events in a finite interval of length T: 

N ( h )  x (2.7) 

Since actual spike trains have finite length, equation 2.7 can hold only 
over a limited temporal range. Clearly, when h is much smaller than the 
mean interspike interval, the number of covering intervals saturates at 
the total number of spikes in the train, imposing a lower cutoff on the 
range over which the process exhibits power law behavior. 

We show in Appendix A that a point process whose interspike in- 
terval distribution decays as a power-law with exponent -2 ,  satisfying 
1 5 2 5 2, has a fractal dimension D = 2 - 1. Thus processes whose 
interval distribution decays faster than t - * ,  such as the Poisson process 
whose interval distribution decays exponentially, have a dimension of 
one, implying that at time-scales longer than the mean interval there are 
very few empty covering intervals. On the other hand, for a power law 
distribution with 1 < -, < 2, the process is much more clustered, resulting 
in a large number of empty covering intervals. The dimension D for 
such clustered processes is a noninteger number that lies between zero 
and one. 

The second statistical measure A ( t )  can be related to the variance 
in the number of events N ( T )  and the 11 exponent (Cox and Lewis 1966; 
Teich 1989). For any stationary point process of mean rate A, the variance 
in the number of events in time T (see Appendix B) is 

.7 
Var(N) = N + 2 / (T - t ) [ A ( t )  - A ( m ) ]  d t  (2.8) . o  

In the absence of correlations [A ( t )  = A ( w ) ]  for all values of t, this 
equation implies that Var(N) = N, as for a Poisson process. If the auto- 
correlation function decays to chance levels in finite time t , ,  the variance 
will be proportional to N for t > t,. The power law behavior for N( T )  will 
be observed, therefore, only if there are long-range temporal correlations 
in the data. 
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Table 1: Scaling Relations. 

Var(N) Autocorrelation Power spectrum IS1 distribution 

Var(N) - N u  A ( t )  - S(f )  -f-”+’ P ( t )  - t-l’ 

Since the number of spikes N depends linearly on T, equation 2.8 will 
lead to Var[N(T)] cx T” (for large values of N) only if the autocorrelation 
function satisfies 

(2.9) 

for large values of t.* 
By the Wiener-Khinchin theorem, the power spectrum of a process 

is the Fourier transform of the autocorrelation. Assuming that A ( t )  >> 
A(m) ,  equation 2.9 leads to 

A ( t )  - A(m) rx t”+2 

S(f) K xf-”+’ (2.10) 

for small frequencies. For 1 5 I /  5 2, the exponent of the power spectrum 
at low frequencies will be between minus one and zero. Such exponents 
in the power spectrum are generally called l/f noise. 

For the special case of a renewal process, in which consecutive in- 
tervals are independent of each other, a power law with exponent -7 
in P ( t )  leads to a power law with exponent y - 2 in the autocorrelation 
function A ( t )  (Lowen and Teich 1993). For such processes, the exponent 
D in equation 2.7 is related to the Hurst or roughness exponent r//2 by 

r / = D + l = T  (2.11) 

In the strictest sense, these power law relationships hold only in the 
limit for which P ( t )  behaves as a power law for all t. If the power law 
behavior extends only over a finite range, the prediction of exponents 
becomes approximate. For renewal processes characterized by a power 
law between two temporal cut-offs, full analytic solutions of A ( t )  given 
P ( t )  are difficult to obtain [but see Lowen and Teich (1993) for the special 
case of D = 0.51. A restricted range of power law behavior is in general 
accompanied by a significant baseline autocorrelation A( m), so that if 
A(t)  decreases as a power law, A ( t )  - A ( m )  will, of course, decrease 
more slowly than A(t) .  By the same token, Var(N) will increase more 
slowly with N than predicted. 

We summarize the main scaling relationships in Table 1. 

*If  A ( t )  x e- t /T ’ ,  then Var(N) IX N in the asymptotic limit of long T. Only A ( t )  x t-,’ 
leads to a power law for Var(N) valid at large N. 
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These power law relationships will also hold-under certain condi- 
tions-for the first type of experiment (with fixed recording time T, but 
variable stimulus intensity leading to corresponding mean rates A). In 
this case, the result 

Var(N) = W’ (2.12) 

with 1 5 11’ 5 2 can be explained in terms of equation 2.8 if 

A(t .A)  cx A”’A( t )  (2.13) 

in the simultaneous presence of long-range temporal correlations. In 
other words, if the correlation function scales in this manner with the 
mean firing frequency and the temporal correlations are long-lasting, 
equation 2.8 implies Var(N) 0: N” for large values of N (for fixed time 
intervals T). 

Note that there is no a priori reason for the exponent v’ obtained in 
the first experimental paradigm to be equal to 1) measured in the sec- 
ond paradigm. If, however, the normalized correlation between spikes 
separated by time t is only a function of the expected number of inter- 
vening spikes in time t ,  At, the two exponents will, in fact, be equal. This 
condition translates into 

A ( t ,  A )  0: A”fv-’ (2.14) 

implying that the autocorrelation function scales with the mean firing 
rate. In particular, this condition holds for a perfect integrate-and-fire 
unit, since rescaling the input rate will only change the output rate of 
such a unit, and not the relative temporal ordering of output spikes. Thus 
scaling the input rate is equivalent to a rescaling of time (playing the 
recorded tape at a different speed), and, therefore, the natural quantity 
for measuring the autocorrelation decay is not the absolute time itself, 
but rather the intervening number of spikes, t A. 

The origin of long-range temporal correlations in cortical spike trains 
remains a mystery. The emergence of such long range correlations is con- 
sidered anomalous in most physical systems, where they generally occur 
only at a ”critical point” during a phase transition. Dynamic systems 
that robustly produce such behavior by self-organization have recently 
been introduced into the literature under the label of ”self-organized crit- 
icality” (Bak et af. 1987; Olami et al. 1992). In the following, we propose 
a neural model based on a self-organizing dynamic metastable system, 
which provides a solution to both aspects of the variability problem. 

3 The Model 

We searched for the simplest network that explains high output variabil- 
ity while still adhering to the fundamental constraints of cortical anatomy 
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and electrophysiology. Consequently, we used as our standard setup a 
model based on leaky integrate-and-fire neurons with semilocal connec- 
tivity. Modifications of this standard setup have also been studied and 
will be described below. We first describe the neural dynamics and sub- 
sequently the connectivity patterns used in the simulations. Although 
not necessary, it is helpful for the remainder of the paper to think of the 
simulated network as a sheet of cortical neurons in primary visual cortex 
receiving unstructured visual input from the lateral geniculate nucleus. 

3.1 Neural Dynamics. The model consists of a two-dimensional lat- 
tice of units, connected within the layer by local excitatory and inhibitory 
synapses. Each unit integrates the inputs with a time constant r charac- 
terizing the passive neuronal membrane; once the potential reaches the 
threshold voltage V,, the unit emits a spike that is transmitted to synap- 
tically connected neighboring units, and the potential is reset to zero. 

The dynamics of the integrate-and-fire model are given by 

I;(t) = CJiO[Vj(t)  - v,] + + C&O[Vj(t) - v,] 
i 1 

with 
J E  = a/N,,, excitatory synaptic coupling strength 
I' = PIE inhibitory coupling strength ( p  < 1) 

where the indices i and j denote the units, fd&y is a transmission delay, 0 
is the Heaviside step function [O(x) = 1 for x > 0 and O ( x )  = 0 otherwise], 
and Iext is the external current impinging upon the cell. 

Some simulations used a biophysically correct model of synaptic in- 
put as conductance changes in series with ionic reversal batteries. The 
effective driving potential is thus given by the difference between the 
voltage and the reversal potential, that is, E,,, - Vi(t). E,,, was set at five 
times the threshold voltage, corresponding to fast voltage-independent 
AMPA excitatory input, while E , h  was set to be shunting or silent, that 
is, E i h  = 0, corresponding to GABAA-like inhibition. We also ran some 
simulations using a current approximation for synaptic input, with no 
apparent qualitative difference. 

The Heaviside function reflects the fact that outputs are transmitted 
only when a cell's voltage exceeds its threshold. The external input is 
modeled independently for each cell as a Poisson process of pulses of 
width tspike, arriving at a mean rate Xext (in Hz) and of amplitude Vo/N,,,. 
All inputs to a unit are scaled by the number N,,, of connections a unit 
makes with other units; the parameter a is of order Vo, here set without 
loss of generality to 1. Furthermore, the input resistance in the update 
equation 3.1 is also set (without loss of generality) to 1. 
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Equation 3.1 is supplemented by a reset mechanism to model spike 
generation. If Vi(t )  = V H ,  Vi is reset to zero after a delay corresponding to 
the width of the action potential tspike, and kept at this value for a period 

representing an absolute refractory period. In our standard setup we 
have chosen, for simplicity, tdelay = tspike = fief = 1 msec. Under these 
assumptions, equation 3.1 can be integrated over the characteristic delay 
time of 1 msec, resulting in a discrete approximation for the subthreshold 
domain: 

V ( t  + 1) = [kV( t )  -t r ( t ) ]  H[VH - V ( t ) ]  (3.3) 
where k = exp( - I / T )  is the decay factor of the membrane potential. 

This approximation assumes that the distribution of current at time 
scales smaller than 1 msec will not change the dynamics, which is char- 
acterized by a time constant 7 >> 1. In our standard model, T = 20 msec. 
It should be noted that the discretization equation 3.3 is natural in this 
context, since the original differential equation is not meant to capture 
the actual time course of the action potential during fspikt.. 

The reset after the spike is the simplest model of a rectifying potas- 
sium current. Since the unit needs time to recharge, the reset leads to 
an effective "refractory period." While it is true that the physiological 
refractory period is determined by the time course of a variety of voltage 
and calcium-dependent currents (Yamada et al. 1989), we are interested 
only in the temporal dynamics of spike times. When we henceforth refer 
to a refractory period in the model, we mean the effect of the reset. 

3.2 Connectivity. As shown below, two aspects of the connectivity 
are crucial for high spike rate variability: locality of the connections and 
the range of inhibition. In the absence of local connections, for instance 
using all-to-all or sparse random connections, the population quickly 
reaches a steady or an oscillatory state (Amit and Tsodyks 1991a,b; Koch 
and Schuster 1992; van Vreeswijk and Abbott 1993; Tsodyks et al. 1993). 
Such states are characterized by low variability (except in the regime of 
very low firing rates). 

With local excitation but no inhibition, waves of excitation originate 
from random centers on the lattice, but variability does not increase. If 
the excitatory coupling becomes too large, the activity in the network 
explodes, reaching a steady state with high activity, but low variability. 
The optimal connectivity pattern that leads to high variability consists of 
local excitation and inhibition (but with inhibition more distant than the 
excitation). 

Our "standard model" was based on center-surround connectivity (see 
Fig. 2) on a rectangular array. Each unit is excitatorily connected to 
N,,,, = 50 units chosen from a Gaussian probability distribution of CT = 2.5 
(in terms of the lattice constant), centered at the unit's position (square 
symbols in Fig. 2). The extent of excitatory connections was limited to a 
circular region of diameter 10 lattice units. Each unit was also connected 
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Figure 2: Basic gaussian connectivity pattern for the standard model. The cell 
(not shown) at the center of the rectangular array is connected in a probabilistic 
manner to units within a given distance determined by a gaussian distribution 
with cr = 2.5 lattice constants. These short-range connections are excitatory 
(squares). The center cell also inhibits a fixed fraction of cells on an annulus 
8 and 9 lattice constants away (triangles). During a particular simulation, the 
connectivity pattern is fixed, although the exact synaptic weight varies stochas- 
tically. 

in an inhibitory manner to N,,, units chosen from a uniform probability 
distribution on a ring eight to nine lattice constants away (triangular sym- 
bols Fig. 2). No cell was allowed to make more than one connection to 
any other cell. Each cell's connections were generated independently at the 
start of the simulation and remained fixed thereafter, so that the geomet- 
ric pattern of excitation and inhibition is not uniform across the lattice. 

We occasionally use a sparse random connectivity. In this alternative 
setup, each unit makes N,,, excitatory and N,,, inhibitory connections 
to randomly chosen other units on the lattice, independent of distance. 

= ct/N,,,, 
and that of the mhibitory ones is 1' = / j J E  and is the same for all cells and 
synapses in the network. The normalization of the connection strengths 
by l/N,,,, in equation 3.2 takes into account the common physiological 
assumption that 50 to 100 summed EPSPs are needed to elicit a spike. For 

The amplitude or weight of the excitatory connection is 
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a 2 1 in the model, simultaneous firing of all local excitatorily connected 
units is sufficient to cause the receiving unit to spike. 

To mimic the well-known stochastic character of synaptic transmission 
(Stevens 1993), we add an independent random offset to each synapse 
throughout the network at every iteration in equation 3.2. This corre- 
sponds to choosing the excitatory weight at each iteration from a uniform 
probability distribution ( u  - A)/N,, < IE < (0 + A)/Nco,. Inhibitory 
weights were treated in the same fashion, but rescaled by B. 

The possibility that a spike may fail to activate a synapse in an all- 
or-none fashion, as often happens in slice preparations of cortical cells 
(Stevens 1993) was also investigated in control simulations. In this last 
case, spike transmission at any given synapse was likely to fail with a 
fixed probability Pj. 

We used either cyclic wraparound or null-flux boundary conditions on 
a 100 by 100 unit lattice. In the latter case, activity beyond the boundary 
was treated as the mirror image of activity within the borders. Cyclic 
boundary conditions were preferred, since edge effects were absent. 

3.3 The Standard Model. Unless specified otherwise, we always use 
in the following our “standard model” with gaussian center-surround 
connectivity on a 100 by 100 unit rectangular lattice with cyclic bound- 
ary conditions. Each cell excites N,,, = 50 excitatory and 50 inhibitory 
other cells and has a passive time-constant T = 20 msec. The Poisson dis- 
tributed external input rate is X = 2.3 kHz, while the excitatory weight 
(Y is drawn from the uniform distribution [1.15,1.4]. The inhibition has 
two-thirds the strength of excitation, that is, [lr = 0.67 (EPSPs were renor- 
malized by the magnitude of the driving potential from rest to make the 
IPSP and EPSP amplitude at the threshold voltage comparable). These 
parameters were chosen to achieve the maximal correspondence between 
model spike trains and those recorded from cells in monkey cortex. 

We usually compare our standard model against spike trains from 
isolated units, that is, from units in a network with no lateral connec- 
tions (OY = 0). To mimic the observed arrival of EPSPs and IPSPs, we 
used a combination of excitatory and inhibitory external Poisson input. 
The conductance change induced by each individual input, whether ex- 
citatory or inhibitory, was identical, but the rate of the inhibitory input 
was set to be 0.67 of the excitatory rate. Both inputs were in series with 
the appropriate synaptic battery, of E,,, = 5 x V S  = 5 and Vih  = 0. To 
obtain approximately similar output rates, we had to increase the input 
rate to 15 kHz. 

4 Results 

We first discuss the overall dynamics of the entire network, before we 
turn toward properties of individual cells and, finally, of the local activity 
of small ensembles of neurons. 
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4.1 Pattern Formation and Metastability. We investigated the dy- 
namic behavior of the system under the influence of three parameters: 
the excitation coefficient a, the ratio of synaptic inhibition to synaptic 
excitation /3 = J‘/JE, and the rate of external input A. High variability 
in the spike discharge results for cy > VO = 1, when the total excitation 
contributed by the generation of a spike, Nco,(cr/Nco,,), is larger than the 
decrease in potential caused by the resetting of the spiking neuron VO.  
In particular, 1.2 < CY < 1.6 and 0.5 < /3 are optimal for obtaining high 
variability. 

If the input rate X is high enough? one observes the emergence of 
clusters, or localized ”hotspots” of neural activity (as in Fig. 3) .  The 
spatial range of inhibition effectively sets the bound on the radius of the 
clusters; for N = 50 excitatory and inhibitory connections, the clusters’ 
size is relatively insensitive to other parameter settings. 

Within this radius, cells fire at a higher rate (due to recurrent excitation 
that is strongest at the center of the cluster and decreases toward the 
boundaries), while cells in regions between clusters are inhibited. For 
very high external input rates, the clusters become stable and merge into 
stripes or hexagonal patterns, while at intermediate rates, the system of 
clusters is metastable, as characterized by a high degree of mobility. In 
this regime, the behavior of the clusters is dominated by two conflicting 
forces: diffusion (cells at the edge send activation to cells in the cluster’s 
vicinity) and the tendency to compactness, since the ring of inhibition 
acts as a ”fire wall.” As a result, the clusters fluctuate in size, move in a 
self-avoiding random walk-like fashion, and occasionally disintegrate or 
coalesce. 

The formation of localized metastable patterns is illustrated in Fig- 
ure 3, where each frame displays the number of spikes emitted by all 
10,000 units within the previous 50 msec. Regions of high activity do not 
remain fixed, but move from frame to frame. The motion of a typical 
cluster of high activity is shown in Figure 5. In some frames, elongated 
blobs/stripes appear and then disappear or change orientation in other 
frames. If one tracks the activity of individual fixed units during a long 
sequence of such frames, one observes large fluctuations leading to high 
variability in interspike intervals and total number of spikes. 

More interestingly, the fluctuations take place not only on a scale of 
50 msec, but on many time scales. Figure 4 shows a similar display, 
but using a 2-sec time window. Evidently even on this time-scale the 
fluctuations are not completely averaging out. However, on this extended 
time scale, the activation patterns show more elongated forms, suggesting 
some degree of averaging over the patterns’ trajectories. 

For low inhibition values, /3 < 0.33, one obtains traveling waves (long 
fronts of activity) that are not fully periodic. Under such conditions the 

‘Empirically, the asymptotic subthreshold voltage V = X7/Ncon must be at least 
0.6 Vs .  
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Figure 3 

Figure 4. 
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individual cells show low CV values. This parameter regime will not be 
further discussed in this work. 

4.2 Single Cell Properties. 

4.2.1 lnterspikelnterval Variability. We computed the coefficient of vari- 
ation Cv-without attempting to renormalize CV for the existence of a 
refractory period-in our population of 10,000 cells over a 400-sec long 
simulation using a stationary input frequency of X = 2.3 kHz to all cells 
in the standard model (when the initial 10 sec following the onset of the 
stimulus were eliminated, no noticeable difference resulted). The result- 
ing values of Cv for individual cells are displayed in Figure 6 as a func- 
tion of the mean interspike interval. Higher As (or weaker inhibition) 
give rise to higher spiking frequencies and lower interspike intervals, 
while maintaining high variability. 

Note that almost all values of CV are on the order of one or larger. The 
pattern of observed Cvs reproduces qualitatively the CV values measured 
for cells in cortical areas V1 and MT in the awake monkey responding to 
bars and to clouds of moving dots (Softky and Koch 1993). As discussed 
above, this is surprising given that, for an integrate-and-fire model at high 
output rates (when the effect of the membrane leak can be neglected), 
Cv = 1 / a .  For our parameter range, NO x 50 and therefore CV = 0.14. 

We computed the Cv of the cells without any lateral connections in the 
network, that is, when the cells are only responding to the external input 
(lower cloud of dots in Fig. 6)  and find that the CV values are on average 

Figure 3: Facing page. Spontaneous symmetry breaking in neural pattern forma- 
tion. Each frame represents the summed activity over 50 msec in a simulation 
for random external input. These "snapshots" of neural activity are shown at 
100 msec intervals from each other in a clockwise arrangement starting with the 
frame in the upper left-hand corner. Lighter colors denote higher firing rates 
(maximum firing rate 120 Hz). The direction of motion for selected clusters 
is shown by an arrow; the position of the moving cluster in the next frame is 
indicated by a diamond shape. Parameters for this and all subsequent figures 
pertaining to the model were external Poisson input rate X = 2.3 kHz, connec- 
tion strength o is uniformly distributed between 1.15 and 1.4, membrane time 
constant r = 20 msec. Inhibition equals 2 / 3  of that of excitation (P = 0.67). 

Figure 4: Facing page. Here each frame represents the summed neuronal activity 
within a 2-sec long time window in the presence of random external input. 
All other parameters are as in the previous figure. The self-similarity of the 
neuronal activity across different time scales is evident in the emergence of 
clusters at the 50 msec as well as at the 2-sec time scale. The highest number 
of spikes in these frames for any unit is 145, i.e., 72 Hz. 
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Figure 5: To illustrate the motion of a typical cluster seen in Figure 3, the center 
of a cluster is tracked over 10 sec of simulation. Each vertex in the graph 
represents the cluster’s position averaged over 50 msec. Repulsive interactions 
with surrounding clusters generally constrain the motion to remain within a 
certain radius. This vibratory motion of a cluster is occasionally punctuated by 
longer-range diffusion. 

reduced by a factor of two. Qualitatively, a similar reduction by a factor 
of three in CV occurs in a network with sparse nonlocal connections as 
discussed in the ”Model” section. At the same mean spiking frequency, 
that is, same mean time between spikes, the isolated and the nonlocal 
networks show much lower variability than the network with the center- 
surround connectivity. 

4.2.2 lnterspikelntemal Histogram and Power Spectra. The power spectra 
of spike trains from individual units in our standard model (Fig. 7) are 
similar to those published in the literature for nonbursting cells in area 
MT in the behaving monkey (Bair et al .  1994). Power spectra were gener- 
ally flat for all frequencies above 100 Hz. The effective refractory period 
introduces a dip at low frequencies (Bair et al. 1994). Given the long du- 
ration of individual spike trains, here 400 sec, the frequency resolution 
is high enough to observe the l/f”.E decay at low frequencies (Fig. 7). 
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Figure 6: Coefficient of variability, CV,  of a representative range of cells shown 
against the average time between spikes, that is, the inverse of the mean firing 
rate. The solid dots in the upper cloud are from our Standard Model. The 
crosses in the middle cloud represent the behavior when all network effects are 
eliminated (i.e., (Y = 0), and units receive both an excitatory and an inhibitory 
stream of external Poisson input, with X i  = 0.67 x A,. Without inhibition, the 
associated CV values are reduced by a factor of about 2. The diamonds in the 
lowest cloud are from cells in a random network with sparse, nonlocal connec- 
tions that have no organized topography. The same number of inhibitory and 
excitatory connections, 50, were used as in the local center-surround connection 
scheme. All connections are reciprocal but otherwise random. Parameters for 
this run were otherwise the same as for the standard model. 

Since Bair et al. used a frequency resolution of 4 Hz (instead of 0.25 Hz 
for Fig. 7), they could not have observed a l/f component of the type 
shown for the model, even if I/’ noise had been present in the real data. 

Notice that the power spectrum associated with a pure Poisson pro- 
cess of rate A is flat a t  all frequencies (no particular frequency is pre- 
ferred), except for a delta function peak at the origin: 

S(f) = x + 2TA%(f)  

If the point process is Poisson with an absolute refractory period drawn 
from a gaussian distribution of temporal width 0, the power spectrum 
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Figure 7 Power spectra associated with the spiking activity of single units. 
The spectra for 19 units were computed individually from a 400-sec long run 
for the standard model and averaged in the uppermost spectrum. The average 
spiking frequency of the cell throughout the run is 18.1 Hz. At low frequencies, 
the power spectrum behaves as f-0.8*0.017 up to a cut-off frequency of zz 8 Hz 
(see superimposed solid line, and inset, which displays the same graph on a 
log-log scale). For comparison, the lower spectrum represents the behavior for 
the same parameters, but without any lateral connections. Note the absence 
of l/f noise here. To obtain reliable estimates of the spectrum’s low-frequency 
components, very long spike trains are required. 

develops a dip at low frequencies: 

(4.2) 

with X 5 l/(d%o) (Bair et al. 1994). 
Figure 7 also shows the power spectrum in the disconnected network, 

that is, when (1 = 0. Individual units only receive external input. The 
major difference to the spectrum in Figure 7 is the lack of a l/f depen- 
dency around zero. Note the very weak peak around 50 Hz due to the 
more regular firing pattern. 

The IS1 histogram of the standard model, averaged over 19 units, is 
shown in Figure 8. Because of the effective refractory period, interspike 
intervals lower than 4 msec are not observed, while the clustering nature 
of the model leads to occasional long intervals. The slow decay in the 
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Figure 8: Interspike interval (ISI) histogram of single unit activity averaged 
over 19 units in the standard model. The inset displays the same graph on a 
log-log scale. The best fit to the power-law decay exponent of the IS1 histogram 
between 25 and 300 msec is -1.70 f 0.02, implying a fractal dimension of the 
underlying point process of 0.7. The tail of the IS1 histogram for isolated units 
(i.e., for a = 0; not shown) decays exponentially. 

IS1 histogram for long intervals has an associated power-law exponent 
in the trailing edge of the histogram of 1.7 over one decade (from 25 to 
300 msec). The corresponding fractal covering dimension D is 0.7 (equa- 
tion 2.7). In contrast, the IS1 for units in the disconnected network (u = 0, 
not shown), has a tail that decays exponentially, with T = 15.8 msec. 

4.3 Local Fluctuations and the Field Potential. To show the fluctu- 
ations in the input to individual units, we display in Figure 9 the total 
excitatory input received by a single cell from other cells in the popula- 
tion (excluding Iext). The lateral excitatory input to a cell is equivalent to 
the total activity in an area of radius 5 covered by excitation. 

The power spectrum of this input signal (Fig. 10) has a small peak 
at about 40 Hz (see the inset in Fig. 10) due to the internal dynamics of 
hotspots that oscillate in size. Increasing the area over which the total 
activity is measured to a disk with a radius of 9 lattice units leads to an 
increase in the periodicity, as observed by the enhancement of the 40- 
70 Hz component and the disappearance of the l/f components around 
zero (Fig. 11). The existence of a peak in the power spectrum of the 
ensemble activity is robust to rescaling the size of clusters (by changing 
the number of connections), the size of the network, the addition of noise, 
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Figure 9: The total number of excitatory inputs into one particular neuron as a 
function of time. Given our connection geometry, this input comes from cells 
within 5 units distance. The external input is not included here and, for our 
standard input rate of X = 2.3 kHz, corresponds to a mean input level of 1.8 
lateral inputs per msec. Thus, local feedback connections dominate the network, 
in agreement with the canonical microcircuit hypothesis (Douglas and Martin 
1990). Note the quasiperiodicity around 25 msec in the strength of this signal, 
which arises from the internal dynamics of a cluster (see Fig. 10). 

and to the introduction of time-varying synaptic inputs (here, decaying 
exponentials). 

Since there are no (excitatory) long-range connections to link clusters, 
different clusters oscillate in size independently with different phases. 
The activity over the entire network is thus the sum of n incoherent 
quasiperiodic oscillators, where n is the average number of clusters on 
the lattice. 

4.3.2 Cross-Correlation Among Cells. Other well known measures of 
spike train analysis are the auto and cross-correlation functions. In Fig- 
ure 12 we display some typical correlation functions obtained for spike 
trains from the same 400-sec long simulation as in Figure 7. 

The correlation functions were computed according to 

where x, and x, represent two spike trains (with either no or one spike 
event per msec bin), and T is the total duration of the recorded train. The 
multiplicative factor T / ( T  - t’) is necessary for normalization, because we 
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Figure 10: Power spectrum of the summed spiking activity over a circular 
area of radius 5 recorded from a fixed point on the lattice for 400 sec. This 
spectrum is roughly equivalent to the power spectrum of the lateral excitatory 
input (see Fig. 9), since short-distance connections are solely excitatory. At low 
frequencies, S(f) 0: f-", where v = 0.69 0.02 (see the solid line). The inset 
shows an enlarged part of the spectrum, revealing a small peak around 40 Hz. 

Figure 11: Power spectrum of the summed spiking activity over a circular area 
the size of a single cluster (with a radius of 9 lattice constants) recorded from 
a fixed point on the lattice for 400 sec. The signal is the total number of units 
spiking at any given iteration. Compared to the power spectrum of the spiking 
activity averaged over 5 units (previous figure), the peak, at 43 Hz, becomes 
much more noticeable, while the l/f component disappears. Similar power 
spectra were obtained for the total activity on small lattices (20 by 20) that 
contained only a single cluster and for interacting clusters whose positions were 
tracked on the full-scale lattice (100 by 100). 
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Figure 12: Auto- and cross-correlation functions between cells separated by d 
units in the standard model. Each graph represents the average correlation 
functions over 400 sec of four pairs of cells that were randomly chosen (the 
baselines, therefore, are different). The autocorrelation A( t) behaves as l/t0.21, 
consistent with a power spectrum that behaves as l/f',6. The graph of the 
best power-law fit to the autocorrelation is shown (numerical goodness of fit 
f0.004), raised slightly for reasons of legibility. Cross-correlograms similar to 
these have been observed in cat visual cortex (Nelson eta ! .  1992). 

use finite trains to compute the correlations. When the two spike trains 
are identical, i = j ,  the result is the autocorrelation function A(t) .  

The autocorrelation (Fig.' 12a) shows the effect of a refractory period, 
followed by a period of enhanced firing probability which decays slowly 
to an asymptotic value, via a power law with exponent -0.21. This 
behavior takes place up to a temporal cutoff of 300 msec, after which 
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the autocorrelation function reaches the baseline of chance coincidence. 
We should note that a power law decay is not the only possible model 
that will fit the data. The power law decay in the autocorrelation spans 
roughly one decade, which is not long enough to rule out the hypothesis 
of an exponential decay. The difference between the best power law fit 
at-b and the best exponential fit aexp(-t/r) +c does not reach the level of 
statistical significance, as based on a x2 test assuming Poisson-distributed 
errors. 

In Figure 12b,c,d we display cross-correlation functions for cells at 
three different spatial separations. The excitatory cross-correlations ex- 
hibit three main features: a sharp central peak, termed a "castle" in the 
neurophysiological literature (Nelson et al. 1992), flanked by small sec- 
ondary peaks, and a slow decline to an asymptotic value, termed "hill" 
by (Nelson et al. 1992), characterized by the same power exponent as for 
the autocorrelation (i.e., -0.21). The cross-correlation for d = 9 shows a 
central dip with a slow recovery (governed by the same exponent) to the 
asymptotic level. This dip around the origin is caused by the action of 
inhibition located 8 to 9 units away (see Fig. 2). 

4.3.2 Variability and Fractal Firing Patterns. Figures 3 and 4 illustrate 
that the activity of the neural population undergoes fluctuations on sev- 
eral time scales. Self-affine correlated fluctuations occur on all scales 
between 20 and 300 msec, based on the power law behavior of the auto- 
and cross-correlations, as well as that of the IS1 distribution over this 
range. To obtain a quantitative measure of these fluctuations, we calcu- 
lated the variance-mean curve by dividing a long simulated spike train 
into nonoverlapping periods of time T,  and then computing the mean 
and variance in the number of events in intervals ranging from 20 to 
5000 msec. 

The results are displayed in Figure 13 on a logarithmic plot. The 
slope of the curve in Figure 13 is 1.402 f 0.007 between N = 0.5 and 
20, corresponding roughly to intervals between 20 and 800 msec (at an 
average rate of 23 Hz). For t > 1 sec, temporal correlations in the spike 
train have decayed to chance level, so the variance in N behaves once 
again in a Poisson manner, that is, the slope of the standard model is 
equal to the slope of the Poisson process. For times shorter than the 
minimum spike interval, Var(N) = N, since there can be at most one 
spike in these intervals. 

We also simulated the second experimental paradigm that evaluates 
the variability in spiking in which many trials of fixed duration were 
repeated. For this we performed a set of 25 simulations of 2.2 sec each 
(but only used the last 2 sec), for each afferent input level (changing 
the initial conditions and the random noise fluctuations, but keeping the 
connectivity pattern the same), and computed the mean number of spikes 
N and variance Var(N) for 60 randomly chosen cells in the network. The 
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Figure 13: Log-log plot illustrating how the variance in the number of spikes 
varies as the mean number of spikes N for variable sampling intervals T. The 
exponent in the power law Var(N)  c( N V  is v = 1.4 for the standard set of 
parameter values. For comparison purposes, results from a Poisson train with 
refractory period 5 msec are superimposed, showing a slope of 1. The base 
firing rate for both processes is roughly 23 Hz. Self-affine fractal behavior of 
the spike train extends over the range from 20 to 800 msec and is evident in the 
fact that the variance increases faster than the mean. For t > 1 sec, temporal 
correlations in the spike train have decayed to chance level, so the variance 
in N behaves again in a Poisson manner (as discussed in Section 2.2). Typical 
power law exponents v for real spike trains from the peripheral auditory nerve 
(Teich 1989) and parietal cortex (unpublished data) range from 1.2 to 1.7 for 
spontaneous activity. 

procedure was repeated with different values of stimulus strength to 
extend the range of the mean number of spikes. 

These data points, plotted on a log-log scale, are shown in Figure 14. 
The best linear fit (see solid line) has a slope of 1.54 f 0.02, higher than 
the slope in the previous figure using a different paradigm. An average 
slope of 1.21 and 1.10 was measured in similar experiments carried out in 
cells in cortical areas V1 and MT, respectively, in the monkey responding 
to random dots (Snowden et al. 1992). Softky and Koch (1993) find the 
slope for MT to be 1.25. For comparison, we also plotted the response 
of 60 isolated units, that is, with a = 0, subject to the same stimulation 
protocol. Here the slope of the best linear fit is 0.436 f 0.004. 
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Figure 14: Log-log plot illustrating how the variance in the number of spikes 
Vur(N) varies as the mean number of spikes N for a fixed sampling interval 
T. Spike trains from 60 randomly chosen cells in a 56 by 56 size network 
were recorded. The external input rates were ramped from 1.9 to 2.3 kHz in 
increments of 50 Hz, with 25 trials at each stimulus level lasting 2.2 sec. The 
last 2 sec of each trial were used for this analysis. The slope of the best linear 
fit on the log-log plot is 1.54 f 0.02 (filled circles). The initial slope for the first 
four stimulus levels (1.9-2.05 kHz) is lower: 1.36h0.04. Similar plots for cells in 
visual cortices V1 and MT responding to moving bars and random dots show 
slopes of around 1.2 (Snowden et ul. 1992). We also plotted the same data for 
60 units in a disconnected network, i.e., (Y = 0 (crosses). Here, the best linear 
fit is 0.436 f0.004. 

5 Discussion 

Our goal has been to forge a theoretical link between the statistics of spike 
trains from single cells and the dynamics of the entire network. Further- 
more, we want to propose a solution to the dilemma posed by Softky 
and Koch (1992, 1993), on how to obtain high variability in networks of 
rapidly firing neurons that integrate over large number of synaptic in- 
puts. Our approach here is to simulate a simple network of spiking cells 
receiving external input, reminiscent of a cortex receiving input from a 
dynamic random dot display, and to relate our findings to experimental 
findings in the cortex of cat and monkeys. Although Softky and Koch 
did offer a solution to the problem of high variability-neurons that act 
like coincidence detectors (see also Abeles 1982,1991)-we here offer an- 
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other solution more in line with standard physiological thinking about 
the biophysics of pyramidal cells. 

Our simple network of integrate-and-fire units not only achieves high 
variability, but also shows several other noteworthy features that are 
shared with experimental data from cat and monkey visual cortex: the 
power spectrum of the local-field potential frequently shows a peak 
around 40 Hz while the spectrum of single unit recordings very often 
does not (in particular in the primate), the cross-correlation has a typ- 
ical castle-upon-hill structure and the ratio of variance to the mean of 
the number of spikes increases faster than expected of a Poisson process. 
Various measures of the spiking dynamics in our network shows self- 
similar (fractal) behavior. It is at present not known to what extent such 
scaling laws can be found in cortical cells. Before we go on, let us discuss 
the fundamental limitations and assumptions of our modeling effort. 

5.1 Limitations and Assumptions of Our Model. Our model of a 
single cell is a leaky integrate-and-fire unit receiving conductance inputs 
(Knight 1972). One could argue that such cells do not show the tem- 
poral dynamics of cells with a variety of voltage- and time-dependent 
Hodgkin-Huxley like currents acting over different time-scales. How- 
ever, our previous research (Softky and Koch 1993; Bernander et al. 1994) 
has provided ample evidence that an anatomically very detailed compart- 
mental model of a neocortical pyramidal cell with seven voltage-depen- 
dent currents at the cell body and a passive dendritic tree has temporal 
dynamics very similar to those of a leaky integrate-and-fire unit. 

The fundamental assumption critical to the functioning of the model 
is the center-surround pattern of connectivity, with short-range excitation 
and a longer-range inhibition. Note that this constraint must only hold 
on average. If both excitation and inhibition are short-range, we fail to 
reproduce the observed spike statistics such as power spectra and IS1 
histograms, since the lattice dynamics are now dominated by waves of 
neural activation. The resulting spike trains have much lower CV values. 

Our model is consistent with the "canonical microcircuit" hypothesis 
(Douglas and Martin 1990) in which massive excitatory recurrent feed- 
back dominates the behavior of cortex: for our standard model with an 
input rate of 2.3 kHz (see Section 3.3), the average sum of lateral currents 
is at least 50% larger than the external, sensory driven, current. Exam- 
ining Figure 9 reveals that for short periods the lateral excitatory current 
greatly exceeds the external current at a 2.3 kHz input frequency by an 
even greater margin. Higher input rates lead to higher amplification fac- 
tors. The circuit in the model thus serves to amplify the afferent input 
signal, particularly locally through the formation of "hotspots" (clusters). 

While anatomical and physiological evidence does not provide an 
unequivocal support for this connection scheme, some physiological ev- 
idence for the validity of our assumption can be found. Hess and co- 
workers (Hess et al. 1975) found that iontophoretic application of the 
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excitatory agonist glutamate to visual cortex of anesthetized cats induces 
excitation of neurons within 100 pm of the application site and distant 
inhibition at distances between 100 and 500 pm. Similar studies in rat 
somatosensory cortical slice preparations (Silva and Connors 1987) con- 
firm the general pattern of an inhibitory surround enclosing the excited 
region for all layers of cortex with one exception: layer IV, which receives 
direct afferent sensory input. 

A second critical assumption for our model is the existence of fast 
inhibition. Simulations performed with exponentially decaying synaptic 
inputs show that the cluster scenario fails if the inhibitory synapses are 
much slower than the excitatory synapses. When, for instance, the in- 
hibitory synapses are five times slower, the inhibitory ”fire wall” comes 
into play too late, after the excitation has already spread outside the 
cluster’s domain. In this case the population is entrained into periodic 
oscillations, which radically changes the IS1 histogram of single cells. 

Microstimulation studies give us an estimate of the speed with which 
inhibitory effects take hold: Asanuma and Rosen (1973) showed that 
inhibition outdistances excitation in motor cortex, with the onset of all 
excitatory and inhibitory interactions occurring within 3 msec of stimu- 
lation. 

Although inhibition must act through interneurons, the inhibitory re- 
sponse to stimulation can be almost as fast as the excitatory response 
in cortex. Also, spike-triggered averaging of EPSPs and IPSPs elicited 
synaptically in slice preparations show identical rise times for IPSPs and 
EPSPs of x 1.5 msec (Komatsu et al. 1988). We should notice, however, 
that the coexistence of long-term and short-term inhibition is not ruled 
out; in fact, a slower GABAB type current in the model would lead to 
greater mobility of the clusters of excitation and thus to greater variability. 

At the moment, our model does not contain any explicit interneurons, 
that is, individual units can both excite one set of postsynaptic targets 
while simultaneously inhibiting another set. Our future work will do 
away with this unrealistic feature of our model, but at a price of increased 
number of neurons and therefore an increased computation time. This 
constraint also held the connectivity to N,, = 50, a small fraction of the 
divergence seen in cortex. The connectivity scheme Figure 2 is meant to 
approximate a more realistic connectivity where both the inhibition and 
excitation are probabilistically spread over broader areas. To investigate 
the effect of rescaling the model in a preliminary manner, N,, = 150 
connections per neuron (instead of 50) were used in short control runs, 
yielding similar results to the Neon = 50 case.4 

We did not attempt to model cells that burst, that is, that discharge 2-4 
spikes within 10 msec or less. A large fraction of cortical cells responding 
to sensory events in the awake monkey frequently fires bursts (Werner 

4Although larger N,,, lead to more stable (thus less variable) firing patterns, 
”metastability” is restored once a synaptic “failure” process is taken into account, even 
for very low failure probabilities Pf < 5%. See Section 3. 
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and Mountcastle 1963; Bair et al. 1994). It is easy for bursting cells, with 
more complicated internal dynamics, to show arbitrarily high values of 
Cv. Instead, we here assume the standard reset mechanism of integrate- 
and-fire neurons; therefore, short interspike intervals were rare. 

What we consider the most important limitation of our current study 
is that we assumed stationary and uncorrelated input to all cells of the 
network. In particular, we did not model the bars or gratings that are the 
most common form of visual stimulus of the various experimental studies 
we cite. However, we were surprised by the rich dynamic behavior and 
its qualitative relationship to experimental data. Yet, this present study 
is clearly but a starting point for more realistic and sophisticated models 
of cortical networks. 

In the following, the main results of the model will be discussed. 

5.2 Pattern Formation. We have shown that “hotspots,” that is, pat- 
terns of excitation, emerge even for homogeneous Poisson input to our 
network (Figs. 3 and 4). We carried out similar simulations using com- 
pletely isotropic, circular connectivity patterns with fixed synaptic 
weights and again observed the emergence of circular excitation patterns 
(not shown). In our network, this pattern formation process implies 
spontaneous symmetry breaking due to random spatial correlations in 
the external input. 

The emergence of hexagonal and stripe-like patterns through sym- 
metry-breaking in continuous firing-rate models with similar connectivity 
has been previously demonstrated (Cowan 1982). In our model, however, 
the patterns of excitation are not stable; rather, they are subject to a 
stochastic diffusive process, leading to spatiotemporal fluctuations on 
many time scales (Fig. 3). 

It should be possible to directly visualize these moving ”hotspots” us- 
ing high-resolution optical imaging of the intact cortex in primates based 
on voltage-dependent dyes or intrinsic signals (Grinvald 1992). Indeed, 
moving circular or elliptic regions of high neuronal activity have been 
reported in visual cortex of the anesthetized squirrel monkey and the 
rat using voltage-sensitive dyes in response to electrode stimulation. Or- 
bach et al. (1992) observed motions of such clusters on the millisecond 
time scale; multiple clusters were sometimes elicited in response to stim- 
ulation at a single point, and, in one instance, a single cluster was seen 
to split into two separate centers of high activity. 

5.3 High Interspike Variability. We have shown that neural spike 
trains from our standard model have large coefficients of variation, that 
is, CV values between 1 and 1.5 for rates up to 50 Hz (Fig. 6). Increasing 
the external Poisson input rate or lowering B, the ratio of inhibition to 
excitation, results in higher firing rates, which we did not explore here. 
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These large Cv values are reflected in the slow decay in the tail of 
the IS1 (Fig. 8), here as l / t ' .7 .  This is in sharp contrast to the full IS1 for 
units in the disconnected network that decay exponentially. We do not 
know at present whether such power-law decay in the IS1 has been seen 
in cortical cells, but are studying this issue systematically. 

In their study of CV from nonbursting cells in cortical areas V1 and 
MT, Softky and Koch (1993) observed equally high values. The Cv associ- 
ated with the disconnected units receiving only excitatory and inhibitory 
external Poisson input is about a factor of two lower (Fig. 6). Without 
the mhibitory Poisson input, the associated CV would be further reduced 
by a factor of 6 (see equation 2.4). CV values are even further reduced 
in a network with random connectivity. 

In our model, the high degree of randomness observed in the single 
unit firing statistics arises from the amplification of correlated fluctua- 
tions, resulting in clusters of excitation moving through the cortical layer. 
This can be compared to a recent model of short-term memory that was 
proposed to account for the observed interspike interval histogram of 
spikes in IT cortex of behaving monkeys (Zipser et al. 1993). Intrinsic 
variability in this model is the result of stochastic transitions between 
two firing rates (attractors in the language of dynamical systems) inside 
a probabilistic network of McCullough-Pitts neurons. Our model pro- 
vides an actual mechanism for such transitions while generalizing the 
approach of Zipser and colleagues to include the leak of the membrane 
time constant and noise in the form of fluctuating Poisson external input 
to the cells. To be precise, the model has not only two fundamental firing 
rates, but rather a continuum of rates related to the cell's position relative 
to the cluster centers; moreover, as opposed to Zipser et al. (1993), who 
fitted interspike interval distributions with two exponentials of differ- 
ent time constants, in our model the interval distribution and correlation 
functions decay with a power law. Consequently, we find that the firing 
pattern is fractal up to a time scale of about 800 msec. 

It should be noted, however, that a power law decay can arise as the 
superposition of many exponentials with different time constants. If the 
majority of the input EPSPs is distributed as an infinite-range power law 
l/t" with cr < 3, the central limit theorem does not apply to the sum of 
EPSPs since the variance of the distribution is not finite. Consequently, 
for finite-range power laws, the CV of a sum of NO pulses will decrease 
(initially) more slowly than l/& as the number of pulses increases- 
even the sum of a large number of pulses can still have a high C". 

As we mentioned previously, alternative solutions to the variability 
problem are either very large hyperpolarizing (inhibitory) currents or 
an active dendritic mechanism for coincidence detection at the millisec- 
ond level. To achieve the same high variability as in the model based 
on concurrent excitatory and inhibitory streams of input alone (without 
network effects or coincidence detectors) component inhibitory and ex- 
citatory currents must be on the order of 50 times larger than the net 
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current. Physiological experiments rule out the existence of such ex- 
tremely large hyperpolarizing or shunting currents in cortical cells (e.g., 
Nelson 1991; Douglas e ta l .  1988; Berman et al. 1991). A very fast, sodium- 
based5 spiking mechanism working at the millisecond scale and located 
in the dendritic tree can, in principle, enable cortical cells to respond as a 
coincidence detector resulting in high variability (Softky and Koch 1992, 
1993). As of yet, no solid experimental evidence exists for such fast, pow- 
erful, all-or-none dendritic phenomena in cortical cells, although, given 
the relative inaccessibility of distal dendrites, they cannot be ruled out. 

5.4 Correlation Functions. It is remarkable that the cross-correlation 
functions show a dual process: a sharp peak at small delay intervals fol- 
lowed by a much slower decay, characterized by a power law with expo- 
nent -0.21 to an asymptotic level. Exactly this form of cross-correlation 
was found to be the most common correlation structure in physiological 
recordings from cat visual cortex by Nelson and his colleagues (Nelson 
et al. 1992), who termed it a ”castle on a hill” structure. Similar cross- 
correlograms were reported among cells in the macaque inferotemporal 
cortex by (Gochin et al. 1991). 

Our cross-correlograms are more peaked for units that are near each 
other and receive similar input from the surround; as the distance be- 
tween the units increases, the central peak becomes wider and smaller, as 
reported in physiological studies (Nelson et al. 1992). Following Toyama 
et al. (1981), we computed the correlation coefficient defined as the frac- 
tion of spikes from two separate trains that are within &9 msec of each 
other (the width of the central peak in the cross-correlogram Fig. 12b is 
9 msec). This coefficient, measuring the degree to which two spike trains 
entrain each other, is 0.59 for adjacent cells and 0.29 for cells four lattice 
sites apart. When the distance between units corresponds to the char- 
acteristic inhibition range (here d = 9; see Fig. 2), the cross-correlation 
shows a slight dip at short time scales. 

It should be noted that the cross-correlation functions are peaked a t  
zero time delay, in agreement with experimental results (Nelson et al. 
1992). However, as opposed to classical “common input” interpretations 
in which neurons are hypothesized to share a common external input, 
the zero-delay peaks here are generated by recurrent excitation, leading 
to local clusters of excitation. The form of the cross-correlation functions 
(the “castle on a hill” structure) suggests that two processes are taking 
place; on a fast time scale (of less than 10 msec), the presence of excitatory 
clusters leads to synchronization, while on a slower time scale (up to 
300 msec) the correlations are due to the clusters’ diffusive trajectory. 

SCalcium dendritic spikes are too slow to affect the neuronal variability at the time 
scale observed. 
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5.5 Local Field Potentials. As illustrated in Figure 9, the excitatory 
current from the lateral connections impinging upon a cell shows strong 
fluctuations on a scale that is much faster than the characteristic time scale 
for the diffusion of clusters. These fluctuations are due to the internal 
dynamics of the activity inside a cluster (which oscillate, nonperiodically, 
in size). We measured a related signal, the total number of active cells 
within a circular region of radius 5, and computed its power spectrum 
(Fig. 10). This can be thought of as the local field potential; it has a 
small peak around 40 Hz. The power spectrum associated with the total 
spiking activity within a neighborhood of 9 units radius shows a much 
enhanced peak at 43 Hz (Fig. ll), corresponding to the y domain of slow 
wave activity in electrophysiology. Interestingly, the power spectra of 
spike trains of individual cells within the network (Fig. 7) , as well as 
those of disconnected units (Fig. 7), show little evidence of a peak in this 
frequency band. 

Furthermore, the "single unit" power spectrum (Fig. 7) shows a promi- 
nent l/f decay, while such a component-caused by the long-range fluc- 
tuations due to the network connectivity-is totally absent in the spec- 
trum computed for the simulation of disconnected units (Fig. 7). Notice 
that in order to see such a decay for very low frequencies in the spec- 
trum, single units must be recorded for on the order of 10-100 sec. This 
explains why they are not evident in the power spectra computed from 
2 sec long spike trains (Bair et al. 1994). 

Not only does the l/f decay disappear as one moves from the power 
spectra of single units to the spectra of local field potentials (Figs. 10 and 
ll), but a peak in the y domain asserts itself. This change in the shape 
of the power spectra can be understood in terms of the autocorrelation 
function associated with the activity of the clusters. 

Since the cluster activity is the sum of all single-unit spiking activity 
within a cluster of N cells, the autocorrelation of the cluster spiking activ- 
ity will be the sum of A! autocorrelations functions of the individual cells 
and N x (N - 1) cross-correlation functions among individual cells within 
the cluster (N = 261 for our standard model). Thus, the autocorrelation 
of the entire cluster activity is dominated by the cross-correlations among 
individual units. It can be shown with the help of the Wiener-Khinchin 
theorem and the additivity of the Fourier transform that the power spec- 
trum of the cluster activity will be dominated by the sum of the Fourier 
transforms of the cross-correlations between cells within the cluster (see 
Fig. 12). For pairs of cells at distances of 4 or less (such that they excite 
each other), the Fourier transforms of the cross-correlation functions (the 
2 and 3 plots in Fig. 12) have a l/f peak at the origin, a small, wide 
peak at about 40 Hz (due to the secondary peak in the excitatory cross- 
correlations), and a decline to zero for frequencies larger than 100 Hz 
(the reciprocal of the width of the central peak of the cross-correlations). 

The amplitude of the Fourier transform of the correlation function 
of pairs of cells at d = 9, that is, units that directly inhibit each other, 
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shows an inverted l/f (negative) component, which decays asymptoti- 
cally to zero. Thus, when the area over which the activity is averaged 
is sufficiently large to include such “inhibitory” interactions, here a cir- 
cle of minimal radius equal to nine, many such inhibitory cell pairs are 
included. As a result the l/f component in the power spectrum of the 
radius 5 activity is canceled. 

Two factors lead to a power spectrum peak in the 30-70 Hz range 
(Fig. 11). The first is the existence of secondary peaks around 25 msec in 
the excitatory cross-correlations. The second is the relative width of the 
excitatory cross-correlation peaks to the inhibitory troughs. In general, 
the excitatory “castles” are sharp relative to the broad dip in the cross- 
correlation due to inhibition. In Fourier space, these relationships are 
reversed: broader Fourier transforms of excitatory cross-correlations are 
paired with narrower Fourier transforms of inhibitory cross-correlations. 
Superposition of such transforms leads to a peak in the 30-70 Hz range. 

Note that the peak around 40 Hz in the global activity develops in the 
absence of any explicit oscillators. The period of the ”oscillations” we 
observe reflects the delay between the buildup of excitation in a cluster 
and the inhibitory response. This agrees with previous simulations of 
oscillations in cortex (Wilson and Bower 1991; Bush and Douglas 1991) 
and analytical results (Wilson and Cowan 1972; Koch and Schuster 1992) 
outlining the crucial role of inhibitory interactions in generating neuronal 
oscillations at the population level. 

While cortical oscillations in the 30- to 90-Hz range are commonly 
found in local field potential or multi-unit activity measurements in both 
cat and monkey visual cortex (Gray et al. 1990; Kreiter and Singer 1992), 
these oscillations are much less evident in single-unit data (Eckhorn et al. 
1993; Eeckman and Freeman 1990; Young et al. 1992; Bair et al. 1994). We 
here offer a general explanation for this phenomenon. 

5.6 Long-Range Fluctuations. We find that the firing of integrate- 
and-fire units, embedded in a network with specific connectivity rules, 
shows clustering, long-term fluctuations, and self-similarity (fractal be- 
havior) over time scales from 20 to 800 msec (as based on the behavior 
of the variance versus mean curve in the number of events). 

This fractal behavior is not a trivial result in our model but depends 
critically on the ratio of the weight of the inhibitory synaptic input to 
its excitatory counterpart. Thus, for p = 0.67, the exponent u in the law 
relating the mean number of spikes to the variability in this mean rate 
(equation 2.6) u = 1.4, while for /3 = 0.50, u = 1.0, that is, identical to 
that expected for a Poisson process. 

Moreover, our model accounts for the power law increase (with expo- 
nents u between 1 and 2) for two different, and previously unrelated, ex- 
perimental paradigms: repetitive short trials with varying sensory stim- 
uli (Fig. 14) and trials with a stationary input and very long spike trains 
(Fig. 13). The similarity of the results (both showing power law rela- 
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tions) suggests that these two types of fluctuations may have a common 
origin. For the model, one can assume that fluctuations in space across 
the network are equivalent to temporal fluctuations, that is, that a spatial 
average of single cell properties is equivalent to a temporal average over 
a long spike train from one cell. This assumption is known as ergodicity. 

However, as this procedure involves a variation in the stimulus 
strength (affecting the mean rate A) in a fixed time interval, it indicates 
a power law dependency of the correlation function, A(X, t ) ,  on X (equa- 
tion 2.14), suggesting that the assumption that the normalized correlation 
is a function of the number of events, At, is a reasonable approximation. 

The best power law fit t-0.2 to the autocorrelation function predicts 
that the power spectrum will decay with a power law of l/f”,6, via the 
Wiener-Khinchin theorem. Indeed, the power spectrum (see Fig. 7) does 
behave as 1/p6 at low frequencies. 

Two implications of these results are worth noticing: First, these cor- 
relations decay slowly in time due to the small exponent of the power, 
leading to long temporal fluctuations. Practically, this means that these 
point processes do not behave as a Poisson process and averaging over 
spike trains of duration T will not increase the signal-to-noise by fi. 
In the extreme case of v = 2, the signal-to-noise is independent of the 
duration of the signal. For the nervous system this would imply that 
there is no penalty in performing computations based on the first few 
tens of milliseconds of spikes, rather than averaging over much longer 
times. Tovee et al. (1993) find that 50 msec intervals from spike trains 
in visual cortex are sufficient to recover most of the information in the 
spike code, and that longer intervals carry little additional information. 

Second, the theory of renewal processes (Lowen and Teich 1993) out- 
lined in Section 2 predicts an exponent of -0.3 for the autocorrelation, 
which was confirmed by numerical simulations using the interval dis- 
tribution of Figure 8 as the source for a renewal process. Higher order 
correlations between spikes lead to a slightly slower decay of the true 
autocorrelation than expected for a renewal process. In fact, Lowen and 
Teich (1992) suggest that such higher order correlations between inter- 
spike intervals are sufficient to produce l/f-type power spectra in record- 
ings from the auditory nerve; these spike trains, however, are no longer 
fractal point processes. 

While the temporal range of correlations is limited by an upper cut- 
off of 300 msec, it is still remarkable that such a long time scale emerges 
from a system whose longest intrinsic time constant (the membrane time 
constant) is 20 msec. Changing model parameters can lead to an extended 
temporal range of correlation effects accompanied by lower firing rates. 
The underlying IS1 distribution that gives rise to the autocorrelation is 
clearly power law (see Fig. 8), even though no clear distinction between 
power law and exponential decay can be made for the autocorrelation 
itself, since the range is limited. The exact nature of correlations in the 
discharge patterns of various cortical cells in behaving monkey should 
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be the subject of future experimental investigation to test to what extent 
and over which time scale they show self-similar behavior. 

The existence of I/’ noise is generally considered a puzzle in most 
physical systems, which tend to exhibit temporal correlations on some 
characteristic time scale, leading to faster decay in the power spectrum. 
Recently a scenario leading to generic formation of l/f noise was pro- 
posed via systems that exhibit self-organized criticality, such as sand-piles 
and earthquakes (Bak et al. 1987; Olami et al. 1992). Poised at the brink of 
a dynamic phase transition point, self-organized critical systems can dis- 
play many long-range behaviors. From the computational point of view, 
such systems have the advantage of very sensitive responses to small 
fluctuations. Our model is exquisitely sensitive to small local variations 
in the external input rate-a feature that is general to all models of self- 
organized criticality. The brain may employ such dynamic behavior to 
adapt to low signal-to-noise ratios of the afferent input to cortex. Whether 
the brain exhibits such self-organized criticality is an open question that 
should be explored in future research. 

Appendix A: Fractal Dimension of a Point Process 

The fractal dimension of a point process (dust) (Mandelbrot 1983) is de- 
fined by the number n(6) of covering intervals of length 6 needed to 
cover all the events occurring during a process of length T: 

The covering set n ( b ) ,  is obtained by the following procedure: 

1. Divide a long process of length L in N ( 6 )  = L / 6  equal time intervals 
of length 6. 

2. Define n(6) as the subset of intervals N ( 5 )  that contains at least one 
event [i.e., the process is totally covered by n(6)  intervals of length 
hl. 

3. The number of coverage intervals n(6) is 

. N  
6 n ( h )  = - [I - 

where P,,,ty(S) is the probability that a randomly chosen covering 
interval is empty. 

4. PemPty(6) can be calculated from the forward recurrence time distri- 
bution, F, , (x) .  (For a randomly chosen sampling point, the forward 
recurrence time w is the time duration between the sampling point 
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5. 

and the first following event; F,(x)  is the probability distribution 
of w.) 

(every coverage interval whose left edge has a forward recurrence 
time w > 6 is necessarily empty). 

For a general stationary point process, F,(x) is (Cox and Lewis 1966) 

00 

F,(x) = A R ( x )  = A / P ( x )  dx (A.4) 
X 

where P ( x )  is the interval distribution probability, A is a normal- 
ization factor for F,, and R ( x ) ,  the integral of P(x), is the survivor 
probability for x [Prob(T > x ) ] .  

In the following we calculate D for a point process characterized by 
an interval probability distribution, P ( t ) ,  which decays as a power law 
with exponent 1 < y < 2: 

P ( t )  = B t P  t > A ('4.5) 

for A < t < T and zero otherwise (the cut-off T + co is assumed for 
regularization). 

The corresponding survivor function is: 

for x < A f 1  
for A < x < T 

The normalized F ,  (equation 2.5) is 

From this, Pernpty can be obtained (equation A.3): 

6 -7+2 

T Pernpty(6) = 1 - - 

The number of coverage intervals n(h )  is (equation A.2) 

L 6 -7+2 
n(6)  = -- c( p+' 

6 T  
In conjunction with equation A.l,  this implies that the fractal dimen- 

sion is D = 7 - 1. Following the same steps, the dimension of a Poisson 
process (exponential interval distribution) can be shown to be D = 1. 
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Appendix B: Relating the Variance to the Autocorrelation 

The proof of equation 2.8 follows Cox and Lewis (1966). 
To determine the variance in the number of events in time T, partition 

the window T into n bins (of width one millisecond). Let Xi be the 
random variable describing the number of events in bin number i. Then 
the variance is 

Var(T) = Var(X1 + X2 + . . . + Xn) 
= E[(Xi + X2 + * .  . + Xn)2] - [E(Xi + X2 + . . . + & ) I 2  

11-1 n 

= 2 C  C[E(XkXI) - E(Xk)E(Xl)] f k[E(xz) - E(XiI2] 
I=1 k>l  i=l 
n-1 II 

I=1 k=l+l  

If the bin size is so small that the possibility of multiple spikes in the 
same bin is excluded, then the variance in the number of spikes in that 
interval is equal to the mean, Var(X,) = E(X,). Replacing Var(X,) and 
changing the indices on the sum, 

11-1 n- l  

Var(T) = 2 1 1 Cov(X,, Xl+k) + nE(X,) 
1=1 k = l  
n-1 

= 2 C(n - 1 )  Cov(X,, X,+I) + nE(X,) 
I=1 

Since we are interested in the limit for which T >> 1 msec, the covariance 
will tend toward the autocorrelation function minus the chance level of 
correlation, 

Cov(XI. K+I) + A ( v )  - A(m) 
In this limit, one can replace the sum with an integral over the correlation. 
With nE(X,) = N ( T ) ,  we obtain 

Var(T) = N(T) 1 + - (T  - T )  [ A ( T )  - A(w)] d r  { :TiT 
which is equation 2.8. 
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