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SUMMARY

People’s assessments of the state of the world often
deviate systematically from the information available
to them [1]. Such biases can originate from people’s
own decisions: committing to a categorical proposi-
tion, or a course of action, biases subsequent judg-
ment and decision-making. This phenomenon, called
confirmation bias [2], has been explained as sup-
pression of post-decisional dissonance [3, 4]. Here,
we provide insights into the underlying mechanism.
It is commonly held that decisions result from the
accumulation of samples of evidence informing
about the state of the world [5–8]. We hypothesized
that choices bias the accumulation process by selec-
tively altering the weighting (gain) of subsequent ev-
idence, akin to selective attention. We developed a
novel psychophysical task to test this idea. Partici-
pants viewed two successive random dot motion
stimuli and made two motion-direction judgments:
a categorical discrimination after the first stimulus
and a continuous estimation of the overall direction
across both stimuli after the second stimulus. Partic-
ipants’ sensitivity for the second stimulus was selec-
tively enhanced when that stimulus was consistent
with the initial choice (compared to both, first stimuli
and choice-inconsistent second stimuli). Amodel en-
tailing choice-dependent selective gain modulation
explained this effect better than several alternative
mechanisms. Choice-dependent gain modulation
was also established in another task entailing aver-
aging of numerical values instead of motion direc-
tions. We conclude that intermittent choices direct
selective attention during the evaluation of subse-
quent evidence, possibly due to decision-related
feedback in the brain [9]. Our results point to a recur-
rent interplay between decision-making and selec-
tive attention.
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Brain regions implicated in evidence accumulation, decision-

making, and attentional control maintain their activity states

over long timescales and send feedback to regions encoding

the incoming evidence [9–11]. We thus reasoned that the consis-

tency of new evidence with a previous choice might affect the

decision-maker’s sensitivity to the new evidence. Specifically,

we hypothesized that a categorical choice induces a multiplica-

tive gain modulation of new evidence, selectively boosting the

sensitivity to consistent evidence. Such a selective gain modula-

tion is commonly observed when explicit cues direct feature-

based attention [12–14].

Previous studies have identified gain modulations in evidence

accumulation by presenting multiple samples of evidence in suc-

cession andaskingparticipants to report a binary choicebasedon

the mean evidence at the end of the sequence [15–18]. Those

studies did not assess the effect of intermittent choices in biasing

the accumulation process. Other work has probed the interaction

between categorical choices and continuous estimations by

combining discrimination and estimation judgments based on

thesameevidencepresentedbefore [19–22].Here, choice-related

estimation biases may be a by-product of the bottom-up sensory

decoding (i.e., weighting of sensory neurons) being tailored to the

discrimination judgment [19] (but see [20, 22]).Whether a categor-

ical choice occurring during a protracted stream of decision-rele-

vant evidence selectively modulates the gain of evidence subse-

quent to that choice has remained unknown. We addressed this

question by combining the above two approaches.

Our task required participants to report a continuous estimate

of the overall motion direction across two successively pre-

sented random dot motion stimuli. In the majority of trials, partic-

ipants were also prompted to report a binary categorical judg-

ment after the first stimulus (see Figure 1A; STAR Methods):

discriminating whether its direction was clockwise (CW) or

counter-clockwise (CCW)with respect to a reference line. Impor-

tantly, the stimulus following the intermittent choice contributed

only to the final estimation but not to the discrimination judg-

ment. This psychophysical protocol enabled us to isolate the

impact of an intermittent categorical choice on decision-makers’

sensitivity to subsequent evidence for continuous estimation.
thors. Published by Elsevier Ltd.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Perceptual Task with Discrimination and Estimation Judgments

(A) Schematic sequence of events within a trial. A first dot motion stimulus was shown on all trials for 750 ms and then paused. On two-thirds of trials, an auditory

prompt instructed a direction discrimination judgment (CW or CCW with respect to reference line, at 45� in this example trial) as shown here. A third of trials, not

analyzed here, did not require a choice. After half of the discrimination judgments, feedback was given, and the trial terminated. After the other half, a second

motion stimulus was presented (equal coherence as first but independent direction), and participants were asked to estimate the mean direction of both stimuli.

(B) Proportion of CW choices as a function of stimulus direction, along with psychometric function fit.

(C) Top: Continuous estimations as function of mean direction across both stimuli. Bottom: Distribution of mean directions across trials. Black, data; blue,

predictions generated from best-fitting parameters of Choice-based Selective Gain model; data points, group mean; error bars, SEM; gray, predictions by

Extended Conditioned Perception model under several levels of output noise for average subject. Stimulus directions and estimations were always expressed as

the angular distance from the reference, the position of which varied from trial to trial (0� equals reference).

See also STAR Methods, Figure S1, and Video S1.
Participants made use of the stimulus information for both

judgments: the fraction of CW choices increased as a function

of the direction of the first stimulus from the reference (Figures

1B and S1A), and continuous estimations scaled with the

mean stimulus direction across both intervals (Figures 1C, top,

S1A, and S1B). The estimations were generally attracted toward

the reference (Figure 1C, top, compare black and gray dashed

line), in line with the non-uniform distribution of the mean stim-

ulus directions (Figure 1C, bottom; STAR Methods).

Post-decisional selective gain modulation predicts that evi-

dence subsequent to a choice produces larger (smaller) devia-

tions in the overall estimations when these new directions are

consistent (inconsistent) with that choice. We used two comple-

mentary approaches to test this prediction. The first approach

modeled the overall estimations as a noisy weighted average

of the directional evidence in both stimulus intervals (see STAR

Methods). The weight for each stimulus quantified its gain in

the estimation process. Trials with second stimulus directions

consistent or inconsistent with the choice were modeled sepa-

rately. This model, referred to as the Choice-based Selective
Gain model in the following (STAR Methods), provided a good

account of observers’ estimation reports (Figures 1C and 2).

Smaller values of Bayes information criterion (BIC) within the

majority of individual participants indicated that Choice-based

Selective Gain explained the data better than a Baseline

model without choice-dependent change in evidence weighting

(Figure 2A; STAR Methods). Further, choice-consistent second

stimuli received larger weight than choice-inconsistent second

stimuli (Figure 2B; see Figure S2A for noise estimates). This

weight difference was not evident for the first stimuli (Figure 2C).

Indeed, weights were increased compared to the first stimulus

for choice-consistent second stimuli and reduced for choice-

inconsistent stimuli (Figure 2C). In sum, observers prioritized

choice-consistent evidence after the categorical choice, in a

way resembling feature-based attention.

The second, complementary approach corroborated this

conclusion (Figures 2E and 2F). We developed a model-free

measure based on the receiver-operating characteristic (ROC)

that quantified the sensitivity to the second stimulus. ROC

indices measured the extent to which single-trial estimations
Current Biology 28, 3128–3135, October 8, 2018 3129
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Figure 2. Sensitivity to Second Stimulus Dependent on Consistency with Initial Choice

(A) Comparison between Choice-based Selective Gain and alternative models. Negative values are evidence for Choice-based Selective Gain. Gray, jDBICj > 10,

indicating very strong evidence for model with smaller BIC (STAR Methods).

(B) Model weights for second stimulus in Consistent and Inconsistent conditions. Error bars, 66% bootstrap confidence intervals; black cross, mean and SEM;

dashed line, Consistent = Inconsistent; data points above dashed line, Consistent > Inconsistent.

(C) Mean model weights for both stimulus intervals in Consistent and Inconsistent. Error bars, SEM; F-statistic, interaction between interval and condition (2-way

ANOVA).

(D) Difference between effect strength (difference: Consistent-Inconsistent) for second stimulus, in weights obtained from Choice-based Selective Gain and

Stimulus-based Selective Gain models.

(E) ROC indices for second Consistent and Inconsistent stimulus, predicted by simulations of alternative models as indicated above (individual trial distributions

and best fitting model parameters).

(F) As (D) but for measured data. Data points in all but (C) are participants, with identical color scheme. p values, permutation tests (100,000 permutations)

comparing weights or ROC indices between Consistent and Inconsistent across participants (n= 10).

See also Figure S2.
separated between second stimuli of nearby directions (i.e.,

10� versus 20�, or �10� versus�20�; see STAR Methods for de-

tails). Simulations confirmed that the difference between these

ROC indices, computed separately for choice-consistent and

choice-inconsistent stimuli, captured the choice-dependent

gain modulation described by the Choice-based Selective Gain

model (Figures 2E, left, and S2B). Critically, for the actual data,

ROC indices were larger for the Consistent than Inconsistent

condition (Figure 2F). In sum, the model-free analysis also re-

vealed a selective modulation of sensitivity to additional evi-

dence, in line with feature-based attention.

This consistency-dependent change in sensitivity for subse-

quent evidence, as quantified by the ROC indices, could not

be explained by other mechanisms lacking multiplicative gain

modulation. In a first alternative model, biases shared among

choice and subsequent estimations resulted from slow fluctua-

tions in noise corrupting both judgments, without any genuine

effect of the choice. This so-called Correlated Noise model

(STARMethods) provided a worse account of estimation reports

(in 9 out of 10) than Choice-based Selective Gain (Figure 2A) and
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could not produce the consistency-dependent ROC effect

neither for the individually fitted parameters (Figure 2E, middle)

nor for any combination of parameters that we simulated

(Figure S2B).

In a second alternative model, the initial choice shifted the in-

ternal representation of the evidence toward the chosen cate-

gory in an additive fashion. This Shift model (STAR Methods)

also produced systematic estimation biases and accounted

well for the overall estimation behavior (Figure 2A). The shift

parameter was larger than zero (p = 0.038, two-sided permuta-

tion test), indicating that participants may have shifted their de-

cision variable in the direction of the chosen category. The shift

parameter was even significant (p = 0.05, two-sided permutation

test) for an Extended Choice-based Selective Gainmodel, which

contained an extra free parameter for the shift (all other parame-

ters constrained from the Choice-based Selective Gain model

fits, STAR Methods; Figure S2F). But critically, the Shift model

also could not capture the specific behavioral feature that was

diagnostic of selective gain modulation: the consistency-depen-

dent sensitivity change (Figure 2E, right) as was evident in the



data (Figure S2B). It is possible that an additive shift andmultipli-

cative gainmodulation jointly governed choice-induced biases in

the overall estimation behavior (see Discussion).

Taken together, the analyses presented so far indicate that

consistency-dependent gain modulation was necessary to ac-

count for certain features of participants’ behavior. Further ana-

lyses indicated that this gain modulation was, in fact, induced by

the intermittent choice (i.e., participants’ categorization of the

first stimulus) rather than by the first stimulus itself (Figures

S2C and S2D) or by the disparity between first and second stim-

ulus (Figure S2E). We fitted a variant of the Selective Gain model,

in which the consistency of the second stimulus was defined

based on the first physical stimulus direction, rather the partici-

pants’ choice (STAR Methods). This so-called Stimulus-based

Selective Gain model provided a worse account of the data

than the Choice-based Selective Gain (Figure 2A). Critically,

the selective gain effect was larger for the parameters estimated

by Choice-based Selective Gain model (Figure 2D). In sum, the

selective modulation in sensitivity was linked to the participants’

categorical choice.

A recent Bayesian account of post-decision biases has pro-

posed that perceptual inference is ‘‘conditioned’’ on choice in or-

der to ensure consistency between binary discrimination and

continuous estimation judgments of the same stimulus [20, 22].

This account is framed at a different level of description

(Bayesian inference), but the notion of a choice-dependent prior

for estimation is similar to our idea of a choice-induced top-down

modulation. Could choice-based conditioning of internal repre-

sentations explain the present results? Our task and analyses

isolated the impact of binary choice on the processing of subse-

quent evidence for continuous estimation, requiring additional

assumptions about the conditioning operation. If only the repre-

sentation of the first stimulus was conditioned, this would yield

an offset of the representation of the second stimulus—equiva-

lent to the Shift model considered above, which did not account

consistency-effect on ROC indices observed in the data (Figures

2E, right, and S2B). If also the representation of the second stim-

ulus was conditioned on the choice (referred to as Extended

Conditioned Perception, see STAR Methods), this reproduced

the ROC-effect (Figure S2B, right). However, the later model

did not account well for the relationship between overall estima-

tions and mean stimulus direction (gray lines in Figure 1C; for

further comparison between Extended Conditioned Perception

and Choice-based Selective Gain, see Figures S2G and S2H).

Future work should develop biologically plausible and dynamic

approximations of choice-based conditioning operation in order

to unravel possible links to choice-dependent gain modulation.

The post-decisional biasing effect in the visual perceptual task

resembled well-documented effects in reasoning [2] and prefer-

ence reports [4, 23]. It is unknown, however, whether the latter

high-level post-decision biases are mediated by selective gain

modulations akin to attention. To test for this, we re-analyzed

and modeled previously published [24] data from a numerical

averaging task that also required the combination of evidence

presented before and after a choice into an overall estimation

(Figure 3A; see STAR Methods for task and analysis details).

Again, the weights were larger on Consistent than Inconsistent

conditions, specifically for evidence after choice (Figure 3B)

again with an interaction between interval and consistency
(Figure S3D). Likewise, the ROC indices were also larger for

Consistent than Inconsistent conditions (Figure 3C). In sum,

the choice-induced biasing mechanism we uncovered for

perceptual decision-making, including the selective gain modu-

lation, also accounts for post-decision biases in higher-level de-

cisions based on numerical evidence.

DISCUSSION

Decision-makers are often systematically influenced by their

own choices: committing to a categorical hypothesis or

choosing a course of action biases the subsequent evaluation

of the decision-relevant evidence [2, 4]. The mechanisms

underlying such post-decisional confirmation biases have so

far remained unknown. Here, we have shown that choices selec-

tively increased the gain of subsequent evidence that was

consistent with that choice, for perceptual as well as numerical

decisions. A selective modulation of the gain of sensory

responses is commonly observed during attention to certain

stimulus features [12–14]. In sum, our results illuminate the link-

age between decision-making and attention—two capacities

commonly studied in isolation but interacting in real-life

behavior. Our findings indicate that an agent’s decision acts

like a cue for selective attention, biasing subsequent decision

processing.

Evidence inconsistent with an initial choice may induce post-

decisional dissonance, possibly related to conflict between

competing cognitive states or motor responses [3, 25]. Previous

work has shown that such conflict boosts top-down control,

increasing task performance and response caution on subse-

quent trials [26, 27]. But this line of work has not associated con-

flict with subsequent decision biases. In particular, it has not

shown that conflict induces selective modulations of new infor-

mation that is consistent with respect to a previous choice.

We have recently established that sensitivity for new informa-

tion is generally reduced after an overt choice, compared to no

overt choice [24]. To this end, we assessed a non-selective

reduction in sensitivity for any post-decision evidence. Our cur-

rent work goes beyond this by uncovering a selective mecha-

nism of confirmation bias: preferentially sampling the evidence

that confirms one’s prior belief. This effect indicates a more

refined mechanism than the non-selective reduction in overall

sensitivity due to an overt choice. Identifying this effect was af-

forded by an improved modeling approach (see STAR Methods)

combined with a model-free behavioral readout of selective gain

modulation (ROC analysis), both yielding consistent results (Fig-

ure 3D). It is conceivable that a non-selective gain reduction due

to overt choice (possibly reflecting reduced arousal and/or

cortical attractor dynamics [24]) and selective attention toward

choice-consistent evidence conspire to shape overall estimation

behavior.

Our analysis of the perceptual task also revealed, in some of

the participants, an additive shift in the direction of the chosen

category, on top of the gain modulation. This additive shift may

reflect previously identified choice-induced biases [19]. This

additive shift could not, however, account for the consistency-

dependent change in sensitivity (Figure 2E), which we found

in the data (Figure 2F). The co-existence of additive and multipli-

cative effects may relate to the observation that common
Current Biology 28, 3128–3135, October 8, 2018 3131
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Figure 3. Numerical Task and Sensitivity for Choice-Consistent versus Choice-Inconsistent Information

(A) Schematic sequence of events within a trial entailing intermittent binary choice. After the first sequence of eight numbers, participants discriminated the

mean as larger or smaller than 50 (a quarter of trials, not analyzed here, did not require a choice; see STARMethods and [24]). Following the discrimination report,

the trial terminated with feedback (two-thirds of trials), or a second sequence of eight numbers was presented (mean independent from that of first interval).

Participants were then asked to report the mean of the whole number sequence.

(B and C) Model-based (B) and model-free (C) measures of consistency-dependent sensitivity modulation (as Figures 2B and 2F).

(D) Correlation between consistency effect in model-based and model-free analyses across participants from both tasks. Effect strength is Consistent-Incon-

sistent difference in model weights or ROC. Data points, participants. p values in (B) and (C) from permutation tests across participants (100,000 permutations;

n = 21). See also Figure S3.
manipulations of selective attention produce effects on both

sensitivity and decision criteria, which are dissociable at behav-

ioral and neural levels [28, 29]. Our present experimental manip-

ulation does not allow for distinguishing between an additive

baseline shift in the sensory response and a shift of the starting

point of the decision variable accumulating the sensory

response. Future experiments could manipulate the duration of

the second evidence to dissociate these two scenarios.

Our work contributes to recent progress in the understanding

of history-dependent biases in perceptual choice [30–40]. One
3132 Current Biology 28, 3128–3135, October 8, 2018
class of mechanism contributing to such biases is stimulus-se-

lective adaptation, which can cause repulsion [36] or attraction

[41–44], possibly owing to adaptation dynamics at different pro-

cessing levels. Low-level adaptation after prolonged stimulus

exposure as in our task (Figure 1A) commonly produces repul-

sive effects [36], due to suppressing sensory cortical responses

[45, 46]. This is inconsistent with our results because it predicts

stronger sensitivity loss for congruent than incongruent stimuli.

Higher-level adaptation mechanisms can cause attraction,

especially in the face of ambiguous evidence [41–43], and has



been linked to gain modulation induced by the stimulus

sequence [44]. We found that the consistency-dependent gain

modulation was more strongly tied to observers’ choices than

the physical stimuli, implying a higher-level source. This, com-

bined with the multiplicative nature of the effect, naturally links

it to feature-based attention. Whether a local adaptation mech-

anism with such functional characteristics exists remains to be

tested.

History biases in perceptual choice tasks requiring categorical

judgments have specifically been linked to the history of previous

choices [32, 36, 37, 39, 47] or choice outcomes [33, 48]. While

these across-trial biases are idiosyncratic [33, 37], the predom-

inant tendency is to repeat choices more often than expected

by chance [32, 36, 37, 39], in line with the current choice-consis-

tency bias established here within a single protracted decision

process. Recent work on across-trial history biases in categori-

cal choice points to a similar attentional mechanism giving rise to

choice-repetition biases across trials [49].

The accumulation of fluctuating sensory evidence toward bi-

nary choices is well characterized at a neurophysiological level

[6, 8, 50, 51]. Theoretical work points to an analogous mecha-

nism underlying continuous decisions [7]. While less is known

about continuous decisions based on two successive evidence

streams, it is tempting to speculate that the selective re-weight-

ing effect results from top-down feedback from cortical accumu-

lator regions to regions that encode the evidence [9–11, 52].

Such feedback interactions might alter the decision-maker’s

interpretation of incoming information by the evolving belief state

[53, 54].

Our results have broader implications. First, insight into the

computational mechanisms producing confirmation biases has

considerable ecological value because these biases are perva-

sive in daily life, shaping human judgment in cases of critical sig-

nificance (e.g., scientific hypothesis testing) [2]. Second, our

work sets the stage for probing into the neural mechanisms of

confirmation biases in humans and animal models. Previous

work into confirmation bias has focused on high-level judgment

and reasoning [2], the neural bases of which remain elusive. By

contrast, neuroscience has accumulated substantial knowledge

about the neural signals that encode the sensory evidence and

evolving decision about visual motion [8, 55]. The modulation

of visual motion signals by attention is also well characterized

[12]. Our current findings establish an analogous biasing mech-

anism in both domains—high-level judgment and perceptual de-

cisions—along with an effective behavioral readout and compu-

tational signature that constrains for the candidate neural

mechanisms.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Perceptual task

B Numerical task
B Modeling discrimination judgments

B Modeling estimation reports

B Model-free analysis of estimation reports

B Simulated estimations from the models

d QUANTIFICATION AND STATISTICAL ANALYSIS

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Informaiton includes three figures and one video and can be

found with this article online at https://doi.org/10.1016/j.cub.2018.07.052.

ACKNOWLEDGMENTS

We thank Ana Vojvodic for help with data collection and Zohar Bronfman and

Noam Brezis for continued discussion and helpful feedback on the manu-

script. This research was supported by grants from the German Research

Foundation (DO 1240/2-1, DO 1240/3-1, and SFB 936/A7 to T.H.D.), the

German Academic Exchange Service (to A.E.U.), and a Marie Curie Individual

Fellowship (to K.T.). We acknowledge computing resources provided by NWO

Physical Sciences.

AUTHOR CONTRIBUTIONS

T.H.D., K.T., and M.U. formulated the idea for the study and designed the

experiment. A.E.U., T.H.D., and M.U. specified the design for the perceptual

tasks. A.E.U. programmed the task and collected data for the perceptual

task. B.C.T., A.E.U., and K.T. analyzed data. T.H.D., M.U., and K.T. supervised

the study. B.C.T., A.E.U., and T.H.D. wrote the paper. All authors revised and

approved the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 9, 2018

Revised: June 6, 2018

Accepted: July 19, 2018

Published: September 13, 2018

REFERENCES

1. Tversky, A., and Kahneman, D. (1974). Judgment under Uncertainty:

Heuristics and Biases. Science 185, 1124–1131.

2. Nickerson, R.S. (1998). Confirmation bias: A ubiquitous phenomenon in

many guises. Rev. Gen. Psychol. 2, 175–220.

3. Festinger, L. (1957). A theory of cognitive dissonance (Stanford: Stanford

University Press).

4. Brehm, J.W. (1956). Postdecision changes in the desirability of alterna-

tives. J. Abnorm. Psychol. 52, 384–389.

5. Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making.

Annu. Rev. Neurosci. 30, 535–574.

6. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J.D. (2006).

The physics of optimal decision making: a formal analysis of models of

performance in two-alternative forced-choice tasks. Psychol. Rev. 113,

700–765.

7. Liu, F., and Wang, X.-J. (2008). A common cortical circuit mechanism

for perceptual categorical discrimination and veridical judgment. PLoS

Comput. Biol. 4, e1000253.

8. Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. Neuron

60, 215–234.

9. Wimmer, K., Compte, A., Roxin, A., Peixoto, D., Renart, A., and de la

Rocha, J. (2015). Sensory integration dynamics in a hierarchical network

explains choice probabilities in cortical area MT. Nat. Commun. 6, 6177.
Current Biology 28, 3128–3135, October 8, 2018 3133

https://doi.org/10.1016/j.cub.2018.07.052
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref1
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref1
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref2
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref2
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref3
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref3
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref4
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref4
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref5
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref5
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref6
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref6
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref6
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref6
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref7
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref7
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref7
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref8
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref8
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref9
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref9
http://refhub.elsevier.com/S0960-9822(18)30982-5/sref9


10. Nienborg, H., and Cumming, B.G. (2009). Decision-related activity in sen-

sory neurons reflects more than a neuron’s causal effect. Nature 459,

89–92.

11. Siegel, M., Buschman, T.J., and Miller, E.K. (2015). Cortical information

flow during flexible sensorimotor decisions. Science 348, 1352–1355.

12. Maunsell, J.H.R., and Treue, S. (2006). Feature-based attention in visual

cortex. Trends Neurosci. 29, 317–322.

13. Reynolds, J.H., and Heeger, D.J. (2009). The normalizationmodel of atten-

tion. Neuron 61, 168–185.

14. Herrmann, K., Heeger, D.J., and Carrasco, M. (2012). Feature-based

attention enhances performance by increasing response gain. Vision

Res. 74, 10–20.

15. Tsetsos, K., Chater, N., and Usher, M. (2012). Salience driven value inte-

gration explains decision biases and preference reversal. Proc. Natl.

Acad. Sci. USA 109, 9659–9664.

16. Tsetsos, K., Moran, R., Moreland, J., Chater, N., Usher, M., and

Summerfield, C. (2016). Economic irrationality is optimal during noisy de-

cision making. Proc. Natl. Acad. Sci. USA 113, 3102–3107.

17. Drugowitsch, J., Wyart, V., Devauchelle, A.-D., and Koechlin, E. (2016).

Computational Precision of Mental Inference as Critical Source of

Human Choice Suboptimality. Neuron 92, 1398–1411.

18. Wyart, V., de Gardelle, V., Scholl, J., and Summerfield, C. (2012). Rhythmic

fluctuations in evidence accumulation during decision making in the

human brain. Neuron 76, 847–858.

19. Jazayeri, M., and Movshon, J.A. (2007). A new perceptual illusion reveals

mechanisms of sensory decoding. Nature 446, 912–915.

20. Stocker, A.A., and Simoncelli, E.P. (2007). A Bayesian Model of

Conditioned Perception. Adv. Neural Inf. Process. Syst. 2007, 1409–1416.

21. Zamboni, E., Ledgeway, T., McGraw, P.V., and Schluppeck, D. (2016). Do

perceptual biases emerge early or late in visual processing? Decision-

biases in motion perception. Proc. Biol. Sci. 283, 20160263.

22. Luu, L., and Stocker, A.A. (2018). Post-decision biases reveal a self-con-

sistency principle in perceptual inference. eLife 7, e33334.

23. Chen, M.K., and Risen, J.L. (2010). How choice affects and reflects pref-

erences: revisiting the free-choice paradigm. J. Pers. Soc. Psychol. 99,

573–594.

24. Bronfman, Z.Z., Brezis, N., Moran, R., Tsetsos, K., Donner, T., and Usher,

M. (2015). Decisions reduce sensitivity to subsequent information. Proc.

Biol. Sci. 282, 20150228.

25. van Veen, V., Krug, M.K., Schooler, J.W., and Carter, C.S. (2009). Neural

activity predicts attitude change in cognitive dissonance. Nat. Neurosci.

12, 1469–1474.

26. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., and Cohen, J.D.

(2001). Conflict monitoring and cognitive control. Psychol. Rev. 108,

624–652.

27. Miller, E.K., and Cohen, J.D. (2001). An integrative theory of prefrontal cor-

tex function. Annu. Rev. Neurosci. 24, 167–202.

28. Luo, T.Z., and Maunsell, J.H.R. (2015). Neuronal Modulations in Visual

Cortex Are Associated with Only One of Multiple Components of

Attention. Neuron 86, 1182–1188.

29. Luo, T.Z., and Maunsell, J.H.R. (2018). Attentional Changes in Either

Criterion or Sensitivity Are Associated with Robust Modulations in

Lateral Prefrontal Cortex. Neuron 97, 1382–1393.e7.

30. Fernberger, S.W. (1920). Interdependence of judgments within the series

for the method of constant stimuli. J. Exp. Psychol. 3, 126–150.

31. de Lange, F.P., Rahnev, D.A., Donner, T.H., and Lau, H. (2013).

Prestimulus oscillatory activity over motor cortex reflects perceptual ex-

pectations. J. Neurosci. 33, 1400–1410.

32. Akaishi, R., Umeda, K., Nagase, A., and Sakai, K. (2014). Autonomous

mechanism of internal choice estimate underlies decision inertia. Neuron

81, 195–206.
3134 Current Biology 28, 3128–3135, October 8, 2018
33. Abrahamyan, A., Silva, L.L., Dakin, S.C., Carandini, M., and Gardner, J.L.

(2016). Adaptable history biases in human perceptual decisions. Proc.

Natl. Acad. Sci. USA 113, E3548–E3557.

34. Pape, A.-A., and Siegel, M. (2016). Motor cortex activity predicts response

alternation during sensorimotor decisions. Nat. Commun. 7, 13098.

35. Kim, T.D., Kabir, M., and Gold, J.I. (2017). Coupled Decision Processes

Update and Maintain Saccadic Priors in a Dynamic Environment.

J. Neurosci. 37, 3632–3645.

36. Fritsche, M., Mostert, P., and de Lange, F.P. (2017). Opposite Effects of

Recent History on Perception and Decision. Curr. Biol. 27, 590–595.

37. Urai, A.E., Braun, A., andDonner, T.H. (2017). Pupil-linked arousal is driven

by decision uncertainty and alters serial choice bias. Nat. Commun. 8,

14637.

38. Fründ, I., Wichmann, F.A., and Macke, J.H. (2014). Quantifying the effect

of intertrial dependence on perceptual decisions. J. Vis. 14, 9.

39. Braun, A., Urai, A.E., and Donner, T.H. (2018). Adaptive History Biases

Result from Confidence-weighted Accumulation of Past Choices.

J. Neurosci. 38, 2189–17.

40. Akrami, A., Kopec, C.D., Diamond, M.E., and Brody, C.D. (2018). Posterior

parietal cortex represents sensory history and mediates its effects on

behaviour. Nature 554, 368–372.

41. Kanai, R., and Verstraten, F.A.J. (2005). Perceptual manifestations of fast

neural plasticity: motion priming, rapid motion aftereffect and perceptual

sensitization. Vision Res. 45, 3109–3116.

42. Brascamp, J.W., Knapen, T.H.J., Kanai, R., Noest, A.J., van Ee, R., and

van den Berg, A.V. (2008). Multi-timescale perceptual history resolves

visual ambiguity. PLoS ONE 3, e1497.

43. Pearson, J., and Brascamp, J. (2008). Sensory memory for ambiguous

vision. Trends Cogn. Sci. 12, 334–341.

44. Cheadle, S., Wyart, V., Tsetsos, K., Myers, N., de Gardelle, V., Herce
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(t.donner@uke.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data from sixteen participants (sixmen and tenwomen) between the ages of 18 and 29were collected for this study. Two participants

did not complete the full experiment and were discarded from all analyses. The estimations of some subjects did not increase mono-

tonically, quantified by the slope of best-fitting line, as a function of mean direction (red boxes in Figure S1A). We excluded four par-

ticipants for whom the slopes were < 0.3 (Figure S1B), and the results in Figures 1 and 2 are based on the remaining 10 participants.

All gave written informed consent prior to participation, and were naive to the aim of the experiment. The University of Amsterdam

ethics review board approved the project. Each participant performed a total of 12 sessions, distributed across six days: One session

to determine themotion coherence of the stimuli that corresponded to the individual psychophysical threshold and 11 sessions of the

main experimental task. Each session of the main task consisted of 345 trials, divided into five experimental blocks of 69 trials. We

used the first two sessions (690 trials) as training sessions to get participants acquainted to the task. We also re-analyzed previously

collected data [24] from an additional 21 participants (age range: 21 to 29). In this data, after a short block of 20 practice trials, each

participant completed 300 trials (5 blocks of 60 trials each).

METHOD DETAILS

Perceptual task
Stimuli

Stimuli were presented using PsychToolbox-3 [56] in MATLAB and were viewed in a dark, quiet room on a CRT monitor with a res-

olution of 1024 pixels x 768 pixels and a refresh rate of 60 Hz. Participants placed their heads on a chinrest with a viewing distance of

50 cm from the screen. Dynamical random dot stimuli were presented in a central circle (outer radius 12�, inner radius 2�) around
fixation. A field of dots with a density of 1.7 dots/degrees2 defined the annulus. Dots were 0.2� in diameter and were white, at

100% contrast from the black screen background (see Figure 1A). Signal dots were randomly selected on each frame and moved

with 11.5�/second in the signal direction. Signal dots that left the annulus wrapped around and reappeared on the other side. More-

over, signal dots had a limited ‘‘lifetime,’’ and were re-plotted in a random location after being on the screen for four consecutive

frames. Noise dots were assigned a random location within the annulus on each frame, resulting in ‘random position’ (white) noise

with a ‘different’ rule [57]. Additionally, to avoid participants tracking individual signal dots as they move through the annulus, three

independent motion sequences were interleaved on subsequent frames [58], making the effective speed of dots 3.8�/second.
Procedure: Determining individual motion coherence thresholds

On the first day, participants were provided initial instructions about the task and performed a separate session in order to determine

the individual motion coherence level for themain experiment. Individual participants’ motion coherence thresholds were determined

on a coarse (up versus down) direction discrimination task. 600 trials of different motion strengths (0, 2.5, 5, 10, 20 and 40% coher-

ence) were randomly interleaved (duration: 750 ms). For each participant, we fit a cumulative Weibull function to the proportion of

correct choices as a function of motion coherence c:

Pðcorrect jcÞ= d+ ð1� d� gÞ
�
1� eð�c=a

Þb� (Equation 1)
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where dwas the guess rate (chance performance), gwas the lapse rate, and a and bwere the threshold and slope of the psychometric

Weibull function, respectively. While keeping the guess rate d fixed at 50% correct, we fit the parameters g, a and b maximizing the

likelihood function [59] using a Nelder-Mead simplex optimization algorithm. The individual threshold was taken as the stimulus dif-

ficulty corresponding to an 80% correct fit of the cumulative Weibull. Across participants, motion coherence thresholds ranged from

11% to 28% (mean 18%).

Procedure: Main experiment

Each trial had lasted for about 5 s, throughout which a red fixation mark was presented, followed by a black screen in the inter-trial

interval. Participants self-initiated the next trial by pressing a mouse button. Within each trial, two random dot motion stimuli were

presented in succession, each with independently chosen direction (Figure 1A) and an individually titrated near-threshold coherence

levels (see previous section). In addition, auditory signals were presented prompting the participants’ responses or providing feed-

back (see below). Each trial beganwith a blank fixation period (600-800ms, uniform distribution), followed by the first motion stimulus

(750ms) during which the signal dots moved in one of five directions relative to a referencemark (see below). The referencemark was

a white line in the circle, with randomly changing position from trial to trial. Following the offset of the first dot motion stimulus, one of

two tones prompted participants to either click the central mouse wheel (No-Choice trials) or the left and right mouse button to report

a CW versus CCWchoice (Choice trials). After half of the Choice trials, participants received auditory feedback about the correctness

of their choice (assigned randomly for 0� stimuli) and the trial ended. In the remaining trials, a second dot motion stimulus was

presented for 750 ms. The delay between the first and second dot motion stimulus was always 2 s, regardless of reaction time. After

the offset of the second stimulus the reference mark turned red, prompting participants to estimate the average motion direction

across both dot motion stimuli. They reported their estimate by dragging the red line around the circle, starting from the position

of the reference, and by then clicking the mouse at the endpoint.

For each participant, the reference position was constrained to be either within the top (0�-180�) or the bottom half (180�-360�) of
the stimulus unit circle (balanced across participants) in order to keep the mapping between CW/CCW choices and left/right button

presses constant within each participant. There were five possible directions (�20�, �10�, 0�, 10�, 20�) of each dot motion stimulus,

yielding 25 possible combinations of directions across both subsequent stimuli. Of those, only 23 were used, excluding the twomost

obviously conflicting combinations (�20�/20� and 20�/-20�). The resulting distribution of mean directions was non-uniform and bi-

modal (Figure 1C). Feedback about their estimation performance was given at the end of each block as the mean deviation across

trials of their estimation reports from the physical stimulus directions. A video demonstration of the task can be found in Video S1

accompanying the paper.

In total, 90 trials for each combination of first and second directions were presented per participant (45 in Choice and 45 in No-

Choice trials). Trials were excluded from analysis according to the following criteria: (i) participants did not comply with the instruc-

tions (i.e., pressing the mouse wheel on Choice trials or a choice key on No-Choice trials); (ii) binary choice reaction time was below

200 ms (i.e., shorter than regular reaction times on two-choice tasks); and (iii) estimation outliers (defined as estimations beyond 1.5

times the interquartile range, above upper or below lower quartile). In total �7% of the total trials across the 10 participants were

excluded. In addition, we excluded all No-Choice trials from our analyses as we focus only on Choice trials here. The distributions

of the remaining trials used for analysis are shown in Figures S1C and S1D.

Task instructions

Instructions for the perceptual task were provided to participants before the start of the experiment as a written numbered list with

graphics. Below, we provide an abbreviated version of all points from that list:

1. Every block consists of several trials of the same visual motion task. Always keep your gaze on the red fixation point in the

center of the screen.

2. Blank screen: Each trial will begin with a black screen. The red fixation appearance indicates that the trial is about to start.

3. Interval 1: You will see a cloud of dots moving, with some of the dots moving together in a particular direction. Your task is to

determine whether the dots are moving to the left or to the right of the reference mark.

4. Binary Response: Once the dots stop moving, you will hear an auditory prompt to report your decision about the direction by

clicking the corresponding mouse key (left or right). Try your best to make this decision as quickly and accurately as possible.

5. After your response, trials will continue with either:
a) Feedback: Once you’ve pressed a mouse key, you will hear feedback about your response in some trials. A correct choice

will be followed by a high beep, and an incorrect choicewill be followed by a low beep. Following feedback, youwill move on

to the next trial, or

b) Interval 2: After your response, you will see a second cloud of dots moving, with some of the dots moving together in a

particular direction. These dots may have a different angle of motion from the first stimulus. Your task is to determine

and estimate what the average overall angle of motion is from this cloud and the first one combined.

6. Estimation Response: When the dots stop moving and the reference mark will turn red, you must complete an estimation task.

Move the mouse to align the cursor to the average angle of motion you saw in the two trials. Once you are satisfied with your

estimate, click the mouse to confirm your response.

7. When you see a blank screen, the trial is over and you will have the opportunity for a break. Rest your eyes for amoment to help

you keep them open and fixated during the experimental trials. When you want to continue the experiment, click the mouse to

continue.
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8. After each block of around 10 min, you will see a screen indicating your performance on the last block and telling you to take a

break.
Numerical task
The task was identical to the perceptual task described above, with the following exceptions. Participants viewed two sequences of

eight two-digit numbers each and reported the mean of all 16 samples as a continuous measure. Each sequence lasted for 4 s, and

each numerical sample was displayed for 500ms. In 75% of all trials, prompted by a visual cue, subjects made a binary choice about

themean of the first sequence of numbers- whether themeanwas greater than or less than 50 by pressing the corresponding key. In a

proportion of these trials (25% of all trials), the binary response was followed by a second sequence of eight numbers after which

subjects made the estimation judgment by vertically sliding a mouse-controlled bar set on a number ruler between 0 and 100.

Numbers were generated from pre-defined distributions ranged between 10 and 90. The data we analyzed in this paper constituted

25% of trials from each subject (�75 trials). Please see the original report on this dataset ([24]) for a more detailed description of the

task, and https://datadryad.org/resource/doi:10.5061/dryad.40f6v for the behavioral data.

Modeling discrimination judgments
Performance on the binary choice task in both datasets was quantified by fitting a sigmoidal probit psychometric function (Figure 1B)

to each participant’s proportion of CW choices (> 50 choices in numerical integration task), as a function of the stimulus direction

(trial-wise mean of 8 samples in numerical integration task) in interval 1:

PðChoice=CWÞ=Fðd+af1Þ (Equation 2)

where FðxÞ= 1ffiffiffiffi
2p

p
Zx

�N

e�t2=2dt was the cumulative Gaussian function, a was the slope of the psychometric function (i.e., perceptual

sensitivity), and dwas the horizontal shift of the psychometric function (i.e., systematic bias toward one of the two choice options; see

Figure 1B). The inverse of the parameter a quantifies the internal sensory noise. The free parameters a and d were estimated by

maximum likelihood optimization [59].

In the numerical task, the means of samples from the first interval exhibited substantial trial-to-trial variability. In order to compute

psychometric functions, we binned trials by sample means into six bins, three on each on either side of the reference (50). We used

the bin means as input to the psychometric function.

Modeling estimation reports
We used a statistical modeling approach to estimate the relative contributions of the evidence conveyed by both successive dot

motion stimuli, or number streams, to participants’ trial-by-trial estimation reports. All models described in this section were fit exclu-

sively to the Choice trials. A comparison of Choice and No-choice trials was beyond the scope of this study; it can be found in [24] for

the numerical task data and will be subject to a subsequent report for the perceptual task data.

Baseline model

As reference for assessing the importance of choice-related biases in the measured estimation data, we designed a Baseline model

that did not entail any choice-related bias, but only participants’ overall directional bias (estimated from the psychometric function,

see below), as well as possible temporal biases in the combination of the two stimulus samples into the final estimation. The Baseline

model was as follows:

y=w1X1 +w2X2 +N ð0; xÞ (Equation 3)

where ywas the vector of single-trial estimations expressed as angular deviation from the reference mark, X1 and X2 were the noisy

representation of stimulus direction 1 and 2 respectively (see below), w1 and w2 were the weights assigned to the corresponding

evidence, and N ð0; xÞ was zero-mean Gaussian estimation noise with variance x. Because estimations y were expressed relative

to the reference, so were the internal representations X i. We used this format of internal representation and estimation reports

because (i) in our design, the cursor movements used for estimation report were always initiated at the reference and (ii) recent

work on post-decision biases has highlighted the importance of the reference [21]. The reference-dependent format of internal rep-

resentation assumed for X i thus did not describe the sensory representation of motion direction, but rather a statistic extracted from

that sensory representation in a task-dependent fashion (e.g., the direction with the largest posterior probability relative to reference

[60].

Here and below, X1 and X2 were computed by replacing the angular deviation of the physical stimulus from the reference, f;with:

Xi =fi +N ðd;sÞ (Equation 4)

where i˛ð1; 2Þ, and d and s were each observer’s individual overall bias and sensory noise parameters taken from the psychometric

function fit to the binary choice data (see Equation 2 above). X1 and X2 thus approximated the noisy internal representation that

governed observers’ estimations. Specifying these two parameters in this fashion avoided adding additional free parameters to

Equation 3. The approach was based on the assumption that a substantial portion of biases was shared between the choice and
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estimation judgments. We validated this assumption by confirming that biases were strongly correlated between binary choices

(quantified as the horizontal shift of psychometric function estimations) and estimation reports (mean angular estimation error),

across the 10 observers (Spearman’s rho = 0.79; p = 0.0098). In sum, the Baseline model had three free parameters, w1, w2 and x.

Correlated Noise model

This model assumed shared noise in the internal representations X1 and X2. Specifically, the model assumed that additive noise cor-

rupting the transformation of physical stimulus directions fi intoX i was correlated, to some degree, across the two intervals, inducing

correlations between X1 and X2, as follows:

X1 =f1 + d+ ε (Equation 5.1)
X2 =f2 + d+ ð1� cÞN ð0; sÞ+ cε (Equation 5.2)

where ε was the noise in X1 in a given trial, drawn from the distribution N ð0;sÞ, and c ˛ [0, 1]. Parameter c governed the degree of

correlation among the two internal representations. Thus, the noise in X2 wasmade up of a portion correlated with the noise in X1 (i.e.,

cε) and another portion independent of X1 (i.e., ð1� cÞN ð0;sÞ). The estimations were modeled by Equation 3 above.

Shift model

In this model, the choice induced a shift of the estimations into the direction of the chosen category, thus inducing an additive esti-

mation bias consistent with the binary choice. Specifically, the estimations in this model were given by:

y=w1X1 +w2X2 + kD+N ð0; xÞ (Equation 6)

where k was the additive shift parameter, and D was the vector of intermediate binary choices, taking the values [1, �1].

Selective Gain models

The Selective Gain model enabled testing for a selective change in sensitivity to Consistent versus Inconsistent evidence conveyed

by the direction of the second stimulus f2. Consistency of that direction could be defined with respect to the initial choice or with

respect to the first stimulus direction f1. This led to two alternative versions of the Selective Gain model, specified next.

Choice-based Selective Gain. This model was as the Baseline model, except that the weights were allowed to vary depending on

whether f2 was consistent or inconsistent with the initial choice:

y=w1cX1 +w2cX2 +N ð0; xcÞ if signðf2Þ=D (Equation 7.1)
y=w1iX1 +w2iX2 +N ð0; xiÞ if signðf2ÞsD (Equation 7.2)

where w1c ðw2cÞ and w1i ðw2iÞ were the weights for Consistent and Inconsistent trials, respectively, f1 and f2 were the physical

stimulus directions from both intervals, and D was the vector of intermediate binary choice (values: 1 or �1 for CCW and CW

reports, respectively). Since consistency could not be defined in trials where f2 was 0�, we excluded this subset of trials before fitting

Equations 7.1 and 7.2.

Extended Choice-based Selective Gain.We also tested whether there was an additive shift, over and above the multiplicative gain

modulation described by the Choice-based Selective Gain model. To this end, we extended themodel from Equations 7.1 and 7.2 by

means of the shift parameter from Equation 6, as follows:

y=w1cX1 +w2cX2 + k:D+N ð0; xcÞ if signðf2Þ=D (Equation 8.1)
y=w1iX1 +w2iX2 + k:D+N ð0; xiÞ if signðf2ÞsD (Equation 8.2)

This Extended Choice-based Selective Gain model was fit by constraining all parameters to take the values estimated by the basic

version of the model (i.e., Equations 7.1 and 7.2), with the shift as the only free parameter. Parameter recovery indicated that leaving

all parameter free to vary in the fit made the model too complex given the limited amount of data (see Parameter Recovery below).

Stimulus-based Selective Gain. This version of the model was as the previous one, except that consistency depended on the

direction of the first stimulus (specifically: the sign of its difference from the reference), not the initial choice:

y=w1cX1 +w2cX2 +N ð0; xcÞ if signðf2Þ= signðf1Þ (Equation 9.1)
y=w1iX1 +w2iX2 +N ð0; xiÞ if signðf2Þssignðf1Þ (Equation 9.2)

Since consistency could not be defined in trials where f1 or f2 was 0�, we excluded this subset of trials before fitting Equations 9.1

and 9.2).
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Choice-based Selective Gain model after matching evidence disparity. As control for the differences in disparity between motion

directions in first and second interval, we randomly subsampled trials such that the absolute distance between f1 and f2 in Consis-

tent and Inconsistent trials is matched. This was done before fitting the Choice-based selective gain model described above.

Choice-based Selective Gain model for numerical task. The data from the numerical task (numerical integration, Figure 3A) were

also fit with the Choice-based Selective Gain model, but with the following differences due the nature of the task design and the

smaller number of trials per individual than available for the perceptual task. As in the perceptual task, the mean evidence also ex-

hibited a small bias after splitting by choice-consistency. Different from the perceptual task, the group average estimations exhibited

a small opposite trend, i.e., there was an interaction between mean evidence versus estimations and (Consistent, Inconsistent) con-

dition. Themodel as in Equation 7 could not capture this interaction, and indeedwe found that fitting themodel without accounting for

it yielded poor fits. (Please note that the model-free analysis of sensitivity described below was unaffected by this issue.) To account

for this, we introduced two additional free parameters qc and qi, as follows:

y=w1cX1 +w2cX2 +N ðqc; xcÞ if signðf2Þ=D (Equation 10.1)
y=w1iX1 +w2iX2 +N ðqi; xiÞ if signðf2ÞsD (Equation 10.2)

where qc and qi accounted for the above interaction, fi was the mean of 8 samples (again relative to the reference, i.e., 50) in each

interval (i = 1, 2), Xi was the noise-corrupted and biased internal representation of the mean value in each interval computed as in

Equation 4. For the results shown in Figure 3, we constrained all weights to be positive based on the assumption that weights should

not be negative. We also constrained the possible values of qc and qi to be within a reasonable range, [-10, 10], still far larger than the

magnitude of the interaction observed in the group average estimation data. The above constraints were introduced in order to obtain

reliable model fits in the face of limited data (trials). Results were qualitatively similar (especially, significant difference between

Consistent and Inconsistent weights for the second interval) when fitting the model without those constraints.

Further, as an additional control, we also fitted the model without constraints and without q (i.e., Equation 7), after randomly sam-

pling trials fromConsistent and Inconsistent conditions, so as tominimize the above interaction throughmatching themean evidence

between both conditions. Because this procedure substantially reduced the number of trials (�23%), we only fitted the model on the

remaining data after pooling trials across all participants. We repeated this ‘mean-matching’ procedure 500 times and re-fitted the

model for each random trial selection. The median across iterations of the difference in weights for Consistent versus Inconsistent

was 0.065, with a 95% confidence range that excluded zero (0.00001, 0.133). In sum, also this second approach for fitting the data

from the numerical task supported the re-allocation of the weights for the second evidence dependent on choice-consistency as

observed in the first model-based approach (Figure 3B) as well as in the model-free analysis (Figure 3C).

Likelihood computation

We used maximum likelihood estimates to estimate parameters and the goodness of fit of different models. For any unique combi-

nation of experimental variables (first and second stimuli, and choice), we numerically derived the estimation distribution of each

model for a given parameter set and used this estimation distribution to assess the likelihood of the estimation reported by partic-

ipants on a given trial with the corresponding experimental variables. All models described above assume that the stimuli on each

trial are represented in the form of scalar values. Thus, the estimation distribution represents a distribution of estimations over trials.

Specifically, the estimation distribution was the expected distribution of estimations for a given set of experimental variables, if the

model was simulated several times using the same set of parameters. Using this numerical method avoided the need to rely on large

number of stochastic simulations in order to compute the likelihoods andmade the fitting procedure less prone to converging to local

minima. For all models except for the Correlated Noise model (see below), we numerically derived each model’s estimation distribu-

tion for each experimental condition, by first generating Gaussian distributions centered at w1X1 and w2X2 with standard deviation

jw1 js and jw2 j s for intervals 1 and 2 respectively. Then, we set the probability in the non-chosen side to zero in the interval 1 dis-

tribution (i.e., we truncated the distribution to only have density in the chosen side) and normalized it so as the integral of the resulting

distribution is equal to 1. We combined the probability distributions corresponding to stimulus 1 (truncated distribution) and 2 using

convolution and renormalized the resulting distribution. Note that different weights applied to stimulus 1 and stimulus 2 distributions

(see Equations 3, 6–10) in different models. We then generated a zero-mean Gaussian probability distribution with variance x and

convolved this distributionwith the distribution from the previous step, renormalizing the resulting distribution to obtain the estimation

probability distribution for that trial. We used this probability distribution to calculate the likelihood of the reported estimation in the

trial. Finally, we summed the logarithm of likelihood values over all trials to obtain the final log-likelihood value for a given set of

parameters.

For the Correlated Noise Model, we used Monte Carlo techniques to simulate a probability distribution of estimations over trials.

For each combination of experimental variables (combination of first and second stimuli, and choice), we generated a set of 10,000

normally distributed noisy representations ðN ð0;sÞÞ or noisy samples for interval 1 (X1, Equation 5.1). From these noisy samples, we

discarded those where the sign of X1 did not match the binary choice of the subject. Thesemaintained samples featured as variable ε

in interval 2 (Equation 5.2). Another set of noisy samples was generated afresh for interval 2 (N ð0;sÞ in Equation 5.2). Note that the

number of new noisy samples and thus of the simulated representations X2 was less than 10,000 because of the sub-selection

described above. We combined X1 and X2 using Equation 3, to obtain a distribution of estimations for this trial. Smoothing kernels
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were obtained from the simulated estimations in each trial in order to identify the underlying distributions, which were then used to

calculate the likelihood. The kernels were defined using non-parametric Epanechnikov function. Finally, we summed the logarithm of

likelihood values of all trials to obtain the final log-likelihood value for a given set of parameters (w1, w2, x and c). In some trials, the

likelihood of the estimations was zero regardless of the values of the parameters (possibly because these estimations were motor

lapses), resulting in an optimization function that never converged. To address this, we added one simulated estimation trial in

the response range (�180� to 180� in steps of 1) to the distribution of estimations obtained from Equation 3, before obtaining the

estimation kernels. This did not influence the maximum likelihood fitting procedure in other trials, but just gave an estimation kernel

with non-zero probability value for the whole range of estimations.

Comparison of fitting procedure to Bronfman et al., 2015

In our previous report on analyses of the data from the numerical task [24], we had also fitted a so-called Selective Gain model to the

data from the numerical estimation task and compared that to a model without such selective gain modulation. Here, we applied a

model fitting procedure that differed from the previous one in two important respects. First, in the previous study, models were fitted

to the across participants aggregated data (i.e., a ‘fixed effects’ approach) [24], while we here fittedmodels to each participant’s data

individually. The second difference concerns the calculation of the likelihood in [24]: In the previous study, model estimations were

derived for each trial (using 1000 simulated trials) and then the likelihood of the reported estimation was computed under the simpli-

fying assumption that the model’s estimation distribution is Gaussian. This was done in order to avoid kernel-based smoothing of the

simulated estimations, which could significantly slow down the fitting procedures. In the current study, however, we did notmake this

assumption since in all models the predicted distribution, albeit symmetric looking under most parameter sets, always had non-zero

skew. We thus computed likelihoods from the actual non-Gaussian distributions that the models predict.

Fitting procedure and computation of confidence intervals

To obtain the best fitting parameters that maximize the likelihood function of each model, we used Subplex algorithm [61], a gener-

alization of the Nelder-Mead simplex method, which is well suited to optimize high dimensional noisy objective functions. Subplex

starts at a specified starting point of the objective function and works by dividing the parameter space into subspaces. It then per-

forms a simplex search in each of these subspaces before converging on the set of parameters that maximize the function. The start-

ing points were randomly chosen from the interval [0,20] for x and [0 1] for w1 and w2.

We used bootstrapping [62] to obtain confidence intervals for the fitted parameters for each individual. Specifically, we randomly

selected trials with replacement and fit the selective gain model to these resampled datasets. We repeated this procedure 500 times,

each time using Subplex optimization with starting points at the best-fitting parameters of the actual data. We then obtained confi-

dence intervals from the distribution of estimated parameters.

Parameter recovery

We simulated data with different sets of parameters using the number of trials as in a typical dataset. We then fit the simulated data

using the Choice-based Selective gain model (Equations 7.1 and 7.2). Overall, the model recovered parameters well: The Spearman

correlations between actual and recovered parameters was 0.8 for Noise parameters (p < 10�10), and it ranged between 0.91 to 0.94

for all weight parameters (p < 10�10). Importantly, the model also did not introduce any spurious correlations between the recovered

parameters. Inter-parameter correlations for the actual parameters ranged between �0.03 to 0.03 (p > 0.39), and between �0.05 to

0.03 (p > 0.23) for the recovered parameters. This allowed us to confirm that our fitting procedures were able to recover the param-

eters when the ground truth of the data was known.

Simulations of the most complex model assessed here, the Extended Choice-based Selective Gain (Equations 8.1 and 8.2) with all

parameters left free to vary, also showed decent overall recovery of parameters (Spearman correlations ranged between 0.78 to 0.94,

p < 10�10). However, for special cases, the fits exhibited significant spurious correlations between parameter estimates. Specifically,

we introduced a few iterations where the actual shift parameter ðkactualÞ was 0, or the consistency parameter for weights of interval 2

(Dw2; actual = w2c; actual – w2i; actual) was 0. When kactual was 0, the mean recovered shift ðkrecoveredÞ in these iterations was �1.63

(p = 0.0043). This spurious shift was introduced by the model at the expense of Dw2 i.e., the correlation between krecovered and

Dw2; actual � Dw2; recovered was �0.85 (p < 10�5). Likewise, in iterations where Dw2; actual = 0, mean Dw2;recovered = 0.115 (p = 0.046).

This spurious consistency effect was introduced by the model at the expense of the shift parameter i.e., the correlation between

Dw2;recovered and kactual � krecovered was �0.65 (p < 10�3). Because these spurious correlations rendered fits of this complex model

generally hard to interpret, we did not report any parameter estimates from this model.

In order to test whether there was evidence for a shift, over and above selective gain modulation, we constrained all parameters in

Extended Selective Gain to take the fit values for basic Choice-based Selective Gain, allowing only the shift parameter free to vary.

The thus estimated biasing effects (i.e., shift and weight difference for consistent and inconsistent second stimulus) did not exhibit

any correlation across participants (Spearman’s rho = 0.38, p = 0.279), ruling out spurious dependencies.

Model comparison

We used Bayesian Information Criterion (BIC) to quantitatively compare the ability of different models to explain the data. BIC is given

by:

BIC= � 2:lnðLÞ+m:lnðnÞ (Equation 11)

whereLwas the likelihood value,mwas the number of free parameters in the model and nwas the number of observations that are

used to fit themodel [63]. BIC values were compared acrossmodels and themodel with lowest BIC value was identified as themodel

that best explains the data among all candidatemodels. Specifically, a difference of 10 in BIC values suggests very strong evidence in
Current Biology 28, 3128–3135.e1–e8, October 8, 2018 e6



favor of the model with the lower BIC value [64]. Since BIC values depended on the number of observations used to fit the model, we

fit all models under comparison on the same subset of trials to enable us identify themodel that best explains the data. We calculated

BIC values for all individual model fits to identify the model that better explained the data for that participant.

Model-free analysis of estimation reports
We also assessed the impact of the second stimuli to participants’ estimations in a model-independent fashion. The rationale was to

quantify the impact of small differences in the evidence values (stimulus directions or numerical means) on the estimation reports

produced by the participant, depending on whether the two directions were consistent or inconsistent with the previous choice.

Our analysis aimed to compare the separability of distributions of single-trial estimations from subsets of trials, between Consistent

and Inconsistent conditions. We quantified the separability of estimation distributions by means of the receiver operating character-

istic (ROC) from signal-detection theory [65]. The area under the ROC-curve, referred to as ROC-index, could range from 0 to 1. An

index of 0.5 implied perfectly overlapping distributions (i.e., no sensitivity to the 10� difference) and any deviation from 0.5 implies

some sensitivity to the evidence. An ROC-index of 1 (or 0) implied that the two distributions were completely separable.

We intended to use the ROC measure for specifically quantifying the sensitivity to the smallest presented difference (10�) in the

direction of the second stimulus ðf2Þ, while eliminating the impact of the direction of the first stimulus ðf1Þ on the final estimation.

To this end, we used the following procedure for the perceptual task. All trials (except for those with f2 = 0� where choice-consis-

tency was not defined) were first sorted by whether the direction of second interval was consistent or inconsistent with the initial

choice. For each thus-defined condition (Consistent, Inconsistent), we further sorted trials by f1 (i.e., �20�, �10�, 0�, 10�, 20�).
For each f1 we compared estimation distributions from trials with f2 differing by 10� (i.e., �20� versus �10� and 10� versus 20�).
The resulting ROC-indices were then pooled across the different f1 directions, so as to yield a single pooled ROC index, separately

for Consistent and Inconsistent conditions.We pooled the ROC indices bymeans of weighted averaging, whereby the weight of each

ROC index was determined by the number of trials that went into the calculation of that ROC-index. That number differed substan-

tially between ROC indices due to the uneven distribution of pairs of directions of the first and second stimulus (Figure S1D). The

resulting ROC-indices were compared between both conditions bymeans of permutation tests (see next section). We obtained qual-

itatively identical results when simply discarding the trial pairs with small trial numbers (< 15) and averaging the other ROC-indices

without weighting (mean difference in ROC-index between Consistent and Inconsistent trials across subjects = 0.04).

ROC indices for the numerical task (numerical integration, Figure 3C) were computed as for the perceptual task, with the following

exceptions. We binarized the mean of the stimulus presented in the first interval into two bins (f1 > 50� and f1 < 50�), and split the

mean of the second stimulus into four binswithmeans at 40, 47, 53 and 60, two each on either side of the reference number 50. Those

four bins were treated equivalently to the different f2 values in the description for the perceptual task above.

Simulated estimations from the models
We used two different methods to assess if the individual models could explain the effect captured by the model-free analysis

described above. Specifically, we simulated estimations both using the best fitting parameters from each model, and by sampling

from a wider range of parameters. We then calculated the ROC indices on the simulated estimations in consistent trials and incon-

sistent trials.

To simulate estimations in each trial, we first calculated the internal representations X1 and X2 using Equation 4 (Equation 5 for the

Correlated Noise model). In addition, we ensured that the sign of X1 matches the binary decision made by the subject in the trial. We

then combined these internal representations to obtain a simulated estimation for the trial, using the corresponding parameters and

equations for each model.

Simulated estimations from the best fitting parameters

We used the best fitting parameters for each individual from each model, simulated the estimations, and calculated the ROC-indices

using the procedure described above. This process was repeated 500 times for each subject and each model, to obtain the confi-

dence intervals. We then compared the median ROC-indices between consistent trials and inconsistent trials across subjects.

Simulated estimations using a range of parameters

For eachmodel, we simulated estimations across a range of parameters in order to identify the dependence of the consistency effect

in the model-free analysis on the relevant parameters. We simulated a single fixed-effects subject, whose trial distribution was ob-

tained by combining the trial distributions of all subjects. For each combination of parameters in each model, we calculated the es-

timations using the corresponding equations described above.We then performed themodel-free analysis to obtain the ROC-indices

for consistent trials and inconsistent trials. We defined ‘‘Consistency’’ as the difference between these ROC-indices. A positive value

of Consistency suggests that this set of parameters replicates the model-free findings observed in the behavioral data. This proced-

ure was repeated 100 times and the mean of the difference in ROC-index between Consistent and Inconsistent conditions was

shown in color code for each parameter combination in Figure S2B. We showed the heatmaps as a function of the two parameters

that may give rise to a difference non-zero Consistency, by marginalizing this value across all other parameters.

Simulations of Extended Conditioned Perception model

For simulations, we extended the Conditioned Perceptionmodel described in [20, 22] for discrimination and estimation judgments on

a single stimulus to our taskwith two successive stimuli, intermittent choice, and a total estimation judgment at the end.We simulated

a version of this ‘Extended Conditioned Perception’’ model, in which the posterior distribution over stimulus directions after both

stimuli were conditioned on the intermittent choice. The resulting procedure was as described in the section Likelihood computation
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for Choice-based Selective Gain model above, with the following differences. In the Conditioned Perception model, contrary to all

other models presented, external stimuli on each trial are not represented by scalar variables but as posterior probability distributions

over stimulus features (i.e., directions), given the sensory stimulus and the choice. Before conditioning, the mean of this posterior

distribution for each stimulus was given by each stimulus’ direction and its standard deviation was given by the individual psycho-

metric noise (parameter s from Equation 4, so-called ‘input noise’ capturing imprecise encoding of direction). Per trial two such dis-

tributions were obtained, one per stimulus. Both of these distributions were then conditioned on the choice: the probability was set to

zero on all stimulus directions that were inconsistent with the choice, for the first and the second stimulus. The two resulting distri-

butions were finally combined with equal weight, producing an overall estimation distribution for each trial. We extracted the mean

from the resulting distribution as the model’s estimate of direction. In different runs of the simulations we added different amounts of

independent Gaussian (zero-mean) noise to these estimates (‘output noise’ capturing both imperfect memory of stimulus identity as

well asmotor noise). The resulting valuewas taken as the estimation report on a given trial. We simulated thismodel in order to assess

if it would produce similar behavioral features as Choice-based Selective Gain. Please note that a more elaborate version of the

Conditioned Perception model has been used to fit estimation data in [22].

For each version of the Extended Conditioned Perception model, we systematically varied the input and output noise parameters,

applied ROC analysis to the resulting estimation reports for Consistent and Inconsistent trials, and plotted the difference between

ROC indices for both conditions as a function of the parameter combination (Figure S2B, right panel).

In further simulations of this model, we used an average subject (pooling the trial distributions across all subjects), with input noise

as mean parameter s across all participants, and varied only the output noise. We computed the mean estimations as a function of

average stimulus direction predicted by the model for several levels of output noise (Figure 1C). We performed an additional analysis

to uncover subtler differences in the behavior of Extended Conditioned Perception and Choice-based Selective Gain (Figures S2G

and S2H). The Extended Conditioned Perception model was essentially insensitive to new evidence inconsistent with the choice.

Thus, we reasoned that the fraction of inconsistent estimations (i.e., estimations falling on the side of the reference opposite from

the choice) predicted by this model should be lower than the fraction predicted by the Choice-based Selective Gain model. Specif-

ically, the increase in this fraction as a function of inconsistent second stimulus should be higher for the Choice-based Selective Gain

model. To test this prediction, we simulated estimations for the fixed-effects subject using the Conditioned Perception model for

different levels of output noise, and the Choice-based Selective Gain model with the mean of the best fitting parameters across sub-

jects. We then calculated the fraction of inconsistent estimations for correct and error trials, separately for positive and negative di-

rection of the first stimulus (X1 = �10, 10), as well as for ambiguous first direction (X1 = 0), in the simulated estimations. We repeated

this procedure for 100 iterations, and compared the mean fraction across the iterations in both models to that of the behavioral data

(Figures S2G and S2H).

QUANTIFICATION AND STATISTICAL ANALYSIS

Non-parametric permutation tests [62] were used to test for group-level significance of individual measures, unless otherwise spec-

ified. This was done by randomly switching the labels of individual observations either between two paired sets of values, or between

one set of values and zero. After repeating this procedure 100,000 times, we computed the difference between the two groupmeans

on each permutation and obtained the p value as the fraction of permutations that exceeded the observed difference between the

means. All p values reported were computed using two-sided tests.

DATA AND SOFTWARE AVAILABILITY

Data and analysis scripts are available on https://github.com/BharathTalluri/postchoicebias.
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