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a b s t r a c t

Symptoms of schizophrenia, commonly divided into positive symptoms, negative symptoms, and cog-
nitive impairments, exhibit different sensitivity to pharmacological treatments. As such, they are
typically modeled in animals by behavioral effects of drugs that evoke these symptoms in humans,
such as amphetamine or phencyclidine (PCP). Despite the fact that muscarinic antagonists also evoke
a schizophrenia-like syndrome (“antimuscarinic syndrome”) and findings of cholinergic-related alter-
ations in brains of schizophrenia patients, modeling schizophrenia using muscarinic manipulations has
been infrequently considered, and the effects of muscarinic blockade on behavioral tasks relevant to
schizophrenia have not been adequately characterized. The present review surveys recent attempts
to model schizophrenia-related symptoms using manipulations causing cholinergic dysfunction, par-
ticularly muscarinic blockade, in well validated behavioral models of schizophrenia, such as prepulse
inhibition and latent inhibition.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Symptoms of schizophrenia are divided into positive symptoms,
negative symptoms, and cognitive impairments, a classification
which has replaced the notion that cognitive impairments are asso-
ciated uniquely with negative symptoms [22,32,211]. Treatment of
schizophrenia was revolutionized many years ago by the discovery
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that dopaminergic blockers ameliorate the positive symptoms of
the disorder. Yet, for decades now, the challenge facing the pharma-
cotherapy of schizophrenia has been the development of drugs that
target negative and, more critically, cognitive symptoms [101,120].

Dysfunctions of the central cholinergic system or degenera-
tion of cholinergic cells are involved in the cognitive symptoms
that characterize a wide range of neurological disorders (e.g.,
Alzheimer’s disease, Parkinson’s disease [4,5,30,304]). These
cognitive deficits, including impairments in memory, think-
ing and language usage, are also observed in schizophrenia
patients [127,239,276] and therefore also may be associated with
cholinergic dysfunction in schizophrenia [94,267,303]. Indeed,
several lines of evidence suggest an involvement of a cholin-
ergic dysfunction in the pathology of cognitive impairments in
schizophrenia, as well as in positive symptoms (for reviews,
see refs. [43,68,92,133,208,219,240,315]). Cholinergic involvement
in schizophrenia is further supported by the fact that mus-
carinic antagonists can evoke a psychotic state (“antimuscarinic
psychosis/syndrome”), which includes a range of cognitive and
psychotic symptoms resembling schizophrenia (see ref. [315], also
see below). However, in contrast to the psychosis-inducing drugs
from dopamine agonists (DA) (e.g., amphetamine) and N-methyl-
d-aspartate (NMDA) antagonists (e.g., PCP), whose behavioral
effects in animals have been widely used to model schizophre-
nia [137,247,259], a similar use of muscarinic antagonists has
been limited. Given the increasing acknowledgment of cholin-
ergic dysfunction in schizophrenia and the potential benefits of
pro-cholinergic drugs for treatment of persistent cognitive impair-
ments in this disorder, this review surveys the use of manipulations
causing cholinergic dysfunction in animals, particularly muscarinic
blockade, to model schizophrenia.

2. Acetylcholine in the central nervous system – a brief
overview

Acetylcholine (ACh) was the first neurotransmitter to be discov-
ered, primarily due to its peripheral function in the somatic and
autonomic nervous systems. However, the delineation and char-
acterization of the central cholinergic system are still ongoing,
particularly in primate and human brain.

2.1. Cholinergic cell groups and projection pathways

The cholinergic projection neurons are located in two main
regions in the brain [183,184,186]. The anterior region, situated in
the basal forebrain (BF), consists of nuclei in the medial septum
and the diagonal band, which project to the hippocampus and the
olfactory bulb, respectively, and of the nucleus basalis magnocellu-
laris (NbM; named the nucleus basalis of Meynert in primates and
humans), which projects to most of the cortex and to the amyg-
dala [172,182,183]. Together, BF cholinergic nuclei are thought to
play a major role in attention, memory, learning and cognition
[78,82,209,238,239], and their degeneration (particularly of the
NbM) in Alzheimer’s disease and other dementias is thought to
play a major role in the profound cognitive dysfunction found in
these diseases [83,197,304]. The posterior region containing cholin-
ergic cell groups lies in the rostal midbrain (the mesopontine area),
specifically in the pedunculopontine tegmental nucleus (PPT) and
the laterodorsal tegmental nucleus (LDT) of the pons, and supply
cholinergic innervation to the thalamus [183,186], as well as to
the ventral tegmental area (VTA), substantia nigra (SN), reticular
formation and BF nuclei, among others [28,112,309]. Mesopontine
cholinergic cells are implicated in sleep, arousal, cognition and
regulation of DA, serotonin and norepinephrine neurotransmis-
sion [315]. Two smaller groups of cholinergic cells in the medial

habenula and the parabigeminal nucleus projecting to the interpe-
duncular area and superior colliculus, respectively [185], however,
the precise function of these cells is largely unknown. Finally, stri-
atal cholinergic interneurons play a role in motivational processing
of the basal ganglia and in the regulation of body weight and
metabolism [23,74,121].

2.2. Cholinergic receptors in the CNS

The receptors to which ACh binds are conventionally divided
into two types: the metabotropic family of muscarinic receptors and
the ionotropic family of nicotinic receptors, named after their pro-
totypical agonists, muscarine and nicotine, respectively (for review,
see ref. [172]). Both types of receptors are widely distributed in both
the CNS and the PNS. ACh is removed from the synapse primarily
by acetylcholinesterase (AChE), which degrades ACh. Thus, AChE
inhibitors, which are used in the treatment of dementias, serve to
prolong synaptic ACh action.

Nicotinic ACh receptors (nAChRs) are ligand gated ion channels
that modulate cell membrane potentials. nAChRs are heteroge-
neous, with at least six alpha (alpha2–alpha7) and three beta
(beta2–beta4) nAChR subunits expressed in mammals. Their homo-
meric or heteromeric assembly generates multiple nAChR subtypes
that differ in their pharmacological and biophysical properties, such
as sensitivity to nicotine and rate of desensitization [157]. Two
of these subtypes are particularly relevant for cognition: the het-
eromeric alpha4beta2 and the homomeric alpha7 [92,159,167,212].
Alpha4beta2 nAChR are localized in the interpeduncular nucleus,
medial habenula and thalamus. To a lower extent, this receptor
subtype is localized in many other areas of the brain, including
the cortex, striatum, hippocampus and midbrain nuclei [199]. The
alpha7 nAChR are highly available in the cortex and hippocampus
[205]. For a comprehensive review on nicotinic receptor structure,
function and distribution, see Gotti et al. [111].

Muscarinic acetylcholine receptors (mAChR) belong to the large
super-family of plasma membrane-bound G protein coupled recep-
tors, which activate or inhibit second messenger transduction sys-
tems. Five highly related muscarinic receptors have been identified
(M1–M5). The odd-numbered M1, M3, and M5 receptors activate
phospholipase C, therefore they facilitate the inositol phosphate
second-messengers that mediates gene expression and other intra-
cellular processes and trigger activation of the phosphoinositide
(PI)-coupled receptors. This process is excitatory in action and pro-
motes further neurotransmitter release. In contrast, the M2 and M4
receptors inhibit adenylyl cyclase and modulate calcium and potas-
sium channel function, and are predominately inhibitory in action.

Muscarinic receptor subtypes appear to mediate a variety of
pre- and post-synaptic events throughout the CNS. For example, the
primarily postsynaptic M1 receptors, which show high density in
the cortex, hippocampus and striatum, are thought to play a major
role in cognitive function [78]. M2 and M4 receptors, however, are
generally thought to mediate pre- or post-synaptic activity. These
receptor subtypes have been identified as inhibitory autorecep-
tors in several brain regions, including the hippocampus, striatum
and midbrain, and therefore their selective blockade can be used
as a strategy for increasing ACh levels to enhance cognitive func-
tion [25,70,78,284,286]. In general, the M1, M3 and M4 mAChRs are
abundantly distributed in the brain [42], whereas the M5 subtype
appears to be expressed at low levels in the central nervous system
[288].

3. Involvement of cholinergic dysfunction in the
pathophysiology of schizophrenia

As noted in Section 1, recent years have witnessed a grow-
ing focus on cognitive impairments in schizophrenia, leading to
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increased efforts to identify treatments that target such impair-
ments. Several lines of evidence have converged to promote the
interest in the involvement of the cholinergic system in the
pathology of cognitive impairments in schizophrenia and in their
treatment (see refs. [43,68,92,133,208,219,240,315]).

3.1. Central cholinergic transmission plays a major role in
cognition

The well established correlation between cholinergic dysfunc-
tion and/or degeneration and the severity of cognitive impairments
in a variety of neurological disorders [4–6,30,104,149,229,304,311]
has led to the emergence of the “cholinergic hypothesis” of
Alzheimer’s disease and aging-related cognitive impairments
[18,19,280], which essentially states that a loss of cholinergic
function in the brain (particularly in the BF) considerably con-
tributes to the cognitive decline associated with advanced age and
Alzheimer’s disease. During over two decades since the introduc-
tion of this hypothesis, substantial efforts have been directed to
the understanding of the role of the cholinergic system in cog-
nitive function. Consequently, it has been shown that cholinergic
innervation of the cortex and hippocampus plays a fundamen-
tal role in attention, learning and memory (for reviews, see refs.
[79,83,236]). The cholinergic hypothesis has also led to the devel-
opment of drug treatments aiming to enhance cognitive function
through facilitation of ACh transmission [17,79,86,94,235,267].
Cholinergic cognitive enhancers primarily include AChE inhibitors
[24,38,94,225], alpha7 and alpha4beta2 nAChR agonists [53,94,231]
and M1 mAChR agonists [43,85,94,103,219,267], but also antago-
nists of M2 mAChR [155] that increase extracellular ACh levels.

3.2. Cholinergic agonism is a promising strategy for treating
cognitive impairments in schizophrenia

Cholinergic stimulation has been suggested as a potential treat-
ment for schizophrenia many years ago [56], but testing the effects
of cholinergic agonists in animal models of schizophrenia or in
clinical trials have become frequent only in the last two decades.
In contrast, cholinergic blockade using antimuscarinic agents has
been routinely used to control the extrapyramidal side effects asso-
ciated with the use of typical antipsychotic drugs (APDs) [68]. In
this respect it is important to note that muscarinic antagonists
(e.g., scopolamine, atropine) are widely used to induce memory
and attentional deficits in animals [27,77], and humans [77,118], and
therefore the use of antimuscarinic drugs in schizophrenia patients
is likely to exacerbate cognitive impairments in patients.

Enhancement of cholinergic transmission has also been sug-
gested to underlie the beneficial effects of atypical APDs on
cognition, compared to typical APDs. Thus, although the capac-
ity of APDs to alleviate cognitive impairments in schizophrenia is
limited, atypical APDs may have a relative advantage over typical
APDs in this capacity, and the latter has been commonly attributed
to the differential effects of these APD classes on regulation of
cortical neurotransmission. Deficient cortical DA and ACh trans-
mission is believed to be associated with negative and cognitive
symptoms in schizophrenia (e.g., [94,105,106,237]), and it has been
shown that atypical, but not typical APDs, increase DA and ACh lev-
els in the cortex [134,135,162,204,287]. Similarly, muscarinic and
nicotinic agonists have also been shown to increase ACh and DA lev-
els in the prefrontal cortex (PFC) [26,134,209,212,266], pointing to
their potential efficacy in treating negative/cognitive symptoms (for
reviews, see refs. [202,219]). This potential has been supported by
both animal models and clinical studies, which have shown promis-
ing results with nAChR agonists, particularly of the alpha7 and
alpha4beta2 receptor subtype [11,52,53,94,152,202,212,245,307],
and mAChR agonists, particularly of the M1 and M4 receptor

subtype [43,46,67,80,163,164,219,224,252,295]. Furthermore, it has
recently been suggested that the main metabolite of clozapine, N-
desmethylclozapine, increases cortical ACh and DA release in the
medial PFC via stimulation of M1 muscarinic receptors and that
this may at least partly account for its capacity to treat cognitive
symptoms in schizophrenia [67,164,295].

The fact that M1 and M4 mAChRs are both considered as tar-
gets for the treatment of schizophrenia symptoms may be puzzling,
since as noted above, these receptor subtypes have opposite phys-
iological functions – excitatory vs. inhibitory, respectively. These
receptor subtypes are also differentially distributed in the brain,
and therefore their activation causes different outcomes in differ-
ent brain areas. Thus, M1 mAChR is most abundant in the cortex
and the hippocampus, and its activation has been implicated in
cholinergic modulation of attention [86,248], whereas M4 mAChRs
are abundant in brain regions rich in dopamine and dopamine
receptors such as the midbrain and the striatum, and M4 acti-
vation in these locations negatively modulates DA release in the
NAC [156,284]. Therefore, it is believed that M1 mAChR agonism
is beneficial for cognitive impairments, and this has been shown
in animal models and in clinical trials with schizophrenia and
dementia patients (for reviews, see refs. [86,156,240,248]). On the
contrary, M4 mAChR agonism is considered to be beneficial for pos-
itive symptoms, apparently through action on midbrain mAChRs
[46,156,284].

In addition to nicotinic and muscarinic specific agonists, non-
selective cholinergic treatment using AChE inhibitors has been
used for many years for the treatment of cognitive impairments
in a range of neurological diseases, particularly Alzheimer’s dis-
ease [24,38,149]. These drugs inhibit the hydrolysis of ACh, and
thus increase ACh levels in the synaptic cleft. The latter can activate
both nAChR and mAChR, pre- and post-synapticaly, and therefore
can lead to many different site- and dose-dependent conse-
quences. The growing acknowledgment of cholinergic involvement
in schizophrenia and the resistance of cognitive impairments in this
disorder to APDs [191], have led to many clinical trials using AChE
inhibitors, usually as adjunctive treatments. The latter direction has
been fortified by the fact that many AChE inhibitors are already
available for clinical use.

Three AChE inhibitors have been evaluated for treatment in
schizophrenia patients, as well as in animal models of schizophre-
nia: physostigmine, which is considered the prototypical AChE
inhibitor [151], and donezepil and galantamine, which are the most
frequently used AChE inhibitors in the clinics [92,269]. Notably,
physostigmine and galantamine have also been shown to act as
allosteric agonists at nAChRs [207,214,233,234], although they act
as inhibitors of nAChRs at higher doses [234]. Preclinical trials using
animal models of schizophrenia have shown promising results with
all or some of these AChE inhibitors (e.g., [11,12,66,129,289]). How-
ever, clinical trials with schizophrenia patients have yielded incon-
sistent findings (for reviews, see refs. [51,94,268]) and generally
pointed to limited effects or no effects of these drugs. Nonetheless,
several studies reported that galantamine improved negative and
cognitive symptoms of schizophrenia [2,29,230], while donepezil
did not [95]. Table 1 summarizes the different cholinergic stimu-
lation strategies suggested as targets for schizophrenia treatment
and the symptom domains they aim to treat.

3.3. Postmortem studies show reduction in muscarinic and
nicotinic receptors in brains of schizophrenia patients

Studies using radioligands that bind to specific receptors have
shown a decreased M1/M4 antagonist radioligand [3H]pirenzepine
binding in the caudate-putamen [69], hippocampus [64] and a
number of cortical regions [65,71,72,319,320] of schizophrenia
patients, pointing to a decreased M1 and/or M4 mAChR density (for
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Table 1
Major cholinergic targets suggested for treatment for schizophrenia and the symp-
tom domain they aim to treat.

Drug action Domain of treatment Selected references

Muscarinic
M1 agonist Cognitive [43,67,80,163,164,219,248,252,295]
M4 agonist Positive [43,46,80,219,224,248,252]

Nicotinic
�7 Agonist Cognitive, positive [11,52,53,94,152,202,212,245,307]
�4�2 Agonist Cognitive [53,218,245,305]

Non-specific
AChE-I Cognitive [2,11,12,29,51,66,94,129,230,268,289]

review, see ref. [240]). However, since pirenzepine binds to both
M1 and M4 mAChRs, these studies cannot differentiate between
these two receptor subtypes, which are very different in their phys-
iological action (see above). Dean et al. [71] have found that M1,
but not M4 mAChR protein and mRNA levels are decreased in the
brains of schizophrenia patients (also see ref. [174]), suggesting
that reduction in primarily cortical M1 mAChRs, rather than M4
mAChRs, is involved in the pathology of schizophrenia. In addition,
while no difference has been found in M2/M4 receptor binding
in the anterior cingulate cortex [320], it has been found reduced
in the striatum [63]. The latter may stem from the reduction of
striatal cholinergic interneurons found in schizophrenia patients
[131,132]. Importantly, studies in untreated schizophrenia patients
and animal studies have ruled out the option that APD treatment is
responsible for the modifications in mAChRs [65,292]. It remains to
be determined whether down-regulation of these receptors reflects
a primary pathological change, or a secondary down-regulation
resulting from other alterations in the brains of schizophrenia
patients (see ref. [133]).

Postmortem binding studies have also revealed a disturbance
of nAChR expression, mostly the alpha7 and alpha4beta2 subunits,
in various brain regions (for review, see ref. [227]). Thus, alpha7
binding or protein levels have been found to be reduced in the tha-
lamic reticular nuclei [58,158], hippocampus [34] and frontal cortex
[119], and alpha4beta2 binding has been found to be reduced in the
striatum [76], hippocampus [93] and cortex [35] of schizophrenia
patients. However, these finding might be confounded by heavy
smoking in schizophrenia patients, as smoking changes nAChRs
expression [227].

Studies examining the integrity of cholinergic cell-groups in
brains of schizophrenia patients have usually found no changes in
the BF cholinergic cell groups. Conversely, a twofold increase in
the number of cholinergic cells in the mesopontine cell groups has
been found in elderly schizophrenic patients [99, 148 but see 100],
and the activity of mesopontine cell groups has been reported to be
reduced [147]. Taken together, these findings suggest the existence
of functional and structural abnormalities in the brainstem meso-
pontine cholinergic cell groups in schizophrenia. Furthermore,
since these mesopontine cholinergic cells project to the SN and
VTA, these abnormalities may cause schizophrenia-related alter-
ations in DA neurotransmission. In addition, Holt et al. [132,136]
have found a decreased density of cholinergic interneurons in the
striatum (particularly ventral striatum) of schizophrenia patients,
which may also lead to changes in striatal DA transmission.

3.4. Neuroimaging studies show reduction in muscarinic
receptors in brains of schizophrenia patients

Consistent with the postmortem studies described above, a
recent neuroimaging study has found a decrease in I123 quinucli-
dynil benzilate (QNB) binding in the cortex, the basal ganglia and
the thalamus of schizophrenia patients, which points to a reduction

in muscarinic receptors in these regions [220]. Moreover, positive
symptoms negatively correlated with the availability of muscarinic
receptors in the striatum and frontal cortex [220].

3.5. Antimuscarinic psychosis/syndrome mimics positive and
cognitive symptoms of schizophrenia

Many muscarinic antagonists (e.g., scopolamine, atropine) can
evoke a psychotic state that includes visual, auditory, tactile
and olfactory hallucinations, delusions, hyperactivity, stereotypy,
severe disruption of attention and thinking, memory loss and
confusion (e.g., [54,87,130,175,180,188,208,210,306,315]). At low
doses attention is impaired, and individuals experience halluci-
nations and delusions, while at higher doses individuals become
confused and incoherent [87,315]. Noteworthy, in comparison to
amphetamine, that induces psychosis characterized by halluci-
nations and delusions [259], antimuscarinic-induced psychosis
includes in addition disorganized thinking, attentional impair-
ments and delirium, characteristic of endogenous schizophrenia
[315]. The hallucinations that appear in antimuscarinic psychosis
are predominantly visual, while those that appear in endogenous
schizophrenia are primarily auditory. However, whereas auditory
hallucinations are associated with the early onset of schizophre-
nia, global severity is associated only with visual hallucinations
[196], which are probably more dominant than previously thought,
particularly in the chronic phase of the illness [33,196]. Antimus-
carinic psychosis can be alleviated by APDs [109,210] as well as
by AChE inhibitors [39,109,113,200,210]. In addition, muscarinic
antagonists commonly used to reduce extrapyramidal side-effects
associated with APD treatment [278], have been reported to exacer-
bate schizophrenia symptoms and to interfere with the therapeutic
effects of APDs [140,168,254,255,279].

The neuropsychopharmacological mechanism of the antimus-
carinic syndrome has been suggested to involve blockade of
muscarinic inhibitory autoreceptors in the midbrain, causing dis-
ruption of the negative feedback loop of ACh transmission. Thus
blockade of M2 [315] or M4 [284] inhibitory autoreceptors in the
mesopontine cholinergic nuclei has been proposed to cause dis-
inhibition of these nuclei. Since mesopontine cholinergic nuclei
supply cholinergic afferents to the SN and VTA, [89,316], this effect
is expected to cause an increase in striatal DA levels, leading to
hyperactivity, stereotypy and psychosis [82,84,144]. Moreover, this
blockade also causes elevated muscarinic activation of the thala-
mus by mesopontine nuclei, leading to diffused cortical activation
and EEG desynchronization that results in poor sensory filter-
ing [315]. In summary, M4 mAChR blockade is thought to play
a role in the induction of psychotic symptoms seen in antimus-
carinic syndrome, whereas memory and attentional deficits are
thought to result from antimuscarinic-induced disruption of hip-
pocampal and cortical cholinergic transmission [315] probably
via M1 mAChR [156,240,248]. Thus, the syndrome induced by
non-selective muscarinic antagonists may mimic disturbance of
cholinergic neurotransmission caused by alteration in the activity
and structure of mesopontine nuclei as found in schizophrenia (see
above) as well as by alteration in muscarinic receptor availability
throughout the brain of schizophrenia patients.

4. Modeling schizophrenia using muscarinic blockade: a
potential model of positive and cognitive symptoms in
schizophrenia

In spite of the evidence described above for cholinergic involve-
ment in the pathophysiology of schizophrenia, relatively little
efforts have been directed to develop and validate cholinergic-
based animal models of this disorder. Several reasons converged
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to sweep aside “cholinergic modeling” of schizophrenia. Thus,
while it is well established that nicotine acts to increase DA
release in the nucleus accumbens (NAC) similarly to pro-psychotic
drugs such as amphetamine (for reviews, see refs. [9,308]), nico-
tine does not induce psychosis in humans. In fact, nicotine has
long been known to possess pro-cognitive activity in healthy and
schizophrenic individuals [123,159], and heavy cigarette smoking
among schizophrenia patients has been suggested to serve as self-
medication for alleviating symptoms [1]. Likewise, nicotine has
been shown to have antipsychotic and pro-cognitive effects in ani-
mal models, and to reverse cognitive deficits induced by APDs
[159,160,269]. Thus, nicotinic stimulation is considered a treatment
strategy (as mentioned above), rather than an approach to model
psychosis. In addition, to the best of our knowledge, there has not
been any attempt to establish a nicotinic antagonist-based animal
model of schizophrenia.

The effects of muscarinic blockade on behavioral tasks relevant
to schizophrenia have also not been adequately character-
ized. The well known scopolamine-induced cognitive deficits
[4,27,36,77,264] have been widely used to model cognitive deficits
of dementias like Alzheimer’s disease (e.g., [165,217]) but have
only rarely been considered in terms of relevance to cognitive
impairments in schizophrenia, since the latter has been typically
pharmacologically modeled using NMDA antagonists [137,153,192].
Thus, although scopolamine has been shown to impair performance
in several tasks considered relevant to cognitive impairments seen
in schizophrenia, including the five-choice serial reaction time
task [206,250], social interaction [261], social recognition [187],
reversal learning and attentional set-shifting [48], only few studies
assessed the efficacy of APDs to reverse scopolamine-induced
cognitive impairments (see refs. [73,187,283]). Consequently,
most scopolamine-induced cognitive impairments lack predictive
validity for schizophrenia, namely, the capacity to predict the
(in)effectiveness of drug treatments relevant for this disorder,
which is one of the most important aspects of animal modeling
of human diseases. To date, assessments of schizophrenia-related
behavioral effects of scopolamine in animals have used almost
exclusively models of positive symptoms, particularly locomotor
hyperactivity, and disruption of prepulse inhibition (PPI), and
latent inhibition (LI). APDs and cognition enhancing drugs have
been tested on these models, providing predictive validity to some
of these models. Table 2 summarizes the effects of muscarinic
manipulations on locomotor activity, PPI and LI, and their response
to drug treatments.

4.1. Locomotor activity and stereotypy

Stimulation of the dopaminergic system with DA agonists
amphetamine or apomorphine leads to an increased locomotor
activity, which progresses to stereotypy at high doses [259], and
these effects are blocked by APDs (e.g., [7]). The locomotor effects
of DA agonists have long been considered to model positive symp-
toms of schizophrenia (e.g., [260]). Systemic administration of
scopolamine also results in locomotor hyperactivity and stereotypy
[50,251,256]. These behavioral effects of scopolamine are reversed
by cholinomimetic drugs such as the AChE inhibitor physostigmine
as well as by APDs [177,251]. Consequently, hyperactivity induced
by muscarinic blockade has been suggested to model antimus-
carinic psychosis, and perhaps cholinergic-related psychosis in
schizophrenia (see refs. [177,315]).

Because administration of muscarinic antagonists increases DA
influx in the striatum [47], muscarinic antagonist-induced hyper-
activity has been typically attributed to this action [177,314].
More specifically, it has been proposed that muscarinic antag-
onists increase ACh transmission near midbrain dopaminergic
nuclei (VTA and SN) by blocking M2/M4 inhibitory autorecep-

tors in the mesopontine cholinergic nuclei [284,315]. This leads
to overactivation of midbrain dopaminergic nuclei and to eleva-
tion in striatal/accumbal DA levels. Indeed, the dopaminergic D1
and D1/D2 antagonists SCH 23390 and haloperidol, respectively,
reversed scopolamine-induced hyperactivity [251], and infusion of
scopolamine into the PPT in the midbrain increased DA efflux in
the striatum as well as stereotypy, locomotor activity, and brain
stimulation reward, similarly to effects of systemically injected
amphetamine [47,313,315,316]. Furthermore, infusion of the cholin-
ergic agonist carbachol into the PPT reduced both stereotypy
and locomotion produced by systemic scopolamine [177], indi-
cating that scopolamine-induced hyperactivity is related to its
action at muscarinic receptors in this brain region. DA–ACh inter-
action can cause hyperactivity also at the striatal level. Thus,
the dopaminergic agonists quinpirole, apomorphine and S-(−)-
3-(3-hydroxyphenyl)-N-n-propylpiperidine reversed scopolamine-
induced hyperactivity, an effect that was suggested to stem from
cholinergic–dopaminergic interplay resulting in increased striatal
ACh levels that competed with scopolamine at muscarinic receptors
[251]. Interestingly, BF cholinergic nuclei projecting to the cortex
may also play a role in the modulation of locomotor activity, because
selective depletion of these projections enhance amphetamine-
induced locomotor activity, while selective depletion of cholinergic
projections to the hippocampus has no such effect [178].

The insufficiency of pharmacological ligands that are selec-
tive for muscarinic receptor subtypes has led investigators to
use mAChR knockout mice to investigate which receptor sub-
types may regulate locomotor behaviors. In consistence with the
scheme discussed above, M4 mAChR knockout mice exhibit higher
spontaneous locomotor activity and are more responsive to apo-
morphine and SKF 38393 (a partial D1 agonist) than their wild
type controls [108]. In contrast, M2 mAChR knockout mice show
no locomotor hyperactivity [107], suggesting that M4 mAChRs are
more important than M2 mAChR in the regulation of locomo-
tor activity, in line with the findings of their differential role in
the activation of midbrain ACh and DA nuclei [284]. Relatedly,
scopolamine-induced hyperactivity was resistant to the muscarinic
agonists oxotremorine, RS86 and pilocarpine, which are considered
to act predominantly on M2 and M3 mAChRs [251], strengthening
the suggestion that these receptor subtypes play minimal role in
antimuscarinic-induced locomotor hyperactivity.

Recently, it has been shown that M5 mutant mice exhibit
decreased amphetamine-induced locomotor activity [290], but
increased scopolamine-induced or M1 antagonist trihexyphenidyl-
induced locomotor activity [49,283]. While the former finding
is consistent with reports that m5 gene deletion reduces stri-
atal/accumbal DA release [90,322], the latter findings suggest that
M5 receptor activation normally inhibits scopolamine-induced
hyper-locomotion. Moreover, while the findings discussed above
suggest that muscarinic blockade causes hyperactivity through
modulation of striatal DA levels, similarly to amphetamine, the
findings with M5 mutant mice imply that the capacity of scopo-
lamine or trihexyphenidyl to increase locomotor activity can be
independent from their capacity to increase striatal DA levels.
In support to the latter, M1 antagonists telenzepine and tri-
hexyphenidyl increased locomotor activity levels without affecting
striatal/accumbal DA levels [277], suggesting that the effects of
scopolamine on locomotor activity might be mediated also by
non-dopaminergic mechanisms, such as modulation of glutamate
transmission (see ref. [270]).

Taken as a whole, these findings suggest that muscarinic block-
ade can induce locomotor hyperactivity via at least two separate
mechanisms: elevation of striatal/accumbal DA levels through dis-
ruption of cholinergic negative feedback loops in the midbrain;
and non-dopaminergic mechanisms, which are likely to involve
modulation of excitatory neurotransmission. The latter mechanism
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Table 2
Effects of muscarinic manipulations on locomotor activity, prepulse inhibition and latent inhibition, and their response to drug treatments. ↓ and ↑ indicate decrease and
increase, respectively, in the phenomenon (abbreviations: AChE, acetylcholinesterase; BLA, basolateral amygdala; EC, entorhinal cortex; IC, insular cortex; i.c.v., intracere-
broventricular injection; PPT, pedunculopontine tegmental nucleus; VTA, ventral tegmental area).

Muscarinic manipulation Effect of
manipulation

Treatment used Effect of
treatment

References

Locomotor activity
Muscarinic antagonists: scopolamine, atropine, azaprophen,

biperiden, scopolamine, trihexyphenidyl
↑ AChE inhibitors: physostigmine,

tetrahydroaminoacridine hydrate
↓ [50,251,256]

Muscarinic agonists: oxotremorine,
RS86, pilocarpine

No effect

Dopamine agonists: quinpirole,
apomorphine,
S-(−)-3-(3-hydroxyphenyl)-N-n-
propylpiperidine

↓

Amphetamine ↑
SCH 23390 (D1 antagonist),
haloperidol (D2 antagonist)

↓

Intra-VTA dihydro-�-erythroidine
(DHBE; nicotinic antagonist)

No effect

Intra-PPT
scopolamine

↑ Intra-PPT carbachol (muscarinic
agonist)

↓ [177]

Haloperidol (systemic) ↓

Intra-caudal pontine reticular nucleus scopolamine ↑ – [81]

M2 knockout mice No effect – [107]

Telenzepine (M1 antagonist) ↑ Cocaine ↓ [277]
Trihexyphenidyl (M1 muscarinic antagonist) ↑

M5 knockout mice No effect Amphetamine ↓ [50,281,290]

Scopolamine ↑
Trihexyphenidyl (M1 antagonist) ↑

Prepulse inhibition
Muscarinic antagonists: scopolamine, trihexyphenidyl,

benztropine, benactyzine, biperiden, 4-DAMP (i.c.v.),
tropicamide (i.c.v.)

↓ Oxotremorine ↑ [3,129,141–143,190,256,
266,285,310]

AChE inhibitors: galantamine,
donepezil

↑

Haloperidol, xanomeline (M1/4
agonist)

↑

SCH23390 (D1 antagonist) No effect

RO-4368854 (5-HT6 antagonist) No effect

Muscarinic antagonists: dicyclomine, biperiden, pirenzepine
(i.c.v.), AF-DX116 (i.c.v.)

No effect – [143,285]

Muscarinic agonists: pilocarpine, oxotremorine, RS-86,
arecoline

No effect –

Procyclidine (M1/M2/M4 antagonist) ↓ In humans –

M5 knockout mice ↓ Clozapine ↑ [281]

Haloperidol No
reversal

Intra-caudal pontine reticular nucleus scopolamine ↓ – [81]

Intra-caudal pontine reticular nucleus carbachol ↑ –

Latent inhibition
Scopolamine ↓ Haloperidol, clozapine,

physostigmine, glycine,
xanomeline

↑ [13,44]; Barak and
Weiner, unpublished
observations

Scopolamine No effect – [193]

Scopolamine ↑ Physostigmine, glycine,
xanomeline

↓ [15]; Barak and Weiner,
unpublished
observations

M5 mutant mice ↑ – [289]

Intra-EC or intra-IC scopolamine ↓ – [14,189,198]

Intra-BLA scopolamine ↑ – Barak and Weiner,
unpublished
observations
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dissociates between scopolamine- and amphetamine-induced
hyperactivity, and by corollary dissociates between the psychoses
these compounds may model. Thus, muscarinic blockade-induced
locomotor hyperactivity may model cholinergic-related positive
symptoms that may differ from the dopaminergic-related psychosis
conventionally modeled by amphetamine-induced hyperactivity.

4.2. Prepulse inhibition

Another widely used animal model of schizophrenia in which
muscarinic agents have been shown to be active is the prepulse
inhibition model. PPI refers to the observation that the presentation
of a brief, non-startling tactile, acoustic or visual stimulus immedi-
ately prior to a more intense stimulus, reduces the startle response
to the latter stimulus. This phenomenon, which is considered to
index the ability to “gate out” sensorimotor input, is disrupted
in schizophrenia patients and can be restored by APD treatment
[275,293], and therefore its disruption in rodents is considered to
model sensorimotor gating deficits in schizophrenia [102,271]. In
the rat, PPI is disrupted following the administration of the DA ago-
nists amphetamine and apomorphine and by NMDA antagonists
such as PCP, MK-801 and ketamine. While the effects of DA ago-
nists are reversed by typical and atypical APDs, the effects of NMDA
antagonists in this model are selectively reversed by atypical APDs
[102 but see 213], suggesting that the NMDA antagonist PPI model
can dissociate between typical and atypical APDs.

Consistent with their psychotomimetic effects on humans, mus-
carinic antagonists such as scopolamine have been shown to disrupt
PPI [3,129,141–143,190,257,266,285,310]. The antimuscarinic agent
procyclidine, which antagonizes primarily M1, M2 and M4 mAChRs
has disrupted PPI also in healthy humans [154]. In mice, the M1
preferring antagonist pirenzepine and the M2 antagonist AF-DX116
spared PPI, whereas the M3 antagonist 4-DAMP and the M4 antag-
onist tropicamide attenuated PPI [285], suggesting that cholinergic
regulation of PPI occurs via muscarinic M3 and M4 mAChRs. These
findings suggest that muscarinic blockade-induced disruption of
PPI may result from blockade of M4 inhibitory autoreceptors in the
midbrain. The latter would lead to an overactivation of dopamin-
ergic midbrain nuclei and increased striatal/accumbal DA levels,
which is known to be associated with disruption of PPI [272].
However, M5 mAChR knockout mice, which have reduced stri-
atal/accumbal DA levels [91,321], have also shown decreased PPI
[281] suggesting that an additional, non-dopaminergic mechanism,
may underlie disrupted PPI induced by muscarinic dysfunction. An
alternative mechanism proposed by Fendt et al. [82] postulates
that muscarinic and GABA-B inhibitory receptors on the caudal
pontine reticular nucleus giant neurons combine to produce the
long-lasting inhibition of startle. In addition, PPI has also been
shown to be disrupted after bilateral lesion of the NbM in the
BF, and restored by the AChE inhibitor rivastigmine [10], suggest-
ing that cholinergic innervation of the cortex plays a role in the
expression of PPI. While the specific mechanisms underlying mus-
carinic antagonist-induced disrupted PPI remain to be elucidated,
the above findings suggest that these mechanisms are distinct from
those underlying DA agonist-induced disrupted PPI. Consequently,
PPI disruption caused by these two drug classes may mimic differ-
ent pathological mechanisms underlying schizophrenia symptoms.

The pharmacological profile of muscarinic antagonist-induced
disruption of PPI, however, does not seem to differ significantly from
that of DA agonist-induced disruption of PPI. Thus, scopolamine-
induced disruption of PPI can be reversed by cholinomimetics like
the muscarinic non-selective agonist oxotremorine [143], M1/M4
agonist xanomeline [141] or the AChE inhibitors galantamine and
donepezil [129] as well as by the APD haloperidol [141], similarly
to apomorphine-induced disrupted PPI [102,129,141,266]. Despite
this similarity, dissociation between the effects of these two drugs

on PPI was obtained when apomorphine-, but not scopolamine-
induced disruption of PPI was reversed by a 5-HT6 antagonist [190].
In addition, disrupted PPI in M5 mAChR knockout mice could be
reversed by clozapine [281] but not haloperidol. This finding sug-
gests that unlike PPI disruption induced by scopolamine or apomor-
phine, this mouse mutation may have the potential capacity to dis-
sociate between typical and atypical APDs. Furthermore, since atyp-
ical APDs are more effective than typical APDs in treating negative/
cognitive symptoms [8,40,150], M5 mAChR deletion can model neg-
ative/cognitive symptoms associated with cholinergic dysfunction.

In summary, the effects of muscarinic manipulations on PPI
support the involvement of these receptors in sensorimotor gating
deficits seen in schizophrenia. More specifically, the capacity of
muscarinic blockade to disrupt PPI, taken together with the phar-
macological characterization of this PPI disruption, suggests that
the latter may model antimuscarinic-induced psychotic symptoms,
as well as cholinergic-related positive symptoms in schizophre-
nia. While current schemes suggest that scopolamine disrupts
PPI by elevating dopaminergic transmission, or alternatively by
cholinergic modulation of other neurotransmission systems, the
exact mechanism remains to be determined. A better understand-
ing of the mechanisms underlying disruption of PPI induced by
muscarinic manipulations may promote the understanding of the
mechanisms underlying positive symptoms caused by muscarinic
dysfunction.

4.3. Latent inhibition

Latent inhibition is a cross-species selective attention phe-
nomenon, in which organisms learn to ignore, or to inattend to,
stimuli that were experienced as irrelevant in the past [170,173]. LI
is manifested as poorer conditioning to a stimulus when the stage
of conditioning is preceded by a stage of repeated non-reinforced
pre-exposure to that stimulus.

Loss of LI induced by amphetamine is a well established
model of positive symptoms of schizophrenia (for reviews, see
refs. [114,195,296–298]), fortified by findings of disrupted LI
in amphetamine-treated normal humans [116,232,273,282] and
in acute schizophrenia patients [20,115, 117, 223, but also see
274]. Consistent with the pharmacology of positive symptoms,
amphetamine-induced LI disruption is reversed by both typical and
atypical APDs. When given on their own, APDs potentiate LI in rats
and humans under conditions that do not suffice to yield LI in no-
drug controls (such as weak pre-exposure or strong conditioning;
[110,249,291,301]). Conversely, low doses of NMDA antagonists pro-
duce strong LI under conditions that yield weak or no LI in no-drug
controls [96,97,166,203]. We have suggested that LI persistence
may provide a correlate of a specific aspect of negative/cognitive
symptomatology, namely, attentional perseveration, or impaired
set shifting [96,97]. This has been supported by recent demon-
strations of excessively strong LI in schizophrenia patients, which
is positively correlated with negative symptoms severity [55,223].
Furthermore, persistent LI following MK-801 treatment is resistant
to typical APDs but is reversed by atypical APDs and by compounds
enhancing NMDA function via the glycineB site [96,97,166], which
are considered to be beneficial in the treatment of negative symp-
toms in schizophrenia patients [126,181].

Latent inhibition and the central cholinergic system. Although LI
is considered a manifestations of attentional selectivity in asso-
ciative learning [170,173], and ACh has been shown to play a key
role in attentional processing [125,236], there has not been a sys-
tematic investigation of the effects of cholinergic manipulations on
LI. Lesion studies of forebrain cholinergic cells groups (NbM, Ch4)
have yielded inconsistent findings: NbM lesion has been reported
to disrupt LI [228,302], or to spare it [241]. In addition, selective
lesion of septohippocampal cholinergic projections from the fore-
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brain medial septum/vertical limb of the diagonal band has been
reported to spare LI in a conditioned taste aversion procedure [75],
but to disrupt it in an appetitive procedure [21]. No studies have
tested the involvement of midbrain cholinergic cell groups in LI.

4.3.1. The antimuscarinic LI model of schizophrenia
Only a few studies using muscarinic manipulations in LI have

been published until recently. Both systemic [44] and intra-insular
cortex (IC) [189,198] administration of scopolamine to rats before
pre-exposure have disrupted LI. However, Moore et al. [193] have
found that scopolamine injected in both pre-exposure and con-
ditioning does not affect LI in rabbits. Finally, M5 mutant mice
exhibited persistent LI [290]. Taken together, these finding imply
that muscarinic manipulations can lead to opposite aberrations
of LI, namely disruption or persistence, which are considered to
model positive and negative/cognitive symptoms in schizophre-
nia, respectively. While the latter is consistent with the capacity
of antimuscarinic drugs to induce both psychosis and cognitive
impairments (see above), clearly further characterization of the
effects of scopolamine on LI is required in order to promote the
understanding of these findings.

4.3.1.1. Modeling cholinergic-related positive symptoms. Recently,
we have begun a systematic investigation of the effects of
muscarinic blockade on LI, with the aim of establishing an antimus-
carinic LI model of schizophrenia. In a first series of experiments,
we [13] showed that scopolamine disrupted LI at low doses (0.15 or
0.5 mg/kg). We found that this effect was due to the action of the
drug in the pre-exposure stage of the LI procedure, suggesting that
scopolamine disrupted LI by impairing the ability to in-attend to
irrelevant stimuli. Both the typical and the atypical APDs, haloperi-
dol and clozapine, reversed scopolamine-induced LI disruption
when given in conditioning but not in pre-exposure, indicating
that the mechanism of antipsychotic action in this model is inde-
pendent of the mechanism of action of the pro-psychotic drug.
Scopolamine-induced LI disruption was also reversed by the AChE
inhibitor physostigmine [13], the M1/M4 mAChR agonist xanome-
line, and the NMDA allosteric agonist glycine (Barak and Weiner,
unpublished observations). Our findings indicate that the pharma-
cological profile of scopolamine-induced disrupted LI is distinct
from that of amphetamine-induced disrupted LI, whereby the latter
is resistant to physostigmine and glycine. Furthermore, our find-
ing that scopolamine acts in the pre-exposure stage to disrupt LI,
unlike amphetamine, which disrupts LI via action in the condition-
ing stage, provides additional evidence for different mechanisms
underlying LI disruption induced by these two drugs (see Weiner
and Arad, 2009, in this issue). Relatedly, we have suggested that
scopolamine-induced LI disruption may model the positive spec-
trum symptoms of the antimuscarinic psychosis, which is distinct
from that of dopaminergic psychosis.

4.3.1.2. Modeling cholinergic-related APD-resistant cognitive impair-
ments. As mentioned above, the antimuscarinic syndrome includes
both positive symptoms and cognitive impairments, but only the
former aspect has been modeled in animal models of schizophre-
nia that possess predictive validity. Thus, cognitive impairments
induced by scopolamine have been shown to be reversed by cogni-
tive enhancers from both the cholinomimetic (e.g., [4,128,206,212])
and glycine agonist [88,201,258] classes, but the effectiveness of
APDs in these studies has not been tested. Since cognitive impair-
ments in schizophrenia show little if any improvement following
APD treatment [41,191], an animal model of schizophrenia that
accounts for resistance to APDs but is sensitive to cholinergic and
glycinergic cognitive enhancers may have considerable utility for
screening of cognitive enhancers for treatment of APD-resistant
cognitive impairments in this disorder. We have obtained pre-

liminary evidence for such an animal model by using a stronger
muscarinic blockade than the one we used to model cholinergic-
related positive symptoms [15].

In contrast to low scopolamine doses, we have found that the
higher dose of 1 mg/kg scopolamine spares LI [13]. Three reasons
have led us to entertain the possibility that high doses would induce
persistent LI. First, muscarinic antagonists produce a syndrome
that includes in addition to the psychotic-like effects also cognitive
impairments, the latter appearing at higher doses [315]. Second,
many lesion and drug manipulations which spare LI under con-
ditions that yield LI in control rats, produce LI persistence when
tested under conditions that disrupt LI in control rats (for review,
see ref. [297]). Third, scopolamine has been shown to produce per-
severative behaviors [48,221,262] and persistent LI is a form of a
perseverative behavior [97]. Indeed, we showed that at 1.5 mg/kg,
scopolamine induced abnormally persistent LI [15]. Unlike dis-
rupted LI induced by scopolamine, this drug induced persistence
of LI due to its action in the conditioning stage, suggesting that
scopolamine prevents re-attention to previously irrelevant stimuli
that became motivationally relevant through pairings with rein-
forcement. The pharmacological profile of scopolamine-induced
persistent LI is also different from that of scopolamine-induced dis-
rupted LI. Thus, while scopolamine-induced persistent LI is reversed
by the cognition enhancing drugs glycine, physostigmine [15] and
xanomeline (Barak and Weiner, unpublished observations), it is
unaffected by haloperidol and clozapine. Consequently, we [15]
suggested that scopolamine-induced persistent LI may provide a
novel model that displays sensitivity to cognitive enhancers, but is
resistant to APDs.

Obviously, additional studies are required, testing a range of
cognitive enhancers and APDs from different classes, to validate
the selective sensitivity of scopolamine-induced persistent LI to
the former class of drugs, as well as the mechanisms of such
pharmacological selectivity. However, given the pharmacological
profile described above, which provides preliminary evidence that
scopolamine-induced persistent LI is an APD-resistant cognitive
impairment, we have suggested that it may model APD-resistant
cognitive impairments in schizophrenia [15]. Furthermore, given its
sensitivity to cognitive enhancers, scopolamine-induced persistent
LI may have a considerable utility in detecting effective treatments
for APD-resistant cognitive impairments in schizophrenia. It should
be noted, however, that abnormally persistent LI which is insen-
sitive to APDs may represent a more general form of behavioral
perseveration, which is common to a variety of neuropsychiatric
disorders, including schizophrenia, autism, addictive behavior and
obsessive compulsive disorders (e.g., [45,62,157,222,226]).

4.3.1.3. Neuropsychopharmacological differentiation between the
opposite effects of scopolamine on LI. The capacity of systemic scopo-
lamine to induce opposite effects on LI, namely disrupted LI at
low doses and persistent LI at a higher-moderate dose, has led
us to investigate whether these opposing behavioral effects of
scopolamine on LI would be dissociable psychologically and neu-
ropharmacologically.

Psychological dissociation. In terms of psychological processes
underlying LI, it is believed that during pre-exposure, the acqui-
sition of an association between the pre-exposed stimulus and
the absence of a significant consequence reduces the salience,
or the significance of the stimulus, which impairs the acquisi-
tion of the stimulus-reinforcement association in conditioning
[169,173] or on more recent accounts, inhibits the expression of the
conditioned response resulting from stimulus–reinforcement asso-
ciation acquired during conditioning [31,114,171,296,297] Strong
conditioning overrides the inhibitory influence of the inatten-
tional response so that animals switch to respond according to the
more recent stimulus–reinforcement relationship [294,297]. Thus,
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scopolamine produces opposite poles of impairment in attentional
selectivity: at low doses it impairs the capacity to inattend to irrel-
evant stimuli, whereas at a higher dose it impairs the capacity to
re-attend to previously irrelevant stimuli that regained relevance
through by signaling significant outcomes. It should be noted, how-
ever, that both disruption and persistence of LI can stem from
drug action in pre-exposure (impairment or facilitation, respec-
tively, of learned inattention), or in conditioning (facilitation or
impairment, respectively, of switching to respond according to
stimulus-reinforcement association). Low doses of scopolamine

disrupt LI due to the action of the drug in the pre-exposure stage,
and thus presumably reflect impaired acquisition of inattention
[13]. Conversely, the higher dose induces persistent LI by hindering
the process of updating/adjusting the response to the stimulus-
reinforcement contingency in the conditioning stage [15]. Thus,
scopolamine induces disruption and persistence of LI by impairing
different psychological/attentional process, occurring at different
stages of the LI procedure.

Neuropharmacological dissociation. Recently we tested the
hypothesis that the dose-dependent contrasting effects of scopo-

Fig. 1. Neural circuitry through which cholinergic projections modulate the expression of latent inhibition. Abbreviations: ACh, acetylcholine; BF, basal forebrain; BLA,
basolateral amygdala; DA, dopamine; EC, entorhinal cortex; GLU glutamate; IC, insular cortex; LDT, laterodorsal tegmental nucleus; LI, latent inhibition; NAC, nucleus
accumbens; PFC, prefrontal cortex; PPN, pedunculopontine tegmental nucleus; SCOP, scopolamine; VTA, ventral tegmental area. (a) The PFC, EC, IC and BLA receive cholinergic
afferents from the BF. Projections from the PFC and the BLA to the NAC core, and from the EC and IC to the NAC shell enhance and reduce, respectively, DA release from the
VTA to the NAC core. Increased and decreased DA levels in the NAC core are associated with LI disruption and persistence, respectively. In addition, cholinergic afferents from
the midbrain cholinergic nuclei PPN/LDT to the VTA negatively modulated DA release in the NAC. (b) Muscarinic blockade in the EC or IC inhibits the inputs of these regions
to the NAC shell, causing disinhibition of the VTA and enhancing DA release in the NAC core, and leading to disruption of LI. (c) Muscarinic blockade in the BLA inhibits the
inputs of these brain regions to the NAC core. Concurrently, the NAC shell, which receives excitatory inputs from the IC and EC, sends inhibitory inputs to the VTA, reducing DA
release in the NAC core. Both of these effects lead to LI persistence. Intra-PFC scopolamine infusion is expected to affect LI similarly. (d) Muscarinic antagonists in the midbrain
(VTA or PPN/LDT) block inhibitory M4 muscarinic mAChRs, leading to enhanced stimulation of the VTA and to enhanced DA influx in the NAC core. Thus, muscarinic blockade
in these midbrain nuclei would be expected to disrupt LI. This model is based on the switching model of LI [296–298], models of cholinergic-related circuitries mediating
attentional processing [125,238,284,315], and LI studies using muscarinic antagonists.
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Fig. 1. (Continued.)

lamine also reflect an action of the drug at different locations in the
brain during the different stages of the procedure. Investigations
of the neural substrates of LI in the rat have pointed to a critical
involvement of the NAC in this phenomenon. Young et al. [318]
have shown that while the presentation of a stimulus previously
paired with a shock enhances DA release in the NAC, pre-exposure
to that stimulus markedly attenuates this effect. It has also been
shown that intra-accumbens infusion of amphetamine disrupts
LI [263] whereas intra-accumbens infusion of haloperidol blocks
amphetamine-induced disruption of LI, and potentiates LI [145].
There is a clear functional differentiation between the shell and the
core subregions of the NAC with shell lesions leading to disruption
of LI, and core lesions inducing persistent LI [98,243,299,300].

The neural circuitry of LI includes several brain regions which
provide major inputs to the NAC, including the entorhinal cortex
(EC), and the basolateral amygdala (BLA). It has been shown that

EC lesions [60,61,253,312] as well as its inactivation during the
pre-exposure stage [138,161] disrupt LI, and this effect has been
attributed to the lesion-induced alterations in DA transmission in
the NAC shell and anterior striatum [138]. Recent findings suggest
that cholinergic innervations of the EC play a critical role in the
encoding of novel, but not of familiar stimuli [124,125,179], rais-
ing the possibility that cholinergic transmission in the EC might
also play a role in LI. This possibility is strengthened by our finding
that scopolamine disrupts LI by acting in the pre-exposure stage
[13], similarly to EC inactivation. This has led us to test the effects
of muscarinic blockade in the EC on LI, using a local infusion of
scopolamine. Indeed, we have found that intra-EC scopolamine dis-
rupts LI when infused in pre-exposure or in both pre-exposure
and conditioning, but not if it is confined to conditioning [14].
While cholinergic innervation of the EC has long been postulated
to be involved in the attention to, and encoding of, novel stim-
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uli, our findings provide first evidence that it also plays a crucial
role in the development of inattention to stimuli. Moreover, our
findings suggest that mAChRs in the EC mediate acquisition of
inattention. Thus, muscarinic dysfunction in the EC may under-
lie not only working memory deficits and impaired ability to
maintain attention to significant stimuli, but also cognitive over-
switching/distractibility caused by impaired ability to in-attend to
irrelevant stimuli, that are associated with psychotic symptoms in
schizophrenia [114,122,146,296,297,317].

In contrast to the effects of EC lesion, BLA lesion have been
shown to lead to persistent LI [242, 243, 297 but see 59]. BLA
has been suggested to provide information regarding the cur-
rent motivational/affective value of the conditioned stimulus (e.g.,
[57,139,244,265]), which in the case of LI, determine whether LI is
present or disrupted [242,297]. The fact that cholinergic innervation
of the BLA plays an important role in learning and memory consol-
idation and that this role is mediated by mAChRs [16,215,216,246],
has led us to hypothesize that muscarinic blockade in the BLA will
replicate the effects of systemic scopolamine at high doses on LI,
namely, will induce persistent LI. We have found that infusion of
scopolamine into the BLA with conditions that yields LI in controls
does not affect LI, but under strong conditioning, which prevents the
expression of LI in controls, muscarinic blockade in the BLA induces
persistent LI (Barak and Weiner, unpublished observations). Fur-
thermore, persistent LI has been induced when the infusion of
scopolamine is confined to the conditioning stage, but not when
confined to the pre-exposure stage. The latter parallels our results
with systemic high doses of scopolamine, suggesting that persis-
tent LI induced by scopolamine is due to the action of this drug at
mAChRs in the BLA. More generally, muscarinic receptors in the
BLA may mediate re-allocation of attention to previously irrele-
vant stimuli when they signal valuable outcomes. This implies that
muscarinic dysfunction in the BLA may underlie cognitive inflex-
ibility and attentional perseveration, which are associated with
negative/cognitive symptoms in schizophrenia [62,157,194,317].

Fig. 1a presents a scheme of cholinergic modulation of LI expres-
sion. The scheme is based on the switching model of LI (Weiner
[296,297]), known effects of muscarinic blockade on LI, and models
of cholinergic-related circuitries mediating attentional processing
[125,238,284,315]. The PFC, EC, IC and BLA receive cholinergic affer-
ents from the BF. Projections from the PFC and the BLA to the
NAC core, and from the EC and IC to the NAC shell [37,49,297,298]
enhance and reduce, respectively, DA release from the VTA to
the NAC core. Increased and decreased DA levels in the NAC core
are associated with LI disruption and persistence, respectively
[294,297,298]. In addition, cholinergic afferents from the midbrain
cholinergic nuclei PPN/LDT to the VTA negatively modulate DA
release in the NAC.

Muscarinic blockade in the EC or IC inhibits the inputs of these
regions to the NAC shell, causing disinhibition of the VTA and
enhancing DA release in the NAC core, and thus leading to LI
disruption. The latter is also promoted by concurrent excitatory
inputs from the PFC and the BLA to the NAC core (see Fig. 1b).
Muscarinic blockade in the BLA inhibits the inputs of this brain
region to the NAC core; concurrently, the NAC shell, which receives
excitatory inputs from the IC and EC, sends inhibitory inputs to the
VTA, reducing DA release in the NAC core. Both of these effects lead
to LI persistence (see Fig. 1c). Intra-PFC scopolamine is expected to
affect LI similarly. Finally, muscarinic antagonists in the midbrain
(VTA or PPN/LDT) block inhibitory M4 muscarinic mAChRs, leading
to enhanced stimulation of the VTA and to enhanced DA influx in
the NAC core [284,315,316] (see Fig. 1d). Thus, muscarinic blockade
in these midbrain nuclei would also be expected to disrupt LI.

This model implies that muscarinic transmission in the regions
described in the model mediate normal attentional processing.
Relatedly, abnormalities in muscarinic cholinergic transmission in

these brain regions may underlie two poles of attentional aber-
rations: distractibility caused by impaired ability to in-attend to
irrelevant stimuli, mediated by muscarinic transmission in the EC,
the IC and and/or the midbrain; and cognitive rigidity caused by
impaired ability re-attend to stimuli that regain relevance, medi-
ated by muscarinic transmission in the BLA and the PFC.

5. Summary and conclusions

In recent years, the search for drugs that would treat cog-
nitive impairments in schizophrenia has become one of the
major challenges in the field [101,120]. In this endeavor, valid
animal models of schizophrenia play a crucial role. Indeed,
preclinical assessment tools for the cognition enhancing capac-
ity of novel drugs have been developed and established [101;
MATRICS project – http://www.matrics.ucla.edu]. Given the well-
documented involvement of the cholinergic system in cognition, it
has been acknowledged that cholinergic compound may provide a
leading target for developing drugs that would show efficacy for
cognition enhancement in schizophrenia [41,176].

In light of the accumulating clinical evidence for cholinergic,
particularly muscarinic dysfunction in the brains of schizophrenia
patients and for a schizophrenia-like syndrome induced by mus-
carinic antagonists, the effects of muscarinic manipulations have
been assessed in several animal models relevant to schizophrenia.
However, although the antimuscarinic syndrome usually consists
of both psychosis and cognitive impairments, most attempts to
model schizophrenia symptoms using muscarinic blockade have
concentrated on the positive spectrum of symptoms, and neglected
cognitive impairments. Thus, most existing data in animals show
that muscarinic blockade induces behavioral alterations considered
to model, and to be predictive of activity against, positive symptoms
of schizophrenia, implying that the cholinergic muscarinic system
plays a role in attentional/cognitive processes underlying psychosis.
Although the behavioral manifestations induced by muscarinic
blockade and DA agonists in these models are frequently similar, the
neural mechanisms underlying these manifestations are apparently
distinct. The latter indicate that similar manifestations of abnor-
mal behavior induced by muscarinic antagonists and DA agonists
may represent different phenomena, and therefore may model dif-
ferent aspects of schizophrenic psychoses. Antimuscarinic-induced
behavioral aberrations may model attentional abnormalities asso-
ciated with alterations in muscarinic transmission/receptors seen
in schizophrenia, which may be linked to positive symptoms as well
as to cognitive impairments seen in this disorder.

On the other hand, not many attempts have been made to
develop animal models based on cholinergic insult or choliner-
gic pharmacological manipulation, which would mimic cognitive
symptoms of schizophrenia and show predictive validity for
treatments considered effective for these symptoms. “Choliner-
gic models” of schizophrenia should provide a useful tool for the
screening of both antipsychotic and pro-cognitive properties of
drugs, and for allowing a differentiation between these actions of
novel and/or known drugs. Moreover, “cholinergic models” may
provide further insight into the basic neuropsychopharmacological
mechanisms underlying schizophrenia symptom. The antimus-
carinic LI model described here is, to the best of our knowledge,
the first systematic attempt to establish a valid (anti)cholinergic
behavioral model of schizophrenia, and is based on the exten-
sive knowledge on LI as a psychological phenomenon and as a
model of schizophrenia. However, this model is using an acute phar-
macological manipulation, which allows screening of drugs and
investigation of neuropsychopharmacological mechanisms, but
does not allow the assessment of more chronic changes associated
with cholinergic alterations in the brain. Thus, the development of
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genetic or specific lesion-induced models that would mimic chronic
cholinergic alterations and show predictive validity is highly desir-
able in order to promote the knowledge on the role of cholinergic
dysfunction in schizophrenia, and its interplay with other neuro-
transmission systems in the brain.
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