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The fact that muscarinic antagonists may evoke a psychotic state (‘antimuscarinic psychosis’), along with findings of cholinergic alterations

in schizophrenia, have kindled an interest in the involvement of the cholinergic system in this disorder. Latent inhibition (LI) is a cross-

species phenomenon manifested as a poorer conditioning of a stimulus seen when the stage of conditioning is preceded by a stage of

repeated nonreinforced pre-exposure to that stimulus, and is considered to index the capacity to ignore irrelevant stimuli.

Amphetamine-induced LI disruption and its reversal by antipsychotic drugs (APDs) is a well-established model of positive symptoms of

schizophrenia. Here, we tested whether the muscarinic antagonist scopolamine would disrupt LI and whether such disruption would be

reversed by APDs and by the acetylcholinesterase inhibitor physostigmine. The results showed that scopolamine at doses of 0.15 and

0.5 mg/kg disrupted LI, and that this effect was due to the action of the drug in the pre-exposure stage, suggesting a role of muscarinic

transmission in attentional processes underlying LI. Both the typical and the atypical APDs, haloperidol and clozapine, reversed

scopolamine-induced LI disruption when given in conditioning or in both stages, but not in pre-exposure, indicating that the mechanism

of antipsychotic action in this model is independent of the mechanism of action of the propsychotic drug. Scopolamine-induced LI

disruption was reversed by physostigmine (0.05 and 0.15 mg/kg), which was ineffective in reversing amphetamine-induced LI disruption,

pointing to distinct mechanisms underlying LI disruption by these two propsychotic drugs. The latter was further supported by the finding

that unlike amphetamine, the LI-disrupting doses of scopolamine did not affect activity levels. We propose scopolamine-induced LI

disruption as a model of cholinergic-related positive symptoms in schizophrenia.
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INTRODUCTION

‘Anticholinergic’ muscarinic antagonists such as scopol-
amine or atropine may evoke a psychotic state termed
‘anticholinergic syndrome’ or ‘antimuscarinic psychosis’.
Noteworthy, in comparison to the dopamine (DA)-releasing
psychotomimetic amphetamine, which induces psychosis
characterized by hallucinations and delusions (Snyder,
1973), antimuscarinic-induced psychosis includes in addi-
tion disorganized thinking, attentional impairments, and
delirium, characteristics of endogenous schizophrenia
(Clarke et al, 2004; Fisher, 1991; Holland, 1992; Marchlewski,
1994; Mego et al, 1988; Minzenberg et al, 2004; Perry and
Perry, 1995; Perry et al, 1978; Wilkinson, 1987; Yeomans,
1995). Antimuscarinic psychosis can be alleviated by

antipsychotic drugs (APDs) (Gopel et al, 2002; Perry et al,
1978) as well as by acetylcholinesterase (AChE) inhibitors
(Brown et al, 2004; Gopel et al, 2002; Granacher and
Baldessarini, 1975; Nogue et al, 1991; Perry et al, 1978).
Conversely, muscarinic antagonists used to reduce extra-
pyramidal side effects associated with APDs (Tandon, 1999)
have been reported to exacerbate schizophrenia symptoms
and to interfere with the therapeutic effects of APDs
(Johnstone et al, 1983; Lo and Tsai, 1996; Singh and Kay,
1975, 1979; Tandon et al, 1990). These findings, taken
together with postmortem and neuroimaging findings of
cholinergic alterations in the brains of schizophrenia patients
(eg Crook et al, 2001; Dean et al, 1996; Garcia-Rill et al, 1995;
Karson et al, 1991; Raedler et al, 2003; Zavitsanou et al,
2005), have led to a growing interest in the involvement of
the cholinergic system in this disorder (eg Hyde and Crook,
2001; Sarter et al, 2005; Tandon et al, 1992; Weiner et al,
2004; Yeomans, 1995). The focus on the cholinergic system
has been reinforced by the increasingly acknowledged need
for improved treatments of cognitive deficits in schizophre-
nia (eg Bymaster et al, 2002; Friedman, 2004).
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Consistent with findings in humans, systemic adminis-
tration of nonspecific muscarinic antagonists, such as
atropine or scopolamine, has been shown to induce
psychotic-like effects in several animal models of schizo-
phrenia, including locomotor hyperactivity (Mathur et al,
1997; Shannon and Peters, 1990; Sipos et al, 1999),
stereotypy (Mathur et al, 1997), and disruption of prepulse
inhibition (PPI) (Jones et al, 2005; Jones and Shannon,
2000a, b; Ukai et al, 2004; Wu et al, 1993), and these effects
were reversed by cholinomimetic drugs, such as the AChE
inhibitor physostigmine (Jones and Shannon, 2000b;
Shannon and Peters, 1990), as well as APDs (Jones et al,
2005; Shannon and Peters, 1990).

To date, there has not been a systematic investigation of
the effects of muscarinic antagonists on latent inhibition
(LI), a well-established model of schizophrenia. LI is a
cross-species phenomenon manifested as a poorer con-
ditioning to a stimulus that is seen when the stage of
conditioning is preceded by a stage of repeated nonrein-
forced pre-exposure to that stimulus. LI is commonly
considered to index the ability to ignore stimuli
that predicted no significant consequences in the past
and has been used extensively to model cognitive
impairments in schizophrenia (Weiner, 1990, 2000, 2003).
It has been suggested that LI stems from the reduced
attention to, or the associability of, the pre-exposed (PE)
stimulus, which reduces the effectiveness with which it
enters into an association with reinforcement (Lubow et al,
1981; Lubow, 1989). An alternative explanation posits
that the acquisition of an association between the PE CS
and the absence of a significant consequence during pre-
exposure interferes with the subsequent expression (Gray
et al, 1995a; Weiner, 1990, 2003) or retrieval (Bouton, 1993)
of the CS-reinforcement association. LI is disrupted in rats
and mice by amphetamine (eg Killcross and Robbins, 1993;
Meyer et al, 2004; Moran et al, 1996; Weiner et al, 1984,
1988) and this is paralleled by disrupted LI in ampheta-
mine-treated normal humans (Gray et al, 1992b; Salgado
et al, 2000; Swerdlow et al, 2003; Thornton et al, 1996) and
in acute schizophrenia patients (Baruch et al, 1988; Gray
et al, 1992a, 1995b; Rascle et al, 2001; but also see Swerdlow
et al, 2005). The LI model is further validated by its
sensitivity to APDs, which reverse amphetamine-induced
disruption of LI and potentiate the phenomenon under
conditions that do not suffice to yield it in no-drug controls,
such as low number of pre-exposures (Gosselin et al, 1996;
Shadach et al, 1999; Warburton et al, 1994; Weiner et al,
1996).

Pharmacological studies of LI using cholinergic com-
pounds in rats and humans used primarily nicotinic agents
and have yielded inconsistent findings (Della Casa et al,
1999; Gould et al, 2001; Gray et al, 1997; Joseph et al, 1993;
Rochford et al, 1996; Thornton et al, 1996). To the best of
our knowledge, few studies testing the effects of muscarinic
manipulations on LI have been published to date. Moore
et al (1976) found that scopolamine injected in both pre-
exposure and conditioning did not affect LI in rabbits.
However, both systemic (Carlton and Vogel, 1965) and
intra-insular cortex (Naor and Dudai, 1996) injection of
scopolamine confined to the pre-exposure stage disrupted
LI in rats. Finally, LI was shown to be enhanced in M5
mutant mice (Wang et al, 2004).

The present study tested whether scopolamine would
disrupt LI and whether such disruption would be reversed
by APDs. As scopolamine is known to induce memory and
learning deficits, which could mask its effect on LI, we used
low doses of scopolamine previously shown to spare
associative learning (Anagnostaras et al, 1999). In addition,
because the effects of propsychotic and antipsychotic
compounds on LI depend on whether they are administered
in pre-exposure or conditioning (Weiner, 2003), we sought
to determine the stage at which scopolamine and APDs act
to produce LI disruption and restoration, respectively.
Specifically, Experiment 1 tested the effects of 0.15, 0.5, and
1 mg/kg scopolamine given in both stages on LI, and
Experiment 2 tested at what stage of the LI procedure
scopolamine acts to produce LI disruption. Experiments 3
and 4 tested the effects of the typical APD haloperidol and
the atypical APD clozapine, respectively, on scopolamine-
induced LI disruption and at which stage these drugs acted.
In addition to APDs, we tested in Experiment 5 the effects of
physostigmine on scopolamine-induced LI disruption.
Finally, Experiment 6 tested the capacity of the low doses
of scopolamine found to disrupt LI to produce locomotor
hyperactivity. For purposes of comparison, amphetamine
was included in Experiments 1, 5, and 6.

MATERIALS AND METHODS

Subjects

Male Wistar rats (Tel Aviv University Medical School, Tel
Aviv), 3–4 months old and weighing 280–460 g, were housed
four to a cage under reversed cycle lighting (lights on: 1900–
0700 h) with ad lib food and water except for the duration of
the LI experiments (see below). All experimental protocols
conformed to the guidelines of the Institutional Animal
Care and Use Committee of Tel Aviv University, Israel, and
to the guidelines of the NIH (animal welfare assurance
number A5010–01, expires on November 30, 2006). All
efforts were made to minimize the number of animals used
and their suffering.

Apparatus and Procedure

LI. LI was measured in a thirst-motivated, conditioned
emotional response (CER) procedure by comparing the
suppression of drinking to a tone previously paired with a
foot shock in rats that received nonreinforced exposure to
the tone prior to conditioning (PE) and in rats for whom the
tone was novel (non-pre-exposed (NPE)).

Rats were tested in Campden Instruments rodent test
chambers (model 410) with a retractable bottle. When the
bottle was not present, the hole was covered by a metal lid.
Licks were detected by a Campden Instruments drink-
ometer (model 435). The PE to-be-conditioned stimulus was
a 10 s, 80 dB, 2.8 kHz tone produced by a Sonalert module
(model SC 628). Shock was supplied through the floor by a
Campden Instruments shock generator (model 521/C) and
shock scrambler (model 521/S) set at 0.5 mA and 1 s
duration. Equipment programming and data recording
were computer controlled.

Prior to the beginning of each LI experiment, rats were
handled for about 2 min daily for 5 days. A 23 h water
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restriction schedule was initiated simultaneously with hand-
ling and continued throughout the experiment. On the next 5
days, rats were trained to drink in the experimental chamber
for 20 min during the 1st day and for 15 min/day during each
of the next 4 days. Water in the test apparatus was given in
addition to the daily ration of 1 h given in the home cages.
The LI procedure was conducted on days 11–14 and
consisted of the following stages:

Pre-exposure (day 11): With the bottle removed, the PE
rats received 40 tone presentations with an inter-stimulus
interval of 40 s. The NPE rats were confined to the chamber
for an identical period of time without receiving the tone.

Conditioning (day 12): With the bottle removed, each rat
received two tone-shock pairings given 5 min apart. Shock
immediately followed tone termination. The first tone-
shock pairing was given 5 min after the start of the session.
After the last pairing, rats were left in the experimental
chamber for an additional 5 min.

Rebaseline (day 13): Rats were given a 15 min drinking
session as in initial training. Data of rats that failed to
complete 600 licks were dropped from the analysis.

Test (day 14): Each rat was placed in the chamber and
allowed to drink from the bottle. When the rat completed 75
licks, the tone was presented for 5 min. The following times
were recorded: time to first lick, time to complete licks 1–50,
time to complete licks 51–75 (before tone onset), and time
to complete licks 76–100 (after tone onset). Times to
complete licks 76–100 were submitted to logarithmic
transformation to allow parametric analysis of variance.
Longer log times indicate stronger suppression of drinking.
LI is defined as significantly shorter log times to complete
licks 76–100 of the PE compared to NPE rats.

Spontaneous and drug-induced activity. Activity was
measured in plastic chambers (46� 57� 37 cm), covered
by 50� 50 cm clear Perspex lids, located in a darkened
room. A Coulbourn Instruments infrared sensor unit was
installed in the center of a front wall 22 cm from the side
walls, and 12 cm above the grid floor. The sensor was
protected by a wire fence measuring 10� 13� 6 cm to
prevent animals’ access. Blind areas of the sensor (the two
corners of the triangles adjacent to the sensor, measuring
17� 17� 25) were blocked by two clear Perspex walls with
dimensions of 25� 57 cm. The movements detected by the
sensor were transmitted through a Coulbourn Instruments
eight-channel infrared motion interface to a Coulbourn
Instruments infrared motion activity monitor controller/
analyzer. Rats were individually placed in the activity
chambers and allowed 30 min of free exploration (sponta-
neous activity), after which they were returned to their
home cage, injected with the appropriate drug and replaced
into the chamber for an additional 60 min (drug-induced
activity). The pre- and post-drug duration of movements for
each animal were recorded in 6 min blocks. Data recording
was computer controlled.

Drugs

All drugs were administered intraperitoneally in a volume
of 1 ml/kg. Scopolamine HBr (Sigma, Israel) was diluted in

saline and administered at doses of 0.15, 0.5, or 1 mg/kg.
Haloperidol, prepared from an ampoule containing 5 mg
haloperidol in 1 ml solvent containing 6 mg lactic acid
(Johnson & Johnson, Belgium) and diluted with saline, was
administered at a dose of 0.1 mg/kg. Clozapine (Novartis,
Switzerland), dissolved in 1 N acetic acid (1.5 ml/10 mg) and
diluted with saline, was administered at a dose of 10 mg/kg.
Physostigmine (eserine) hemisulfate (Sigma, Israel) was
diluted in saline and administered at doses of 0.05 or
0.15 mg/kg. D-amphetamine (Sigma, Israel) was diluted in
saline and administered at a dose of 1 mg/kg. The doses of
scopolamine were chosen based on studies showing that
they did not disrupt tone-shock conditioning (Anagnostaras
et al, 1999). The doses of haloperidol, clozapine, and
amphetamine were chosen based on our previous LI studies
using these drugs (Weiner et al, 1987, 1997, 1996). The
doses of physostigmine were chosen based on previous
behavioral experiments with this drug (Jones and Shannon,
2000b; Shannon and Peters, 1990). In LI experiments (1–5),
all drugs were administered 30 min prior to pre-exposure
and/or conditioning, except for haloperidol, which was
administered 60 min prior to pre-exposure and/or con-
ditioning. No drug controls received the corresponding
vehicle.

Data Analysis

In LI experiments, times to complete licks 50–75 and mean
log times to complete licks 76–100 were analyzed in
experiments 1–4 using two-way ANOVA with main factors
of pre-exposure (0, 40) and treatment (five levels in
experiments 1, 3, and 4, and three levels in experiment 2),
and in experiment 5, using a three-way ANOVA with main
factors of pre-exposure (0, 40), treatment (vehicle, scopo-
lamine, amphetamine), and pretreatment (0, 0.05, and
0.15 mg/kg physostigmine). LSD post hoc comparisons were
used to assess the difference between the PE and NPE
groups within each drug condition. In locomotor activity
experiment (experiment 6), duration of movements was
analyzed using a 4� (3)� (5) ANOVA with main factor of
drug and repeated measurements factors of three 30-min
periods (1–30 min before injection, 31–60 min after injec-
tion, 61–90 min after injection) and five 6-min blocks within
each 30-min period.

Experiment 1: Effects of 0.15, 0.5, or 1 mg/kg
Scopolamine and 1 mg/kg Amphetamine on LI

The experiment included 10 experimental groups (n per
group¼ 11–13) in a 2� 5 design with main factors of pre-
exposure (0, 40) and treatment (vehicle, 0.15 mg/kg
scopolamine, 0.5 mg/kg scopolamine, 1 mg/kg scopolamine,
1 mg/kg amphetamine). Both drugs were administered prior
to the pre-exposure and the conditioning stages.

Results. The 10 experimental groups did not differ in their
times to complete licks 51–75 before tone onset (all
p’s40.05; overall mean A period¼ 6.97 s). Figure 1 presents
the mean log times to complete licks 76–100 (after tone
onset) of the PE and NPE rats injected with vehicle, 0.15 mg/
kg scopolamine, 0.5 mg/kg scopolamine, 1 mg/kg scopola-
mine, or 1 mg/kg amphetamine. As can be seen, LI was
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present in vehicle-treated rats, but was disrupted by
amphetamine as well as by the two lower doses of
scopolamine, whereas the highest dose of scopolamine
(1 mg/kg) spared LI. ANOVA yielded significant main
effects of pre-exposure (F(1,107) ¼ 14.01, po0.0005) and
treatment (F(4,107) ¼ 5.17, po0.001), and a significant
interaction of pre-exposure� treatment (F(4,107) ¼ 2.98,
po0.05). Post hoc comparisons revealed a significant
difference between the PE and NPE groups, that is, LI, in
rats injected with vehicle (po0.0001), and 1 mg/kg scopo-
lamine (po0.05) but not in the other three conditions.

Experiment 2: Effects of 0.15 mg/kg Scopolamine
Injected in PE or Conditioning on LI

This experiment sought to determine at which stage of the
LI procedure scopolamine acted to produce LI disruption.
This was of particular interest because previous studies had
shown that amphetamine did not disrupt LI when given in
the pre-exposure stage alone (Weiner, 2003; Weiner and
Feldon, 1997; Weiner et al, 1984, 1988), but disrupted LI if
administered in conditioning (Gray et al, 1997; Joseph et al,
2000). The experiment included six experimental groups
(n per group¼ 7–8) in a 2� 3 design with main factors of
pre-exposure (0, 40) and treatment (vehicle, scopolamine
in pre-exposure, scopolamine in conditioning).

Results. The six experimental groups did not differ in their
times to complete licks 51–75 before tone onset (all
p’s40.05; overall mean A period¼ 6.76 s). Figure 2 presents
the mean log times to complete licks 76–100 (after tone
onset) of the PE and NPE rats injected with vehicle,
scopolamine in pre-exposure, or scopolamine in condition-
ing. As can be seen, LI was present in vehicle-treated rats as
well as in rats injected with scopolamine in the conditioning
stage alone. In contrast, LI was disrupted following
scopolamine administration in the pre-exposure stage
alone. ANOVA yielded significant main effects of pre-
exposure (F(1,40) ¼ 20.187, po0.0001) and treatment
(F(2,40) ¼ 5.46, po0.05), and a nearly significant interaction
of treatment� pre-exposure (F(2,40) ¼ 2.704, p¼ 0.079). Post

hoc comparisons revealed a significant difference between
the PE and NPE groups injected with vehicle (po0.001) and
scopolamine in conditioning (po0.005), but not between
those injected with scopolamine in pre-exposure.

Experiments 3 and 4: Effects of Haloperidol and
Clozapine on Pre-Exposure-Based Scopolamine-Induced
LI Disruption

As APDs-induced reversal of disrupted LI is owing to their
effects in the conditioning stage (Weiner, 2003), experi-
ments 3 and 4 tested whether the same pattern would be
seen with scopolamine-induced LI disruption. This was of
particular interest given that scopolamine disrupted LI via
effects at the pre-exposure stage, thus raising the possibility
that APDs would reverse scopolamine-induced LI disrup-
tion not at the stage of the LI procedure at which disruption
was induced. Scopolamine was injected in the pre-exposure
stage. Haloperidol and clozapine (Experiments 3 and 4,
respectively) were injected to scopolamine-treated rats in
either the pre-exposure stage, the conditioning stage, or in
both stages. We did not administer haloperidol and
clozapine on their own, because we had extensively
characterized the effects of both drugs on LI in the present
procedure in our previous studies. Specifically, we have
shown that both drugs have no effect on LI when given in
conditioning or in both stages, whereas clozapine, but not
haloperidol, can disrupt LI when administered in pre-
exposure (Shadach et al, 2000; Weiner, 2003; Weiner et al,
1987, 1997).

Experiment 3: Effects of 0.1 mg/kg Haloperidol
Injected in Pre-Exposure and/or Conditioning
on Pre-Exposure-Based Scopolamine-Induced
LI Disruption

The experiment included 10 experimental groups (n per
group¼ 7–10) in a 2� 5 design with main factors of pre-
exposure (0, 40) and treatment (vehicle, scopolamine,

Figure 1 Effects of scopolamine on LI. Means and standard errors of the
log times to complete licks 76–100 (after tone onset) of the pre-exposed
(PE) and non-pre-exposed (NPE) rats injected with vehicle, scopolamine
(0.15, 0.5, 1 mg/kg), or amphetamine (amph; 1 mg/kg). Asterisk indicates a
significant difference between the PE and NPE groups, namely, presence
of LI.

Figure 2 Effects of scopolamine on LI as a function of stage of
administration. Means and standard errors of the log times to complete
licks 76–100 (after tone onset) of the pre-exposed (PE) and non-pre-
exposed (NPE) vehicle- or scopolamine (0.15 mg/kg)-injected rats.
Scopolamine was injected either in the pre-exposure stage or in the
conditioning stage. Asterisk indicates a significant difference between the PE
and NPE groups, namely, presence of LI.
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scopolamine + haloperidol in pre-exposure, scopolamine +
haloperidol in conditioning, scopolamine + haloperidol in
both stages). Data of four rats were dropped from the
analysis.

Results. The 10 experimental groups did not differ in their
times to complete licks 51–75 before tone onset (all
p’s40.05; overall mean A period¼ 7.65 s). Figure 3 presents
the mean log times to complete licks 76–100 (after tone
onset) of the PE and NPE rats injected with vehicle,
scopolamine, scopolamine + haloperidol in pre-exposure,
scopolamine + haloperidol in conditioning, or scopolamine +
haloperidol in both stages. As can be seen, LI was present in
vehicle-treated rats and absent in rats that were treated with
scopolamine. Haloperidol restored LI in scopolamine-
treated rats when given in both pre-exposure and con-
ditioning as well as if given only in conditioning, but failed
to restore LI if given in pre-exposure only. ANOVA yielded
a significant main effect of pre-exposure (F(1,76) ¼ 17.29,
po0.0001), and a significant interaction of treatment� pre-
exposure (F(4,76) ¼ 2.69, po0.05). Post hoc comparisons
revealed a significant difference between the PE and NPE
groups injected with vehicle (po0.001), scopolamine +
haloperidol in conditioning (po0.001), and scopolamine+
haloperidol in both stages (po0.05), but not between PE
and NPE groups that received only scopolamine, or
scopolamine + haloperidol in pre-exposure.

Experiment 4: Effects of 10 mg/kg Clozapine Injected
in Pre-Exposure and/or Conditioning on
Scopolamine-Induced LI Disruption

The experiment included 10 experimental groups (n per
group¼ 7–10) in a 2� 5 design with main factors of pre-
exposure (0, 40) and treatment (vehicle, scopolamine,
scopolamine + clozapine in pre-exposure, scopolamine +

clozapine in conditioning, scopolamine + clozapine in both
stages). Data of three rats were dropped from the analysis.

Results. The 10 experimental groups did not differ in their
times to complete licks 51–75 before tone onset (all
p’s40.05; overall mean A period¼ 7.16 s). Figure 4 presents
the mean log times to complete licks 76–100 (after tone
onset) of the PE and NPE rats injected with vehicle,
scopolamine, scopolamine + clozapine in pre-exposure,
scopolamine + clozapine in conditioning, or scopolamine +
clozapine in both stages. As can be seen, LI was present in
vehicle-treated rats and absent in rats treated with
scopolamine. Clozapine restored LI in scopolamine-treated
rats if given in both pre-exposure and conditioning as well
as if given in conditioning only, but failed to restore LI if
given in pre-exposure only. ANOVA yielded significant
main effects of pre-exposure (F(1,74)¼ 15.97, po0.0005)
and treatment (F(4,74) ¼ 5.94, po0.0005), and an almost
significant interaction of treatment� pre-exposure
(F(4,74) ¼ 2.43, p¼ 0.055). Post hoc comparisons revealed a
significant difference between the PE and NPE groups in
rats injected with vehicle (po0.005), scopolamine + cloza-
pine in conditioning (po0.01), and scopolamine + cloza-
pine in both stages (po0.05), but not in rats injected with
scopolamine or scopolamine + clozapine in pre-exposure.

Experiment 5: Effects of Physostigmine on
Scopolamine- and Amphetamine-Induced
LI Disruption

Because physostigmine increases ACh levels in the synaptic
cleft, we expected that it would reverse the effect of
scopolamine-induced muscarinic blockade on LI, as has
been found for scopolamine-induced PPI disruption and
hyperactivity. In addition, because it was reported that
physostigmine might act similarly to ‘dopaminergic’ APDs

Figure 3 Effects of haloperidol on scopolamine-induced LI disruption as
a function of stage of administration. Means and standard errors of the log
times to complete licks 76–100 (after tone onset) of the pre-exposed (PE)
and non-pre-exposed (NPE) rats in four drug conditions: vehicle,
scopolamine (0.15 mg/kg), scopolamine + haloperidol (hal; 0.1 mg/kg) in
pre-exposure, scopolamine + haloperidol in conditioning, and scopolamine
+ haloperidol in both stages. Scopolamine was injected in the pre-
exposure stage. Asterisk indicates a significant difference between the PE
and NPE groups, namely, presence of LI.

Figure 4 Effects of clozapine on scopolamine-induced LI disruption as a
function of stage of administration. Means and standard errors of the log
times to complete licks 76–100 (after tone onset) of the pre-exposed (PE)
and non-pre-exposed (NPE) rats in four drug conditions: vehicle,
scopolamine (0.15 mg/kg), scopolamine + clozapine (cloz; 10 mg/kg) in
pre-exposure, scopolamine + clozapine in conditioning, and scopolamine +
clozapine in both stages. Scopolamine was injected in the pre-exposure
stage. Asterisk indicates a significant difference between the PE and NPE
groups, namely, presence of LI.
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(Karan et al, 2000), our interest was to test whether this
drug would also reverse amphetamine-induced LI disrup-
tion. The experiment included 18 experimental groups (n
per group¼ 7–9) in a 2� 3� 3 design with main factors
of pre-exposure (0, 40), treatment (vehicle, scopolamine,
amphetamine), and pretreatment (0, 0.05, 0.15 mg/kg
physostigmine). Data of three rats were dropped from the
analysis.

Results. The 18 experimental groups did not differ in their
times to complete licks 51–75 before tone onset (all
p’s40.05; overall mean A period¼ 6.76 s). Figure 5 presents
the mean log times to complete licks 76–100 (after tone
onset) of the PE and NPE rats in the different experimental
groups. As can be seen, LI was present in vehicle-treated
rats and in rats injected with physostigmine alone, but was
absent in rats that were treated with scopolamine or
amphetamine. Physostigmine, at both doses, restored LI
in scopolamine-treated rats, but failed to restore LI in
amphetamine-treated rats. ANOVA yielded significant
main effects of pre-exposure (F(1,119)¼ 62.85, po0.0001),
treatment (F(2,119) ¼ 13.55, po0.0001), and pretreatment
(F(2,119) ¼ 3.71, po0.05), and significant interactions of
pre-exposure� treatment (F(2,119)¼ 9.4, po0.0005) and
pre-exposure� treatment� pretreatment (F(4,119)¼ 2.52,
po0.05). Post hoc comparisons revealed a significant
difference between the PE and NPE groups in the vehicle,
0.05 mg/kg physostigmine, scopolamine + 0.05 mg/kg physo-
stigmine (p’so0.0001), 0.15 mg/kg physostigmine, and
scopolamine + 0.15 mg/kg physostigmine (p’so0.005) con-
ditions, but not in the scopolamine alone, amphetamine
alone, or the two amphetamine + physostigmine conditions.

Experiment 6: Effects of 0.15 and 0.5 mg/kg Scopolamine
and 1 mg/kg Amphetamine on Locomotor Activity

Drug-induced locomotor hyperactivity is the most widely
used animal model of psychosis; accordingly, scopolamine
has been shown to increase locomotor activity, but only at
doses higher than 0.3 mg/kg (Mathur et al, 1997; Shannon
and Peters, 1990; Sipos et al, 1999). While scopolamine at
low doses used here (0.15 and 0.5 mg/kg) disrupted LI
like amphetamine (1 mg/kg; Experiment 1), Experiment 5
indicated that these two propsychotic drugs may act via
distinct mechanisms. We, therefore, compared the effects of
the low doses of scopolamine and amphetamine on
locomotor activity. The experiment included four experi-
mental groups (n per group¼ 6–7).

Results. Figure 6 presents the means and standard errors of
duration of movements, in 6 min blocks, before and after
vehicle, scopolamine, or amphetamine injection. As can
be seen, spontaneous activity levels (first 30 min period)
did not differ among the groups. Following amphetamine
injection, there was a dramatic rise in activity level. No
such increase was seen in scopolamine-injected rats
although the higher dose produced a mild increase in
activity. ANOVA yielded significant main effects of
drug (F(3,21)¼ 9.97, po0.0005), periods (F(3,42)¼ 9.32,
po0.0005), and blocks (F(4,84) ¼ 5.43, po0.001) as well as
significant interactions of drug� periods (F(6,42) ¼ 8.6,
po0.0001), periods� blocks (F(8,168) ¼ 2.21, po0.05), and
drug� period� blocks (F(24,168) ¼ 3.38, po0.0001). Post hoc
comparisons indicated that only amphetamine significantly
increased duration of movements compared to the vehicle
group (po0.0001).

Figure 5 Effects of physostigmine on scopolamine- and amphetamine-induced LI disruption. Means and standard errors of the log times to complete licks
76–100 (after tone onset) of the pre-exposed (PE) and non-pre-exposed (NPE) vehicle-, scopolamine (0.15 mg/kg)-, or amphetamine (1 mg/kg)-treated
rats, pretreated with physostigmine (0.05, 0.15 mg/kg). Scopolamine was injected in the pre-exposure stage. Amphetamine and physostigmine were injected
in both stages. Asterisk indicates a significant difference between the PE and NPE groups, namely, presence of LI.
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DISCUSSION

The present experiments demonstrated that LI can be
abolished by scopolamine, and that this abolition can be
reversed by APDs, as well as by the AChE inhibitor,
physostigmine. Experiment 1 showed that scopolamine,
administered in both pre-exposure and conditioning at
doses of 0.15 and 0.5 mg/kg, abolished LI, while sparing LI
at a higher dose of 1 mg/kg. These results are consistent
with other findings suggesting that lower doses of
muscarinic antagonists might be more effective than higher
doses in some behavioral procedures. For example,
Carnicella et al (2005) showed that the muscarinic
antagonist atropine disrupted the degraded contingency
effect (retarded conditioning following high probability of
US-alone presentations compared to high probability of
CS-US presentations) at 5 mg/kg, but not at higher doses.
Likewise, Ukai et al (2004) showed that scopolamine
attenuated PPI in mice at a dose of 0.3 mg/kg, but not at
higher doses. It is not clear why scopolamine loses its
efficacy in disrupting LI at higher doses. One possibility is
that low and high doses of scopolamine bind to different
types of muscarinic receptors, for example, excitatory vs
inhibitory. The dose-dependent effects of scopolamine on
DA release within the nucleus accumbens (NAC) may be
particularly relevant in this respect. Thus, low dose of
scopolamine increased NAC DA release, presumably via
blockade of M2 inhibitory autoreceptors, whereas at higher
doses this effect diminished, presumably due to increased
blockade of M1 receptors (Ichikawa et al, 2002b). As LI
disruption requires DA release within the NAC (Joseph
et al, 2000; Weiner, 2003), this would be expected to occur
with low but not high scopolamine doses.

In line with previous results (eg Anagnostaras et al, 1999),
scopolamine at doses used here did not impair tone-shock
conditioning, as reflected in the fact that suppression levels
of scopolamine-treated NPE rats did not differ from those of
vehicle-treated NPE rats. In fact, scopolamine-induced LI
disruption stemmed exclusively from improved perfor-
mance of the scopolamine-treated PE groups, which showed
levels of suppression similar to those of their NPE

counterparts. In other words, scopolamine-treated PE rats
behaved as if they were not PE. The latter could stem
from at least two sources: (1) scopolamine enhanced fear
conditioning selectively in PE rats, or attenuated the
retarding effect of stimulus pre-exposure on its subsequent
conditioning; in this case, the site of scopolamine action
would be the conditioning stage; (2) scopolamine impaired
the capacity to learn to ignore the PE stimulus in the pre-
exposure stage. The results of Experiment 2 supported the
latter possibility. In this experiment, 0.15 mg/kg scopol-
amine disrupted LI if given only before pre-exposure, but
not if given only before conditioning. Although this pattern
could reflect state dependency, this possibility was ruled out
by our finding that the same dose of scopolamine disrupted
LI also when given before both stages. Pre-exposure-based
LI disruption by scopolamine is consistent with the results
of Carlton and Vogel (1965), but contradict those of Moore
et al (1976), who found LI to be unaffected by scopolamine.
The latter could be due to the higher dose used by Moore
et al as also in the present study, the highest dose spared LI,
or could reflect species differences (Moore et al used
rabbits). The fact that scopolamine acts selectively in the PE
groups, and that this action is exerted in the pre-exposure
stage, implies that muscarinic blockade attenuates the
normal loss of attention to the stimulus occurring during
nonreinforced pre-exposure (Lubow et al, 1981), in line
with extensive evidence implicating the cholinergic system
in attentional processes (see Blokland, 1995; Hasselmo and
McGaughy, 2004; Mirza and Stolerman, 2000; Sarter et al,
2003, 1999, 2005).

Experiments 3 and 4 showed that scopolamine-induced LI
disruption was reversed by the typical APD haloperidol and
the atypical APD clozapine, respectively. Moreover, APDs
restored disrupted LI if injected in both the pre-exposure
and conditioning stages, or in the conditioning stage alone,
but not in the pre-exposure stage alone. Precisely the same
stage-dependent pattern of APD action is obtained for the
most widely documented effect of APDs on LI, namely, LI
potentiation following low number of pre-exposures that do
not suffice to yield LI in no-drug controls (eg in the
procedure used here, no LI is seen with 10 pre-exposures,

Figure 6 Effects of scopolamine and amphetamine on locomotor activity. Means and standard errors of duration of movements, in 6 min blocks, before
(blocks 1–5) and after (blocks 6–15) injection of vehicle, 1 mg/kg amphetamine, 0.15 mg/kg scopolamine, or 0.5 mg/kg scopolamine.
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but LI emerges under this condition following APD
treatment; Weiner et al, 1996; Warburton et al, 1994). As
functionally, pre-exposure to 40 tones under scopolamine
may be equivalent to reducing the number of pre-
exposures, restoration of LI in scopolamine-treated rats
by APDs may represent an instance of APD-induced LI
potentiation seen with low number of pre-exposures.

While reversal of scopolamine-induced behavioral defi-
cits by typical and atypical APDs had been shown
previously (Jones et al, 2005; Mathur et al, 1997; Shannon
and Peters, 1990), the unique aspect of the present results is
that scopolamine-induced LI deficit and its reversal by
APDs were generated in different stages of the LI procedure
taking place 24 h apart. Therefore, while reversal of
scopolamine-induced behavioral deficits by APDs has been
attributed to a direct interaction between the dopaminergic
and the muscarinic cholinergic systems (eg Jones et al, 2005;
Mathur et al, 1997), such an interaction cannot explain the
present results. Rather, the reversal of scopolamine-induced
LI disruption by APDs is likely to reflect complex
interactions within the brain circuitry that modulates the
expression of LI (Weiner, 2003), whereby scopolamine
exerts its effects on brain substrates mediating the
processing of the PE stimulus in pre-exposure that differ
from but interact with brain substrates at which APDs act to
potentiate LI in conditioning. Studies of the neural
substrates of LI have shown that the APD-induced LI
potentiation is mediated via the NAC (Joseph et al, 2000;
Weiner, 2003), whereas the information on the PE stimulus
is fed to the NAC from the entorhinal cortex (Jeanblanc
et al, 2004; Weiner, 2003), raising the possibility that the
latter is the region where muscarinic blockade acts to
impair LI. While the neural substrates involved in APD-
induced reversal of scopolamine-induced LI disruption
remain to be investigated, the fact that scopolamine and
APDs act in different stages suggests that scopolamine-
induced disrupted LI may allow the detection of antipsy-
chotic action that is independent of the mechanism of
action of the propsychotic drug, opening a unique avenue
for identifying agents acting through novel mechanisms.

Experiment 5 showed that scopolamine-induced LI
disruption was reversed by physostigmine. This drug did
not affect LI when given alone. These findings are in line
with previous results using other animal models of
schizophrenia. For example, physostigmine alone had no
effect on PPI (Jones and Shannon, 2000b; Mach et al, 2004)
or locomotor activity (Shannon and Peters, 1990; but see
Mach et al, 2004), but reversed scopolamine-induced PPI
disruption (Jones and Shannon, 2000b) and hyperactivity
(Shannon and Peters, 1990). In contrast to its success in
reversing scopolamine-induced LI disruption, physostig-
mine failed to restore amphetamine-induced LI disruption.
This suggests that physostigmine acted to restore LI by
restoring the ability to learn the irrelevance of the PE
stimulus, which was impaired by scopolamine; in amphet-
amine-treated rats, this ability is intact (Weiner, 2003), and
therefore physostigmine was inactive. While these sugges-
tions remain to be investigated, the fact that physostigmine
reversed scopolamine- but not amphetamine-induced LI
disruption sets this compound apart from APDs, which
reverse both deficits. The latter is inconsistent with the
report that physostigmine acted like ‘dopaminergic’ APDs,

and in particular, blocked amphetamine-induced stereotypy
(Karan et al, 2000), but is in line with Stone et al’s (1990)
finding of low susceptibility of amphetamine-induced
hyperactivity to physostigmine, because here we used a
low, activity-producing dose of amphetamine. To the best of
our knowledge, this is the first demonstration of distinct
effects of physostigmine on scopolamine- and amphet-
amine-induced behavioral deficits produced in the same
behavioral phenomenon.

The findings of the present study join those of other
studies showing that scopolamine and other muscarinic
antagonists produce psychotic-like effects in animals (eg
Jones et al, 2005; Jones and Shannon, 2000a, b; Mathur et al,
1997; Shannon and Peters, 1990; Sipos et al, 1999; Ukai et al,
2004; Wu et al, 1993) and that these effects are reversed by
APDs (Jones et al, 2005; Shannon and Peters, 1990) and
physostigmine (Jones and Shannon, 2000b; Shannon and
Peters, 1990). Disruption of LI by amphetamine and its
reversal by APDs is a well-established model of positive
symptoms, fortified by findings of disrupted LI in
amphetamine-treated normal humans, high schizotypal
individuals, and acute schizophrenia patients (see Lubow,
2005; Weiner, 2003). Therefore, disruption of LI by
scopolamine and its reversal by APDs and physostigmine
may provide a model of the ‘positive’ symptom spectrum of
the antimuscarinic psychosis (anticholinergic syndrome),
and by corollary, of the cholinergic aspects of positive
symptoms in endogenous schizophrenia.

However, it is important to underscore in this context
that in spite of their identical behavioral manifestations
(disrupted LI), the ‘antimuscarinic LI model’ and the
‘dopamine agonist LI model’ are clearly distinct in several
respects. First, scopolamine disrupts LI via effects exerted
at the pre-exposure stage and spares LI when given in
conditioning only, whereas amphetamine disrupts LI via
effects exerted at the conditioning stage and spares LI if
given before pre-exposure only (Gray et al, 1997; Joseph
et al, 2000; McAllister, 1997; Weiner, 2003; Weiner et al,
1984, 1988). In addition to indicating that the neural
substrates underlying LI disruption induced by amphet-
amine and scopolamine are different, the stage-based
dissociation implies that the disruptions of LI induced by
these two pharmacologically distinct classes of drugs cannot
be attributed to a disturbance to a common psychological
function. The dissociation between scopolamine- and
amphetamine-induced disruption of LI is further supported
by the manner in which the two abnormalities are reversed
by APDs. Thus, although APDs reverse both abnormalities,
in the case of amphetamine-induced LI disruption, the
propsychotic and the antipsychotic actions are exerted at
the same stage of the procedure and thus likely reflect a
direct interaction, whereas in the case of scopolamine-
induced LI disruption, the propsychotic and antipsychotic
actions are generated in different stages of the procedure
and thus mediated by distinct mechanisms. Third, scopo-
lamine-induced, but not amphetamine-induced, LI disrup-
tion was reversed by physostigmine. Thus, while
scopolamine-induced LI disruption can be reversed by both
APDs and an AChE inhibitor, amphetamine-induced LI
disruption can be reversed only by the former.

Taken together, these findings indicate that scopolamine-
and amphetamine-induced LI disruption represents
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different phenomena, and therefore might model different
aspects of schizophrenic psychoses. Specifically, scopol-
amine-induced LI disruption may model muscarinic-related
attentional deficits, which may be linked to cognitive
impairments seen in this disorder.

The dissociation between scopolamine and amphetamine
was also evident in the activity model. While amphetamine
(1 mg/kg) markedly increased locomotor activity, scopola-
mine (0.15 and 0.5 mg/kg) did not alter locomotor activity,
supporting the notion that distinct mechanisms underlie
the effects of the two psychotomimetics. Although it was
suggested that scopolamine affects behavior like amphet-
amine by increasing striatal/accumbal DA transmission
(Ichikawa et al, 2002a; Yeomans, 1995), our results in LI and
locomotor activity imply that this is not the case with low
doses of scopolamine.

In sum, the present study showed that low doses of
scopolamine impair rats’ capacity to ignore stimuli that are
repeatedly presented without consequences while leaving
their capacity for associative learning intact. This pattern
implies that the cholinergic muscarinic system plays a role
in attentional processes underlying the acquisition of LI.
The latter, in turn, suggests that scopolamine-induced LI
disruption may model attentional abnormalities associated
with cholinergic dysfunction. In addition, the fact that
scopolamine-induced LI disruption is in several respects
distinct from amphetamine-induced LI disruption under-
scores the utility of the two deficits for modeling
antimuscarinic and dopaminergic psychoses, respectively,
and by extension, cholinergic and dopaminergic aspects of
schizophrenic psychoses. The latter may facilitate the search
for treatments that target selectively each of these abnorma-
lities. In particular, it is of interest to determine whether
specific muscarinic receptor agonists, which were shown to
exhibit antipsychotic properties in the clinic, would reverse
both scopolamine- and amphetamine-induced LI deficits as
was shown in other animal models (Bymaster et al, 2002;
Jones et al, 2005; Stanhope et al, 2001), or would show
selectivity like found here for physostigmine. In addition,
the capacity of cholinergic cognitive enhancers to amelio-
rate these deficits should be examined. Finally, it is of
interest to examine whether the negative/cognitive symp-
tom spectrum of antimuscarinic psychosis can also be
modeled in the LI model.
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