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Suppose that you face a decision among three French 
holiday destinations, Avignon, Biarritz, and Cannes (A, 
B, and C). When you are asked to select one of A or 
B, you choose A. Now suppose you have been asked 
to reject one of A or B (keeping the nonrejected item) 
and now choose to reject A ( framing effect). Or con-
sider you choose A from A or B but choose B from 
among A, B, and C (decoy effects). Or, third, suppose 
you choose A over B, B over C, and yet C over A 
(intransitivity). Each of these patterns seems mystify-
ing, and some may seem downright irrational (Savage, 
1954; von Neumann & Morgenstern, 1947), yet they are 
routinely and systematically observed in the right 
experimental circumstances (Tversky & Kahneman, 
1981). These three puzzling phenomena—framing, 
decoy effects, and intransitivity—provide crucial clues 
to the nature of human decision making.

Our proposed explanation for these phenomena is that 
people sample and accumulate values of choice options 
via multiple, sequential comparisons. That means that the 
value of an option, or whether one option is “better” than 
another, is not ascertained in a single holistic step but 
rather is formed gradually by attending to features of the 

options one by one. Moreover, the process of selectively 
attending to and integrating the outcome of those value 
comparisons may be partial, imperfect, and dependent 
on details of the task framing that are rationally irrelevant. 
In this article, we argue that such processes of selective 
integration provide an adaptive explanation of irrational 
behavior as well as a microfoundation for psychological 
and neural theories of human decision making.

Puzzling Preferences

Risk biases, framing, and violations 
of invariance

In 1947, von Neumann and Morgenstern proved that 
any individual whose preferences satisfy four “rational-
ity” axioms has a utility function (see also Savage, 1954). 
Any individual whose preferences violate these axioms 
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would agree to a Dutch book, which is a set of bets that 
necessarily leads to a loss and therefore is, arguably, 
irrational. Risk preferences (i.e., whether people seek 
or are averse to risk) are observed in a variety of choice 
tasks, both when the potential rewards of the alterna-
tives are described and when they are experienced. 
Rational-choice theory attempts to account for such risk 
preferences by assuming a nonlinear mapping of objec-
tive rewards to internal (subjective) values and of objec-
tive to subjective probabilities, as is the case in normative 
(subjective expected utility; Savage, 1954) or descriptive 
(e.g., prospect theory and its extensions; Fox & Pol-
drack, 2009; Tversky & Kahneman, 1992; but see Rabin 
& Thaler, 2001) theories. More challenging, however, is 
a pattern of results that indicates that risk preferences 
can reverse as a result of task framing. For example, 
Shafir (1993) first reported a reversal effect when he 
contrasted the preferences of participants asked to select 
one out of a pair of alternatives (select framing) with 
those of participants asked to reject one of the same 
alternatives (reject framing). Critically, when the pairs 
(A, B) were created so that A had more extreme proper-
ties (both good and bad) than B, participants tended to 
choose A (from the A-B pair). But a similar group of 
participants rejected A from the same pair, in striking 
contradiction to the rational principle of invariance 
(Kahneman & Tversky, 1986). More recently, such a 
framing reversal of risk preference was reported by 
Tsetsos, Chater, and Usher (2012) in a selection between 
rapid sequences of payoffs (see also Erev, Ert, Plonsky, 
Cohen, & Cohen, 2017). A similar effect was recently 
reported by Vanunu, Pachur, and Usher (2019), who 
showed a modulation of risk biases by the evaluation 
format: one by one versus in groups.

Decoy effects

A decoy (or contextual-preference-reversal) effect 
occurs when the preference between two alternatives, 
A and B, is reversed because of the introduction of 
another (irrelevant) alternative into the choice set. 
Three such decoy effects (attraction, similarity, and 
compromise) have been extensively reported in the 
decision-making literature, usually in studies using mul-
tiattribute decision designs (see Busemeyer, Gluth, 
Rieskamp, & Turner, 2019, for a recent review of data 
and computational theories on decoy effects) or deci-
sions between sequences of temporally correlated pay-
offs (Pachur & Scheibehenne, 2012; Tsetsos et al., 2012). 
Among these contextual effects, the attraction effect 
(Huber, Payne, & Puto, 1982)—in which the introduc-
tion of a dominated alternative (that is not chosen) 
increases the probability of one of the other alternatives 
in the choice set being chosen—is puzzling, in 

particular because it contradicts the principle of regu-
larity, which is satisfied by a wide class of (random-
utility) choice models (Luce, 1959).

Violation of transitivity

Violations of transitivity, in which people prefer A over 
B and B over C but C over A, are not reported often. 
Yet they can reliably be elicited using specially con-
structed alternatives. For example, such a pattern was 
reported by Tversky (1969), who constructed pairs of 
alternatives based on a lexicographic order (but see 
Regenwetter, Dana, & Davis-Stober, 2011). More 
recently, a similar pattern was reported by Tsetsos et al. 
(2016) for alternatives that correspond to rapid numeri-
cal sequences presented in pairs.

The Selective-Integration Model: 
Accounting for Violations of Choice 
Rationality

The role of selective attention in 
preference formation

Decoy effects, framing effects, and transitivity viola-
tions, contrary to idiosyncratic risk attitudes, cannot be 
captured by nonlinear value functions or distorted rep-
resentations of probability. Instead, a number of pro-
cess models have been developed to explain choice 
biases and violations of rationality as arising from the 
dynamics of information processing during preference 
formation. The first model is the decision-field theory 
(DFT; Roe, Busemeyer, & Townsend, 2001), which relies 
on the sequential-sampling framework (Gold & Shadlen, 
2007; Ratcliff & McKoon, 2008; Teodorescu & Usher, 
2013). In the DFT model, the values of the alternatives 
are constructed on-line by sampling from the available 
payoffs, subject to internal fluctuations in attention 
between the decision attributes. Similar models, which 
share some of the same assumptions, are the leaky 
competing accumulator (LCA; Tsetsos et al., 2012; Usher 
& McClelland, 2004), the associative-accumulation 
model (AAM; Bhatia, 2013), and the multialternative-
decision-by-sampling (MDbS) model (Noguchi & 
Stewart, 2018; see Turner, Schley, Muller, & Tsetsos, 
2018, for a recent review).

These and other models differ in some auxiliary pro-
cessing and representational assumptions. For example, 
the DFT model assumes a distance-dependent inhibi-
tion, whereas the LCA assumes a loss-averse value func-
tion (as in prospect theory), and the MDbS model 
assumes that the frequency of pairwise comparisons 
depends on the similarity between the alternatives. 
These models employ a relatively large number of 
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parameters to explain violations of rationality. Thus, it 
has been difficult to compare these theoretical models 
with each other (but see Turner et al., 2018) and test 
their underlying psychological and neural mechanisms. 
Here, we focus on a single key component that explains 
violations of rationality: an internal process that allo-
cates attention to (and prioritizes the processing and 
weighting of) some aspects of the alternatives. On the 
basis of this selective-attention mechanism, we have 
proposed a simple decision-making model—selective 
integration—in which auxiliary assumptions are mini-
mized (e.g., linear value functions and no distance-
dependent inhibition).

Whereas attention is well known to affect memory 
(Chun & Turk-Browne, 2007), recently, the role of selec-
tive attention in preference formation has also been 
experimentally supported. For example, Krajbich and 
Rangel carried out a set of studies in which the eye 
positions of participants were tracked while they were 
making decisions between food items and perceptual 
alternatives (Krajbich, Armel, & Rangel, 2010; Krajbich 
& Rangel, 2011; Tavares, Perona, & Rangel, 2017). The 
results showed that the more one looks (i.e., attends) 
to an alternative, the more likely he or she is to choose 
it. Moreover, using computational modeling, Krajbich 
and Rangel showed that that eye locations modulate 
the weight assigned to the sampled values. More 
recently, Gluth, Spektor, and Rieskamp (2018) used a 
three-alternative choice task and demonstrated that 
value-based attentional capture—the tendency to look 
more at high-value alternatives—impacts choice behav-
ior. Furthermore, a number of studies directly manipu-
lated (in a bottom-up manner) the attention given to 
various alternatives (or aspects of them), showing that 
by biasing attentional selection, one can influence the 
choice (Kunar, Watson, Tsetsos, & Chater, 2017; Tavares 
et  al., 2017). These studies allude to the interplay 
between attention and decision making, which we 
explicitly formalize in the selective-integration model, 
presented next.

The selective-integration model

We start by presenting an experimental paradigm that 
quantifies choice-bias effects in a way that allows 
detailed computational modeling (Glickman, Tsetsos, 
& Usher, 2018; Tsetsos et al., 2012; Tsetsos et al., 2016; 
see also Zeigenfuse, Pleskac, and Liu, 2014, for a similar 
experimental paradigm). In each experimental trial, 
rapid (2–4 per second) sequences of payoffs (pairs or 
trios) are presented, and participants are asked to select 
the sequence with the higher mean or, alternatively, the 
sequence from which they would like to receive an 
extra sample as a reward (Fig. 1a).

First, when pairs of alternatives are sampled from 
normal (and overlapping) distributions with different 
means and equal variance (Fig. 1a), participants are 
accurate at selecting the sequence with the higher 
mean. Critically, choice accuracy increases with the 
number of samples, indicating a value-integration pro-
cess that averages out encoding or decision noise (Fig. 
1b). Second, when pairs of alternatives are sampled 
from payoff distributions with the same mean but with 
different variance (Fig. 1c), participants are risk seek-
ing: They prefer the high-variance alternative (see also 
Zeigenfuse et al., 2014). Crucially, this bias reverses to 
risk aversion under a reject framing (Fig. 1c; Tsetsos 
et  al., 2012). Finally, when trios of alternatives were 
presented, so that the values shown in each frame were 
temporally correlated to create an analog of the attrac-
tion and similarity effects, participants showed the cor-
responding choice biases (see Fig. 4d in Tsetsos et al., 
2012).

The selective-integration model accounts for all these 
effects (see Zeigenfuse et al., 2014, for a similar model, 
called rank-dependent sequential sampling). The selective-
integration model assumes that the preference of each 
alternative is represented by a leaky accumulator, which 
integrates the value samples that are observed. Criti-
cally, however, these samples are weighted by their goal 
congruence. In a select framing, one attends more and 
thus gives higher weight to (momentarily) higher values 
(blue area in Fig. 1d). This results in risk-seeking 
choices and accounts for memory biases in a similar 
paradigm (Madan, Ludvig, & Spetch, 2014). In a reject 
framing, however, attention is attracted to the (momen-
tarily) lower payoffs (more attention to the purple area 
in Fig. 1d), resulting in risk aversion. Finally, the model 
accounts for the decoy effects by assuming that when 
three payoffs are presented together, attention is attracted 
to the two higher payoffs and thus that the lowest one 
(in each frame) is downweighted. To summarize, the 
selective-integration model accounts for the effects by 
postulating a top-down attentional selection that shifts 
attention on a given pair or trio of samples to those 
samples that are congruent with the participant’s goal 
(looking more to the higher or lower values).

Testing the Selective-Integration Model

To test this top-down attentional selection mechanism, 
we deployed a dual-task design in which participants 
chose between rapid sequences of payoffs (as before) 
but in addition monitored the presence of a probe  
(a red dot), which randomly appeared on one of the 
payoffs on about half of the trials (Glickman et al., 2018; 
Fig. 2a). Critically, the probe could appear either on the 
higher or on the lower of the two payoffs.
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As shown in Figure 2b, participants had a higher 
detection rate when the probe was placed on the value 
that was consistent with their goal (i.e., monitoring for 
high values). Moreover, this attentional bias reversed 
in a reject framing (Fig. 3 in Glickman et  al., 2018). 
Critically, we reasoned that if as assumed by the selec-
tive-integration model, the risk-seeking bias is due to 
selective attending to high payoffs, we should find that 
the magnitude of the two effects correlates among par-
ticipants. As shown in Figure 2c, we indeed found that 
attending to higher payoffs correlates with preferring 
sequences with larger variance. Moreover, the greater 
this attentional bias, the higher the choice accuracy 
(i.e., the probability of selecting the sequence with the 
higher mean; Fig. 2d).

Finally, Tsetsos et al. (2016) tested a striking predic-
tion of the selective-integration model: The lower of 
two simultaneously presented payoffs is discounted, 
resulting in a frequent-winner preference. This allows 
the construction of sequences with the same mean but 
temporally correlated, for which the model predicts a 
transitivity violation. To illustrate, consider the following 
three sequences: A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2),  
which are cyclic permutations of each other. Assume 
that pairs of these sequences are presented to partici-
pants as three frames of payoffs. Discounting the lower 
values in each frame results in a frequent-winner pref-
erence. Thus, the selective-integration model predicts 
that in binary choice between these sequences, one 
should prefer B to A (B wins twice over A) and C to B 
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Figure based on the work of Tsetsos, Chater, and Usher (2012).
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but A to C (see Tsetsos et al., 2016, for model-simulation 
details). To test this prediction, Tsetsos et al. presented 
participants with pairs of alternatives that consisted of 
sequences of pairs of bars that were generated accord-
ing to this design. The results showed that participants 
indeed preferred the frequent-winner alternatives in 
contradiction to the transitivity principle. Moreover, 
Tsetsos et  al. found that the more a participant dis-
counted the lower of two simultaneously presented 
values (as indicated by fitting of the selective-integration 
model), the higher the transitivity violation was.

The Adaptive Role of Selective Integration

A key question is why does the selectiveness of prefer-
ence formation result in striking violations of rationality, 
such as intransitivity. The selective-integration model 
allows us to tackle this question by varying the selective-
integration parameter from a value corresponding to 
completely nonselective integration to a value corre-
sponding to totally selective integration. To quantify the 
decision quality, we can consider choices between alter-
natives that correspond to samples from overlapping 
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normal distributions that differ in their mean. We further 
consider two types of noise factors (Tsetsos et al., 2016; 
Fig. 3a). The first is encoding noise that reflects how 
each sample is registered. The second is late noise that 
does not involve the individual samples but rather dis-
torts the representation of the accumulated values at a 
postencoding stage. It appears that in the absence of the 
late-noise component, any selectivity reduces perfor-
mance. Indeed, the optimal decision strategy is to inte-
grate all values (without any discounting) to average the 
encoding noise. Remarkably, however, in the presence 
of late noise, selective integration becomes more effi-
cient than nonselective integration (Fig. 3b). This is 
because selective integration enhances the value differ-
ence, making it more robust to the corrupting effect of 
the late noise (Tsetsos et al., 2016), consistent with the 
correlation between attentional bias and choice accuracy 
(Fig. 2d). A similar conclusion was recently reported with 
choices between nonsimultaneous sequences of numbers 
as a result of overweighting the larger magnitudes (Spitzer, 
Waschke, & Summerfield, 2017).

It is thus possible that choice biases, such as intran-
sitivity, which are typically viewed as irrational, are the 
cost that the decision system must pay to protect itself 
from the pervasive impact of late noise. In support of 
this notion, the selective-integration and the late-noise 
parameters (fitted to the data) are correlated across 
participants (Tsetsos et al., 2016), indicating an adap-
tive mechanism. Importantly, in perceptual tasks, with 
high sensory or early noise (compared with the late 

noise), reliance on selective integration is not optimal. 
Future research will be needed to test the application 
of the selective-integration model to more standard 
type of experience-based decisions (Hertwig & Erev, 
2009) and to choices between simultaneously pre-
sented multiattribute alternatives, for example, by eye 
tracking. Finally, future research is needed to probe 
the boundary of the selective-integration adaptive 
mechanism.

Conclusions

Although it is well established that attention affects 
choice, we propose that goal-consistent values affect 
attentional selection in a somewhat similar way as hear-
ing one’s own name at a cocktail party (Conway, 
Cowan, & Bunting, 2001). The selective-integration 
model explains how the sequential allocation of atten-
tion to the features of the available options can signifi-
cantly affect the choices people make. Indeed, the 
model provides a simple account of a variety of patterns 
of choice that seem anomalous from the point of view 
of rational economic theory. These phenomena emerge 
naturally from a detailed analysis of the mechanisms 
through which information is sampled and used. More-
over, as we argued, this selective mechanism offers 
benefits in term of making decisions robust to noise 
and provides theoretical support for models of risky 
choice that assume value-dependent attentional weight-
ing (Zeigenfuse et al., 2014).
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Recommended Reading

Glickman, M., Tsetsos, K., & Usher, M. (2018). (See 
References). A direct test of the selective-integration idea, 
according to which attentional selection mediates risk 
bias, using a dot-probe paradigm.

Spitzer, B., Waschke, L., & Summerfield, C. (2017). (See 
References). Research using electroencephalography 
showing that when people average numerical sequences, 
they overweight large numbers.

Tsetsos, K., Chater, N., & Usher, M. (2012). (See References). 
Demonstration that risk biases, framing effects, and prefer-
ence reversals can be obtained in a rapid-serial-presentation 
paradigm and introduction of the selective-integration model 
to explain these effects.

Tsetsos, K., Moran, R., Moreland, J., Chater, N., Usher, M., & 
Summerfield, C. (2016). (See References). Demonstration, 
theoretically and empirically, that selective integration, 
although it violates rational-choice theory, maximizes 
choice accuracy in the face of decision noise.
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