Cognition 193 (2019) 104022

journal homepage: www.elsevier.com/locate/cognit

Contents lists available at ScienceDirect

Cognition

Brief article

Integration to boundary in decisions between numerical sequences R

Moshe Glickman®*, Marius Usher®™*

#School of Psychology, University of Tel Aviv, Israel
Y Sagol School of Neuroscience, University of Tel Aviv, Israel

Check for
updates

ARTICLE INFO

Keywords:
Integration-to-boundary
Fixed boundaries
Collapsing boundaries
Adaptation

Numerical cognition
Decision strategies

ABSTRACT

Integration-to-boundary is a prominent normative principle used in evidence-based decisions to explain the
speed-accuracy trade-off and determine the decision-time. Despite its prominence, however, the decision
boundary is not directly observed, but rather is theoretically assumed, and there is still an ongoing debate
regarding its form: fixed vs. collapsing. The aim of this study is to show that the integration-to-boundary process
extends to decisions between rapid pairs of numerical sequences (2 Hz rate), and to determine the boundary type
by directly monitoring the noisy accumulated evidence. In a set of two experiments (supplemented by com-
putational modelling), we demonstrate that integration to a collapsing-boundary takes place in such tasks, ruling
out non-integration heuristic strategies. Moreover, we show that participants can adaptively adjust their
boundaries in response to reward contingencies. Finally, we discuss the implications to decision optimality and

the nature of processes and representations in numerical cognition.

1. Introduction

Effective decision-making requires careful balancing between the
cost of deliberation time and the quality of the decision. A parsimonious
algorithm thought to minimize the time needed to achieve a specified
accuracy is integration-to-boundary (Ratcliff, Smith, Brown, & McKoon,
2016; Wald, 1947). This algorithm, first deployed by Alan Turing in the
decoding of the Enigma code (Gold & Shadlen, 2002), is now the default
mechanism assumed to operate in a wide range of decisions, ranging
from perceptual or lexical decisions (Ratcliff & Rouder, 1998; Smith,
Ratcliff, & Sewell, 2014) to memory (Ratcliff, 1978) and even choices
between food items (Krajbich, Armel, & Rangel, 2010). Its essence is the
integration of noisy samples towards a response-boundary, whose var-
iation accounts for the speed-accuracy trade-off. Yet, despite its pro-
minence, in most behavioral studies the integration of noisy-samples, as
well as the decision-boundary, remain theoretical entities that are not
directly measured or controlled (but see Malhotra, Leslie, Ludwig, &
Bogacz, 2017). While the decision boundary can be monitored in
physiological studies, there is debate about its functional time-in-
variance (Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget,
2012; Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown, 2015).

One important type of decision, ubiquitous in day-to-day life, in-
volves sequences of numerical values (or payoffs), such as choosing
stocks on the basis of past returns or selecting a hotel on the basis of

online rating. Prominent theories in numerical cognition have proposed
that symbolic numerical values are associated with representations of
magnitudes (Dehaene, 2011; Dehaene, Molko, Cohen, & Wilson, 2004).
Thus, an interesting possibility is that numerical representations, like
perceptual samples of evidence, are subject to evidence-integration.
While a number of studies have examined choices between rapid se-
quences of numerical payoffs (Brusovansky, Vanunu, & Usher, 2017;
Glickman, Tsetsos, & Usher, 2018; Spitzer, Waschke, & Summerfield,
2017; Tsetsos, Chater, & Usher, 2012; Vanunu, Pachur, & Usher, 2018)
or numerosity displays (Zeigenfuse, Pleskac, & Liu, 2014), these studies
could not establish integration-to-boundary, as they did not use a free-
response paradigm that enables the subject control over the stopping-
time.

The aim of this study is threefold. First, we aimed to demonstrate
the normative integratio!n-to-boundary in a design that allows us
control over the noisy-samples, and thus to obtain a more direct mea-
sure of the decision-boundary. Specifically, we examined the support
for a fixed or a collapsing boundary (Hawkins et al., 2015). Second, we
probed if integration-to-boundary takes place outside the perceptual
domain, particularly in decisions between pairs of rapid numerical se-
quences. This is not an obvious generalization, as numbers are typically
subject to symbolic computations, which are consistent with simple
heuristics (e.g., a cut-off to decide at the first value that exceeds it, or
counting the number of “pair-winners“ in favor of each alternative;
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Fig. 1A). Furthermore, we contrasted between different types of evi-
dence-integration mechanisms (independent vs. competitive;
Teodorescu & Usher, 2013) or integration to a decision-boundary vs.
integration without boundary (using a random-timer for decision ter-
mination). Third, we asked if subjects can adaptively control the deci-
sion-boundary in response to task demands. To answer these questions,
we conducted two experiments, in which participants were presented
with choices between rapid numerical sequences (Fig. 1A), which are
terminated by the subject’s decision; in Exp. 2 we also manipulated
(within participants) the time-cost of the decision.

To preview our results, we find that integration to a collapsing-
boundary (Malhotra et al., 2017; Palestro, Weichart, Sederberg, &
Turner, 2018) accounts best to choice and decision-time data, and that
the pay-off manipulation indeed affects the shape of the collapsing-
boundary. We start by presenting a computational study that lays out
the predictions of the integration-to-boundary algorithm (either fixed
or collapsing), and distinguishes it from alternative non-integration to
boundary models. Following, we present our experiments, and carry out
computational modeling that validates our conclusion by accounting
for response-times (RT) distributions.

2. Computational predictions

We contrasted four choice models: (i) integration to boundary
(fixed/collapsing) with either high or low noise, (ii) timer model, (iii)
heuristics based on the first value or difference exceeding a predefined
cut-off, and (iv) counting heuristics. Note that, unlike heuristics which
are based on symbolic computations, the integration-to-boundary
model assumes two distinct sources of noise: external-noise, corre-
sponding to variability in the samples (Fig. 1), and internal-noise, cor-
responding to the variability in the encoding of the numbers into a
magnitude representation during the evidence-integration.

We simulated the models using the following assumptions:

(i) Integration-to-boundary. We employed a “pure” diffusion model
(without additional variability parameters; Mazurek, Roitman,
Ditterich, & Shadlen, 2003; Wagenmakers, Van Der Maas, &
Grasman, 2007; but see the Results of Exp. 1 for a comparison in-
volving a diffusion model which includes between trial variability
parameters; Ratcliff & McKoon, 2008). We used the following dif-
ference equations:

X@O=X@¢-1+ ,L{([) +¢e(t), e ~ N(0, Uin[ernalz) (€Y)

where X () is the accumulated differences between the sequences at
time t, u(t)is the difference between the two samples at time t (note
that this includes the external/sampling noise), and ¢(¢) is a random
internal noise sampled from N (0, Giyema®). Decisions were made
when X(t) exceeds one of two symmetrical boundaries, =+ u(t). We
tested two types of boundaries: (i) fixed boundaries, u(t) = ¢, where
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Fig. 1. Experimental paradigm. (A) The

sequences of two-digit numbers, se-
lected from Gaussian distributions are
presented at a rate of 2 pairs/sec, and
till the subject responds (left/right) to
indicate the alternative that is larger on
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average. The sequences and the deci-
sions participants make in each trial are
recorded. (B) The difficulty manipula-
tion involved a shift in the mean of the
lower distribution (red curves); the
larger-mean distribution (blue curves)
remained the same. (For interpretation
of the references to colour in this figure
legend, the reader is referred to the web
version of this article.)

c is a constant, (ii) collapsing boundaries, modeled using a Weibull
cumulative distribution function (Hawkins et al., 2015):

u(t)=a- [1 - exp(—(;)k)].(a —a) @

where = u(t) are the upper/lower thresholds at time ¢, a/a’ are the
initial (intercept) and asymptotic values of the boundary, respec-
tively, and A/k are the scale and shape parameters of the Weibull
function, respectively. We simulated both types of models 100,000
times, using samples drawn from Gaussians with p; = 52, p, = 46,
and Oexternal = 10, and the following set of parameters for the fixed-
boundary model: ¢ = 35, Oiyernat = 10 (high noise) or Giygernal = 0.5
(low noise), and the following ones for the collapsing-boundary
model: a =60, k=3, A =5.5, a' = 20." The integration process
was terminated once the integrated evidence (including internal
noise) exceeds one of the boundaries.

(ii) Timer model. The integration process was similar to the one de-
scribed in the Integration-to-boundary section. However, the stop-
ping-time was randomly sampled from an ex-Gaussian distribution
(u=3,0=05and A = %), reflecting a process that is exogenous
to the integration of evidence.

(iii) Cut-off heuristics. We examined two types of cut-off heuristics, both
do not assume integration of evidence: (i) value cut-off - observers
choose the sequence in which the first number exceeds a pre-
determined threshold, (ii) differences cut-off - observers choose
based on the first frame in which the difference between the
numbers exceeds a predetermined threshold. We simulated each
model 100,000 times using cut-offs of 60 and 70 for the value cut-
off heuristic, and 20 and 30 for the differences cut-off heuristic.

(iv) Counting heuristic. Decisions are based on tallying the number of
pair-winners of each alternative (input of +1 for the pair-winner
and O for the pair-loser). Decision is made when one of the tallies
exceeds a predetermined threshold (absolute criterion), or alter-
natively, when the difference in tallies exceeds a predetermined
threshold (relative criterion).

For each integration model, we examined how the integrated-evi-
dence (including the external/sampling noise but excluding the in-
ternal-noise) at the time of response (i.e., the cumulative sum of dif-
ferences between the sequences) varies as a function of decision-time
for the correct responses. Note that this (external) integrated-evidence
is a variable which we can measure in each trial (as we have access to
the samples), and which does not have to be identical to the boundary
(because we excluded the internal noise, to which we do not have

L All parameters used in this section, were selected to keep the accuracy and
decision-time in the experimental range.
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Fig. 2. Models predictions. Predictions for the fixed integration-to-boundary model are shown in (A), and for the collapsing integration-to-boundary model are shown
in (B). The boundaries are shown with solid black-lines. In each panel, the (external) integrated-evidence model predictions are shown for low internal noise (blue
lines) and for high internal-noise (red lines). The random-timer model (dashed gray line) predicts increase of the mean accumulated evidence with decision time.
(C-D) Predictions of the value cut-off heuristic and differences cut-off heuristic. The integrated-evidence model predictions are shown for low cutoffs (cyan lines) and
for high cut-offs (magenta lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

access to). However, as we show below, we can make model-predictions
on how this variable should depend on decision-time, as well as on the
range of internal noise given the actual response and its RT for a spe-
cific trial. Fig. 2 (upper panels) presents the predicted average in-
tegrated evidence of the correct responses, as a function of type of
boundary (fixed, collapsing or no-boundary) and level of internal noise
(see Figs. S1-4 for replication of Fig. 2 using different sets of parameters
and mixed-difficulty condition).

As expected, under low internal-noise, the fixed-boundary model
predicts that the average integrated-evidence changes little with the
decision-time, while the collapsing-boundary model predicts a drop of
the integrated-evidence with decision-time. Under high internal noise,
however, the fixed-boundary model predicts an increasing integrated-
evidence at the time of decision (Fig. 2A). The reason for this is the
omittance of internal noise (which was integrated together with the
evidence to determine the stopping time) from the integrated-evidence,
as this noise is correlated with the RT. While in shorter trials the in-
ternal-noise happened to be facilitatory (i.e., in the direction of the
external evidence, leading to faster responses), in longer trials it

happened to be inhibitory (against the external-evidence, leading to
slower responses). Thus, when omitting the internal-noise, the in-
tegrated-evidence underestimates the boundary on short RT and over-
estimates it on longer RT. For the case of collapsing boundaries with
high internal noise, the two processes balance out, so that the in-
tegrated evidence is roughly fixed. The boundary models differ in their
predictions from the heuristic and timer models (Fig. 2, bottom panel),
which predict a faster increase in the integrated-evidence with time.
Finally, we examine the RT predictions of the different models as a
function of difficulty (see Fig. 1B). As shown in Fig. 3A, the value-cutoff
heuristic predicts that RT decreases with difficulty (this pattern is ob-
tained across different cut-off values, Fig. S5). This is the outcome of
statistical facilitation (Raab, 1962): as the mean of the low Gaussian
increases, there is a higher chance to sample a value that exceeds the
cut-off. A similar prediction also takes place in models that assume
integration of absolute (rather than relative) evidence (Teodorescu &
Usher, 2013). The counting and integration-to-boundary models have
qualitatively similar predictions, which are in the opposite direction
from the value-cutoff: RTs are slower in the difficult conditions
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Fig. 3. Mean-RT as a function of task difficulty, predicted by (A) Value cut-off heuristic, (B) Difference cut-off heuristic, (C) Integration to boundary model, and (D)
Counting heuristic (absolute criterion). Error bars correspond to 95% confidence intervals.

(Fig. 3B-D). We thus distinguish those using quantitative model-fits in
the next section.

3. Experiments
3.1. General experimental methods

Both experiments used the same experimental paradigm (Fig. 1).
Two rapidly changing (2 Hz) sequences of numerical values (Glickman
et al., 2018, Tsetsos et al., 2012) were presented to the participants,
who were asked to indicate which sequence was drawn from a dis-
tribution with a higher mean. Critically, we used a free response
paradigm, in which the decision terminates the trial (Smith & Vickers,
1989). We used two difficulty levels: easy trials, in which the means of
the Gaussians were: |U; = 52 vs. |, = 44, 0 = 10, and difficult trials in
which the means were: p; = 52 vs. U, = 48, 0 = 10. The two experi-
ments differ in the reward instructions given to the participants. All
subjects participated in both experiments in different sessions (sepa-
rated by about 1 week). See Suppl. Methods for additional details.

3.2. Experiment 1

3.2.1. Participants

Twenty-seven undergraduate from Tel-Aviv University (22 females;
age: M = 23, range 21-28 years) participated in the experiment. The
participants received course credit in exchange for taking part in the
experiment, as well as a bonus fee ranging from 15 to 25 ILS, which was
determined by their task performance. The experiment was approved
the ethics committee at TAU.

3.2.2. Model-fit procedure

The models were fitted to the choice and RT-data, based on the
actual sequences that were sampled in each trial, using maximum
likelihood estimations (see Suppl. Model Fitting).

3.2.3. Results

First, we compared the accuracy and decision-times of the easy and
difficult trials. As shown in Fig. 4A, the participants were more accurate
(t(26) = 22.07, p < .001) and responded faster (t(26) = 7.0,
p < .001) on the easier trials. These findings are consistent with a
competitive (rather than independent) integration of evidence, which
predicts slowdown in response time with increased difficulty
(Teodorescu & Usher, 2013). The results also speak against a value cut-
off model, which also predicts faster responses in the more difficult
trials (Fig. 3A). Interestingly, as shown in Fig. 4B (black line), we find
that accuracy shows a small drop with RT. This is contrary to what a
timer model would predict (increase in accuracy with the number of
samples), and also challenging for a fixed boundary model (which
predicts a roughly constant accuracy; see below).

Next, we examined how the average integrated evidence at the time
of response varies as a function of decision-time. Note that our ex-
perimental paradigm allowed us to monitor the rate of evidence accu-
mulation over the course of each trial, and thus we were able to com-
pute the exact integrated evidence at the time of decision. Fig. 4C
presents the data of a representative participant, showing an approxi-
mately constant value of average integrated evidence across time (see
Fig. S6 for the results of all participants). The results at the group level
were evaluated using a mixed-effect linear regression, with random
intercept and slope for each participant, which also showed time-
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Fig. 4. Results of Exp. 1. (A) The participants were more accurate and faster on easy trials than on difficult ones. (B) Accuracy as a function of response-time. Black
line represents the empirical accuracy; Red/Blue lines represent the simulated accuracy of the fixed/collapsing boundary models, respectively. (C) Scatter-plot
showing the accumulated evidence in individual trials (blue circles) as a function of decision time of a representative participant; red circles correspond to the
average accumulated evidence at each RT, the gray solid line corresponds to linear regression fitted to the data, and the dashed gray line corresponds to the
prediction of the timer model. (D) The collapsing-boundary model decisively outperformed the fixed-boundary model; Solid purple lines correspond to the
boundaries generated using the group mean parameters, gray lines correspond to the boundaries of the individual participants. (E) Decision-time density distributions
of a representative participant as a function of trial difficulty. Red/Blue lines represent simulated decision-time distributions of the diffusion models with fixed/
collapsing boundaries, respectively. (F) The match between the actual (black circles) and simulated (blue diamonds for collapsing-boundary and red diamonds for
fixed-boundary) integrated evidence of a representative participant. The black dashed line corresponds to the collapsing-boundary generated using the participant
best-fitted parameters. Error bars correspond to 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

invariant pattern (f = —0.22, p = .12; Fig. 5C, blue line). The obtained
results are inconsistent with the qualitative predictions of the timer
model (Fig. 5C, dashed rising line), but are rather consistent with ei-
ther: i) fixed-boundary without (or with low) internal noise or with ii)
collapsing-boundary with internal noise.

To distinguish between the fixed and collapsing boundary models,
we carried out a model comparison, which estimated the likelihood of

each model given the subject choice and the samples inspected in each
trial. The model comparison provided decisive support to the collap-
sing-boundary model over the fixed-boundary model, as indicated by
lower AIC and BIC scores for all the participants, as well as by a decisive
support at the group level (4AIC = 13,975, ABIC = 13,742; Fig. 4D,
Tables S1-2). Similar results were obtained when we compared the
collapsing-boundary model to a fixed-boundary model, which includes
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between trial variability parameters for starting point and drift rate
(AAIC = ABIC = 13,933). We also tested the two best counting heur-
istic variants (using collapsing boundaries), which provided a much
lower fit to the results (AAIC = ABIC = 3214 for the absolute criterion
and AAIC = ABIC = 1589 for the relative criterion; Tables S1-2).
Finally, we examined the accounts provided by the fitted integration
to boundary models (fixed/collapsing) to the empirical data. The in-
tegration to a collapsing-boundary model accounted for the accuracy as
a function of RT (Fig. 4B, blue line) and for the distribution of decision-
times as a function of difficulty (Fig. 4E, blue line).? The fits are
somewhat less successful for the fixed boundary model (red line), which
does not account for the reduced accuracy with RT, and overestimates
the leading-edge and tail of the RT-distributions. A novel aspect of our
computational method is that we fit the choice and RT for each trial
given the actual evidence (in that trial). As we show in the Supplement
(Figs. S9-10), the simulated choices and RT show an increased corre-
lation with the data, compared to simulations based on randomly
sampled sequences, shuffled across trials with the same statistical

21In all model fits we assumed that the participants' responses were based on
the model examined for all trials. However, it is possible that in a small minority
of trials, the participants made guessing responses (Ratcliff & Tuerlinckx, 2002)
or may responded based on information related to previous trials (Braun, Urai,
& Donner, 2018). Exclusion of such trials may further improve the model fit of
the collapsing boundary model in Fig. 4B, but we prefer to focus here on a
standard model comparison without outlier exclusion, or model extension to
include sequential dependencies, which require a separate investigation.

properties.

In order to reconcile the apparent discrepancy between the constant
value of the average accumulated evidence and the concave shape of
the boundaries, we simulated the fixed and collapsing boundary models
for each participant using his or her best-fitted parameters. The results
demonstrate a good match between the simulated (Fig. 4F, blue line)
and actual (black line) integrated evidence, suggesting that despite the
collapsing boundaries, the integrated-evidence (excluding the noise)
remains constant across time (see Fig. S11 for the results of all parti-
cipants). On the other hand, the fixed boundary model overestimated
the accumulated evidence for a high number of samples (red line).

3.3. Experiment 2

The aim of the experiment was to replicate the integration-to-
boundary results, while also manipulating the response-boundary by
introducing a cost for the decision-time.

3.3.1. Participants
The same participants as in Exp. 1, did a second session one week
later.

3.3.2. Reward instructions

The reward decreased with the number of frames inspected. At each
trial the reward was 10-‘# inspected-frames’ points, for each correct
response, and 0 points for errors. Points were translated into monetary
reward at the end of the experiment.
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3.3.3. Results

We first replicated the results obtained in Exp. 1: the participants
responded faster (t(26) = 3.91, p = .006) and were more accurate (t
(26) = 17.43,p < .001) in the easier compared with the more difficult
trials. Next, we examined the effect of our payoff manipulation on ac-
curacy and decision-times. As predicted, the participants responded
faster (t(26) = 9.89,p < .001; Fig. 5A) and were less accurate in Exp. 2
(t(26) = 4.33, p < .001; Fig. 5B), indicating sensitivity to our payoff
manipulation. Then, we compared the integrated evidence at the time
of response between the two experiments. The results replicated the
time-invariant pattern obtained in Exp. 1 (3 = —0.10, p = .51), how-
ever, because of the payoff manipulation, the participants used lower
levels of integrated evidence (Fig. 5C, red line).

Second, we repeated the model comparison which was conducted in
Exp. 1. As in Exp. 1 the collapsing-boundaries model outperformed the
fixed-boundaries model (AAIC = 7973, ABIC = 7744). Importantly, we
found that the best-fitted parameters obtained in Exp. 1 were highly
correlated with those obtained in Exp. 2, indicating consistent in-
tegration dynamic (Fig. S12).

Critically, the comparison of the two sets of parameters revealed
significant differences in the boundary parameters (Fig. 5D). In order to
speed up their RT, the participants used lower intercepts (£(26) = 8.61,
p < .001), collapsed their boundaries faster (t(26) = 8.16, p < .001),
and their boundary collapsed to lower asymptotic (£(26) = 2.28,
p = .03; Fig. 5D).

4. Discussion

In this study we provided evidence for integration-to-a-collapsing-
boundary in a choice task with rapid numerical values presented until
response, and for adaptation of the boundaries to reward contingency.
The experimental results (Exp. 1) showed that task-difficulty reduced
accuracy and increased RT as predicted by models of relative evidence-
integration (Teodorescu & Usher, 2013), and in opposition to a value-
cutoff heuristic that make the opposite prediction (Fig. 3). Additionally,
we found that the average integrated-evidence at the time of decision is
roughly time-invariant, in contradiction to a random-timer decision-
termination mechanism and the cutoff heuristics (Fig. 2C-D), and that
the average integrated-evidence is lower in response to the time-costing
reward contingency (Exp. 2; Fig. 5C). Using computational modeling,
we were able to confirm these results (and rule out counting models)
and identify the type of boundary that participants rely on. Model
comparison provided strong support for a collapsing-boundary model,
whose boundary is reduced and collapses faster under the time-cost
reward contingency (Fig. 5D). Moreover, this model (but not the fixed-
boundary) provides an excellent account for the decision-time dis-
tributions (Fig. 4E, S7-8) and for the speed-accuracy function (Fig. 4B).
We note that in order to account for the time-invariant accumulated
evidence at response (Fig. 4C), the internal noise in the collapsing-
boundary model is relatively large (about a factor of 1.3 higher than the
external sampling noise).

The exact nature of the decision boundaries has been subject to
considerable debate, with empirical evidence producing mixed results.
While a number of studies found evidence supporting time invariant
boundaries (Hawkins et al., 2015; Voskuilen, Ratcliff, & Smith, 2016),
others provided support for a time-variant integration policy
(Drugowitsch et al., 2012; Khodadadi, Fakhari, & Busemeyer, 2017;
Palestro et al., 2018). There are a number of sources for these dis-
crepancies, ranging from the time-scale of evidence integration
Malhotra et al., 2017) to optimality considerations. In particular,
Malhotra et al. (2017) have shown that it is optimal to collapse the
decision boundary when trials of mixed difficulty are randomly pre-
sented and that people can adapt the boundary policy to this experi-
mental contingency in an expanded judgment task. As our task involved
mixed difficulty trials and the time scale of integration was relatively
long, our results are consistent with the idea that, at least on this time
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scale, people can adopt a roughly optimal policy. Note that while Exp. 1
posed no explicit time-cost, it is likely that implicit costs exists (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Edwards, 1965). Moreover
the reduction in the boundary parameters obtained when a cost for time
was introduced (Exp. 2), further demonstrates the adaptive character of
the decision mechanism.

Unlike previous studies, which examined evidence integration with
perceptual-evidence, here we wused rapid numerical sequences
(Glickman et al., 2018; Tsetsos et al., 2012). Such sequences are re-
levant to value based choices, such as choosing between stocks based on
sequences of returns. We reasoned that within 500 ms, symbolic
number-values can be associated with representations of magnitudes
(Brezis, Bronfman, & Usher, 2015; Dehaene, 2011) and therefore can
provide the input to an optimal choice mechanism based on integration-
to-boundary. The broad tuning of such magnitude representations is
consistent with the relatively large internal noise in the collapsing-
boundary model (Brezis, Bronfman, Jacoby, Lavidor, & Usher, 2016).
As shown in Fig. S13, the average accuracy achieved by our subjects,
who enhanced signal-to-noise ratio by integrating to a criterion, is 87%
(group-level) of that achievable by an ideal observer (that integrates the
differences without internal noise). Obviously there are non-optimal
strategies to carry-out our task, such as cutoff or counting heuristics or a
random-time integration policy. The results are thus remarkable, as
they refute these alternative strategies, providing strong support for
integration-to-boundary even with numerical stimuli. Future research
will need to examine how the boundary parameters depend on type of
evidence (perceptual vs. numerical) or alternatively on presentation-
rate of the alternatives.
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