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Why do we need modelling?
Dependent variables: choice & RT

Tasks: perceptual choice, lexical-decision, VS, memory-recognition, etc.
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« Extract performance level from data? (not ignore RT, correct/incorrect,
and distributions); account for SAT.

« Extract latent processes: Different latent variables may show the same
RT and accuracy (patients/aging/divided attention)



Signal-Detection theory

| *Response bias & Sensitivity
cntenon response

¥ Better performance If taking
longer to decide: speed-
miss hit accuracy tradeoff (SAT);
looking for more evidence
takes time.

Frobability

internal response _ _
* Evidence-accumulation

correct reject IS a generalization of SD to

multiple samples
false alarm

e Accounts for SAT

Frobability

Inteamal response



Evidence integration: the problem

You are faced with noisy samples of evidence and need to
decide which out of a set of perceptual hypotheses (H1,H2,
H3...) gives the best match

Start with “priors” P1(0),P2(0),P3(0). Then take evidence
samples, d1(t1), d(t2), d(t3) (noisy); update the posterior
probabilities and compute ratio likelihood: P(H1/D)/P(H2|D)

H1, H2= hypotheses , D = observed data
Bayes Rule

P(H1| D) =P(H1 and D)/P(D)

P(H2 | D) = P(H2 and D)/P(D)

LR(t+1) = P(H1/D)/P(H2|D) =[P(D|H1)/P(D|H2)] *[P(H1)/P(H2)] [t]

®Keep going until LR(t) = accuracy criterion



An optimal decision procedure for noisy data:
the Sequential Probability Ratio Test

Mathematical idealization: During the trial, we draw noisy samples from
one of two tixed distributions p;(x) or pg(x) (lett or right-going dots).

The SPRT works like this: set up two thresholds 1/B and B and keep a
running tally of the ratio of likelihood ratios:

o= () 7 ()~ ()

When R, tirst exceeds B or talls below 1/B, declare victory for R or L

Theorem: (Wald, Barnard) Among all fixed sample or sequential tests,
SPRT minimizes expected number ot observations n for given accuracy.

For tixed n & B=1 SPRT maximizes accuracy (Neyman-Pearson lemma).



Signal detection with multiple
samples of evidence

Likelihood ratio with multiple evidence, el, e2, ...

LR LRy, IR, IRy,
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Decision rule

LR12| 'LR1-?|- LR Prih,)
e L] i B

L2ler * Pr(h,)

.>1

Take Logs

gL, +logLR, ;. +loglR, +log prsl. > 0




Example: signal detection Iin the brain
Gold & Shadlen, 2001; TICS

http://www.shadlen.org/~mike/papers/mine/gold_shadlen2001c.pdf
Detect light/no-light

eVIdence(e) n-SplkeS/SO mS A hypothetical light detector can indicate avalue (g) of 0to 8 in the presence or
450 I|ght trlals Slgnal absence of light. Asindicated in Table |, the detector tends to indicate higher

values in the presence of light. Columns 2 and 3 indicate the number of trials in

450 nO'Ilght trla|S nOISE which each value e was indicated in a block of 450 “light-present” trials and 450
PIOt Signal nOise diStribUtion ‘light-absent’ trials, respectively. Columns 4 and 5 convert these counts into

conditional probabilities, orlikelinoods. The ratio of these likelihoods (LR j’2|,5|'|'

Box 1. Using the likelihood ratio

DEC'S | On Crlterlon indicates whether it was more likely to be true that light was present or that
- - - . light wias absent foreach given a. Specifically, when LR 1.2e> 1,'present’ was
Ratl O-I I kel I hOOd . more likely. Therefore, to use the detector, read the value @ and then decide
r — P(elhl)/P(eth) > 1 ’presenr‘ifLH13|E.~.»1_Thisisequivalentmdeciding’present’ifthevalueeaﬁ.
Table l. Calculating the light likelihood for a hypothetical light detector
Bayes rule: Deltec:n]r :up.lli;:;::r-pmsem :up.lli;,[]:?ahsant Prielh,)  Prielh) LR,
* valua (& nais Frals (i1,
P(elh1)/P(e[h2) * P(h1)/P(h2) | : =
— P(hlle)/P(h2|e) 1 10 80 {I.ﬂg {I.1E" 0.1
2 20 70 0.04 0.15 0.3
3 30 60 0.06 0.13 0.5
4 40 50 0.08 0.11 0.8
5 50 40 0.11 0.08 13
6 60 30 0.13 0.06 2.0
7 70 20 0.15 0.04 3.5
8 80 10 0.17 0.02 8.0
9 90 0 0.20 0.00 inf




How does the brain do 1t?
Gold & Shadlen, 2001: TICS

(a) Single neuron, normal PDFs,
equal variance (s)

lllz .'i1 X (y + .LLE} /2 X

1 .
E}i'..p|:— 2—2':,:{' == -“1 )
LR g

12 ~ 1 N
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1 2 -
ngLR1.2|-‘-’ = —F[{I — Jz —lx — s JE]

=L loey - )7 - 7] x> ([t +11,)/ 2 (ie. when logLR > 0)
- .

Neural response, X, approximates Log-likelihood



How does the brain do 1t?
Gold & Shadlen, 2001;: TICS

Use 2 detectors, one for hl, and one for h2

(b) Neuron pair, normal PDFs,

= equal variance (s
log Lty gy = ~gpal 2+’ -4y q )

1 = ' =
logLR, 5, = —F[Eﬁ. 1y — 1)+ i3 — p1y | — X

IUELRI,EPE,}' = 1DELR1.-E|7"~ + ]DELRI,ELT

log LR, ,, , = “1{;2“2 (x-7) | 0

X-y, approximates Log-likelihood



Neuroscience model of perceptual decisions
(Mazurek, Roitman, Ditterich & Shadlen, 2003; Cerebral Cortex)

Stage 1. MT Stage 2. LIP Stage 3: Choice

Motion Sensory evidence Accumulated sensory evidence Categorization of evidence:
right or left
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Mathematical models of choice

Task: choice on the basis of noisy evidence +

stochastic accumulation of information.
Integrate evidence towards response-criterion

®Accumulators/race towards
common response-criterion: flexible

but not-efficient

®Drift-Diffusion model based on
relative evidence: efficient but difficult
to generalise to n-choice

Neural competition model (Usher &McClelland, 2001)



From signal-detection to 2-choice-RT
random-walk/diffusion models (Ratcliff & McKoon, 2008)

*Take multiple samples x1, x2, ... xn and compute y=Z(x; —C)

*y1=0, y2=(x1-c); y3=y2+ (x2-c); .... (y goes up or down with evidence)
*I[F yn > A (respond YES); nis response time

I[F yn < -B (respond NO); A,B is response-time criteria,

More samples takes longer but helps to average out the noise: SAT.

. /wd RTd=|str|but|Dn A decision boundary
Ct

Drift J—
Drift

error
0 response

\/,, B decision boundary
Error RT distribution




Response time distribution
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Diffusion model: results

Basic model predicts same RT-
distribution for correct and incorrect

responses

Experimental-RT are not always the
same for correct vs incorrect

Modification of the diffusion model
can account for differences:

@ Starting point variability:
RT(errors) < RT(corrects)

®\ariability in drift from trial to trial):

RT(errors) > RT(corrects)

RT=400ms
Pr=.95

a Correcl Respond A
v Responses
Z=
a/2
0 Error Hesponsesnespond B
RT=400ms
Pr=.05

RT=400ms Weighted
Pr=95 — % Mean RT

Z=
al2

Respond A

orrect
Responses

Error Responses

Respond B

400ms RT=600ms
=.05 Pr=.20—m Weighted
= MeanRT

= 560ms

a

a-.5s,

v Correct
a+.552[’ /v Responses
z

uF'r:.ZD Pr=.02

Weighted
Mean RT
Pr=.98 Pr=.80 = 395ms

RT=350ms RT=450ms HESPO“d A

L

Error Responses

Respond B

RT=350ms RT=450ms
“—m-m_\‘_}“kWeighted
Mean RT

= 359ms



Diffusion model: latency as a function of
signal/noise and response (correct/error)
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Summary on diffusion/race

Accumulators: no stochastic accumulation.
Variability due to variance in starting point.
*Increasing the support for weak option — faster RT
*Non-optimal decision

Diffusion (random-walk)

.Predicts equal RT for correct and incorrect RT.

« 10 account for unequal correct/errors, assumes
variance In starting point and in drift across trials.
«Optimal decision.



How to extract latent variables from data

e Data fitting illustration
* The Fast-DM program

* Do it yourself - Maximume-Likelihood estimation



Data Fitting lllustration
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/° Task

Decide whether the display originated from a high or low mean distribution

2 Groups

Younger participants (college age)
Older Participants (60 — 74 years old)

~

)

Ratcliff et al., 2006



RT & Accuracy Results

(. . ) . . )
The older participants were The older participants were
slower as compared to the more accurate than the

ounger ones ounger ones

- young y - young )

Mean RT (ms)
w B WU
o
o
o o
00 [e}

Accuracy (%)
o
~l

o
o

o
tn

Younger Participants Older Participants Younger Participants Older Participants

How can we quantify the trade-off between
speed and accuracy?




Drift—-Diffusion Model (DDM)

Accumulated Evidence

Choose Left

Boundary
Separation

Choose Right

Non-decisional time (to)

Drift (v) Boundary Separation (a) Encoding and

Strength of the evidence Response caution

response execution

. . Non=decisional!
Starting Point: - 3

Variability (szr)




Accumulated Evidence

Drift—Diffusion Model (DDM)

Jf\/ Drift Rate

Choose Left

Boundary
Separation

Choose Right

Parameter RT Accuracy
Higher Drift Shorter RTs Higher accuracy
(higher strength of evidence)
Higher boundary separation Longer RTs Higher accuracy
(more cautious)
Higher non-decisional time Longer RTs Same accuracy

(longer peripheral processes )




DDM Data Fitting Results

M Younger Participants Older Participants
1 _
p<.05

0.3 - I p<.05
0.6 - I p=n.s.
0.4 - I
0.2 -

0 1 I I

Boundary Non-decisional Drift Rate (v)
separation (a) time (to)

e Older participants: higher boundary separation and non-decisional time

* No differences in the drift rate (the quality of the evidence was intact)




How to extract latent variables from data

e Data fitting illustration
* The Fast-DM program

* Do it yourself - Maximume-Likelihood estimation



5 Conditions

Subject A
Base-line

Subject B Subject C Subject D Subject E
Speed condition Accuracy condition Difficult condition Beer condition

™ A




5 Conditions

g Base-Line 745 ms 0.83

’ Speed 618 ms 0.77
Accuracy 897 ms 0.85

21

m Difficult 828 ms 0.71

( > Beer 1031 ms 0.67




o oA Wb

Data Fitting Program - Fast-DM

Google - Voss & Voss Fast-DM

Download the Fast-DM windows binaries

Save your data in a csv file (txt file)

Create a control file with a text editor (experiment.ctl)
Run the Fast-DM.exe file

Read results into your favorite statistics software for

further analysis



Comparison of the Fitted Parameters

Drift Rate (v) Boundary separation (a)

W Base-line © Speed M Accuracy M Difficult M Beer W Base-line ' Speed M Accuracy M Difficult mBeer

1.7895

0.9901 1.0333 1.0441 1.4721 1.4956

0.551 0.5595

Non-decisional time (to)

M Base-line Speed M Accuracy M Difficult B Beer

0.4966

The participants in the base-line, speed and accuracy conditions have the same drifts
and non-decision times, however their boundary separation varies

The participant in the difficult condition has lower drift

The participant in the beer condition has lower drift and higher non-decisional time

J




How to extract latent variables from data

e Data fitting illustration
* The Fast-DM program

* Do it yourself - Maximume-Likelihood estimation



Maximum Likelihood Estimation

Empirical Distribution

0.08

—Correct
—Error

0.06

0.04

Density

0.02

0

RT
4 L 4 ) L® p o L 2 u,1) L® -
Simulated Distribution’1 Simulated Distribution’2
v=0.5a=15 to=0.3 v=1la=121t0=0.3
0.08 0.08 ,
—Correct —Correct
—Error —Error
0.06 0.06 1
) ) ; Pu-
2 0.04 2 0.04 !
(0] [0]
) )
0.02 0.02
0

0 20 40 60 80 100

0 20 40 60 80 100
RT

RT

Which simulated distribution is more similar to the empirical data?
It is more likely that the empirical distribution was generated using the 2" set
of parameters, rather than the 15 set of parameters




Maximum Likelihood Estimation

How can we quantify the relations between the

empirical and simulated distributions?

How can we search for the best fitting set of

parameters?



Quantifying the Similarity

2 Simulated distributions
(Blue & Red),

e Likelihood function: \

L(O1X) = [TiL, f (x;16) =
f(x1|9) f(x2|9) f(x3|9)

e Red distribution - lower likelihood
(data points 2 & 3)

* Blue distribution = higher likelihood

K Likelihood - Log-Likelihood /

3 Empirical Data Points




Search Strategies

Grid Search Search Algorithms

Drift

Boundary Separation

Disadvantages: not efficient

In case there is a large number of
parameters, the grid search method
can be very time consuming W

tance

Total dis

Mixture strategy:
* Use coarse grid search to find 10 — 20 best fitting sets of parameters
 Use these sets as starting points to the search algorithms (e.g., simplex)



https://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwid74LZxqbZAhUBr6QKHcWEDgEQjRx6BAgAEAY&url=https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method&psig=AOvVaw1zZfY36Bj-N8QzLtBe2RT3&ust=1518737062969537
https://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiy25SAx6bZAhUM3KQKHZrvDWAQjRx6BAgAEAY&url=https://stackoverflow.com/questions/9457116/in-regards-to-genetic-algorithms&psig=AOvVaw0rTkvp_yn5qzPPF2qREq5m&ust=1518737150104980
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