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Abstract. We study an Attractor Neural Network that 
stores natural concepts, organized in semantic classes. 
The concepts are represented by distributed patterns 
over a space of attributes, and are related by both 
semantic and episodic associations. While semantic re- 
lations are expressed through an hierarchical coding 
over the attribute space, episodic links are realized via 
specific synaptic projections. Due to dynamic 
thresholds expressing neuronal fatigue, the network's 
behavior is characterized by convergence toward the 
concept patterns on a short time scale, and by transi- 
tions between the various patterns on a longer time 
scale. In its baseline, undamaged state, the network 
manifests semantic, episodic, and random transitions, 
and demonstrates the phenomen of priming. Modeling 
possible pathological changes, we have found that in- 
creasing the 'noise' level or the rate of neuronal fatigue 
decreases the frequency of semantic transitions. When 
neurons characterized by large synaptic connectivity are 
deleted, semantic transitions decay before the episodic 
ones, in accordance with the findings in patients with 
Alzheimer's disease. 

1 Introduction 

The dynamic organization of memory, an essential 
mechanism underlying thought processes, is composed 
of two interacting elements: memory structure and re- 
trieval dynamics. These components can be studied at 
two levels of description, a mental level involving acti- 
vation of mental states, and a neural level involving 
their realization in the brain. Recently Grrbler et al. 
(1991) have proposed a scheme for associative free 
recall based on a mental architecture, where concepts 
and the associations between them are represented by 
nodes in a weighted graph and their links, respectively. 
In this work we discuss the processes underlying the 
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dynamics of memory retrieval from a perspective based 
on a neural level of description. 

We present a biologically motivated neural network 
model that is able to generate basic characteristics of 
normal memory function, such as semantic and 
episodic associations. Following the growing evidence 
supporting the diffuse modulatory role of 'lower' brain 
stem neuronal populations on 'higher' cortical activity 
(Mamelak and Hobson 1989; Sutton et al. 1992), it is 
shown that the level of 'noise' manifested in the neu- 
rons' dynamics influences the level of transitions actu- 
ally taking place via the semantic associations. 
Motivated by neuronanatomical findings in Alzheimer's 
disease, pathological changes taking place on the neural 
level are modeled, and are shown to lead to a pattern of 
memory failure resembling some neuropsychological 
reports. 

In this work we investigate the declarative memory 
system, which is assumed to store factual, non-opera- 
tional, information about the world surrounding us 
(Squire 1982; Schacter 1989). Memorized concepts are 
typically related via two types of connections, semantic 
and episodic. While episodic associations are formed 
between concepts that have significant spatiotemporal 
relations, semantic associations reflect abstract relations 
between the memorized concepts, that are not necessar- 
ily acquired as part of the personal history (Tulving 
1985). The stored concepts are hierarchically organized 
into semantic classes; specific concepts at a lower level 
of the hierarchy, (e.g., cats, dogs), are grouped into 
classes of more general concepts (e.g., animals). 

Several approaches can be found in the literature of 
semantic memory dealing with concepts organization. 
Originally, it was suggested that concepts are organized 
in an hierarchical tree (Collins and Quillian 1969). 
According to this approach, each concept 'inherits' the 
attributes that are stored at his ancestral nodes in the 
tree (in addition to its own specific attributes), satisfy- 
ing therefore an 'economy principle'. For example, the 
attribute 'eats' is stored with the 'animal' concept and 
inherited by the 'cat' and 'dog' concepts. This work 
follows an alternative approach proposed by Smith et 
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al. (1974), where the memorized concepts are stored as 
distributed vectors of attributes. Thus, semantic prox- 
imity and attributes inheritance are naturally obtained 
due to similarity in the encoding over the semantic 
space. The semantic space is subdivided into aggregates 
of  closely related concepts, denoted as semantic classes. 
Episodic associations, on the other hand, are not re- 
lated to the semantic similarity between the concepts 
involved. We hence assume that episodic associations 
are formed by explicit synaptic projections between the 
neurons composing their corresponding patterns. While 
the original, tree-like model of semantic memory could 
be easily implemented in a 'localistic' connectionist 
architecture (Fahlman 1981), were each concept is rep- 
resented by one neuron, the approach of  Smith et al. is 
more suitable for networks with distributed representa- 
tions. The latter have several computational advantages 
over the localistic ones (Hinton 1981; Rumelhard and 
McClelland 1986), and are more plausible biologically; 
empirical evidence shows that distributed patterns of  
activity are used for various information processing 
tasks including memory encoding (Heit et al. 1988; 
Tanaka and Saito 1991), olfaction (Skarda and Free- 
man 1987) and motion computation (Georgopolous et 
al. 1988). 

The network presented manifests some dynamical 
aspects of  memory that have been widely discussed in 
the psychological literature. Empirical studies (Ander- 
son 1985; Collins and Quillian 1969; Ratcliff and 
McKoon 1981) have shown that semantic proximity 
can influence the frequency and speed of associations. 
This is the phenomenon of priming, according to which 
activation contributed by an input (priming) concept 
facilitates the response time to a target concept if they 
are semantically related. The magnitude of facilitation 
was shown to depend on the time delay between the 
priming and target stimulus (Ratcliff and McKoon 
1981). The most popular framework addressing tempo- 
ral aspects of  associations is the Spreading Activation 
theory (Collins and Loftus 1975; Anderson 1976, 1985). 
According to this theory, activation reflecting mental 
activity spreads in parallel from all active concepts to 
the other concepts with which they are related to. 
However, Spreading Activation cannot solely account 
for the complexity of  human mental processes which 
manifest both parallel and serial characteristics. 

Following Kihlstrom (1987), we assume that mental 
processes can be divided into conscious and unconscious 
processes, and that while unconscious processes are 
parallel, conscious attentional processes are serial 
(Treisman 1980). While the classical approach considers 
the conscious and unconscious aspects of cognition as 
manifested in different memory stores (Schacter 1989), 
a more parsimonious approach, according to which the 
conscious-unconscious dichotomy is a manifestation of  
a unitary system has been advanced by Gr6bler et al. 
They proposed that conscious states are patterns of  
neutral activity that are distinguished from unconscious 
states by a threshold of activity. However, this requires 
that the spreading activation should be accompanied by 
an auxiliary mechansim, since otherwise the activation 

would spread uniformly all over the semantic space. 
Collins and Loftus (1975) have originally proposed that 
the 'intersection' of  the spreading neural activity is 
detected and leads to the seriality required for generat- 
ing a specific response. However, their original formula- 
tion has been computer oriented rather than 
biologically plausible, requiring further processing by 
some higher level system. Gr6bler et al. have proposed 
a more biologically oriented mechanism, involving 
different dynamics for sub and supra-threshold activa- 
tion, and leading to autonomous dyanmics with both 
parallel and serial characteristics. 

In the next section we discuss the framework of 
Transient Attractor Neural Networks (TANN), that 
enables us to give a unifed and natural model encom- 
passing sequences of  parallel and serial concept activa- 
tion. Our model is presented in Sect. 3, and its 'baseline' 
dynamic behavior is presented in Sect. 4, together with 
the priming phenomenon. In Sect. 5, the performance 
of a damaged network is examined, modeling some 
neuroanatomical and neuropsychological findings in 
Alzheimer's disease. Finally, in the last section, the 
potential of a neural level of  description in TANNs is 
dicussed. 

2 Cognitive modeling with TANN 

Our model is based on a generalization of  an Attractor 
Neural Network (ANN) (Hopfield 1982; Amit 1989). 
An ANN is an assembly of  formal neurons connected 
recurrently by synapses. The neuron's state is a binary 
variable S, taking the values _+ 1 denoting firing or 
resting states. The network's state is a vector specifying 
the binary values of all neurons at a given moment. 
Each neuron receives inputs from all other neurons to 
which it is connected, and fires only if the sum of  the 
inputs is above its threshold. This process may include 
a stochastic component (noise) which is analogous 
to temperature T in statistical mechanics. When a neu- 
ron fires, its output, weighted by the synaptic strength, 
is communicated to other neurons and as a conse- 
quence, the network's state evolves. Using specific 
learning rules (which govern the synaptic strength), the 
stored memory patterns are made attractors of the 
network's dynamics, so that the network converges to a 
memory state if a similar pattern is presented as an 
input. 

ANN models of memory and associations have 
been previously presented by Hoffman (Hoffman 1987; 
Hoffman and Dobscha 1989), in an attempt to model 
thought disorders manifested in various psychiatric dis- 
eases. However, these models cannot capture the com- 
plexity required for modeling associative thought 
processes, being based on an ANN in which all patterns 
are equidistant, and whose dynamics is basically re- 
duced to convergence into attractors. Our work is an 
attempt to further extend Hoffman's approach, by in- 
troducing a complex dynamical system characterized by 
two time scales, and a hierarchical metric structure of 
memory concepts. 



Using a Transient ANN (TANN),  a richer dynami- 
cal behavior is achieved. On a short time scale, a 
T A N N  (like an ANN) converges toward an attractor. 
However, transitions between the various attractors 
(therefore denoted transient attractors) take place, al- 
beit on a longer time scale (Horn  and Usher 1989, 
1990). Such dynamical systems have been recently pro- 
posed in the Neutral Network literature on the basis of 
synaptic delays (Kleinfeld 1986; Sompolinsky and 
Kanter  1986), neural adaptation (Horn and Usher, 
1989, 1990), or slow inhibition (Abbott  1990). The 
dynamics of  an TANN (as well as of ANN) are gov- 
erned by a nonlinear mechanism of competition among 
the concept patterns, and thus while many concept 
patterns are partially activated concomittantly, reflect- 
ing a parallel unconscious mental activity, the competi- 
tion and the convergence to an attractor state 
inherently leads to the seriality of  conscious states. 
Since our model is based on a distributed representa- 
tion, the spreading of activation takes place in the 
concepts' and not in the neurons' space. The network's 
dynamics inherently yield a winner-take-all mechanism 
ensuring seriality, and therefore a consciousness 
threshold mechanism less arbitrary than the one pro- 
posed previously in Gr6bler et al. (1991), is obtained. 

Several schemes for storing hierarchical patterns in 
ANN have been previously proposed, distinguished via 
the way patterns are encoded, and their rule for synap- 
tic storage. Feigelman and Ioffe (1987) and Gutfreund 
(1988) have proposed storing schemes for hierarchical 
patterns in ANN which eliminate the correlation be- 
tween patterns from the same class. This method, while 
enhancing the patterns' stability and increasing the 
network's capacity, removes all bias towards intraclass 
associations, and thus is unable to reflect semantic 
proximity. Another storing scheme for hierarchical pat- 
terns which eliminates global correlations, but not 
intraclass ones, was proposed by Tsodyks (1990) and 
Herrmann and Tsodyks (1991). According to this 
scheme, patterns are encoded in such away that con- 
cepts in one class have a common core of defining 
properties. However, while in these models the common 
core is fixed, experimental results on concepts' similar- 
ity show that there are almost no attributes common to 
all concepts in one class (Rosh and Mervis 1975), and 
hence classes of concepts should be characterized by 
fuzzy cores. Another scheme for encoding classes of 
concepts has been proposed by Ritter and Kohonen 
(1989), whereas semantic relations are reflected as met- 
ric distances on a 2-dim surface. Our model is an 
extension of  that proposed by Herrmann and Tsodyks 
(1991); concepts belonging to the same semantic class 
have a fuzzy common core, and both the semantic and 
episodic associations are examined. 

3 The model 

Consider a newtork of N neurons, characterized by 
two-valued variables & e { 0 ,  1} corresponding to a 
non-active or an active state. Each neuron is subject to 
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a dynamical threshold variable Oi (Horn  and Usher 
1989, 1990). According to our scheme, the neurons 
correspond to properties or attributes, and the dis- 
tributed patterns of  neural activity stand for concepts. 
Each semantic class is represented by a vector 
~u = (~ '  . . . . .  i~v), where I f  = 1 if at least one of  the 
concepts in the #-th class has the i-th property, and 
i f  = 0 otherwise. We first construct the 'class' vectors 
i ~ by 

{~ with probability p 1 
f = with probability ( 1 - p 1 ) .  (1) 

In each class we then generate several concepts; the 
vector i "v that stands for the v concept in class p is 
generated by 

~fv = ~ft/~v, where (2) 

qi "~ = {10 with pr~ Pz (3) 
with probability ( 1 - P2) �9 

The probabilities p~ and P2, and L 1 (number of classes, 
L2 (number of individual concepts per class), are 
parameters of  the model. The probabilities Pl and P2 are 
chosen to be smaller than half, reflecting the biological 
constraint that neural representations are probably 
sparse. This guarantees that concepts in different classes 
will have very few attributes in common. The obtained 
patterns have the average activity ( i  "v) = PiP2 = P. Pat- 
terns in the same semantic class have some common 
attributes, however there is a very low probability 
(p~2), that a specific attribute will be shared by all the 
concepts in the class. The strengths of the synaptic 
connections are defined as in Tsodyks (1990): 

l LI L2 

Jq (1 --p)pN,~=l ~=1 (if~ --P)(if~ - p )  (4) 

The dynamic equations for the variables Si are given 
via the post synaptic potentials h i 

N 
h~(t + 1) = ~ jijSj(t) - 2(p - M(t)) (5) 

j = l  

f l  

S i ( t + l ) = ~ O  

with probability 1/ 

(1 + exp( - (h i ( t  + 1) - 0  ~ - Oi(t))/T)) 

with probability 1/ 

(1 + exp(h;(t + 1) - 0 ~  Oi(t))/T)) 
(6) 

where T is the thermal noise, level 0 ~ denotes a constant 
threshold and ~. is a confinement parameter which 
regulates the network overall activity M = ( S ; )  to its 
mean value p. 
The equation for threshold dynamics is (Horn  and User 
1989, 1990): 

Oi(t + 1) = Oi(t)/c + bSi(t + 1) (7) 

According to this equation, while a neuron is active, its 
dynamic threshold Oi(t) increases asymptotically to the 
value 0max = eb/(c -- 1) and deactivates the correspond- 
ing neuron, thus expressing neuronal fatigue. The 
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parameters b and c (c > 1) represents the rate of  in- 
crease and decay of  the dynamic thresholds, respec- 
tively. The role of the dynamic thresholds is to provide 
a mechanism of  motion in the concept space; neurons 
that are active for a relatively long time are deactivated 
temporarily, and the network's state evolves into a new 
pattern. 

We define the normalized retrieval qualities of the 
patterns as 

1 N 
mU~(t) -- p(  1 -- p ) N  i~= , (~/~ -- p)S~ (t) 

The latter are macroscopic thermodynamic variables 
that are correlates of concepts' activation in the net- 
work. A concept will be considered activated when its 
corresponding retrieval quality exceeds some conscious- 
ness threshold (chosen to be 0.9), whereas the retrieval 
qualities of  all other patterns are below an unconscious- 
ness threshold (chosen as 0.5). One should notice how- 
ever, that unlike in Gr6bler et al. (1991), these 
thresholds play no active role in the dynamics. 

2 Semantic  transitions and priming 

There are three kinds of transitions that can occur in 
the network; semant ic  transitions, occurring between 
concepts belonging to the same semantic class, episodic 
transitions taking place between concepts belonging to 
distinct semantic classes by are linked together by 
episodic associations, and random transitions occurring 
between concepts that are not related either schemati- 
cally or episodically. 

We first study the properties of our model restrict- 
ing ourselves to semantic transitions. The dynamic be- 
havior of  the model is illustrated by simulations of a 
network which stores three classes of  three concepts, i.e. 
L~ = L2 = 3. A characteristic example in terms of the 
retrieval qualities is shown in Fig. 1. Each stripe pre- 
sents the retrieval qualities of  concePts of a different 
semantic class. Due to the competftion among the 
patterns, most of  the time the network's activity is 
dominated by one of  the patterns, leading to a seriality 
effect. However, due to the threshold adaptation, the 
activity of  the dominant pattern decays and the net- 
work's state converges to another pattern. Semantic 
transitions are more frequent than the random transi- 
tions occurring across classes, leading to semant ic  bias 
that is characteristic of  human memory function. 

The extent of  the semantic bias is influenced by the 
thermal noise T. For  low T almost no transitions occur 
at all, whereas strong noise destroys the retrieval capa- 
bilities of  the network. We have run simulations of the 
network behavior in which we have varied the tempera- 
ture T. As shown in Fig. 2, the average fraction of 
intraclass transitions turned to be higher for low noise. 
For  high T values, the fraction of semantic transitions 
approaches the baseline of  randomness given by 
( L ~ - - I ) / ( L 1 L 2 - 1 )  = 1/4. In a similar fashion, the 
magnitude of semantic bias decreases as the value of  the 
asymptotic 0max is increased. 
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Fig. 1. Illustration of  the dynamic behavior of  the model. Each strip 
shows the retrieval qualities of  concepts in a semantic class, as 
function of  time. Semantic bias is evident�9 Parameters: Pl = 1/3, 
P2 = 1/4, 0ma x = 0.4, 0 o = 0.35, C = 1.2, 2 = 0.75, N = 500 
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Fig. 2. Averaged fraction of  semantic transitions as a function of  
thermal noise strength 

Our investigation of the influence of temperature 
level on the network's behavior have been motivated by 
the findings supporting the existence of aminergic mod- 
ulation of  cortical activity (summarized in Mamelak 
and Hobson 1989; Servan-Schreiber et al. 1990; Sutton 
et al. 1992). Interpreting this modulation as a variation 
in the level of the noise in the network, Mamelak and 
Hobson (1989) claim that neuromodulatory changes 
leading to increased neuronal noise level may lead to 
the bizarre dreams appearing in REM sleep, character- 
ized by incongruent 'leaps' from one theme to another. 
In accordance with their proposal, we show that as the 



noise level is increased, the semantically related associa- 
tions are gradually replaced by random transitions. 
Hoffman (1987) has previously claimed that an increase 
in the noise level would probably not result in severe 
thought discontinuities denoted as 'loosening of associ- 
ations', but in a milder form of though disturbances 
known as 'flight of ideas'. As shown here, in a more 
intricate model than the basic ANN Hopfield model 
used by Hoffman, variations in the noise level may 
indeed undermine the fraction of congruent, semantic 
transitions. 

Priming is investigated in our framework by defin- 
ing the response time as the number of the time steps 
elapsing from the moment an input stimulus is applied 
to the network, until this stimulus dominates the net- 
work's activity. Applying a stimulus to the network is 
modeled by adding a new term, proportional to one of 
the memory patterns, to the postsynaptic potential, 

hprim(/o) = h,(to) + ~/v (8) 

where the 'stimulus strength' e < 1 accounts for sensory 
coupling. 

In the first simulation experiment the network was 
initialized by a pattern r Thereafter, a sensory input 
field (Eq. 8) proportional to ~'~" (with v # v') is ap- 
plied. We measured the average response time as func- 
tion of e, for #' =/~ (same semantic class), and for 
/~'-r (control). In Fig. 3, the ratio of the respective 
values of response times for the priming vs. control 
stimuli, as a function of e, is shown. For very small 
values of e, the sensory input is negligible, while for 
higher values (e--* 1) the transition is almost instanta- 
neous in both cases. At intermediate e values semantic 
transitions are significantly more rapid than the con- 
trols. As shown in Fig. 3, this trend is further empha- 
sized as the patterns' encoding is more sparse (P2 
decreases). 

In a second simulation, we have sequentially ap- 
plied two input patterns belonging to the same semantic 
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Fig. 3. Priming. The ratio I 'ctr l / ' [prir  n is given as a function of the 
strength of sensory coupling for different activities (lower curve: 
P2 = 1/4; upper curve: P2 = 1/6) Zprim and zctrl are the averaged 
response times in the priming and control experiment, respectively. 
The curves are obtained by performing statistical regression analysis 
of  the simulation results 
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Fig. 4. Priming. Averaged retrieval time of  a target pattern as a 
functions of  the delay between the priming and the target pattern. 
(upper curve: e = 0.075; lower curve: e = 0.125) The curves are ob- 
tained by performing statistical regression analysis of  the simulation 
results 

class. The first input represents the priming stimulus, 
and the second one the target. 

We have measured the convergence time to the 
second pattern, as function of the delay time betweeen 
the two inputs. As can be seen in Fig. 4, the speedup in 
the convergence time builds gradually with the delay 
between the two patterns, as in Ratcliff and McKoon 
(1981) experiments. However, according to our model, 
the explanation of this effect is not a 'gradual accumu- 
lation of activation' at the second concept, but is done 
to the seriality and the bias in transition probabilities 
inside semantic classes. The first input pattern tends to 
activate its corresponding concept. However, if the 
delay time between the two inputs is smaller than the 
characteristic time for concepts activation, the impact 
of the second input on the network is diminished. The 
response to thetarget  input will be strongest if applied 
at the decaying'phase of the priming input, when the 
network is most receptive to new inputs. A speedup is 
achieved in comparison to a control experiment, where 
the first input is not applied at all; in the latter case, at 
the moment the target pattern is applied, the network is 
typically in a concept belonging to a different class. 
When the target input is applied only after the decaying 
phase of the priming input, the network's state has 
already undergone a transition, and the 'priming' exper- 
iment turns into a control experiment. Hence, although 
monotonically decreasing initially, the RT will eventu- 
ally increase with delays larger than the length of the 
decaying phase. 

5 Transitions in a damaged network 

We now study the behavior of the network encompass- 
ing both semantic and episodic associations. Episodic 
associations are generated by an additional increment 
in the values of the original synaptic connections Ju 
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(Eq. 9), according to: 

Jij=Jt).~_ K ~ (~},+l,v__p)(~;V__p) 
/4 l v = l  

+ (~v -p)(~}~+ '. v - p ) )  (9) 

where/~ = L1 4- 1 is to be identified with/~ = 1. The two 
terms in the above equation represent symmetric 
pointers (Horn and Usher 1989) across classes, namely 
relating class/~ with class # 4- 1 and vice versa, for the 
specific patterns v inside classes/~ and/~ 4- 1. According 
to this choice, the total number of semantic associations 
equals the number of episodic associations. The pointer 
strength ~ is determined so that in an undamaged 
network 'semantic' and 'episodic' transitions occur with 
the same probability. As an approximation we choose 
equal to the incoming field at a neuron belonging to a 
nonactivated pattern of  the same class as the currently 
activated pattern, i.e. ~ = ( P 2  -P ) / (1  -p). 

The 'normal', undamaged network, has an initial 
level of semantic and episodic transitions that is higher 
than the level of the random transitions. Taking this as 
a starting configuration, we have examined the perfor- 
mance of the network when 'pathological' changes are 
inflicted. A random deletion of some fraction of the 
neurons leads to a concomitant decrease in both the 
semantic and episodic transitions to noise level, without 
any advantage to any specific type of transitions. A 
similar pattern was obtained when synaptic connections 
were randomly deleted. However, when deleting only 
neurons with a relatively large connectivity tree, i.e., 
whose sum of excitatory connections (which are both 
input and output connections) is large, an interesting 
pattern, shown in Fig. 5, is revealed: As neuronal 
deletion proceeds, the fraction of semantic transitions 
out of the total number of transitions occurring in the 
network actually rises. 

The design of the latter simulation has been moti- 
vated by some recent neuroanantomical reports consid- 
ering neuronal degeneration in Alzheimer's disease 
(AD). Although it is conventionally claimed that AD is 
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Fig. 5. Semant ic  (full curve) and  episodic  (dashed curve) t rans i t ions  
when  large neu rons  are  deleted.  The f ract ion of  semant ic  and  episodic  
t rans i t ions  is shown  as funct ion  of  the f rac t ion  of  deleted neurons  

accompanied by a considerable reduction of the neu- 
ronal mass, it has been recently reported that neuronal 
loss in AD is primarily limited to a specific subpopula- 
tion of large neurons (Terry et al. 1981; Hyman et al. 
1984). We have interpreted this data in accordance with 
the work of Bok (1959) and Swindale et al. ( 1981), which 
have shown that the volume of the cell body is positively 
correlated with size of its connectivity tree, where the 
latter term includes both the neuron's axonal and den- 
dritic trees. Neuropsychological tests, on the other hand, 
support the notion that in AD patients the performance 
of the semantic memory may severely decrease while 
some of the episodic memory capacities are still main- 
tained (Granholm and Butters 1988; Salmon et al. 1988). 
Hence, the results of the second experiment show an 
interesting qualitative resemblance to the latter reports 
on AD. Obviously, as the disease advances, and neu- 
ronal degeneration continues, all memory capacities are 
severely damaged, which is known to be the clinical 
hallmark of AD (Adams and Victor 1989). 

It should be noted that the rise in the fraction of 
episodic transitions is maintained only for a short period 
(assuming that neuronal deletion continues at the same 
rate). The absolute number of episodic transitions actu- 
ally constantly decreases. The most evident result ob- 
tained in our model (observed with all kinds of damage 
experimented) is the absolute reduction of the number of 
transitions occurring as the level of pathological damage 
is increased. This reduction may account for the paucity 
of speech and thought production observed in advanced 
stages of AD (Adams and Victor 1989). 

6 Discussion 

As concluded by Gr6bler et al. (1991), it is of prime 
interest to investigate how a model for dynamical activa- 
tion of memory may be supplemented by a neural level 
realization. At the conceptual level, the model presented 
here is defined by a network of memorized items segre- 
gated into hierarchical semantic classes, that are formed 
by proximity relations in a metric space defined by their 
attributes. The memorized concepts are linked by both 
semantic and episodic associations. At the dynamical 
level the model is defined as a TANN. On a short time 
scale (due to nonlinear competition leading to seriality), 
the model dynamics are charcterized by convergence to 
the memory patterns (on the basis of attribute similar- 
ity). On a longer time scale, transitions among the 
various memory items take place. The transition pro- 
cesses itself is stochastic, but guided by the semantic and 
episodic associations. As shown, when the network is in 
an attractor state, it is in high overlap with only one 
memory pattern. Spreading of activation hence takes 
place in our model during the network's transitions, 
when the network's state has considerable overlap with 
several memory patterns. 

Since the TANN realization assigns a specific signifi- 
cance to attributes, not only in defining the semantic 
space, but also in determining the dynamics of the 
network, it seems quite difficult (if not impossible) to 



present other realizations (e.g., a graph-like symbolic 
architecture) of our model that will implement all its 
conceptual properties. The two kinds of associations 
are realized in an inherently distinct manner, which 
cannot be simply mimicked by a graph-like symbolic 
realization. Thus, as has already been advocated 
(Smolensky 1986), the neural realization is not just a 
trivial mapping of the conceptual model. 

We should view the model as simplified metaphor of  
the workings of  the brain, in semantic processing. As 
shown in the Appendix the number of concepts in a class 
is essentially limited by the encoding probability (L2 < 1/ 
P2). A more elaborate model for semantic processing 
should also accommodate for concepts having properties 
of different levels of  significance, since out of all the 
attributes composing a concept some properties are 
more essential to the concept than others (Smith et al. 
1974). Such a model should also account for the empir- 
ical distribution of properties shared by several concepts 
found by Rosh and Mervis (1975), and for higher order 
correlations between properties and concepts. 

The model presented obviously addresses only a few 
of the mechanisms involved in thought processes, espe- 
cially regarding the conscious-unconscious dichotomy. 
For  example, a more elaborate model of  these issues 
should account for phenomena such as subliminal 
priming (Marcel 1983), in which the RT to a target is 
facilitated by a weak stimulus that does not reach the 
subject's awareness. It seems that in this respect our 
network reaches a limitation inherent to ANNs; either 
the competition between memories is strong enough 
and then a subliminal stimuli will be quickly suppressed 
and thus ineffective, or the competition is so weak that 
the network's state will be most of  the time spread in a 
mixture of  memory states. Thus it may be necesary to 
supplement any A NN (or TANN) cognitive model by 
some external mechanisms modulating the degree of 
competition in the network. The existence of such exter- 
nal 'attentional' mechanisms has been advanced by 
Posner et al. (1988) on the basis of  PET recording 
during attentional and nonattentional tasks. 

The constraints enforced by the neural realization 
make any neural network modeling of  cognitive phe- 
nomena a challenge. In this work, we have attempted to 
show that the analogy drawn between the neural-like 
architecture of  the model's realization and biological 
memory systems, may have its own potential: After 
demonstrating that the main charcteristics of  the dy- 
namics of  the conceptual model are preserved in its 
undamaged state, the neural model may be used to 
study the effects of distinct patterns of damage on its 
behavior. In general, such patterns of  damage may be 
divided into structural versus dynamical malformations. 
We have examined only a subgroup of  such structural 
patterns of  damage, namely, neuronal deletion, synaptic 
deletion, and a more specified deletion of  large neurons. 
However, the list of other structural changes that may 
be examined is fairly extensive; for example, one can 
make a distinction between the neuronal axonal and 
dendritic trees, and examine the behavior resulting from 
their damage separately. The neuronal population may 
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be segregated to excitatory and inhibitory populations, 
and spatial organization of  the neurons' connectivity 
may enable the investigation of the effects of  spatially 
distinct patterns of  damage. The investigation of  dy- 
namical pathogenetic changes depends too on the rich- 
ness of the model. In principle, as the dynamical 
description of  the neuron's input/output function gets 
more detailed, the effects of  other dynamical parame- 
ters (such as membrane conductance changes, in addi- 
tion to the noise and neural fatigue variations that were 
investigated here) can be examined. 

From a biological point of  view, it should be noted 
that recent advances in morphometric techniques have 
yielded new data on neuroanatomical changes that take 
place on the neuronal and synaptic level, in both nor- 
mal aging and Alzheimer patients (e.g., Bertoni-Feddari 
et al. 1990; DeKosky and Scheff 1990). In addition to 
such structural findings, newly acquired data on possi- 
ble pathological changes of the neuron's dynamics have 
also motivated recent neural models. In addition to the 
investigations of  neurmodulation previously mentioned 
(Mamelak and Hobson 1989; Servan-Schreiber et al. 
1990; Sutton et al. 1992), others have studied other 
effects of  variations in neurotransmitter levels in biolog- 
ically oriented neural models (King et al. 1984; Carpen- 
ter and Grossberg 1990; Hasselmo and Bower 1992). In 
spite of the inheremt difficulties involved in examining 
the microstructure of memory with existing experimen- 
tal techniques, some important  steps have already been 
done in recordings from the inferotemporal cortex of  
the monkey (Fuster 1990; Miller et al. 1991; Sakay and 
Miyashita 1991; Tanaka et al. 1991), and from the 
hippocampus and amygala of humans under clinical 
surgery (Heit et al. 1988). Surely this is only a start, but 
in the future neural models may indeed have an impor- 
tant role in studying the relation between microscopic 
neuropathological changes and macroscopic clinical 
phenomenology. 
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Appendix: Determination of the parameters 

a) Mean post-synaptie potentials (fields) 
The mean value of the neural field (hi) is calculated using (4) and 
(5), averaging over the distribution of ~v (Eqs. 1-3). 

Consider for example a the post-synaptic field obtained when the 
network's state is identical to the first memory pattern Si = ~)1. Since 
(Si) =p, the last term in (5) cancels and the post-synpatic field of 
neuron i is 

(hi) = -p)N E1 E.~ (if" _ p)(r --p)S: 

1 :v 

j = l v > l  
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where N is a noise term having a zero mean originating from the sum 
over the patterns in other classes than ~ ~ 1, 
N = Y-~=I Xu> J,v (~.uv _ p ) ( ~ v  -p)Sj .  The other two terms are the 
signal, and a noise term of  non-zero mean, generated by the contribu- 
tions from the other patterns in the same class. Consequently: 

1 
<hi) = (411 __p) + _ _  ~ (~v --P)(PlP~ _p2) 

p( l  - -p)  ~> 
Depending on the neuron, i, the following fields are obtained: 

1. For neurons belonging to the pattern {]l = 1 (i.e., neurons 
that are 'ones' in that pattern), the mean synaptic field is bounded by 
a minimal value of  

(a) hi, =(1  - p )  + ( L  2 -- 1)(pip 2 --p2)/p(1 --p)(--p), for neurons 
that do not belong to any other pattern in the class ({~ = 0 for all v), 
and by a maximal value of  
(b) hie = (1 --p)  + (L 2 -- 1)(plp~ --pZ)/p(1 --p)(1 --p),  for neurons 
that belong to all other patterns in the class (r = 1 for all v). 

2. For neurons that do not belong to the pattern (~]~ = 0), the 
field is bounded by a minimal value of  

(O) h2a = ( - - p )  -}- ( L  2 - -  1)(p2P22 - p2) /p( l - p)(-p) ,  for neurons that 
do not belong to any pattern in the class (~]~ = 0), for all v), and by 
a maximal value of  
(b) h2b = (--p) + (L 2 -- 1)(pip 2 --pZ)/p(l  --p)(--p), for neurons that 
belong to all the patterns in the class except, ~11, ( ~ =  1, for all 
v # l ) .  

In order to obtain a stability of  the patterns, the parameter 
should be chosen so that the values of  the field h i obtained in case la 
and 2b, above, are separable, i.e., 

+~L 1" plp~" - p 2 `  - -  " plp~ - p 2 
( l - p )  ~ 2 -  ) v(1-~-~_p) - - P ) > > ( - - P ) + ( L 2 - - 1 ) ~ ( I - - P )  

If follows that L 2 -  1 ,~ (1 -P) /P2-P .  Using the sparseness of  
the encoding (Pl,  P2 <{ 1), a constraint for the number of  concepts in 
a class L 2 is obtained; Le<p~  1 (Tsodyks 1990). However, no 
restriction is imposed on Pl and L~. In the numerical simulations a 
lower bound for the activities p is imposed by the requirement that 
pN should not be too small. For N = 500, we have thus chosen 
Pl = 1/3, P2 = 1/4 and 1/6, which obey these constraints. 

b) Thresholds 

The threshold's value should lie between the values of  the neural field 
h~a and h2b, in order to guarantee firing for neurons encoding 
properties that belong to the pattern but not to the class, and 
inactivity for neurons that encode properties that belong to the class 
but not to the specific pattern. The 'optimal' total threshold 
0 = 0~ Oi(t ), that is the medium value of  the two fields is: 

O =( �89  +PlZS; (L2 -1 )  ) .  

In order to obtain semantic transitions, the threshold 0 is consid- 
ered a dynamic variable, whose variation range lies between the value 
of  the fields in case la, and 2b. In our simulations, we have chosen 
00 = 0.35, the value of  which is higher than the value of  the field 
h2b : 0.25(for Pl = 1/3 and P2 = 1/4). The variable threshold Oi(t ) > 0 
has a maximum of  0max = 0.4. Thus the maximal total threshold 
0 = 0.75 is close to the field value hla = 0.9 (for Pl = 1/3 and p2 = 
1/4). Thus, when the threshold gets close to its maximal value, some 
of  the neurons that encode properties specific to the pattern but not 
to its class (case la) will be deactivated by the noise. Neurons that 
encode properties belonging both to a pattern and to its class have 
higher fields (case lb) and are therefore less affected by the fatigue. 
Therefore the resulting transitions are biased towards the semantic 
class. Increasing the noise T or the maximal threshold value, has 
hence the effect o f  diminishing the semantic bias, as shown in text. 

c) S trengths  o f  the pointers  

Incorporating episodic transitions into our model, the mean value 
(hi) for S i = ~ (using Eqs. 4, 5, 9) is 

< h ~ ) = ~ ) ~  P + P 2 - P  
# > 1  

In order to achieve similar transition rates for both semantic and 
episodic transitions, the parameter x has to be chosen so that the 
mean values of the second and the third term are equal, which gives 

=p2-p /1  - p .  For p2 = I/4 and p2= 1/6 we have x =2/11 and 
= 2/17, respectively. 
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