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Humans possess a remarkable ability to rapidly form coarse estimations
of numerical averages. This ability is important for making decisions
that are based on streams of numerical or value-based information, as
well as for preference formation. Nonetheless, the mechanism underly-
ing rapid approximate numerical averaging remains unknown, and sev-
eral competing mechanism may account for it. Here, we tested the hy-
pothesis that approximate numerical averaging relies on perceptual-like
processes, based on population coding. Participants were presented with
rapid sequences of numerical values (four items per second) and were
asked to convey the sequence average. We manipulated the sequences’
length, variance, and mean magnitude and found that similar to percep-
tual averaging, the precision of the estimations improves with the length
and deteriorates with higher variance or higher magnitude. To account
for the results, we developed a novel biologically plausible population-
coding neurocomputational model and showed that it is mathematically
equivalent to a population vector. Using both quantitative and qualita-
tive model comparison methods, we compared the population-coding
model to several competing models, such as a step-by-step running av-
erage (based on leaky integration) and a midrange model. We found
that the data support the population-coding model. We conclude that hu-
mans’ ability to rapidly form estimations of numerical averages has many
properties of the perceptual (intuitive) system rather than the arithmetic,
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2 N. Brezis, Z. Bronfman, and M. Usher

linguistic-based (analytic) system and that population coding is likely to
be its underlying mechanism.

1 Introduction

Previous research has indicated that humans act as intuitive statisticians,
rapidly forming approximate, or coarse (i.e., not in a rule-based manner),
estimations of the mean and variance of sequences of number or numeros-
ity values, at rates as high as two items per second (Beach & Swenson, 1966;
Malmi & Samson, 1983; Brezis, Bronfman, & Usher, 2015; Brezis, Bronfman,
Jacoby, Lavidor, & Usher, 2016; Rusou, Zakay, & Usher, 2016). This ability is
of major importance for daily decisions that are based on streams of infor-
mation (e.g., a broker who wishes to decide whether to buy a certain stock;
Bechara, Damasio, Tranel, & Damasio, 2005; Hertwig & Erev, 2009; Tsetsos,
Chater, & Usher, 2012), for intuitive preference formation (Anderson, 1981),
or for decisions that are based on information that is not attended (Betsch,
Plessner, Schwieren, & Gütig, 2001; Betsch, Kaufmann, Lindow, Plessner, &
Hoffmann, 2006; Van Opstal, De Lange, & Dehaene, 2011). The mechanism
underlying this ability, however, remains largely unknown.

In previous work (Brezis et al., 2015), we provided preliminary support
in favor of a population coding–based account. Motivated by Daniel Kahne-
man’s hypothesis, according to which intuitive decisions are at the interface
of perceptual and cognitive processes (Kahneman, 2003), and by Stanislas
Dehaene’s analog numerical processing theory (Dehaene, 2011), we argued
that approximate numerical averaging relies on perceptual-like processes,
operating on analog representations, such as those that participate in statis-
tical estimations of the numerosity or size of visual elements (Ariely, 2001;
Chong & Treisman, 2003), and we proposed a population coding–based
neurocomputational model to account for approximate numerical averag-
ing. In particular, we showed that similar to perceptual processes, yet un-
like symbolic or rule-based processes (e.g., the arithmetic computation of
an average, as a sum divided by the number of elements), the accuracy of
approximate numerical averaging increases as the number of elements in-
creases, since noise associated with each individual item is averaged out as
additional items are being integrated.

These results ruled out the possibility that humans deploy an ana-
lytic rule-based strategy when computing the average of rapid numeri-
cal sequences. However, mechanisms besides population averaging could
potentially account for these results as well. One possibility is that in ap-
proximate numerical averaging, humans calculate a running average by
deploying a serial updating process (Hogarth & Einhorn, 1992) that can
be based on either coarse arithmetic (analytic) calculation or on a type of
running average (i.e., a leaky integration, whereby a weighted average be-
tween the most recent value and the previous estimate is being computed
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Population-Coding Mechanism of Numerical Averaging 3

on each additional sample). Running average–based models have been con-
sidered to play a major role in numerical cognition (e.g., Budescu, Wein-
berg, & Wallsten, 1988; Summerfield & Tsetsos, 2012; Ashby & Rakow,
2014; Wulff & Pachur, 2016), in integration-based perceptual decisions (e.g.,
Usher & McClelland, 2001; Ossmy et al., 2013), and in preference forma-
tion (e.g., Van Overwalle & Labiouse, 2004; Yechiam & Busemeyer, 2005;
Tsestos et al., 2012). They are therefore a natural candidate mechanism for
approximate numerical averaging. An alternative rule-based but heuristic
mechanism for estimating numerical averages, subject to working mem-
ory capacity constraints, is to compute the average based on few “well-
selected” samples (e.g., the min and the max of the sequence; Myczek &
Simons, 2008). Thus, the question of the mechanism underlying approxi-
mate numerical averaging remains open.

The aim of our study is thus twofold: to investigate the influence of two
key perceptual factors—variance and magnitude—on approximate numer-
ical averaging and to use these factors in order to pit various potential av-
eraging mechanisms one against another by relying on both behavioral-
qualitative tests and quantitative model-fitting procedures. Toward this
aim, we have used a numerical averaging paradigm (see Figure 1) with
a rapid presentation rate of four numbers per second (250 ms per item).
We reasoned that if participants would still carry out the task at a reason-
able level under such conditions, it will provide further evidence in favor
of a holistic (population-based) process compared with a serial step-by step
process. Second, we examined and manipulated two additional pivotal fac-
tors that affect the accuracy of the perceptual-averaging system: the vari-
ance of the elements (higher variance deteriorates accuracy in perceptual
tasks; De Gardelle & Summerfield, 2011) and the magnitude of the elements
(higher magnitude deteriorates accuracy, assuming Weber-like representa-
tions; Shepard, Kilpatric, & Cunningham, 1975). It currently remains un-
known whether these two factors affect approximate numerical averaging.
Finally, we subjected the data to a model comparison between a popula-
tion code model, a heuristic model (midrange, which requires only to note
and estimate two items, the maximum and the minimum), and a number
of step-by-step models (based on leaky integration).

We begin by presenting our experimental design and results. To antici-
pate, we observe an impressive ability to carry our numerical averaging at
a rate of four numbers per second, and find that both the variance and the
magnitude of the sequence numbers reduce accuracy. We then present and
extend our population code model of numerical averaging to a fully biolog-
ically plausible model, showing it is mathematically equivalent to the pop-
ulation vector (Georgopoulos, Schwartz, & Kettner, 1986; Pouget, Dayan,
& Zemel, 2003), and report the results of the model comparison. The re-
sults support the population code model and have important implications
regarding the nature of the analog number representations.
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4 N. Brezis, Z. Bronfman, and M. Usher

Figure 1: Depiction of a typical trial. Following the number sequence, partici-
pants were asked to convey the average by sliding a mouse-controlled bar. The
corresponding number was displayed—here, for example, 37.

2 Method

2.1 Participants. The eighteen participants in the experiment were un-
dergraduate students recruited through the Tel Aviv University Psychology
Department’s participant pool; they were naive to the purpose of the exper-
iment and had normal, or corrected-to-normal, vision. Informed consent
was obtained from all subjects. Participants were awarded either course
credit for their participation or a small financial compensation (40 NIS,
equivalent to about $10). They received a performance-dependent bonus
of an additional 10 to 20 NIS. All procedures and experimental protocols
were approved by the ethics committee of the Psychology Department of
Tel Aviv University (application 743/15). All experiments were carried out
in accordance with the approved guidelines.

2.2 Stimulus Materials and Procedure. The basic setup of a trial is de-
picted in Figure 1. Each trial began with a central fixation cross (250 ms)
after which a sequence of two-digit numbers was presented (white ara-
bic numerals on a black background; each number displayed for 250 ms;
without blank interstimulus intervals. The sequence set size (i.e., the quan-
tity of displayed numbers) consisted of 6, 9, or 12 items (randomly in-
termixed). The only instructions participants received were to convey as
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Population-Coding Mechanism of Numerical Averaging 5

accurately as possible the sequence’s average by vertically sliding a mouse-
controlled bar set on a number ruler between 0 and 100 (the number cor-
responding to the bar’s location was concurrently displayed) and pressing
the left mouse button when reaching the desired number (see also Brezis
et al., 2015). After completing 20 practice trials, participants underwent
720 experimental trials divided into six blocks. Each block terminated with
performance feedback (block-average correlation) and a short, self-paced
break.

In order to the test the effect of variance, magnitude, and set size on
the accuracy of the evaluations, we used a factorial design. The sequences
of numbers were generated so as to create a 2 × 2 × 3 design of variance
(low/high), magnitude (low/high), and set size (6, 9, and 12) in the follow-
ing manner. To achieve sequences of low magnitude and of low and high
variance, we sampled, independently for each set size, the numbers from a
gaussian distribution (mean = 30) with either low or high standard devia-
tion (low = 8, high = 16). In case two identical numbers were sampled suc-
cessively, the entire sequence was shuffled in order to prevent successive
presentation. Numbers above 90 and below 10 were discarded. In addition,
sequences were resampled in case the average magnitude of the low- and
high-variance sequences was not identical. To generate high-magnitude se-
quences with identical standard deviations, we used the same procedure,
yet with the mean of the gaussian distribution = 55. The order of the pre-
sented sequences was randomly determined. Overall 740 sequences were
generated (20 practice and 180 sequences per condition). All stimuli were
generated using Matlab and were presented on a gamma-corrected View-
Sonic (Walnut, CA) 17 inch monitor viewed at a distance of 41 cm. The
screen resolution was set to 1024 × 768 pixels, and the monitor had a refresh
rate of 60 Hz. We obtained participants’ evaluation of the sequence average
and response time (RT; measured from sequence’s offset until mouse button
press) in each trial. No data were discarded.

2.3 Dependent Variables. We used two measures to quantify each par-
ticipant’s precision of evaluations: (1) Pearson correlation across trials be-
tween the sequence’s average and estimations and (2) root-mean-square de-

viation (RMSD), given by
√∑n

i=1(xi − μi)2/n; where xi corresponds to the
estimated average of sequence i and μi corresponds to that sequence’s ac-
tual average. Note that lower values of RMSD correspond to higher accu-
racy. Since these measures are strongly correlated, we report only the cor-
relation for the overall task accuracy (it provides a simple measure of task
performance, with 0 corresponding to guessing and 1 to perfect accuracy,
subject to scaling), but we report the RMSD when we examine differences
between conditions (since RMSD is less sensitive to differences between the
actual trials in each condition). All effects reported in one measure remain
significant when tested using the other measurement.
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6 N. Brezis, Z. Bronfman, and M. Usher

Figure 2: Performance in the averaging task (A) Estimations of a representative
participant (median correlation score; Pearson correlation = 0.87). (B) Effect of
sequence set size on estimation accuracy (RMSD). As set size increases, RMSD
decreases (accuracy increases). Error bars denote 1 within-participant standard
error of the mean.

3 Results

3.1 Behavioral Results. Overall, and despite the very rapid presenta-
tion (250 ms per numeral) and the large quantity of numbers (up to 12
items per sequence), the participants exhibited high accuracy in estimating
the average of the numerical sequences. Participants’ Pearson correlation
across trials between the sequence’s average and estimations is remarkably
high and significantly larger than 0 (r = 0.83 (SD = 0.138); p < 0.0001 for
all participants; see Figure 2A for a single representative participant). Im-
portantly, this result is found separately for the low (r = 0.74 (SD = 0.17);
p < 0.00001 for all participants except one with p = 0.03) and high mean
conditions (r = 0.62 (SD = 0.15); p < 0.0001; for all participants), suggest-
ing that the high sensitivity exhibited by the participants is for the actual
presented numerical values rather than for the distributions’ means from
which the numbers were drawn. This is because reliance on the generative
means would necessarily result in null correlation within each condition.
Thus, there must have been some form of averaging of the specific numer-
ical sequences within each mean condition.

In addition, each participant’s square deviations between the estimation
and the actual average are significantly lower than the square deviations ob-
tained by randomly shuffling the participant’s responses across trials and
comparing the average square deviations between the actual mean and the
shuffled estimations, across 500 independent shuffles (actual = 88 (SD = 72);
shuffled = 455; p < 0.001, for all participants). We find no learning effect in
the experiment, as the correlation did not increase across the six experimen-
tal blocks (p > 0.7).

Furthermore, consistent with our previous findings (Brezis et al., 2015),
we find that participants’ RMSD decreased (accuracy increases) as a
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Population-Coding Mechanism of Numerical Averaging 7

Figure 3: Behavioral results. The effect of variance (A) and magnitude (B) on
the accuracy (RMSD) of estimations. Higher levels of variance or magnitude re-
sult in lowered accuracy (higher RMSD). Error bars denote 1 within-participant
standard error of the mean.

function of set size (6 = 9.14; 9 = 8.7; 12 = 8.42. ANOVA of within-
participant effect of set size on RMSD: F(2, 34) = 4.64; p = 0.016; Mauchly’s
W, for equal variance = 0.999; see Figure 2B). This indicates that noise at the
encoding of the elements is averaged out during the averaging process, thus
supporting the hypothesis that perceptual-like, non-rule-based processes
underlie numerical averaging in the task. We also observe a recency bias
in the 6- and 9-number conditions (but not in the 12-number condition),
as indicated by regression weights assigned to each sample as a function
of its location within the sequence (ANOVA of within-participant effect of
temporal regression weight; p < 0.01; for the 6 and 9 set size, see the online
supplement). This result replicates previous findings, according to which
evaluations are more influenced from samples arriving later in the sequence
(cf. Brezis et al., 2015).

To test the effect of sequence variance on the accuracy of the estima-
tions, we compared the RMSD between the low- and high-variance con-
ditions.1 We find that the RMSD for low-variance sequences is lower (i.e.,
performance is better) than under high variance (low = 7.31; high = 9.97;
t(17) = −7.62; p < 0.0001; see Figure 3A). To test the effect of the mag-
nitude of the number sequence on the accuracy of the estimations, we
compared the RMSD between the low- and high-magnitude conditions.
We find that the RMSD for low-magnitude sequences is lower (i.e., per-
formance is better) than under high magnitude (low = 7.57; high = 9.80;
t(17) = −4.46; p < 0.0005; see Figure 3B). No differences were found in

1Note that we did not compare correlations for this analysis, as the numerical range
between the conditions is dissimilar, a property that can result in a distorted estimation
of the correlations.
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reaction times (RT) between the set size conditions (p > 0.5) or variance
conditions (p > 0.3). We find a significant effect of RT in the magnitude
condition: RTs are longer in higher-magnitude trials (t(17) = 3.2; p = 0.005).
This result indicates that the decrease in accuracy in higher-magnitude tri-
als does not reflect the RT-accuracy trade-off; rather, it is a genuine decrease
in performance.

Thus, we find strong evidence that both variance (∼30%) and magnitude
dramatically (∼30%) deteriorate the accuracy of approximate numerical av-
eraging. To account for these effects, we tested several competing compu-
tational models.

3.2 Modeling Approximate Numerical Averaging. In order to account
for approximate numerical averaging, we considered three classes of alter-
native models: a population coding–based model (see Georgopoulos et al.,
1986); a running average model, which is based on a leaky integrator; and
a heuristic model, whereby the midrange of each sequence is estimated.

We first describe each model in detail and then present the fitting proce-
dure and the results.

3.2.1 Population-Coding Model. It has been suggested that approximate
numerical averaging relies on lower-level processes of summary statistics
extraction (Dehaene, 2001; Verguts & Fias, 2004; Van Opstal et al., 2011;
Dotan, Friedmann, & Dehaene, 2014; Brezis et al., 2015), whereby upon ex-
posure to a multitude of continuous features (e.g., spatial orientation, circle
diameter), observers exhibit high sensitivity to the average of the ensemble
(Ariely, 2001; Chong & Treisman, 2003; Alvarez & Oliva, 2008). Thus, ac-
cording to this hypothesis, sensitivity to summary statistics arises as a result
of a process where the activation of dedicated feature-tuned neural popu-
lations is pooled together and the centroid of this activation profile, repre-
senting the features’ average, is extracted (Georgopoulos et al., 1986; Pouget
et al., 2003). Building on previous neurocomputational studies (Brezis et al.,
2015), we suggest that such a population-coding model can account for the
observed effects of variance and magnitude of the numerical sequences.

The model assumes that each number (10–90), activates a distinct gaus-
sian distribution over a layer of broadly tuned numerosity detectors (layer
1; see Figure 4A), with a standard deviation, σ . Upon the presentation
of a number, each unit or neuron responds probabilistically by trigger-
ing a number of spikes sampled from a Poisson distribution with a
mean, λ, determined by the corresponding numerical tuning curve (see
Figure 4B). Each successive number presented triggers an additional, ac-
cumulated probabilistic neural activation (see Figure 4C).2 Note that the

2The population model can also include a recency component: the neural profile of
previous items may be subject to decay and thus receive less weight in the population
response. We do not include this factor here, but see section 4.
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Population-Coding Mechanism of Numerical Averaging 9

Figure 4: The suggested biologically plausible population-coding model for
perceptual and numerical approximate averaging. Each panel represents a stage
in the evaluation process. (A) The underlying tuning curves of the number-
tuned units. (B) A noisy activation profile for a given three presented numbers
(here, 20-50–80). (C) The superimposed overall activation profile of the network,
for the given three numbers. (D) Extraction of the activation profile center of
mass using a winner-take-all competition in a second layer. Each unit in the sec-
ond layer is connected to all the units in the first layer with a parabolic weighting
function (red curve).

Poisson random variability is the only source of item-dependent variability
in the model. Without it, the model’s evaluations would not improve with
set size. The output of this population code is obtained by a weighted av-
erage (center of mass) and has an extra noise variable that corresponds to
decision or motor variability. To obtain the center of mass in a biologically
plausible mechanism (i.e., to decode the perceived average from the pop-
ulation response), we introduce an additional fully connected layer (layer
2) with each node in layer 2 corresponding to the same number representa-
tions as in layer 1 (i.e., 10–90), so that the effect of activation in layer 1 maps
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topographically to layer 2 (see Figure 4D). Thus, each unit in layer 2 is con-
nected to all the nodes in layer 1, yet with a connectivity weight matrix that
is given by a diminishing parabolic function in the form of

wxm,xi = −(xi − xm)2, (3.1)

where xi is the number representation of unit i at layer 1 and xm is the num-
ber representation of unit m at layer 2.

The function’s maximal weight is always assigned to the topographi-
cally corresponding unit in layer 1 (i.e., to the unit in layer 1 that is tuned to
the same number that is represented by the unit in layer 2). The unit with
the maximal level of activity at layer 2 (identified by lateral winner-take-all
competition) corresponds to layer 1’s center of mass—that is, to the per-
ceived sequence’s average due to the following considerations:

• The activity in layer 2 is given by

L2(xm) =
∑

i

wxm,xi ∗ L1(xi). (3.2)

• Given the weight matrix described in equation 3.1, the derivative of
layer 2 activity is

dL2

dxm
= 2

∑
i

(xi − xm) ∗ L1(xi). (3.3)

• The maximal activity in layer 2 is thus described by

∑
i

(xi − xm) ∗ L1(xi) = 0. (3.4)

As can be seen, xm satisfies the center-of-mass definition (i.e., the sum of
weighted distances equals zero), given the activity profile of layer 1.

Thus, as we have demonstrated, the suggested neuronal architecture
is mathematically equivalent to the arithmetic center of mass, usually as-
sumed in models of population coding.

We tested three variants of the population-coding model:

1. Two free parameters: σ (standard deviation) of the gaussian tuning
curve, representing low-level perceptual noise at the individual item,
and late noise added to the winning unit at layer 2—a stochastically
independent internal noise sampled from a normal distribution (with
mean 0 and standard deviation σ̂ ), which reflects the general noise as-
sociated with the decoding process and motor noise (Solomon, Mor-
gan, & Chubb, 2011).
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2. Three free parameters: two parameters as in model 1 and, in ad-
dition, δ—a parameter that determines the linear increase of the
standard deviation of the tuning curves as a function of the number
magnitude.

3. Three free parameters: two parameters as in model 1 and ψ—a pa-
rameter that determines the logarithmic spacing of the tuning curves
(an alternative manner to account for the decrease in differentiation
as a function of magnitude; see the discussion in Dehaene, 2003).

3.2.2 Midrange Model. We tested a heuristic rule-based model, whereby
evaluations are given by a noisy estimation of the sequence’s midrange
(Myczek & Simons, 2008):

...

X(min(X ) + max(X ))/2 + ε̈, (3.5)

where X is the noisy vector of the number sequence (with σ determining
the internal noise of each item) and ε̈ is a stochastically independent inter-
nal noise sampled from a normal distribution (with mean 0 and standard
deviation σ̂ ), which reflects the general noise associated with the decoding
process and motor noise (Solomon et al., 2011).

We tested one variant of the heuristic midrange model:

1. Three free parameters: σ , determining the noise at the item level (ε);
σ̂—late noise; and δ—a parameter that determines the linear increase
of σ as a function of the number magnitude

3.2.3 Running Average Leaky-Integrator Model. An alternative model that
can account for approximate numerical averaging is the exponential mov-
ing average (EMA) model, whereby following each item, the current esti-
mation of the average is being updated in a weighted manner. This can be
achieved by assuming leaky integration in the form of

...

Xi = (1 − 1/τ ) ∗
...

Xi−1 + τ ∗ (xi + ε), (3.6)

where
...

Xi is the current estimated average at time i, τ is the decay constant,
xi is the numeric item, and ε is a stochastically independent internal noise,
sampled from a normal distribution (with mean 0 and standard deviation
σ ),

We tested several variants of the EMA leaky-integration model:

1. Three free parameters: σ , determining the noise at the item level
(ε); τ , which determines the integrator’s leak; and late noise added
to the integrator’s outcome—sampled from a normal distribution,
with mean 0 and standard deviation σ̂ , and which reflects the gen-
eral noise associated with the decoding process and motor noise
(Solomon et al., 2011)
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2. Four free parameters: three parameters as in model 1 and δ—a pa-
rameter that determines the linear increase of σ as a function of the
number magnitude

In addition to these two variants, we also tested two variants in which
the weight of the update is a function of the number’s probability within
the experimental probability distribution (thus incorporating prior beliefs
into the estimation). Because these variants had higher Bayesian informa-
tion criterion (BIC) values, we do not report them here (see the supplement
for the models’ description and fitting results).

3.3 Fitting Procedure. In order to obtain estimations of the best-fitting
parameters and goodness of fit for each model, we fitted the models to the
participants’ evaluations on a trial-by-trial basis, separately for each partic-
ipant. For any given set of parameters, 1000 simulations of each actual trial
were generated using the actual number sequence that was presented. This
allowed us to obtain a distribution of the model’s average estimations. As-
suming the model’s estimations are normally distributed (Shapiro-Wilk test
of composite normality; SW = 0.998; p = 0.53; Shapiro & Wilk, 1965; see also
Razali & Wah, 2011), we obtained a probability density function reflecting
the probability of the model to generate each possible average estimation.
Given the probability function, we assigned a likelihood for the observed
evaluation for each trial (i.e., the value of the probability function given
the actual observed value). The likelihood for all of the data was calcu-
lated by multiplying the likelihood for the separate trials. Finally, parame-
ters were estimated by maximizing the likelihood term using an exhaustive
grid search (see Table 1 for the best-fitting parameters of each model).

3.4 Modeling Results. We find that the best model in terms of both
maximal likelihood and Bayesian information criterion (BIC, which penal-
izes additional parameters) is variant 2 of the population coding model.

In addition, we show in Figure 5 the predictions of the behavioral results
made by simulating the best-fitting model using the best-fitting parameters
(generalizability criterion; Busemeyer & Wang, 2000; Ahn, Busemeyer, Wa-
genmakers, & Stout, 2008). The population code model accounts for all the
behavioral patterns we reported in the data: set size, variance, and magni-
tude effect. Conversely, the running-average leaky-integrator model fails to
predict the set size effect (note that variant 1 of this model, which does not
assume Weber-like representations, predicts the set size effect yet not the
magnitude effect).

4 Discussion

Approximate numerical averaging is fundamental to situations in which
humans make decisions among alternatives that are characterized by
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Figure 5: Data and model predictions of the main behavioral results. Top row:
Behavioral data. Middle row: Population model. Lower row: Running average
model. Models’ predictions were generated using each model’s best-fitting pa-
rameters. Error bars denote 1 within-participant standard error of the mean.

values (e.g., buying stocks, participating in lotteries) and is the basis for
higher processes, such as preference formation (e.g., hiring an employee,
choosing an apartment mate; Usher, Russo, Weyers, Brauner, & Zakay,
2011). In this study, we sought to characterize the mechanism that under-
lies the remarkable ability of humans to rapidly extract the average of a
sequence of numerical values.

Toward this aim, we have tested how approximate numerical averag-
ing is affected by the set size, variance, and magnitude of the numerical
sequences. Using a specially designed experimental paradigm, we have
shown that estimations improve as set size increases. Furthermore, we find
that, similar to nonnumerical perceptual averaging processes, such as size
and orientation averaging (e.g., Ariely, 2001; Chong & Treisman, 2003),
numerical averaging markedly deteriorates as variance or magnitude in-
creases. To the best of our knowledge, these two pivotal perceptual prop-
erties were never shown to apply directly to rapid numerical averaging.
These results thus validate the assumption that approximate numerical av-
eraging relies on perceptual-like processes rather than on purely symbolic
(arithmetic) ones, and they provide important behavioral constraints for po-
tential models aimed at accounting for approximate numerical averaging.
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To account for approximate numerical averaging, we have developed a
novel, biologically plausible population-coding model that solves the ques-
tion of decoding the perceived average from the population response pro-
file. We first demonstrated that this model is mathematically equivalent to a
population vector or to the extraction of the center of mass. Next, we com-
pared the population-coding model with competing mechanisms that are
central to numerical cognition and perceptual processes (running average
via leaky-integration and heuristic midrange calculation), using both qual-
itative and quantitative tests.

In our quantitative test, we fitted the models on a trial-by-trial basis and
find that the population-coding model is superior to the alternative mod-
els in terms of both likelihood (which reflects the goodness of fit) and BIC
(which penalizes additional degrees of freedom). Specifically, our data sup-
port a uniform (nonlogarithmic) representational space of the numerical
tuning curves, with tuning curve variance that increases as a function of
the numerical magnitude (Brannon, Wusthoff, Gallistel, & Gibbon, 2001;
Dehaene, 2003).

In our qualitative test, we simulated the estimations of each model us-
ing the best-fitting parameters and tested the models’ predictions of the re-
ported behavioral effects. We find that only the population-coding model
could account for all the behavioral patterns, thus lending additional strong
support to the suggested population-coding model. The model’s improve-
ment with set size stems from the Poisson stochastic firing rate of the units
responding to the presented numerical items. With each additional item, the
noise averages out, resulting in a more reliable activity profile. The late (mo-
tor) noise, added to the evaluation, is sequence length independent and thus
cannot account for improvement with set size. To account for the magnitude
effect, the model assumes that larger numerical values are represented with
broader tuning curves. One possible motivation behind this assumption is
that larger numbers are relatively less frequent in everyday life (assuming
that frequency determines the degree of precision with which the items are
encoded; Yang & Maunsell, 2004).

Acentral assumption of our model is that dedicated feature-tuned neural
populations are mapped onto a symbolic representation of numbers. This
assumption relies on prior suggestions offered by Stanislas Dehaene and
colleagues, who argue, based on theoretical and experimental considera-
tions, that representations of quantities (such as numerosity) and magni-
tudes are being associated, through extensive learning, to representations
of numerical (symbolic) values, yielding an approximate numerical sys-
tem, which is akin to a perceptual system (Dehaene, 2011). Accordingly,
the symbolic numerical values are being implicitly transformed into rep-
resentations of quantity or magnitude, and these representations are those
on which the perceptual-like system of population coding operates. Our
behavioral and modeling results reported here offer indirect support for
this assumption by demonstrating that approximate symbolic numerical
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processing shows key properties of perceptual processing. Future studies
should investigate this assumption by identifying the relations between
perceptual representations of magnitude and quantities and those of sym-
bolic numbers.

Although our model comparison results show strong preference for the
population-coding model and are consistent with previous modeling re-
sults (Brezis et al., 2015, 2016), future studies should develop and test ad-
ditional alternative models. Moreover, because previous research has in-
dicated that temporal biases, such as recency or primacy, often occur in
perceptual tasks (e.g., Kiani, Hanks, & Shadlen, 2008; Bronfman, Brezis, &
Usher, 2016), it is likely that such biases will also be found in approximate
numerical averaging. Indeed, a temporal regression analysis for our data
shows that the evaluations are recency biased—a result that is consistent
with prior reports (see the supplement and Brezis et al., 2015). While tem-
poral biases were not directly addressed in our population-coding model,
it is possible to extend the model to account for it. For example, one can in-
troduce temporal decay in the activation buildup (currently implemented
as a simple summation of the activation profiles). Such decay is likely to
result in an increased influence of the later-arriving samples.3 Future re-
search should aim specifically at testing the question of temporal biases in
numerical averaging and offer and test specific computational accounts for
it. Of particular challenge is the fact that recency is diminished or even van-
ishes in the longer set size (of 12 items). Finally, while previous research has
causally implicated the parietal cortex in approximate numerical averaging
(Brezis et al., 2016), future studies should further test and characterize the
brain regions that participate in this important human capacity.

References

Ahn, W. Y., Busemeyer, J. R., Wagenmakers, E. J., & Stout, J. C. (2008). Comparison
of decision learning models using the generalization criterion method. Cognitive
Science, 32, 1376–1402.

Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual fea-
tures outside the focus of attention. Psychological Science, 19, 392–398.

Anderson, N. H. (1981). Foundations of information integration theory. New York: Aca-
demic Press.

Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological
Science, 12, 157–162.

Ashby, N. J. S., & Rakow, T. (2014). Forgetting the past: Individual differences in re-
cency in subjective valuations from experience. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 40(4), 1153–1162.

3Note that since the running average model explicitly takes recency into account while
the population model does not, the model comparison result in favor of the latter is a
conservative one.



NECO_a_01037-Brezis MITjats-NECO.cls October 30, 2017 20:28

U
nc

or
re

ct
ed

Pr
oo

f

Population-Coding Mechanism of Numerical Averaging 17

Beach, L. R., & Swenson, R. G. (1966). Intuitive estimation of means. Psychonomic
Science, 5, 161–162.

Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (2005). The Iowa Gambling
Task and the somatic marker hypothesis: Some questions and answers. Trends in
Cognitive Sciences, 9, 159–162.

Betsch, T., Kaufmann, M., Lindow, F., Plessner, H., & Hoffmann, K. (2006). Different
principles of information integration in implicit and explicit attitude formation.
European Journal of Social Psychology, 36, 887–905.

Betsch, T., Plessner, H., Schwieren, C., & Gütig, R. (2001). I like it but I don’t know
why: A value-account approach to implicit attitude formation. Personality and So-
cial Psychology Bulletin, 27, 242–253.

Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical sub-
traction in the pigeon: Evidence for a linear subjective number scale. Psychological
Science, 12(3), 238–243.

Brezis, N., Bronfman, Z. Z., Jacoby, N., Lavidor, M., & Usher, M. (2016). Transcranial
direct current stimulation over the parietal cortex improves approximate numer-
ical averaging. Journal of Cognitive Neuroscience, 28, 1700–1713.

Brezis, N., Bronfman, Z. Z., & Usher, M. (2015). Adaptive spontaneous transitions
between two mechanisms of numerical averaging. Scientific Reports, 5, 10415.

Bronfman, Z. Z., Brezis, N., & Usher, M. (2016). Non-monotonic temporal-weighting
indicates a dynamically modulated evidence-integration mechanism. PLoS Com-
put. Biol., 12, e1004667.

Budescu, D. V., Weinberg, S., & Wallsten, T. S. (1988). Decisions based on numerically
and verbally expressed uncertainties. Journal of Experimental Psychology: Human
Perception and Performance, 14(2), 281–294.

Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and model selections
based on generalization criterion methodology. Journal of Mathematical Psychol-
ogy, 44, 171–189.

Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision
Research, 43, 393–404.

De Gardelle, V., & Summerfield, C. (2011). Robust averaging during perceptual judg-
ment. Proceedings of the National Academy of Sciences, 108, 13341–13346.

Dehaene, S. (2001). Subtracting pigeons: Logarithmic or linear? Psychol. Sci., 12, 244–
246 (discussion 247).

Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental
number line. Trends in Cognitive Sciences, 7, 145–147.

Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York:
Oxford University Press.

Dotan, D., Friedmann, N., & Dehaene, S. (2014). Breaking down number syntax:
Spared comprehension of multi-digit numbers in a patient with impaired digit-
to-word conversion. Cortex, 59, 62–73.

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population
coding of movement direction. Science, 233, 1416–1419.

Hertwig, R., & Erev, I. (2009). The description–experience gap in risky choice. Trends
in Cognitive Sciences, 13, 517–523.

Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in belief updating: The belief-
adjustment model. Cognitive Psychology, 24, 1–55.



NECO_a_01037-Brezis MITjats-NECO.cls October 30, 2017 20:28

U
nc

or
re

ct
ed

Pr
oo

f

18 N. Brezis, Z. Bronfman, and M. Usher

Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded
rationality. American Psychologist, 58, 697.

Kiani, R., Hanks, T. D., & Shadlen, M. N. (2008). Bounded integration in parietal
cortex underlies decisions even when viewing duration is dictated by the envi-
ronment. Journal of Neuroscience, 28, 3017–3029.

Malmi, R. A., & Samson, D. J. (1983). Intuitive averaging of categorized numerical
stimuli. Journal of Verbal Learning and Verbal Behavior, 22, 547–559.

Myczek, K., & Simons, D. J. (2008). Better than average: Alternatives to statistical
summary representations for rapid judgments of average size. Attention, Percep-
tion, and Psychophysics, 70(5), 772–788.

Ossmy, O., Moran, R., Pfeffer, T., Tsetsos, K., Usher, M., & Donner, T. H. (2013). The
timescale of perceptual evidence integration can be adapted to the environment.
Current Biology, 23(11), 981–986.

Pouget, A., Dayan, P., & Zemel, R. S. (2003). Inference and computation with popu-
lation codes. Annual Review of Neuroscience, 26, 381–410.

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and
Analytics, 2(1), 21–33.

Rusou, Z., Zakay, D., & Usher, M. (2017). Intuitive number evaluation is not affected
by information processing load. In J. Kantola, T. Barath, S. Nazir, & T. Andre
(Eds.), Advances in human factors, business management, training and education (pp.
135–148). New York: Springer.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (com-
plete samples). Biometrika, 52(3/4), 591–611.

Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The internal represen-
tation of numbers. Cognitive Psychology, 7, 82–138.

Solomon, J. A., Morgan, M., & Chubb, C. (2011). Efficiencies for the statistics of size
discrimination. Journal of Vision, 11, 13.

Summerfield, C., & Tsetsos, K. (2012). Building bridges between perceptual and eco-
nomic decision-making: Neural and computational mechanisms. Frontiers in Neu-
roscience, 6, 70.

Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven value integration explains
decision biases and preference reversal. Proceedings of the National Academy of Sci-
ences, 109, 9659–9664.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky,
competing accumulator model. Psychological Review, 108(3), 550.

Usher, M., Russo, Z., Weyers, M., Brauner, R., & Zakay, D. (2011). The impact of the
mode of thought in complex decisions: Intuitive decisions are better. Frontiers in
Psychology, 2, 37.

Van Opstal, F., De Lange, F. P., & Dehaene, S. (2011). Rapid parallel semantic process-
ing of numbers without awareness. Cognition, 120, 136–147.

Van Overwalle, F., & Labiouse, C. (2004). A recurrent connectionist model of per-
son impression formation. Personality and Social Psychology Review, 8(1), 28–
61.

Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a
neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.



NECO_a_01037-Brezis MITjats-NECO.cls October 30, 2017 20:28

U
nc

or
re

ct
ed

Pr
oo

f

Population-Coding Mechanism of Numerical Averaging 19

Wulff, D. U., & Pachur, T. (2016). Modeling valuations from experience: A comment
on Ashby and Rakow (2014). Journal of Experimental Psychology: Learning, Memory,
and Cognition, 42(1), 158–166.

Yang, T., & Maunsell, J. H. (2004). The effect of perceptual learning on neuronal re-
sponses in monkey visual area V4. Journal of Neuroscience, 24(7), 1617–1626.

Yechiam, E., & Busemeyer, J. R. (2005). Comparison of basic assumptions embedded
in learning models for experience-based decision making. Psychonomic Bulletin
and Review, 12(3), 387–402.

Received April 30, 2017; accepted September 1, 2017.




