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10 Abstract
11 Is it possible to carry out complex multi-attribute decisions (which require an estimation of the weighted average) intuitively,
12 without resorting to simplifying heuristics? Over the course of 600 trials, 26 participants had to choose the better-suiting job-
13 candidate, a task requiring comparison of two alternatives over three/four/five dimensions with specified importance weights,
14 with a time constraint forcing intuitive decisions. Participants performed the task fast (mean reaction time (RT) ~ 1.5 s) and with
15 high accuracy (~86%). The participants were classified as users of one of three strategies: Weighted Additive Utility (WADD),
16 Equal Weight rule and Take-The-Best heuristic (TTB). Fifty-nine percent of the participants were classified as users of the
17 compensatory WADD strategy and 29% as users of the non-compensatory TTB. Moreover, the WADD users achieved higher
18 task accuracy without showing time costs. The results provide support for the existence of an automatic compensatory mecha-
19 nism in weighted average estimations.

20 Keywords Decisionmaking .Weighted average . Compensatory process . Take-the-best

21

22 Introduction

23 Complex decisions, such as selecting a job candidate or a
24 vacation package, are among the most demanding and chal-
25 lenging human activities. A major cause of this challenge is
26 the presence of trade-offs between attributes (e.g., intelligence
27 vs. motivation for job candidates) that are difficult to compare.
28 While a normative theory, based on weighted additive utility
29 (WADD), was developed by early decision theorists (Keeney
30 & Raiffa, 1976), a widely accepted view considers that the
31 computations required for the normative WADD algorithm
32 are too complex for online human decisions (not assisted by
33 offline calculations or external aids). Accordingly, it is often

34assumed that when faced with such decisions, humans typi-
35cally resort to a number of simplifying non-compensatory
36heuristics, such as Take-the-Best (TTB), according to which
37one chooses on the basis of the most important attribute (in
38case of a tie, the secondmost important attribute is considered;
39Gigerenzer & Goldstein, 1996, 1999; Payne, Bettman, &
40Johnson, 1993; but see Newell, 2005, for a critique of this
41approach and suggestions of formal models of ecological
42rationality). Such heuristics simplify the decision algorithm,
43by replacing the compensatory processes – in which all the
44attributes are weighted into the decision – with a non-
45compensatory one, in which only a small subset of the attri-
46butes is taken into account (Dieckmann & Rieskamp, 2007;
47Gigerenzer & Goldstein, 1999; Tversky, 1969, 1972).
48Recent research has challenged the assumption that com-
49pensatory strategies are too complex and thus beyond daily
50decision-making ability. First, numerous studies in the domain
51of probabilistic inference with binary cues have shown that
52even when environments are designed to promote the use of
53TTB heuristic, a significant proportion of participants do not
54“take the best” (e.g., Bröder, 2000; Lee & Cummins, 2004;
55Newell & Shanks, 2003). Second, more recent experimental
56work has demonstrated that most participants make probabi-
57listic inferences based on multiple cues in a compensatory yet
58rapid and automatic manner (Glöckner & Betsch, 2008, 2012;
59Glöckner, Hilbig, & Jekel, 2014). Other research has
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60 manipulated time pressure, confirming the presence of com-
61 pensatory strategies with a 3-s response-deadline and, for
62 some participants, even for a strict deadline of 750 ms (Oh
63 et al., 2016).
64 A mechanistic account of such an automatic yet compen-
65 satory decision process was proposed by Glöckner and col-
66 leagues in the form of the PCS model (Glöckner et al., 2014).
67 PCS is a connectionist, accumulator-type model, that inte-
68 grates (using a parallel architecture) differences in weighted
69 evidence (ΔWA) between the alternatives and predicts slower
70 reaction times (RTs) for decisions with smaller ΔWA
71 (Glöckner & Betsch, 2008, 2012; see also Roe, Busemeyer,
72 & Townsend, 2001 for a Decision-Field-Theory model of
73 multi-attribute decisions).
74 In this paper we demonstrate an ability to make complex
75 decisions using compensatory, rapid, and automatic mecha-
76 nisms in a different domain: multi-attribute decision-making
77 based on numerical (non-binary) attributes. Such decisions
78 normatively require a weighted averaging computation, tradi-
79 tionally associated with analytical processes.Moreover, multi-
80 attribute decisions with non-binary attributes have received
81 less attention in recent research (see Russo & Dosher, 1983
82 and Tversky, 1969 for some older studies) and they differ from
83 binary cue decisions in a number of important aspects (prob-
84 lem-space is virtually infinite and precludes the use of simpli-
85 fying strategies, such as memorizing or counting). Therefore,
86 if rapid and compensatory (WADD) strategies can be deployed
87 in this domain, this would provide support for the impressive
88 power of the intuitive decision-maker.
89 Recent research has shown that an important precursor of
90 WADD – numerical averaging – can be estimated in a relative-
91 ly precise and yet automatic manner (Brezis, Bronfman,
92 Jacoby, Lavidor, & Usher, 2016; Brezis, Bronfman, &
93 Usher, 2015; Rusou, Zakay, & Usher, 2017). Here we set to
94 test whether this ability extends to weighted averaging, by
95 employing a job selection multi-attribute decision task.

96 Experiment

97 Participants were asked to take the role of a job interviewer
98 who chooses one of two candidates based on the candidates’
99 abilities on several attributes and their relative importance. We
100 varied (in blocks) the number of attributes (three/four/five),
101 and we presented a large set of decision problems with ran-
102 domized values (see Methods). This design allows us to con-
103 trast decision strategies within each participant using choices
104 and RTs. While the TTB heuristic predicts slower decisions in
105 cases there is a tie on the most important attribute, PCS (or
106 other accumulator models) predicts decision times that in-
107 crease with lower ΔWA. Another central question of interest
108 is whether the deployment of compensatory strategies results
109 in improved task performance.

110Method

111Participants

112Twenty-six students from Tel-Aviv University (14 females,
113age: 19–31, M=24.7) participated in the experiment, in ex-
114change for course credit and payment that was dependent on
115performance. On average, participants received 30 NIS (~7.5
116USD). The sample size was set at 26 with each subject tested
117in three tasks, allowing for 78 (26 × 3) classifications in total
118to be made (see Strategy Classifications section).

119Materials

120Each decision was presented in a table-format (see Table 1).
121Three jobs were presented, with three, four, and five attributes,
122respectively. Each job specified the attributes' importance (i.e.,
123weight; see Table 1). When the job had three attributes, the
124specified importance-weights were 3, 2, and 1 (i.e., the most
125important attribute was three times more important than the
126least important attribute), for the four-attribute job they were
1274, 3, 2, and 1, and for the five-attribute job 5, 4, 3, 2, and 1.
128The values the candidates received in each trial were generat-
129ed randomly, as random integers between 1 (poor) and 9 (ex-
130cellent; from a uniform distribution; if the resulting weighted
131average for the two candidates was the same, the ratings were
132generated anew).
133A time limit for providing an answer was imposed, in order
134to encourage participants to rely on their intuitive mind-set
135and not explicitly compute weighted averages (Horstmann,
136Hausmann, & Ryf, 2010). The time limit increased with the
137number of attributes that had to be considered to make sure
138that all the information can be encoded. The time limits were
1393 s for the 3-attributes, 4 s for the 4-attributes, and 5 s for the 5-
140attribute jobs. As we report below, however, the time con-
141straints did not affect the actual decision times.

142Procedure

143Participants completed 600 trials overall, with three
144blocks of 200 trials for each job (3, 4, or 5 attributes).
145On each trial, a choice problem (see Table 1) was pre-
146sented until the participant entered a decision by using
147the keyboard. Visual feedback (correct/incorrect) was
148given after each trial, based on the weighted averages.
149Feedback was also given on the number of correct trials
150the participant accumulated, which was translated to
151monetary reward at the end of the experiment. Once the
152time limit expired, the trial ended, and the visual feed-
153back, (“too slow,” was presented. The whole procedure
154took approximately 60 min (see Supplementary Material
155for details).
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156 Results

157 Group analyses

158 Accuracy

159 To test effects of difficulty and task practice (defined across
160 four chunks of 50-trial sub-blocks) on task accuracy, a
161 repeated-measures ANOVA was carried out, with number of
162 attributes (three/four/five) and sub-block as within-subject
163 factors. As shown in Fig. 1 (solid lines), there was a main
164 effect of difficulty (F(2,50)=37.39, p<.001). As the number
165 of attributes increased accuracy dropped from 90% for the
166 three attributes to 86% for four attributes and 84% for five
167 attributes. No main effect of sub-block emerged
168 (F(3,75)=1.16, p=.329), indicating that extensive learning is
169 not necessary. For each number of attributes, the task-
170 accuracy was higher than a bound obtained from an error-
171 less version of the TTB heurist ic (dashed lines),
172 F(1,25)=74.29, p<.001.

173 Reaction times

174 Mean RT and the average number of trials (out of 200) in
175 which the time limit was missed are given in Table 2.
176 A repeated-measures ANOVA, with number of attributes
177 (three, four, five) as within-subject factor, revealed no effect of
178 number of attributes, F(1.25, 31.23)=0.056, p=.865. Thus,
179 although the task's difficulty increased and more information
180 had to be considered, participants did not require more time.
181 The number of trials in which the time limit was missed was
182 only 0.6% of all trials and the average decision time was of
183 around 1.5 s (see also Glöckner & Betsch, 2008, for similar
184 results).
185 We also examined the correlation between RT and task
186 accuracy. For each participant, we calculated the correlations
187 between RT and accuracy, across all trials, separately for each
188 number of attributes. The resulting mean correlations were
189 negative, as predicted by the automatic WADD mechanism:
190 r = -0.199 for three attributes, r = -0.203 for four attributes and
191 r = -0.172 for five attributes. Interestingly, the negative

192correlations between accuracy and RT remained even after
193controlling for the trials’ difficulty: the partial correlation be-
194tween RTand accuracy remained negative: r = -0.102 for three
195attributes, r = -0.084 for four attributes, and r = -0.062 for five
196attributes. While these partial correlations are small, they are
197all significantly different from 0 (all p’s<.05, tested using a
198bootstrap procedure with 10,000 resamples) and in the same
199direction, suggesting that taking longer to decide reduces
200accuracy.

201Strategy classifications

202We next examined individual differences in decision strate-
203gies.We tested three potential strategies that participants could
204use when performing the task: the weighted average WADD,
205TTB, and the Equal Weights rule combined with the TTB
206heuristic (EQW-TTB). According to the EQW-TTB strategy,
207one chooses the alternative for which the non-weighted aver-
208age is highest (i.e., the subjects average the values but ignore
209the importance weights). In cases where the non-weighted
210average for both alternatives is the same, participants choose
211according to the TTB heuristic, thus its name – EQW-TTB.1

212We start using a simplified “trembling-hand” approach
213(Bröder, 2010), according to which the subject has a probabil-
214ity p to mistakenly report an alternative not predicted by the
215choice strategy. We use this approach in order to obtain an
216upper bound on the proportion of TTB use (we defer to the
217computational section, where we examine a more refined type
218of strategy-classifications allowing probabilistic errors and
219strategy mixtures).
220The classifications were done separately for three/four/five
221attributes to test whether increased difficulty leads to more
222reliance on non-normative strategies. To classify the partici-
223pants based on the three strategies – WADD, TTB, and EQW-
224TTB – we computed the probability of the data (200 choices)
225for each strategy and we selected the strategy that has the
226highest probability; see Supplementary Material for details
227of the classification procedure. The classification results are
228shown in Table 3 (see Table S1 in Supplementary Material for
229individual classifications and Tables S2, S3, and S4 for the
230normalized probabilities of the three strategies); 82% of the
231classifications (64 out of 78) are associated with normalized
232probability larger than .99, and 88% (69 out of 78) with a
233probability larger than .90.
234As shown in Table 3, the majority of classifications (46 out
235of 78 in total, ~59%) belong to the compensatory (normative)
236WADD strategy and another 8% (six in total) were a less op-
237timal but still compensatory EQW-TTB strategy. Only 29% of
238the classifications (23 in total) fell into the non-compensatory

1 We also tested a less restrictive Take-Two heuristics (Dieckmann &
Rieskamp, 2007), but none of the data sets were classified to this strategy
and therefore we do not include it in Table 3.

t1:1 Table 1 Example of a trial in which the job had four attributes, with
weights of 4, 3, 2, and 1. Here candidate A had the higher weighted
average (5.2 vs. 4.3 for candidate B) and so she should be selected for
the job, while candidate B should be selected according to TTB heuristic

t1:2 A B

t1:3 Intelligence – 4 3 3

t1:4 Work Ethic – 3 5 7

t1:5 Easy to Work With – 2 9 4

t1:6 Creativity – 1 7 2
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239 TTB category. The amount of WADD classifications did not
240 varywith the number of attributes. A summary of participants’
241 accuracy as a function of strategy is shown in Fig. S1 (see
242 Supplementary Material). We find that users of the WADD
243 strategy had higher accuracy than TTB users, t(67)=3.08,
244 p=.003. As reported in the Supplementary Material, this is
245 not due to a speed-accuracy tradeoff.

246 Attributes’ weights

247 Using logistic regression, we computed the subjective weights
248 each participant gave to each of the attributes. Figure 2 shows
249 these subjective weights for the three strategy subgroups (see
250 Fig. S2 in the Supplementary Material for the group weights).
251 These weights indicate that WADD users are better calibrated
252 with the objective weights, the results of the TTB users show a
253 strong overestimation of the most important attribute,
254 confirming their reliance on a single dimension. A repeated-
255 measures ANOVA on the attributes’ weights of users of the
256 TTB andWADD strategies revealed an interaction between the
257 strategy used and the attributes’ weights, for every number of
258 attributes – for three attributes: F(2,42)=21.36, p<.001, for
259 four attributes: F(3,63)=13.93, p<.001, and for five attributes:
260 F(4,92)=15.40, p<.001. The EQW-TTB users showed the flat-
261 test curves, consistent with the equality of weights character-
262 izing this strategy.

263Reaction times: strategies and correlation with accuracy

264The WADD and the TTB strategies differ in their predic-
265tions concerning RT (Glöckner & Betsch, 2008). While
266according to TTB the RT should depend on whether there
267is a tie on the most important dimension, according to
268WADD the RT should depend on the absolute difference
269in the alternatives' weighted averages (ΔWA). To test this
270prediction, we applied to the log-RT-data of each partici-
271pant (we used log-RT in order to normalize the otherwise
272skewed values in the RT-distribution that may involve
273outliers; see also Glöckner & Betsch, 2008) a multiple
274linear regression with two factors: (i) ΔWA, (ii) a binary
275predictor of a tie on the most important dimension (i.e.,
276the most important attribute; see Table 1 for an example
277on which the tie variable equals 1 and ΔWA=0.9). We
278compared the standardized regression coefficients for the
279participants who were classified as WADD users and those
280classified as TTB users. As predicted, the difficulty coef-
281ficient was stronger for the WADD users (M = -0.43, SD =
2820.12) compared with the TTB users (M = -0.32, SD =
2830.12; t(67)=3.56, p<.001; Fig. 3, left), while the tie coef-
284ficient was higher in magnitude for the TTB users (M =
2850.06, SD = 0.14) compared with the WADD users (M = -
2860.02, SD = 0.09; t(31.8)=2.31, p=.027; Fig. 3, right).
287Unlike for the TTB users, for the WADD users the tie-
288coefficient was not significantly different from zero.

289Computational-models of strategy choice:
290beyond the trembling hand

291While the trembling-hand classifications appear to have some
292validity, as they are supported by differences in subjective
293weights (Fig. 2) and in RTs (Fig. 3), there are a number of
294reasons to suspect that these classifications are a simplification
295and that the participants vary in a more continual, non-dichot-
296omous, manner. First, the weights are subject to individual
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Fig. 1 Task-accuracy. Solid-lines: accuracy as a function of the number of attributes and of trial-number (in 50-trial blocks). Dashed lines: theoretical
performance of TTB heuristic. Error bars represent within-subject standard errors (Cousineau, 2005)

t2:1 Table 2 Mean reaction time (RT) (standard deviations in parentheses)
and average number of trials in which the time limit was missed (out of
200), for each number of attributes

t2:2 Three attributes Four attributes Five attributes

t2:3 Mean-RT (SD) 1577 (512) 1593 (501) 1565 (519)

t2:4 Number of trials
exceeding deadline

0.85 1.27 1.50
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298 rather than dichotomous strategies. Second, even for partici-
299 pants classified as TTB, we obtain aWADD component in the
300 RT-regression (Fig. 3). Finally, as recently discussed byHilbig
301 and Moshagen (2014), the trembling-hand type of error is not
302 well matched with the natural assumptions of aWADDmodel,
303 according to which choice-problems with lowerΔWA are ex-
304 pected to have more errors. In order to extend the strategy
305 classification to address these issues, we examined a number
306 of computational models and carried out model-comparison
307 using the aggregate Akaike Information Criterion (AIC;
308 Akaike, 1973). As there are only six EQW classifications in
309 our data (out of 78), we discard these and focus on contrasting
310 between WADD and TTB.
311 Three new models were examined: (i) A probabilistic
312 model, which in each trial deploys WADD with probability
313 p and TTB with probability (1-p). While this model as-
314 sumes a trembling-hand error (as before), p provides a
315 continuous measure of the degree of WADD use. (ii) A
316 model that is like (i) with the exception that the WADD
317 errors are not due to a trembling hand assumption, but
318 rather are assumed to reflect Gaussian fluctuations in the
319 WADD estimation (with zero mean and whose SD is a new
320 model parameter); we still have a trembling hand parame-
321 ter for errors of the TTB heuristic (see Lee & Newell, 2011;

322Scheibehenne, Rieskamp, & Wagenmakers, 2013; for sim-
323ilar approaches to mixture models in decision-making).
324(iii) A fully compensatory model, whose weights are char-
325acterized by a single parameter, α, based on normalized
326Wα

i, (where Wi are the normative weights (e.g., 4,3,2,1);
327note that α>1 results in an over-weighting of the high
328weights and under-weighting of the low weights, as in
329some version of the PCS; Glöckner et al., 2014). For each
330model, the parameters were fitted based on the probability
331of the data given the model (see Supplementary Material).
332The results are summarized at the group level in Table 4
333(see Supplementary Material for individual participants’
334classifications).
335We observe a clear picture. The single-strategy trembling-
336hand models provide the worst fit, followed by the compen-
337satory α-weight model, and then by the probabilistic strategy
338mixtureWADD/TTBmodel. The best model by far is the mix-
339ture model with GaussianWADD errors. Importantly, the pro-
340portion of WADD use in this model shows high consistency
341among the participants across the number of attributes (see
342Suppl.). Furthermore, we also find high correlations between
343the proportion of WADD use in the probabilistic model of
344individual subjects and subjective α-weights (all |r|s >.75;
345p<.001; see Supplementary Material).

Fig. 2 Subjective weights for jobs with three (left), four (middle), and five (right) attributes, classified by strategy used. Error bars correspond to standard
errors

-0.100
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ΔWA                           Tie\No Tie
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Fig. 3 Averaged standardized regression coefficients of: left (ΔWA –
difficulty) – for graphic purposes we plotted the negatives of the
difficulty-coefficients, and right (Tie%No Tie) – whether there was a tie
on the most important dimension, separately for participants classified
as users ofWADD and TTB strategies. Error bars represent standard errors

t3:1 Table 3 Number of participants classified as users of each one of the
three strategies (WADD, TTB, EQW-TTB) as a function of the number of
attributes

t3:2 Strategy Number of attributes

t3:3 Three Four Five

t3:4 WADD 15 14 17

t3:5 TTB 7 9 7

t3:6 EQW-TTB 3 2 1

t3:7 WADD/TTB* 1 1 1

WADD/TTB* represents cases in which these two strategies had equal
probabilities
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346 Discussion

347 In this study, we asked whether participants can rapidly
348 carry out a complex weighted-averaging task. We used a
349 job-interview framing and provided the participants with
350 accuracy feedback. The number of attributes varied from
351 three to five, a range exceeding the capacity of online
352 analytical computations for speedy decisions. The results
353 were surprising. First, the decision times (Mean-RT ~1.5
354 s, which includes the visual encoding and the motor re-
355 sponse) were much faster than the maximum allotted time,
356 indicating reliance on intuitive gist-perceptions or heuris-
357 tic rules (Saunders & Buehner, 2013). Second, despite the
358 short RTs, the accuracy exceeded the bound that could be
359 obtained on the basis of (error-less) non-compensatory
360 strategies, such as TTB. Third, we found a negative cor-
361 relation between accuracy and decision-time, consistent
362 with evidence integration models, such as those based
363 on the Decision-Field-Theory (Roe et al., 2001), the
364 drift-diffusion model (Krajbich, Armel, & Rangel, 2010)
365 or PCS (Glöckner et al., 2014). These results are consis-
366 tent with those obtained by Glöckner and Betsch (2008,
367 2012) in a multi-cue probabilistic inference task, and with
368 their proposal of an automatic compensatory mechanism.
369 We examined two simplifying heuristics: One that (TTB) is
370 non-compensatory, while the other (EQW-TTB) neglects the
371 importance of the decision attributes. While the group-level
372 performance exceeded the accuracy bound achievable from an
373 error-free TTB heuristic, at the individual participants' level we
374 found a certain amount of variability. The simplified
375 (dichotomous) classification showed that, while most partici-
376 pants relied on compensatory strategies, about 30% relied on
377 the TTB heuristic. These participants were characterized by a
378 peaked decision-weight pattern that overestimates the most
379 important attribute (Fig. 2), by reduced task accuracy (without
380 a Speed-Accuracy trade-off). TTB-users were also slower in
381 trials with a tie on the most important dimension (Fig. 3, right
382 panel). Unlike TTB users, most participants appeared to de-
383 ploy a compensatory strategy that is likely to involve a noisy
384 estimation of the weighted average (WADD; see also Glöckner
385 & Betsch, 2008). The more refined (mixture) classifications
386 indicate a continuum for participants' probability of deploying

387a compensatory WADD strategy in each trial, ranging from a
388minimum of .23 to a maximum of 1.
389We suggest that the presence of variability in decision strat-
390egies across the group reflects two potential ways of dealing
391with time pressure and information overload in decision mak-
392ing. The non-compensatory TTB heuristic is a lexicographic
393strategy that applies rules sequentially and neglects much of
394the information. Automatic and compensatory (WADD) strat-
395egies offer an alternative way to deal with information over-
396load. Instead of "calculating" the weighted average, these par-
397ticipants appear to carry out an "approximate" (noisy), but
398holistic estimation of it, consistent with an affective/intuitive
399decision mode (Kahneman, 2003). In particular, intuitive/
400holistic averaging is consistent with Kahneman's suggestion
401that intuitive processes are holistic in nature (see also
402Glöckner and Betsch, 2008) and are at the interface of percep-
403tion and cognition (Kahneman, 2003). This suggestion was
404also supported by recent empirical results showing dissocia-
405tions between intuitive and analytical averaging based on load
406manipulations (Rusou et al., 2017).
407A potential mechanism to perform noisy weighted averag-
408ing estimations is Glöckner and colleagues' PCS model
409(Glöckner, Hilbig & Jekel, 2014). According to this model,
410the weighted average is computed in a neural network, which
411multiplies a values-vector with an importance-weights matrix.
412As our task involves some practice, the assumption that the
413decision mechanism includes learned weights (reflecting the
414attributes' importance) is not implausible.2 Alternatively, the
415mechanism of weighted averaging could be mediated by a
416population code model (Brezis et al., 2016; Brezis et al.,
4172015), which operates using numerosity detectors (Dehaene,
418Molko, Cohen & Wilson, 2004; Piazza, Izard, Pinel, Le
419Bihan, & Dehaene, 2004). Future research is needed to probe

2 This does not require to endorse all the assumptions of the PCSmodel, such
as RT being based on convergence to asymptotic activation; an alternative
assumption is an integration to boundary. The property of PCS that is impor-
tant to our results is the parallel integration of values from all attributes. A
somewhat similar approach is the accumulator model proposed by Lee and
Cummins (2004), according to which the integrated values are subject to a
response-boundary. This model, however, assumes that the values are integrat-
ed sequentially (in order of importance) and accounts for TTB use for low
boundary values. Since in our data TTB users were not faster than WADD
users, we support the parallel rather than the sequential integration of values.

t4:1 Table 4 Akaike Information Criterion (AIC) tablea for models of strategy choice

t4:2 Model Pure TTB Pure WADD Binary Mixture Model
(TTB + WADD)

Gaussian mixture model
(TTB + WADD)

α-weight model

t4:3 Three attributes 3,941 3,135 2,566 2,283 2,652

t4:4 Four attributes 4,413 3,914 3,028 2,681 3,241

t4:5 Five attributes 4,800 4,333 3,510 3,099 3,672

Note that AIC differences higher than 10 are considered decisive evidence (bold values indicate the best fits)

a The same conclusions are obtained with Bayesian Information Criterion (see Tables S8-S10 in Supplementary Material)
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420 the nature of the individual differences underlying the reliance
421 on sequential and holistic processing in multi-attribute
422 decisions.
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