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Deciphering the content of continuous speech is a challenging task performed daily by the human brain. Here, we
tested whether activity of single cells in auditory cortex could be used to support such a task. We recorded neural
activity from auditory cortex of two neurosurgical patients while presented with a short video segment contain-
ing speech. Population spiking activity (~20 cells per patient) allowed detection of word onset and decoding the
identity of perceived words with significantly high accuracy levels. Oscillation phase of local field potentials
(8-12 Hz) also allowed decoding word identity although with lower accuracy levels. Our results provide evi-
dence that the spiking activity of a relatively small population of cells in human primary auditory cortex contains
significant information for classification of words in ongoing speech. Given previous evidence for overlapping
neural representation during speech perception and production, this may have implications for developing

brain-machine interfaces for patients with deficits in speech production.

© 2015 Elsevier Inc. All rights reserved.

Introduction

The ability to correctly discriminate speech is crucial for successful
social interaction. To comprehend auditory content, the brain has to
decipher a variety of sounds in real time. Previous electrophysiological
studies in animals have successfully used spiking activity in auditory
cortex to classify different sounds including species-specific vocaliza-
tions (e.g., grasshoppers (Machens et al., 2003); song birds (Grace
et al., 2003; Narayan et al., 2006); cats (Gehr et al., 2000); monkeys
(Russ et al., 2008)), or vocalizations across species (e.g., marmoset
calls in ferrets (Schnupp et al., 2006); marmoset calls in cat (Wang
and Kadia, 2001); bird chirps in cats (Chechik et al., 2006)).

In humans, discrimination of speech content has been demonstrated
using various non-invasive techniques. Functional magnetic resonance
imaging (fMRI) studies showed cortical representation of speech
based on spatial activation patterns in Heschl's gyrus (Formisano et al.,
2008; Wessinger et al., 2001; Binder et al., 2000). Other studies using
Magnetoencephalography (MEG) found that the degree of correspon-
dence between the temporal envelope of the signal in auditory cortex
and stimulus soundwave co-varies with the level of speech comprehen-
sion (Ahissar et al., 2001). Furthermore, it has been found that the phase
of the MEG signal in the theta-band (4-8 Hz) reliably discriminates
spoken sentences (Luo and Poeppel, 2007).
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Invasive studies using Electrocorticography (ECoG) have shown that
cortical responses in the superior temporal gyrus (STG) track the enve-
lope of attended speech streams (Zion Golumbic et al., 2013; Mesgarani
and Chang, 2012; Canolty et al., 2007). Others found that the STG is
robustly organized according to sensitivity to basic phonetic items
(Mesgarani et al., 2014; Chang et al,, 2010) and that slow and interme-
diate temporal fluctuations corresponding to syllable rate can be recon-
structed based on power in high-gamma frequency band (Pasley et al.,
2012). It has also been shown that the ECoG signal from electrodes im-
planted in Heschl's gyrus (HG) follows the temporal speech envelope
over a wide range of speaking rates (Nourski et al., 2009) and can be
used to facilitate discrimination of voiced from unvoiced phonemes
(Steinschneider et al., 2005). Despite this comprehensive research,
the relative contribution of spiking activity and optimal features of
the rich LFP signal in auditory cortex in decoding perceived words
from ongoing speech is not known.

It has been previously shown that activity in auditory cortex during
passive perception overlaps with activity during overt (Zheng et al.,
2010; Flinker et al., 2011; Cogan et al., 2014) and covert speech
(Buchsbaum et al., 2001; Pei et al., 2011; Martin et al., 2014). Under
these circumstances, characterizing the activity patterns of single cells
during passive perception may also have important implications for
comprehending the process of speech production (Bouchard et al.,
2013).

In the current study, we recorded spiking activity and local field po-
tentials from the putative primary auditory cortex of two neurosurgical
patients while they were presented with an audio-visual stimulus con-
taining on-going speech monologue. We used a support vector machine


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.05.001&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2015.05.001
mailto:rmukamel@tau.ac.il
http://dx.doi.org/10.1016/j.neuroimage.2015.05.001
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg

152 0. Ossmy et al. / Neurolmage 117 (2015) 151-159

(SVM) classifier in order to discriminate 6 different words and detect
their onset using information from spiking activity. We also examined
local field potentials (LFPs) and found that across various features,
phase in the low frequency band (8-12 Hz) was best for decoding
words, although performance was much lower compared with using
population spiking activity. Combining information from spikes and
low frequency LFP phase improved classification performance com-
pared to using data from either signal alone.

Materials and methods
Patients and electrophysiological recording

Data was collected from two patients (21 years old male and
19 years old female) with pharmacologically intractable epilepsy,
implanted with intracranial depth electrodes to identify seizure focus
for potential surgical treatment (Mukamel and Fried, 2012). Electrode lo-
cation was based solely on clinical criteria. Each electrode terminated in a
set of nine 40-um platinum-iridium microwires (Fried et al., 1999) —
eight active recording wires, referenced to the ninth. Signals from these
microwires were recorded at 28 kHz for the first patient and 30 kHz
for the second patient using a 64-channel acquisition system. Before
surgery each patient underwent placement of a stereotactic headframe,
and then a detailed MR image was obtained using a spoiled-gradient se-
quence, followed by cerebral angiography. Both anatomical and angiog-
raphy images were transmitted to a workstation in the operating room,
and surgical planning was then performed, with selection of appropri-
ate temporal and extra-temporal targets and appropriate trajectories
based on clinical criteria. To verify electrode position, CT scans following
electrode implantation were co-registered to the preoperative MRI
using Vitrea® (Vital Images Inc.). The patients provided written in-
formed consent to participate in the experiments. The study was ap-
proved by and conformed to the guidelines of the Medical Institutional
Review Board at UCLA. Data collected from the first patient was previ-
ously reported (Mukamel et al., 2011; Bitterman et al., 2008; Nir et al.,
2007).

Stimuli and behavioral task

Patients observed nine repetitions of a 17 s long audio-visual clip at
their bedside. The clip was taken from the movie “The Good, The Bad,
and The Ugly” (starting from minutes 44:31 in the original film) and
is comprised mainly of speech monologue containing 23 words and
environmental sounds. The patients' task was to follow the plot.

Data preprocessing

To detect spiking activity, the data was band-pass filtered offline
between 300 and 3000 Hz and spike sorting was performed using
WaveClus (Quiroga et al.,, 2004), similar to previous publications
(Quiroga et al., 2005). This process yields for each detected neuron a
vector of time stamps (1 ms resolution) during which spikes occurred.

We assessed whether the spiking activity of the recorded neurons is
evoked by different spoken words — ‘Now’, ‘Tight’, ‘Right’, ‘Neck’, ‘Pig’
and ‘Rope’, embedded in the speech sequence. These words were
chosen since they fit within a time window of 250 ms without overlap-
ping with adjacent words. The spike train of each neuron during the
250 ms time window aligned to specific word onset was extracted
and spike counts were calculated in twenty, 12.5 ms consecutive time
bins. In order to assess responsiveness of each neuron to the various
stimuli, we examined the degree of repeated spike patterns across trials.
To this end the binned signals were averaged across odd and even trials
separately and the Pearson correlation coefficient between the two av-
erages was computed. Cells exhibiting correlation coefficients greater
than 0.45 (lowest statistically significant correlation level when using

20 bins) for at least one word were considered responsive and taken
for further analysis.

Word classification

We used a multi-class support vector machine to discriminate
among the six different words within the speech sequence. We used a
Matlab implementation of a SVM classifier (Chang and Lin, 2011; soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm) and least
squares as a cost function. Accuracy levels were compared with a null
distribution obtained by shuffling the labels of the data and performing
the same classification procedure as on the original data.

Spiking activity from time windows corresponding to individual
words was binned in consecutive non-overlapping temporal windows.
Thus, the data of each word consisted of 9 matrices (one for each trial).
The value in each matrix cell i,j corresponded to the spike count of neu-
ron i, in time bin j. During each classification iteration we performed a
standard “leave-one-out” procedure in which one matrix of each of the
six words was randomly chosen as test data and the classifier was trained
to discriminate the 6 words based on the remaining matrices. During
the test stage, the classifier assigned labels to left-out matrices (the trials
which it was not trained on) and its performance was assessed. This pro-
cedure was iterated 500 times.

We estimated the optimal temporal resolution for classification by
varying the size of non-overlapping bins. Performance level of word
classification was assessed using different bin sizes as input to the clas-
sifier (either 25 ms, 50 ms, 125 ms, or 250 ms; corresponding to 10, 5, 2,
and 1 temporal bins respectively). Thus given N neurons, the population
spike response representation of one word during one trial using, for
example, 50 ms bins is an N x 5 matrix of spike counts.

Detection of word onset

We also assessed whether we can detect the correct time segments
(250 ms) of each of the six word instances within the complete on-
going 17 s long audio-visual segment. We trained a binary classifier to
discriminate between word and non-word bins (see below) in order
to detect word onset. First, we set aside data from one trial (number
of neurons x 17,000 ms long population spike train) to be used later
as test set. For each word, we extracted 250 ms spike trains correspond-
ing to word onset from the remaining eight trials. These spike trains
were binned by calculating the spike count in five consecutive 50 ms
temporal windows resulting in eight matrices (one for each trial; matrix
size = number of neurons x5) which were labeled ‘word’ bins. The
same process was performed with a randomly chosen time point within
the 17-s long sequence. This resulted in another eight matrices which
were labeled as ‘non-word’ bins. These two sets of eight labeled matri-
ces were used to train a classifier to discriminate ‘word’ from ‘non-
word’ bins.

Next, we took the 17-s spike train that was set aside. Spiking activity
from the first time window of 250 ms was taken and binned to five con-
secutive 50 ms bins (similar to the procedure performed with the train-
ing data). This matrix (number of neurons x 5) was used as test data to
the classifier which labeled it as either belonging to ‘word’ or ‘non-word’
bin (based on the mapping rule learned from the training data). In this
manner, the classification procedure yielded a label for each time bin.
This process was iterated in 10 ms increments (i.e., classifying spike
trains from time 10-260 ms in the following step and so on until the
final time bin 16,750-17,000 ms). This resulted in a vector (length =
1676) of ‘word’/‘non-word’ labels.

The entire process was iterated 500 times (each time using a differ-
ent randomly chosen time point to be used as ‘non-word’ bins during
training) and the percentage of ‘word bin’ labels assigned for each
time window across iterations was calculated. The window with the
maximal percentage was assigned as the classified time window of
word onset. We performed this analysis for each word separately
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resulting in 6 time windows corresponding to the decoded onset of each
individual word. These time windows were considered correct if their
onset was within the limits of 50 ms before and after the real word
onset. Otherwise, it was considered as a false alarm. We had 9 trials
and 6 words therefore a maximum of 54 correct detections across all
classifications. Detection accuracy was determined by calculating the
mean percentage of hits in decoding onset of all words across all test tri-
als. Chance performance was assessed by repeating this procedure using
randomly shuffled labels of the training data in each classification
iteration.

Local field potentials (LFPs)

After assessing classification performance using spiking activity, we
examined decoding of word identity using various features of the LFP
signal. First, we determined which aspects of this rich signal could
be used as input to the decoder. To that end, the raw signal was first
notch filtered to remove 60 Hz electrical noise using a 2nd order
Butterworth filter between 59 and 61 Hz (implemented by using
Matlab's “filtfilt’ function that results in zero phase shifting). Next, the
signal was downsampled from the original (28 kHz for first patient or
30 kHz for second patient) to 1 kHz using MATLAB resample function.

Next, we used LFP channels from which spiking activity of neurons
was detected (13 and 5 channels for first and second patient
respectively) and examined which features of the LFP signal are evoked
by the stimulus. The features we examined included phase, and power,
in all frequencies up to 120 Hz. For each word, we took the correspond-
ing 250 ms time window, and used the Hilbert transform to calculate
the phase and power of the LFP signal across all frequencies. Signal
features that are evoked by the word stimulus will be coherent across
presentation trials while signal features that are not, are expected to
exhibit low coherence values across trials. For each word and each LFP
channel, we computed the coherence in phase or power between trials
as a function of frequency using the formulas below:
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where N is the number of trials (in our case N = 9), and 6ni and Ani are
the phase and amplitude at frequency i, and trial n. The above functions
provide a measure of the coherence between trials for each frequency.
Both measures increase as a function of similarity across trials. For
each LFP channel we had six such coherence functions for phase and
six coherence functions for power (one for each individual word).

Finally, we calculated a dissimilarity index to examine the signal
features that are not only evoked by the stimulus but also selective to
particular words. To that end, the coherence across trials of a particular
word was compared with the coherence across 9 randomly chosen trials
of the remaining words. A dissimilarity function between the coherence
of trials of the same word and coherence of trials of different words was
computed across all frequencies:

Dissimilarity_Phase; = Cphase; sqme — Cphase; gigerent
Dissimilarity_Power; = Cpower; ssme — CPOWET'; gigrerent

where i corresponds to a particular frequency, and same/different
refers to trials of the same or different words respectively. These
dissimilarity functions were computed for each individual word and av-
eraged across words for each LFP channel. The average function

(dissimilarity vs. frequency) of each LFP channel was then Z-score nor-
malized (i.e., remove mean and divide by SD) and averaged across
channels.

This index is a measure of the degree of signal similarity between tri-
als of the same word relative to the degree of signal similarity between
trials of different words. Two criteria need to be fulfilled in order to get
significant positive dissimilarity index values: 1) robustness — the sig-
nal must be consistent across trials of a given word (strong coherence
between trials of the same word) and 2) selectivity — the signal must
have different coherence values across different words. If the signal is
inconsistent across trials of the same word or consistent across trials
but not different across different words, dissimilarity index values will
be low. If, on the other hand, the signal is similar across trials of the
same word and distinct across all the other words, dissimilarity index
values will be high. High dissimilarity index value of a particular LFP sig-
nal feature implies that this LFP signal feature is robust and selective —
therefore a good candidate to be used for decoding. After establishing
the most robust and selective LFP feature across words, it was used in
a multi-class SVM classifier to perform a similar classification procedure
which was performed using spiking activity (see Word classification).

Results

We recorded spiking activity and LFPs from two patients while pre-
sented with an audio-visual segment containing speech (see Materials
and methods). Patients were implanted bilaterally with depth elec-
trodes in auditory cortex for clinical purposes (see Fig. 1). In patient 1,
the left Heschl's gyrus (HG) was bifurcated and the electrode was on
the posterior bank, in the middle of the medial/lateral axis. The right
HG of this patient was trifurcated and the electrode was on the most an-
terior portion, and in the middle of the medial/lateral axis. These regions
are slightly anterior to where primary auditory cortex is typically locat-
ed (Rademacher et al., 2001). For additional anatomical details on the
exact placement of electrodes in this patient see description of patient
2 in Mukamel et al. (2011). In patient 2, the left HG was bifurcated
and the electrode was also in the most posterior portion. Her right HG
was trifurcated and the electrode was on the posterior bank. Overall
across the two patients we found extra-cellular spiking activity from
43 neurons, and obtained LFPs from 18 different channels (see Table 1).

The patients were presented with nine repetitions of a 17-s long
audio-visual excerpt containing speech. We assessed whether the spik-
ing activity of the recorded neurons is evoked by the different spoken
words (‘Now’, ‘Tight’, ‘Right’, ‘Neck’, ‘Pig’ and ‘Rope’; see Materials and
methods). Fig. 2 demonstrates the spiking activity (raster plots) of one
neuron in four different time frames corresponding to four words. As
can be seen by the repeatable pattern across trials, this neuron
responded strongly and robustly to all four words. The total number of
spikes evoked by the population of neurons within the 250 ms temporal
window was not significantly different across the 6 words (repeated
measures ANOVA across all neurons, average p across patients =
0.98). The average firing rates during the complete audio-visual se-
quence across neurons was 2.17 + 2.8 Hz (mean + SE).

Next, we assessed whether the information conveyed by the tempo-
ral dynamics of the population spiking activity could be used to discrim-
inate among the six different words using a support vector machine
classifier. As input to the classifier, we used a matrix representing the
spike counts of the population in non-overlapping temporal bins
(using 4 different bin sizes — either 25 ms, 50 ms, 125 ms, or 250 ms;
see Materials and methods). Fig. 3 shows classification performance as
a function of bin size in each one of the patients. Significant, above-
chance classification performance was obtained using bin sizes of 50 ms
and 25 ms (mean accuracy across patients: using 50 ms bins = 66%, shuf-
fled data accuracy = 17.3%, p < 10~ ' two-tailed paired t-test compared
to shulffle, collapsed across patients; accuracy using 25 ms bins = 61%,
shuffled data accuracy = 16.5%, p < 10~ '2). Between the two significant
bin sizes, accuracy level obtained with 50 ms bins yielded significantly
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Fig. 1. Anatomical localization. Electrode locations (green dots) displayed on coronal,
sagittal and axial MRI slices for patient 1 (top) and patient 2 (bottom). The electrodes in
both patients were located in the posterior portion of Heschl's gyrus near putative primary
auditory cortex.

higher classification levels compared with 25 ms (paired t-test, p < 0.002,
collapsed across patients and words). Classification performance using
larger bins (125 ms and 250 ms) yielded performance levels not

Table 1
Recording details. Distribution of recorded spiking activity and LFP channels across hemi-
spheres and patients.

Left hemisphere Right hemisphere

Patient 1 Spiking activity: 3 single units, Spiking activity: 9 single units,
2 multi units. 8 multi units.
LFP: 5 channels. LFP: 8 channels

Patient 2 Spiking activity: 11 single units, None

10 multi units.
LFP: 5 channels

significantly different from chance (accuracy using 125 ms bins: real
data = 19.1%, shuffled data = 16.9%; accuracy using 250 ms bins: real
data = 17%, shuffled data = 16.2%; p = 0.31 for 125 ms bins and p =
0.74 for 250 ms bins, two-tailed paired t-test, collapsed across patients
and words). These results suggest that the temporal dynamics of popula-
tion spikes during word perception contain information that is specific to
word identity that is lost when simply using the total spike count.

Two of the 6 words (‘now’ and ‘rope’) repeated twice throughout the
speech sequence thus we had two instances of these words. These two
instances were semantically similar (i.e., the same word) but not iden-
tical in terms of their soundwave. The maximal cross-correlation be-
tween the absolute value of the sound wave of the first instance and
that of the second instance was 0.63 averaged across both ‘now’ and
‘rope’. For comparison, maximal cross-correlation between the sound
wave of their first instance and that of other words was 0.53 averaged
across both repeated words. Fig. 4 shows the 8-way confusion matrix
for decoding word identity — this time including the two repeats of
these words. The diagonal represents correctly classified words, and
the off-diagonal represents the distribution of misclassified trials across
the remaining words. The classifier reached mean performance level
of 57.3% for patient 1 and 50.6% for patient 2 (p < 5°10~? two-tailed
paired t-test compared to shuffled data accuracy = 12.9% averaged
across patients; theoretical chance level = 12.5%). However, this is
an underestimate since the two words (‘now’ and ‘rope’) were com-
monly misclassified across the two instances (see ‘Now’\'Now2’ and
‘Rope’\'Rope2’ in Fig. 4). Performing a binary classification of the two
instances did not achieve significance (averaged performance across
patients for the word ‘Rope’ = 51.8% and for the word ‘Now’ =
55.4%; chance = 50%). Since visual input and low-level sound
features were different for the two instances, this supports the notion
that the evoked neural responses correspond with the auditory content.
Indeed, when considering the misclassification within the same words
as correct, accuracy levels rise to 76.5% in patient 1 and 67.5% in patient 2.

We examined whether the high performance we observed in
decoding word identity is unique to word stimuli. To that end, we ran-
domly extracted eight 250 ms time windows from the full audio-visual
sequence containing non-speech environmental sounds. Then we con-
ducted a similar analysis (using 50 ms bins) to classify neural activity
as belonging to one of the 6 different temporal windows. Although clas-
sification performance was significantly above chance level (27.8 +
8.3%; mean 4 SD across 500 iterations; p < 0.05 paired ¢t-test compared
to shuffled results = 13.1 &+ 1.9%), environmental sounds classification
performance in both patients was significantly lower than word stimuli
classification performance (p < 0.01; paired t-test).

We also used SVM-based decoders to detect 6 different time bins
that represent the correct time segments of the words within the com-
plete spike train of each one of the trials (see Materials and methods).
We found that the population activity from the recorded cells is suffi-
cient to detect word onsets with an accuracy level of 42.6% averaged
across trials. Detection accuracy in the case of shuffled data reached
5.5% (p = 0.01 paired t-test; see Materials and methods).

Next, we examined whether the LFP signal is also stimulus driven
and could be used for word classification. Based on channels from
which spiking activity of neurons was detected (13 channels in patient
1 and 5 channels in patient 2; see Table 1), we calculated dissimilarity
index functions for LFP phase and power in all frequencies (see
Fig. 5a). The graph in Fig. 5b represents the average normalized Dissim-
ilarity index function across channels for each patient. In the case of
phase, the average index across channels was significantly greater
than zero in low frequencies (7.81-11.7 Hz for both patients and also
19.5 Hz in patient 2; t-test across all channels, p < 0.05 Bonferroni
corrected for multiple comparisons across 59 frequencies; Fig. 5b left
panel). In the case of LFP power, the average dissimilarity index across
channels was not significantly different than zero across all frequency
bands (t-test across all channels, p > 0.05 Bonferroni corrected for mul-
tiple comparisons across 59 frequencies; Fig. 5b right panel).
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Fig. 2. Evoked spiking activity. Soundwave (top) and corresponding raster plots (middle) of a single neuron during the full speech sequence and during 4 different time-points (bottom
panel) — corresponding to the words ‘Tight', ‘Neck’ and two instances of the word ‘Rope’. Full sequence duration was 17 s and word duration was 250 ms (x axis).

After establishing that phase in the low frequencies is the most ro-
bust and selective LFP feature across words, we calculated LFP phase
in the 8-12 Hz frequency range in the time bins corresponding to
the 6 different words and used an SVM classifier to perform a similar
classification to what we performed using spiking activity. The average
performance across words reached 47.8% in patient 1 (p = 0.01, two-
tailed paired t-test compare to shuffled data accuracy = 16.9%) and
41.1% in patient 2 (p = 0.02; shuffled data accuracy = 17.1%;

Word classification vs. bin-size

Classification Accuracy (%)
B
o

25ms 50ms

Bin Size

W Patient1l  Patient2

Fig. 3. Average word classification performance as a function of bin size. Spike counts from
all responsive neurons were calculated using various bin sizes (x axis) and classification
performance across the six words was assessed, for the two patients (see Materials and
methods). 6-word classification performance reached 69% in patient 1 and 63.1% in
patient 2 when using 50 ms bins; theoretical chancel level = 16.6% (black dashed line).
Asterisk denotes significance of the accuracy using 50 ms bins compare to using 25 ms
bins, and error bars represent S.E. (see Results).

theoretical chance level for 6-way classification = 16.6%). Next, we
added the two additional instances of the words ‘now’ and ‘rope’ and
performed 8-word classification. The classifier significantly labeled
words with 33% accuracy (average across both patients and 8 words;
p < 107> two-tailed paired t-test compare to shuffled data
accuracy = 12.8%; theoretical chance level for 8-way classification =
12.5%). Fig. 6 displays the 8-word confusion matrix of classification
level across words for each patient. Similar to the accuracy using spiking
activity, this is an underestimate since the two repeated words were
commonly misclassified across the two instances. Considering such
misclassifications as correct, accuracy levels rise to 47.8% in patient 1
and 41.1% in patient 2. Performing a 2-way classification between the
two repeats did not achieve statistical significance (‘Rope’ = 56.1%,
‘Now’ = 52.2%; averaged accuracy across patients), supporting similar
evoked phase in the 8-12 Hz frequency range between similar words
in different temporal positions within the speech sequence.

Decoding performance using spiking activity was significantly
higher compared to using low-frequency LFP phase (6-word decoding:
p = 0.04 for patient 1 and p = 0.02 for patient 2; 8-word decoding: p =
8°10~3 for patient 1 and p = 0.016 for patient 2; two-tailed paired
t-test). This result indicates that the information conveyed by the spik-
ing activity is better suited for word discrimination compared with
the optimal feature (with the highest dissimilarity index value) of the
LFP signal.

Finally, we examined whether using both types of information
(the population spiking activity and the LFP phase) improves word
classification performance. For a given word, the input to the classifier
was either a vector representing the temporal modulation of the spike
count (five 50 ms bins) or a scalar representing the low-frequency LFP
phase (8-12 Hz). The output of the classifier was a probability matrix
representing the estimated probability that a given trial belongs to
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Classification using spikes

Patient 1

Now
Now(2)
Right
Tight
Neck

Pig

Decoded Word

Rope

Rope(2)

Now Now(2) Right Tight Neck Pig Rope Rope(2)

Patient 2

. . ichanceﬁz 5)

Now Now(2) Right

Tight  Neck Pig  Rope  Rope@  acciracy Level(%)

Real Word

Fig. 4. Word classification performance using spikes. Confusion matrix of the 1st (left) and 2nd (right) patient. Each bin in the matrix corresponds to the proportion of iterations in which
data belonging to a specific word (x axis) was decoded as belonging to one of the other words (y-axis). We had 4 different words that appeared once and 2 words that appeared twice
throughout the 17-long audio-visual segment. The diagonal represents the proportion of correctly labeled words. Theoretical chance level (12.5%) is represented in blue.

any of the different words. We obtained two probability matrices (one
based on spikes, and one based on LFP phase in the 8-12 Hz range).
The two probability matrices were multiplied, and the class with the
highest joint probability was declared as the label of the test-trial. As de-
scribed earlier, classification performance based on spikes was much
higher compared with that based on LFP phase. However, classification
performance using spikes improved when information from LFP phase
was added. This improvement in 8-word classification performance
was significant for patient 1 (from 57.3% to 66.7%, p = 0.039) and
near-significant in patient 2 (from 50.6% to 54.1%, p = 0.058; one-
tailed paired t-test). We also examined changes in classification perfor-
mance by increasing the dimensionality of the input to the classifier and
providing both binned spiking activity and low frequency phase signals
directly to the same SVM classifier. This procedure yielded similar re-
sults as when multiplying the probability matrices of two SVM classi-
fiers as reported above.

Discussion

In the current study, we examined decoding of single words from
ongoing speech using information from spiking activity and local field
potentials in human auditory cortex. We find that spike counts in
50 ms bins across small population of neurons (~20) carry sufficient in-
formation to discriminate words during continuous speech perception
and identify word onset. We also find that the aspect of the local field
potentials signal that demonstrated the highest discriminability be-
tween words was phase in the low frequency range (8-12 Hz). LFP
power, on the other hand, across all frequency ranges was more
variable. The use of low frequency phase from LFP channels allowed
classification of perceived words with significant accuracy levels al-
though accuracy levels were much lower than those achieved using
population spiking activity. Finally, combining data from both spiking
activity and LFP phase improved classification performance relative to
using data from either signal alone, although this issue deserves further
investigation.

Previous studies using spike trains to discriminate auditory stimuli,
have pointed to a short time scale (on the order of ~10-50 ms),
representing the optimal resolution at which evoked spikes transmit in-
formation. For example, it has been reported that the optimal resolution
at which neurons in ferret primary auditory cortex discriminate

marmoset calls is about 40 ms (Schnupp et al., 2006). Similarly, it has
been reported that the optimal resolution for discriminating bird
songs in avian area L is ~10 ms (Narayan et al., 2006; Wang and Kadia,
2001). In monkey superior temporal gyrus, reported time scales are
~20 ms for conspecific vocalization (Russ et al., 2008).

In human auditory cortex, distinct time scales on the same order
have been proposed for speech (Poeppel, 2003) and non-speech stimuli
(Boemio et al., 2005). Compatible with this notion, our current data
demonstrates that the optimal resolution at which cell populations in
human auditory cortex convey information regarding word identity is
50 ms (Fig. 3). However, the information available for our decoding al-
gorithm stems from only ~20 cells per patient. It has been previously
shown that decoding accuracy can improve as a function of the number
of recorded cells (Chan et al,, 2014; Fried et al., 2011). Nevertheless, the
fact that we could discriminate words within a long speech sequence
using only ~20 cells and detect their onset implies that at increasing
population size, spike count modulations can carry sufficient informa-
tion for classifying auditory content. Furthermore, using environmental
sounds (rather than words) as input to the classifier yielded reduced
performance, suggesting that the neurons did not respond to simple
spectral properties.

In terms of the local field potentials, the current findings are consis-
tent with previous human studies using MEG (Ahissar et al., 2001; Luo
and Poeppel, 2007; Patel and Balaban, 2000) and LFP recordings in pri-
mate auditory cortex (Kayser et al., 2009) demonstrating phase in the
low frequencies as most informative regarding auditory stimulus iden-
tity (Lakatos et al., 2007). As to LFP power changes, intracranial studies
in humans showed that speech perception evokes increased power in
high gamma frequencies that are sometimes accompanied by decreased
power in lower frequencies (Pasley et al., 2012; Young, 2008; Joris et al.,
2004; Hickok and Poeppel, 2007). However, in the current study LFP
power did not allow significant word discrimination, similar to a previ-
ous intracranial study that did not find word-specific LFP responses
during speech perception and production (Chan et al., 2014).

Classification performance using spikes was always better compared
with LFP phase. Combining the information from spikes and LFPs could
in principle influence classification performance in two ways depending
on the type of information contained in each signal. If there is significant
redundancy in information content, classification performance cannot
improve (in fact, it could even deteriorate since the dimensionality of
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Fig. 5. Local field potentials (LFP). (a) LFP preprocessing — raw data (250 ms windows from word onset) were extracted for each word. Left panel demonstrates the signal from one channel
across all trials corresponding to the word ‘Tight'. The signal in each trial was decomposed using Hilbert transform to the different frequencies (right panel demonstrates decomposition of
the 5th trial). The phase and amplitude were calculated per frequency. (b) Coherence across trials was calculated separately for LFP Phase and Power. We compared the coherence of the
LFP signal (either phase or amplitude at different frequencies) across different trials from the same word vs. the coherence between trials taken from different words. This was conducted
for all frequencies up to 120 Hz (see Materials and methods). The phase of the low frequencies (8-12 Hz) had the highest dissimilarity index across trials. Gray background denotes

frequencies in which the dissimilarity index was significantly above zero (dashed black line).

the input signal to the classifier only increases). If on the other hand, the
information contained in LFP phase is not available in the spiking data,
classification performance can improve beyond that obtained when
using information from spikes alone. We found that classification per-
formance increased when combining the information from spike counts
and LFP phase. This suggests that the two signals contain complementa-
ry information. Nevertheless, this improvement (which was found sig-
nificant in the first patient but only nearly-significant in the second)
requires further examination in the future.

Taken together, our data support the use of population spiking activ-
ity for decoding heard and spoken language (Creutzfeldt et al., 1989;
Tankus et al., 2012). These results have implications for attempts to
reveal the content of speech using brain-machine interfaces (BMIs).
The recently emerging field of BMIs involving speech (Brumberg et al.,
2010) requires decoding intended speech from output of cortical cells.

It is thus important to know the relevant physiological features contain-
ing the highest amount of information for decoding speech content. Pre-
vious studies (Guenther et al., 2009) predicted intended speech directly
from the activity of neurons in the motor cortex during overt speech
production. Other studies report that ECoG activity can be used to de-
code vowels and consonants in spoken or imagined words (Martin
et al.,, 2014; Pei et al., 2011). It was found that within auditory cortex,
decoding accuracies were similar for overt and covert speech. In con-
trast, activity in motor areas only allowed discrimination during overt
speech. This implies that covert speech processing consists mainly of
imagining what the word sounds like, rather than simulating the
motor actions necessary for speech production. Together with our
data, showing that speech perception can be decoded successfully
from spiking activity in auditory cortex, it remains to be seen whether
single unit activity in auditory cortex during covert speech can be
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used to successfully decode words and serve as a candidate for future
brain-machine interface in patients with deficits in speech production.
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