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Abstract

■ While driving, we make numerous conscious decisions such
as route and turn direction selection. Although drivers are held
responsible, the neural processes that govern such decisions are
not clear. We recorded intracranial EEG signals from six patients
engaged in a computer-based driving simulator. Patients decided
which way to turn (left/right) and subsequently reported the
time of the decision. We show that power modulations of
gamma band oscillations (30–100 Hz) preceding the reported
time of decision (up to 5.5 sec) allow prediction of decision

content with high accuracy (up to 82.4%) on a trial-by-trial basis,
irrespective of subsequent motor output. Moreover, these
modulations exhibited a spatiotemporal gradient, differ-
entiating left/right decisions earliest in premotor cortices and
later in more anterior and lateral regions. Our results suggest a
preconscious role for the premotor cortices in early stages of
decision-making, which permits foreseeing and perhaps modify-
ing the content of real-life human choices before they are con-
sciously made. ■

INTRODUCTION

The neural signature preceding voluntary action was
first addressed by Libet and colleagues (Libet, Gleason,
Wright, & Pearl, 1983) who showed that a slow negative
potential recorded at the scalp actually began before
the conscious will to perform a voluntary act as reported
by human participants. This slow negativity, originally
described by Kornhuber and Deecke, is referred to as the
readiness potential or Bereitschaftspotential (Shibasaki
& Hallett, 2006; Kornhuber & Deecke, 1965) and most
likely originates from the SMA (Haggard, 2008; Shibasaki
& Hallett, 2006). The fact that this recurring signal can
be detected before the reported time of the conscious
intention to act (by an average of 350 msec) stimulated
much debate (Gomes, 2007, 2010; Lavazza & De Caro,
2009; Trevena & Miller, 2009; Haggard, 2005, 2008;
Soon, Brass, Heinze, & Haynes, 2008; Brass & Haggard,
2007; Libet, 2004; Wegner, 2003; Gomes, 1998; Keller &
Heckhausen, 1990; Libet, Gleason, et al., 1983; Libet,
Wright, & Gleason, 1983). Recently, it has been demon-
strated that it is possible to decode the content of a con-
scious decision using spatial patterns of the fMRI signal
up to 4–7 sec before the decision is made, although the
decoding accuracy was relatively low (Soon, He, Bode, &
Haynes, 2013; Soon et al., 2008; Haynes et al., 2007). This

could mean that not only the decision to act but also the
specifics of the decision are present in the brain before
the conscious decision is experienced and reported (Soon
et al., 2008, 2013). A central challenge in the interpre-
tation of most of these studies (Trevena & Miller, 2009;
Soon et al., 2008; Haggard & Eimer, 1999; Libet, Gleason,
et al., 1983) is the potential confounding of decision
content by motor plan. For example, in some studies
(Trevena & Miller, 2009; Soon et al., 2008; Haggard &
Eimer, 1999), the participant was instructed to decide
when and with which hand to press a button. Thus, the
intention decoded from the participant’s neural activity
could have been partially related to motor preparation
and not to the intention per se (as suggested by Soon
et al., 2013; Hampton & O’Doherty, 2007; Haynes et al.,
2007). However, it should be noted that Soon et al.
(2013) explicitly decoupled abstract intentions from
motor plans and actions. Similarly, we specifically designed
the current electrophysiological study to address this
challenge.
In the current study, we sought to identify the earliest

neural correlates of a decision and examine whether
these neural correlates enable us to predict the content
of the pending decision on a trial-by-trial basis. On the
basis of extant studies, we hypothesized that the decision
to act arises from the temporal integration of fronto-
parietal activity (Soon et al., 2013; Fried, Mukamel, &
Kreiman, 2011; Haggard, 2011; Desmurget et al., 2009;
Desmurget & Sirigu, 2009; Matsuhashi & Hallett, 2008;
Assal, Schwartz, & Vuilleumier, 2007; Gold & Shadlen,
2007; Sirigu et al., 2004; Libet, Gleason, et al., 1983).
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We recorded intracranial EEG (iEEG) signals directly from
the human cortex in neurosurgical patients with intra-
cranial electrodes implanted for clinical reasons. The
patients engaged in a driving simulator where, every
time the car approached a junction, the patient had to
decide which way to turn and then report the time of
decision.
The experiment was designed to disambiguate the

decision-making process from the process of motor plan-
ning (Lavazza & De Caro, 2009) by denying the partici-
pants the prior knowledge of which key will turn the car
in the desired direction (Hampton & O’Doherty, 2007;
Haynes et al., 2007; see Methods and Figure 1).
We show that modulation of gamma band power dur-

ing left and right decision trials detected electrodes that
consistently distinguished between the two. Further-
more, we show that we are able to classify the decision
content (left/right) and timing on a trial-by-trial basis.

METHODS

Participants

The study included six (n = 6) epileptic patients im-
planted with subdural iEEG electrodes (median age =
35 years, range = 25–39 years, five women). These
patients have pharmacologically intractable epilepsy and
were implanted with subdural iEEG electrodes aimed at
evaluating the possibility of surgery. Electrode location
was based solely on clinical criteria (Privman et al.,
2007). Two patients were left handed and had medial–
frontal epileptic foci (P05 and P06). The remaining
four patients were right handed and had nonfrontal epi-
leptic foci. Patients had normal or corrected-to-normal
vision. The patients provided written informed consent
to participate in the experiment. The Tel Aviv Sourasky
Medical Center committee for activities involving human
subjects approved the experimental protocol.

Figure 1. Screenshots from
the simulator showing the
flow of the Experiment.
(A) Every trial starts when
the junction is not yet visible.
(B) After about 6 sec of driving,
the junction, either free or
blocked to the left or right,
appears. (C) When reaching
the junction, the key mapping
arrows appear. Purple arrows
denote “congruent” key
mapping (i.e., pressing the
button with the right hand turns
the car to the right and pressing
a different button with the left
hand turns the car to the left).
Yellow arrows indicate inversed
key mapping (i.e., right hand for
turning car left and left hand
for turning car to the right).
This late appearance of the
mapping denies the patient of
prior knowledge of which key
will turn the car in the desired
direction. The patient makes
the decision in the time
between B and C (this period is,
on average, 12 sec). (D) After
pressing the appropriate key
according to the chosen
direction, the patient specifies
the location of the dot on the
clock at the time of decision
(each revolution of the clock
is equal to 18 sec).
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Materials

For the experiment, we programmed a driving simulator
in-house using the Torque Game Engine (GarageGames,
Eugene, OR). The car drives autonomously but requires
input indicating where to turn at junctions by pressing
either the left or right key with the matching index
finger. Upon reaching the junction, a mapping signal
informs of the mapping of the keys, either congruent
(see Figure 1C) or inversed. This is to prevent the par-
ticipant from generating a specific motor plan. On
∼30% of the trials, one of the sides of the junction is
randomly blocked by a large obstruction (see Figure 1B
and C). This discourages the participant from making
a motor decision before seeing the junction or from
forming a response bias. From the moment the map-
ping signal appears, the participants had 5 sec to re-
spond; if no response was given, then the trial was
restarted.

We instructed the patients to decide before reaching
the junction. As in previous studies, we also instructed
the patients to decide freely and without any obvious
pattern (Soon et al., 2008; Haggard & Eimer, 1999).

The simulator includes a clock face with a dot encir-
cling it (Libet, Wright, et al., 1983). The angular velocity
of the dot is 20° per second or 18 sec for a full revolution.
After reaching the junction and indicating where to turn,
the patient is instructed to shift the dot back to the loca-
tion in which it was when he or she first became con-
scious of the decision (W, see Figure 1D). The period
between the appearance of the junction and actual arrival
at the junction is, on average, 12 sec long, and it is during
this time that the participant is supposed to make the
mental decision of where to turn.

Procedure

We conducted all sessions at a patient’s quiet bedside
while the patient was sitting upright in bed. Each patient
participated in several sessions, totaling 36–67 trials.
Within the “free” trials, the patients chose to turn “left”
in 32–66.7% of the trials (median = 48%). At the end
of the sessions, we debriefed the patients.

Data Acquisition

Initially, the study included eight patients (n = 8, P01–
P08), but we discarded two patients (P01 and P07) be-
cause of clinical time constraints preventing them from
performing a minimum of 10 trials in the task. In total,
257 iEEG electrode-recording sites were obtained from
the remaining six patients. Electrode locations were
based solely on clinical criteria by which the patients
were implanted with subdural electrode strips and/or
grids (Adtech, Racine, WI). Two patients had right
hemispheric electrode locations, three had bilateral
electrodes, and one had left hemispheric electrodes.

The spatial coverage of the electrodes included frontal
(48.2%), temporal (33.5%), parietal (12.8%), and occip-
ital (5.4%) cortices. Each electrode was 2 mm in diameter,
with 8-mm spacing. We used monopolar recordings ref-
erenced to an extracranial electrode sampled at 200 Hz
and filtered between 1 and 100 Hz by the clinical equip-
ment (Grass Technologies, West Warwick, RI). We deter-
mined the electrode Talairach locations by coregistration
of CT scans with preoperative MRI, using iPlan Stereotaxy
software (BrainLAB, Westchester, IL).
To remove noise generated by the external reference,

we subtracted the average voltage across the electrodes
in each time sample (common average reference) and
notch filtered the signal at 50 Hz (the mains frequency
in Israel).

Data Analysis

We performed the data analysis using Matlab (The Math-
works, Natick, MA). All analyses were performed per
patient. The data pertaining to each trial were locked
to the reported time of decision (W). We performed all
analyses on “free” trials, that is, trials with an unobstructed
junction.

Spectrograms

We generated event-related spectrograms for each patient
and electrode using the approach outlined in Delorme
and Makeig (2004). First, we Stockwell-transformed
(Stockwell, Mansinha, & Lowe, 1996) all trials to produce
the spectral estimate Fk( f, t) of trial k at frequency f (1–
100Hz) and time t (−6 to 1 sec in relation toW;Δt=5msec,
which corresponds to a sampling rate of 200 Hz). For
each trial, we computed the spectral estimate of the base-
line as well, Bk( f, t) of trial k at frequency f (1–100 Hz) and
time t (0–3 sec at the start of the trials; see Figure 1A). Next,
we calculated the mean (across time and trials) log power
baseline spectral estimate:

B fð Þ ¼ 10
nT

Xn

k¼1

XT

t¼1

log10 Bk f ; tð Þ2� �

and the mean (across trials) log power spectrogram of the
trials:

F f ; tð Þ ¼ 10
n

Xn

k¼1

log10 Fk f ; tð Þ2� �

Finally, we subtracted the two to get a baseline-normalized
decibel scale event-related spectrogram,

SPECT f ; tð Þ ¼ F f ; tð Þ− B fð Þ

as seen in Figure 2.
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Cumulative Sum Analysis

To test for the existence and timing of significant dif-
ferences between left and right decisions, we employed
a cumulative sum of differences (CUMSUM) analysis.
We performed this analysis for each electrode in each
patient. First, we filtered the signal in each trial, spanning
6 to 0 sec before W, to the gamma band, that is, 30–
100 Hz (Basar, Basar-Eroglu, Karakas, & Schürmann,
2001). We then Hilbert transformed these filtered trial time
courses to estimate instantaneous amplitude (Oppenheim
& Schafer, 2009). This step eliminated the phase compo-
nent of the signal, which is unlikely to be synchronized
across trials because of behavioral timing inaccuracies.
Next, for each condition (left and right decisions), we
generated a grand-averaged time course,

G tð Þc2 Left;Rightf g ¼
1
nc

X

trial2c
x tð Þ

where x(t) is the filtered and Hilbert-transformed time
course, c is the set of trials of the current condition (left/
right), and nc is the number of trials in the current
condition.
Then, to overcome timing inaccuracies because of

behavioral variance, we binned the grand averages using
100-msec bins. We then normalized each of the two
averaged time courses to the baseline by subtracting
the mean value calculated for a period of 1 sec spanning
6.5 to 5.5 sec before W. Next, at each time bin, we calcu-
lated the instantaneous difference between the left and
right grand-averaged time courses,

Diff tð Þ ¼ GBinNorm tð ÞLeft − GBinNorm tð ÞRight

where GBinNorm(t) is the binned and baseline normal-
ized grand average time course of each condition. Finally,
from this instantaneous difference time course, we
generated a cumulative sum time course: CUMSUM tð Þ ¼Xt

i¼t0

Diff ið Þ.

We selected the CUMSUM approach because of two
main reasons: First, inspecting time course differences
from a cumulative approach is compatible with the hypoth-
esis that conscious action intention arises from accu-
mulation of neural activity. Second, comparing the average
gamma-power difference at every time bin would neces-
sitate correcting for multiple comparisons at the single
electrode level.

To estimate the significance of the CUMSUM of the left–
right difference time course,we generated 1,000CUMSUMs
calculated in the same way but with permutated labels.
We then fit a bounding line to the observed CUMSUM
and derived the p value by counting the number of per-
mutation CUMSUMs that cross the fitted line. We define
the time of significance to be the intersection point be-
tween the fitted line and the observed CUMSUM (see
Figure 2). This allowed us to identify, for each participant,
the electrodes in which the gamma activity significantly
differentiated between left and right decisions and at what
time point. We tested the electrodes for significance using
two thresholds: α = 0.05 uncorrected and q = 0.05 with-
in-subject false discovery rate (FDR, q = 0.05) multiple
comparison correction (see Figure 3).

We defined the bounding line as y = at + b where t is
time relative to W, a is the slope, and b is the intercept.
First, we calculated the intercept, b = k ∙ σ(obs) where
σ(obs) is the standard deviation of the observed CUMSUM

Figure 2. The relationship
between the average
spectrograms for each choice
and the CUMSUM analysis.
Each column shows for a
single electrode the average
spectrogram for decisions to
turn left and right (top and
bottom, respectively) and the
CUMSUM analysis (middle).
Zero seconds is the time of
reported decision (W, black
dashed lines), and the red lines
represent the 1,000 CUMSUM
traces calculated with
permutated trial labels.
Significance of the CUMSUM
is estimated by the proportion
of permutation CUMSUMs that
cross the bounding line (green;
see Methods). The black circle marks the significance time, that is, the point where the bounding line intersects the observed time course.
(A) A right inferior frontal (Brodmann’s area [BA] 47; P02) electrode. These spectrograms demonstrate higher gamma power preceding right
decisions. In addition, the CUMSUM significantly tends to the bottom, that is, the right decision trials had, on average, higher gamma power around
the significance time (intersection point between the observed CUMSUM and the bounding line) of the electrode. (B) A right inferior frontal (BA 44;
P02) electrode. These spectrograms show an increased average gamma activity for left decisions, and the CUMSUM significantly tends to the top,
which is related to higher gamma power in left choice trials. (C) A left premotor (BA 6; P06) electrode. The spectograms show increased
gamma activity for right decisions, and accordingly, the CUMSUM significantly tends to the bottom.
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of differences time course described above and k is a con-
stant. We set k= 3.75 as defined in a parametric sequential
test aimed at detecting an effect size (μ/σ) of 1.4 at α=0.01
(Hedgcock, Crowe, Leuthold, & Georgopoulos, 2009;
Armitage, 1975). We then determined the minimal slope
such that the resulting line still bounded the observed
CUMSUM time course:

min a CUMSUM tð Þj j ≤ at þ b for t 2 −6; 0½ �j gf
The significance time of the electrodes might be sen-

sitive to the parametrization of the bounding line, specif-
ically to the selection of the intercept. We thus attempted
to estimate the magnitude of this sensitivity. For every
significant electrode, we methodically shifted the inter-
cept from 0% to 500% of its original value in 5% incre-
ments. For every such shifted intercept, we calculated
the appropriate bounding line and intersection point
(i.e., significance time). We then estimated the variance
of the resulting differences between these times and the
previously calculated significance time and computed the
ratio between this and the maximally possible variance
(the ratio can take values in the range [0, 1]). A low ratio
indicates high certainty of the electrode’s timing. When
considering all of the significant electrodes, the range
of the ratios is [0, 0.81], and the median is 0.06. We
repeated this procedure to estimate the variance in the
p values of the significant electrodes and in the angle
of the resulting gradient described below. The range of
p value changes from the observed is [−0.02, 0.3], the
median is 0.005, and the SD is 0.055. To estimate the
variance of the angle of the gradient described below,
we randomly sampled 1,000 shifted-intercept significance
times from the significant electrodes. For each such sam-

ple, we estimated the angle of gradient. The resulting
median absolute angle change in degrees from the ob-
served angle (80.1°) is 9.6°, and the SD is 17.1°. None of
the angle changes were above 90°, hence there were no
periodicity effects to account for.
To quantify the visual impression that there is a certain

spatiotemporal pattern in the CUMSUM results, we show
a scatter plot of the location of the electrodes versus their
significance time. Because the apparent direction of the
flow appears not to be along one of the main axes, we
chose a rotated x (or Talairach y) axis and performed a
grid search for the rotation angle that maximized the
correlation of the electrode locations, along the rotated
x axis, with their significance time. The angle of rotation
that maximized this correlation was found to be θ = 80.1°
(r2 = .325, p < .001). We calculated the new coordi-
nates as follows x0 = x ∙ cos(θ) − y ∙ sin(θ). The result-
ing axis is approximately parallel to the gradient shown
in Figure 3C. We then used these new x0 coordinates to
create the scatter plot shown in Figure 3B. Thirty-four
significant frontal electrodes are presented in the afore-
mentioned scatter plot. We did not include the remain-
ing 24 significant electrodes because they were either too
medial (not visible in Figure 3) or not in the frontal lobe.
This exhaustive grid search for the maximum correlation

implies that the significance value (r2 = .325, p < .001) of
the resulting correlation is potentially an overestimate.
We thus estimated the significance of the gradient using
a permutation test in which we permuted the time of sig-
nificance of the electrodes. For each permutation (n =
1,000), we searched for the rotation that yields the maximal
correlation. Then, we compared the observed correlation
coefficient to this null distribution to yield the p value.

Figure 3. The spatiotemporal
distribution of the electrodes
with the cumulative sum of
gamma power significantly
distinguishing between
decisions to turn left or right.
(A) Symbols denote significant
( p < .05 uncorrected)
electrodes in specific patients.
Colors signify the time in
relation to W of the electrodes’
significance times. (B) A scatter
plot showing the relationship
between the locations of the
electrodes along an axis
rotated in a dorsomedial to
anterolateral direction and
the electrodes’ significance
times. (C) A frontal lobe
spatiotemporal gradient with
a direction similar to the axis
in B. For the entire results
including the electrodes that are
not significant and information
regarding the estimation accuracy
of the significance times.
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Finally, we calculated the gradient shown in Figure 3C by
using the same set of 34 significant frontal electrodes. The
temporal valueof any point shownon the gradient represents
the mean significance time of the six nearest electrodes.

Prediction of Decision Content

Can we predict the content of the driver’s decision based
on a trial-by-trial basis? If so, with which electrodes and at
which time point relative to W? To accomplish this, we split
the period, spanning 6 to 0 sec before W, into 12 time bins
(500 msec each) and performed a leave-one-out (LOO)
classification analysis separately for each. Initially, for every
trial in each electrode in each time-bin, we computed the
average gamma power. Then, in every LOO cross-validation
iteration, we selected the two electrodes whose gamma
power was most correlated with the training labels (the
participant’s decisions). We then used the training data
gamma power in these two electrodes to train a linear sup-
port vector machine (SVM; Cortes & Vapnik, 1995) classifier
(using the LIBSVM implementation: http://www.csientu.edu.
tw/∼cjlin/libsvm). Finally, we used this classifier to classify
the content of decision in the current test trial.
The two classes (left or right decision) are unbalanced

in some of the patients, such that the chance level is
higher than 50%. To avoid biasing the resulting model,
we performed a balancing procedure: If one of the classes,
in a given training set, contained fewer trials, we increased
its size by duplicating randomly selected (with repetition)
trials from itself to equalize the amount of trials in the
two classes. Importantly, this balancing was performed
only on the training data. To account for the variability
in this random class balancing procedure, we repeated
the cross-validation analysis 10 times for every time bin
in every participant, such that the final accuracy result
was the average result across these repetitions.
Next, we estimated the p value of each of the 12 time

bins, in each participant, by using a permutation test,
wherein we shuffled the class labels and repeated the
analysis 1,000 times. This generated a null distribution
based on random labels, which we used to estimate the
one-tailed p value for the given participant.
To correct for the within-subject multiple comparisons

originating in the 12 individual time bins, we controlled
the within-subject FDR (q = 0.05).
In addition to the balancing approach described above,

we also tested another balancing approach based on
the random removal of trials from the larger class. This
balancing approach did not yield at least one significant
time bin for each patient. This is probably because of its
inherent reduction in the already limited number of trials.

Prediction of Decision Content Using
Past Decisions

As suggested by Lages, Boyle, and Jaworska (2013), we
attempted to predict the content of the decision using

the decisions from previous trials (1 and 2 back). Signif-
icant prediction accuracy would indicate that the partici-
pants rely on past choices when making new ones. We
thus trained, for each participant, linear SVM classifiers
to classify the content of the decision using the decisions
from one or two previous trials. As before, we tested the
classification accuracy using LOO cross-validation and
estimated the significance using permutation testing.

Prediction of the Time of the Conscious Decision

In addition to the prediction of the decision content, we
carried out another analysis to estimate from which elec-
trodes and how early can we detect the upcoming con-
scious decision (W). Similar to the approach taken by
(Soon et al., 2008), we performed a one-against-one mul-
ticlass classification analysis using linear SVM to find
which electrodes contained predictive information re-
garding the timing of W. For each electrode, we divided
the iEEG data from each trial, spanning 6 to 0 sec before
W, into six 1-sec time bins. Then, we transformed the
data from each second into the average power in five fre-
quency bands (delta 1–4, theta 4–7, alpha 8–12, beta 12–30,
and gamma 30–100 Hz). Next, for each electrode, we
trained and tested SVMs to classify the identity of each of
the 6 sec preceding W, using LOO cross-validation. A
significantly accurate classification result for one or more
of the seconds would demonstrate that, when using
the current electrode, it is possible to predict when W will
occur. Because there are six possible classes, the chance
level is 16.7%.

We then used a 1,000-repetition permutation test to
assess the significance of the accuracy results, yielding a
null accuracy distribution for each time bin in each elec-
trode, which we used to estimate the p value of the actual
classification accuracies and check for significance at an
uncorrected threshold of α = 0.01.

Instantaneous Prediction in Figure 4
We derived the instantaneous prediction in Figure 4 by
summing the weighted gamma activities from two elec-
trodes for the given patient. These electrodeswere selected
automatically in the aforementioned classification analysis.
We defined the gamma activity for time t as the baseline-
corrected mean gamma amplitude during t-0.5 sec to t.
The weights and intercept used were derived from the lin-
ear SVM model described above. The appropriate time to
sample the instantaneous prediction is at the end of the
earliest significant time bin of the participant (for P05, this
is 3.5 sec before W).

RESULTS

While engaging in the driving simulator, patients (n = 6)
reported making their decision, on average, 5.95 sec (SD=
3.14 sec) after first seeing the junction and, on average,
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6.06 sec (SD = 3.01 sec) before reaching it. The latter
period facilitated the desired decoupling of the motor
response from the decision (see Methods and Figure 1).
On average, patients committed a motor error in 24.32%
of the blocked trials and crashed into the blocker at the
junction. Moreover, 75.86% of these crashes occurred
when the mapping was inversed.

Spatiotemporal Distribution of Oscillatory Power
Preceding Decisions

To identify electrodes that display modulated oscillatory
power before left and right decisions and when, we em-
ployed a CUMSUM analysis. In this analysis, we compared
the average oscillatory power, locked to the reported
time of the decision (W), separately for trials in which
the patient decided to turn left and trials in which he or
she decided to turn right (see Supplementary Figure S1B
and Methods).

We focused the CUMSUM analysis on the gamma fre-
quency band (30–100Hz) because it is thought to represent
local multineuron firing rates (Miller, 2010; Whittingstall &
Logothetis, 2009; Nir et al., 2007; Liu & Newsome, 2006;
Henrie & Shapley, 2005; Lachaux et al., 2005; Siegel &
König, 2003) and has recently been suggested to play a
causal role in voluntary motor actions ( Joundi, Jenkinson,
Brittain, Aziz, & Brown, 2012; see Figure 2). Indeed, pre-
vious intracranial and MEG studies report changes in gam-
ma band oscillatory power during self-paced movement
(Cheyne, Bells, Ferrari, Gaetz,&Bostan, 2008; Pfurtscheller,
Graimann, Huggins, Levine, & Schuh, 2003.

In 58 electrodes (of 257 electrodes, 22.57%, from all
six patients), the CUMSUM of the difference in gamma
band oscillations between left and right decisions was
found to be significant ( p < .05 uncorrected). Six elec-
trodes from two patients were also significant after

controlling the within-subject FDR (q = 0.05; see Supple-
mentary Figure S2). The median significance time of the
CUMSUM of the 58 significant electrodes was 2.45 sec
before W (range = 0.1–5.6 sec). The gamma power dif-
ferences in electrodes that were found to be significant in
the permutation test can also be appreciated in the spec-
trograms of the different choices (left or right) in relation
to their respective baselines (see Figure 2).
Figure 3 illustrates the spatial and temporal distribu-

tion of the significant electrodes across patients. These
results demonstrate that the location of the significant
electrodes along a rotated axis with an angle of θ = 80.1°
(approximately parallel to the gradient in Figure 3C; for
angle selection criterion, see Methods) was significantly
correlated with the electrodes’ significance time (Pearson’s
correlation, r2 = .325, p < .001 one-tailed; Figure 3B).
Because we determined the gradient by searching for
the maximal correlation, this significance value is biased.
We thus estimated the significance of this correlation
using a permutation test, which also yielded a significant
p value ( p < .001; see Methods). The angle of maximal
correlation suggests that electrodes that were significant
early are located precentrally in the frontal lobe, and as
we approach the reported time of the conscious decision,
there is a progression toward anterior and lateral regions of
the frontal lobe (see Figure 3C).
The timing and significance level of the electrodes and

the direction of the gradient might be sensitive to the
specific parametrization of the bounding line. We thus
estimated the magnitude of this sensitivity and show
that the aforementioned results are robust to the specific
parametrization (see Methods).
Note that the clinical determinationof electrodeplacement

resulted in asymmetrical coverage of the two hemispheres,
thus precluding the examination of hemisphere-specific
specialization (i.e., lateralization).

Figure 4. Trial-by-trial
prediction. This figure
demonstrates the experimental
flow of a single actual trial and
the instantaneous prediction
of the patient’s (P05) decision
by the classifier (black trace)
based on the gamma power in
two frontal electrodes (BAs 8
and 9), selected automatically
in the classification analysis.
(A) Start of the trial, 0 sec.
(B) Junction becomes visible,
6 sec. (C) Content of the
decision is decoded—the
prediction is “left,” 10.5 sec.
(D)* The actual time of decision
as subsequently reported by the
patient, 14 sec (see G below).
(E) The patient’s car arrives at the junction, the mapping arrows appear, and the patient indicates which way to turn, 17 sec. (F)* After pressing
the appropriate key, the car turns to the left (in accordance with the prediction), 19 sec. (G) The patient now indicates D as the time of the decision,
25 sec. *Screenshot not shown.
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Predicting Decision Content

Can we predict the driver’s decision based on neural
activity on a trial-by-trial basis? If so, with which electrodes
and at which time point relative to W? We performed LOO
cross-validation, for each of 12 time bins spanning 6 to
0 sec before W (see Methods). We estimated the p value
of each of the 12 time bins, in each participant, by using a
permutation test while controlling the within-subject FDR
(q = 0.05). Each participant had at least one significant
time bin (range = [1, 6]). The accuracy range of each
patient’s most predictive significant time bin was 64.3–
82.4%. The time range of each patient’s earliest significant
time bin was [1, 5.5] sec before W (median = 4.5 sec).
These results demonstrate the ability of gamma power

in specific electrodes and at specific time points before W
to predict the content of the future decision with consid-
erable accuracy on a trial-by-trial basis. Figure 4 depicts
a single trial and the instantaneous decoding of the
patient’s decision (see Methods).
We repeated this analysis for the blocked trials as well.

That is, in each blocked trial, we attempted to predict
whether the participant will decide to turn left or right.
Interestingly, only one participant had a significant time
bin.
In addition to the driver’s decision content, we were

also able to predict the timing of the decision (W) on a
trial-by-trial basis.

Predicting Decision Content Using Past Decisions

To test whether the participants’ decisions were impacted
by past decisions, we performed 1- and 2-back SVM analy-
ses to predict each trial’s decision content using the
decisions from previous trials (Lages et al., 2013). Both
the 1- and 2-back analyses failed to achieve significance
at α = 0.05 uncorrected in any of the participants. The
mean, across participants, prediction accuracies for the
1- and 2-back analyses were 55.2% and 55.59%, respectively.

Neural Activity Preceding Decision Time

Finally, using time-frequency spectrograms, we examined
global changes in oscillation power across frequencies
and electrodes (see Methods) in relation to the reported
time of the decision in “free” trials, regardless of the con-
tent of the decision. We detected effects of power increase
or decrease (i.e., event-related synchronization or de-
synchronization; Pfurtscheller & Lopes da Silva, 1999) in
gamma frequency band and also in lower frequency bands
(<30 Hz) in relation to W. However, no clear pattern of
results emerged over the electrodes and participants.

DISCUSSION

Our results demonstrate that a neural signal predicts the
upcoming decision content (up to 5.5 sec) before con-

scious awareness of the driver’s decision-making. The
mean accuracy of this prediction on a trial-by-trial basis
was considerable, ranging from 64.3% to 82.4%. The
predictive neural signal, modulation of power in the
gamma-band oscillations, has recently been suggested
to be causally related to voluntary motor actions (Joundi
et al., 2012) by showing that 70-Hz (within the gamma
frequency band) transcranial alternating current stimula-
tion enhances voluntary motor performance. Interest-
ingly, we were not able to predict the decisions in blocked
trials. We found only one significant time bin (12) in only
one participant. This could be because of the inherent dif-
ferences in the task, where preconscious activity has no
role in the final decision in a blocked trial. Alternatively,
it could be simply because of the lower number of trials,
as only ∼30% of trials were blocked.

The spatiotemporal gradient in the CUMSUM analysis
indicates that decision content is available earlier in dorsal
premotor regions and later in more anterior and lateral
frontal regions, suggesting an early preconscious role
for the premotor cortices in the decision-making/action-
selection process. This is compatible with the suggestion
that it is the accumulation of ongoing neuronal activity in
premotor cortices (e.g., SMA) togetherwith parietal regions
that supports the feeling of conscious intention (Fried et al.,
2011; Haggard, 2011; Matsuhashi & Hallett, 2008; Gold &
Shadlen, 2007; Libet, Gleason, et al., 1983). This is also
in accordance with previous studies showing that some
decisions can be discriminated based on early activity in
motor and perceptual (e.g., FEFs and lateral intraparietal
cortex) regions (Kim & Basso, 2008, 2010; Scherberger &
Andersen, 2007) or that failure of response inhibition can
be predicted from oscillatory changes in sensorimotor cor-
tices and occipital regions (Bengson, Mangun, & Mazaheri,
2012; Mazaheri, Nieuwenhuis, van Dijk, & Jensen, 2009). In
the decision-making process, the role of anterior frontal
and parietal regions has been demonstrated in studies by
Koechlin (e.g., Kouneiher, Charron, & Koechlin, 2009;
Koechlin & Hyafil, 2007), Shallice (e.g., Picton et al., 2007;
Vallesi et al., 2007), and others (e.g., Krieghoff, 2009;
Pesaran, Nelson, & Andersen, 2008; Deiber, Ibanez, Sadato,
& Hallett, 1996). Of note is that, based on local patterns of
fMRI signals in frontopolar and medial parietal regions
(Soon et al., 2008, 2013), reported earliest decoding of
decision content as early as 4–7 sec before the reported
time of decision (albeit at relatively low accuracy rates). In
contrast with fMRI, the current study utilized iEEG, which
offers better time resolution. This enhanced time resolu-
tion enabledus to characterize the spatiotemporal gradient.

Interestingly, as can be seen in Figure 3, the CUMSUM
analysis detected significant electrodes in the temporal
cortex. This is of no surprise considering that the current
task significantly engages such cognitive capacities as
memory, attention, and spatial navigation, which in turn
involve temporal regions.

A central challenge in the interpretation of the bulk of
the related studies (Trevena & Miller, 2009; Soon et al.,
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2008; Haggard & Eimer, 1999; Libet, Gleason, et al., 1983)
is the potential confounding of decision content by motor
preparation (Hampton & O’Doherty, 2007; Haynes et al.,
2007). The current study was specifically designed to dis-
ambiguate the two (see Methods and Figure 1) and there-
fore separate proximal intentions from motor intentions
(Pacherie, 2008). Thus, the early neuronal signal reflecting
the future driver’s decision in our study should not be
viewed as motor preparation, as the instruction of which
hand to use to signal the decision was decoupled from
the desired direction of the turn. Furthermore, by using
1- and 2-back SVM classification analysis, we show that
the participants’ decisions were not significantly affected by
past decisions. This implies that the participants’ decisions
were indeed free and unpredictable (Lages et al., 2013).

The behavioral results indicate that our knowledge of
the participants’ actual left/right decisions is not accurate.
This is because of the fact that the patients performed
motor errors, on average, in 24.23% of the blocked trials
and crashed into the blocker. This amount of motor
errors is not negligible and can only be explained by
the fact that the patients had only 5 sec to respond from
the moment the mapping appeared. This period may be
too brief for such patients with chronic epilepsy who are
also recovering from recent surgical implantation of the
iEEG electrodes. This is underlined when we consider
the fact that, of these crashed trials, 75.86% took place
when the key mapping was inversed and was thus more
cognitively demanding. This lack of certainty regarding
the content of the patients’ decisions places an upper
bound on the accuracy achievable when trying to predict
the content of the decision.

The current study relies on the patients’ reported time
of decision (W) to infer decision time. Yet, research has
shown that preconscious effects can be produced as a re-
sult of participants simply not reporting the contents of
their awareness accurately (Bengson & Hutchison, 2007).
Further research has demonstrated that subjective report
of W is prone to errors and biases (e.g., Joordens, van
Duijn, & Spalek, 2002) and has suggested against using
subjective reports of time of awareness as measures of
awareness (Banks & Isham, 2009). It is possible that, in
the current study, participants did not report the earliest
time of conscious awareness of the decision but rather
the time in which they became fully confident of their
decision. This would imply that the classifier actually cap-
italized on conscious decision-making processes that
took place before the reported time of decision. However,
Fried and colleagues showed that shifting W back by more
than 200 msec significantly reduces the number of sig-
nificant units detected (Fried et al., 2011), indicating that
the neural activity predating the reported time of con-
scious decision is fairly localized in time. Because the time
scales in the current experiment are fairly long, in the order
of seconds, it is likely that the current reported time of
decision is at least partially correlated to the actual initial
conscious awareness of the decision.

A limitation of the current study that is shared with
other similar studies (e.g., Soon et al., 2008, 2013; Haggard
& Eimer, 1999; Libet, Gleason, et al., 1983) is the fact
that the participants’ decisions entailed no risk or value
(Lavazza & De Caro, 2009), two major aspects of natural-
istic decision-making. However, it is not clear whether
any experimental design could overcome this limitation
and still allow for free decisions. If the participants’ deci-
sions do have value, then prediction of the participant’s
decision will necessarily confound value representation
with abstract representation of the decision content.
A final limitation of the current study is related to eye

movements, which we did not collect. It is conceivable
that, before making left or right decisions, participants
perform consistent eye movements, leading to consistent
neural activity. Such neural activity may then underlie the
results reported above. This suggests that eye movement
tracking could aid future investigations in this field.
Although we extracted the present neuronal measure

from intracranial electrodes, future studies will be needed
to determine if noninvasive recordings from leads placed
on the scalp yield predictive measures as well. Such find-
ings, and specifically the trial-by-trial prediction, may
herald development of brain–computer interfaces, in
which the user’s intentions are decoded before conscious
awareness. This could increase the speed with which
action intentions are transmitted through the interface
into actual actions or when indicated, into modification
or even prevention of such actions. The scientific, techno-
logical, and societal implications of such interfaces remain
open for debate.
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