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Distinguish Learners from Nonlearners during Reward-
Based Decision Making
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The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms under-
lying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks.
Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance:
those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to
determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance
imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups
differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the
learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a
marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated signifi-
cantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals,
likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained
rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence
of this type of learning on the functional integrity of the dopaminergic striatal system in humans.
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Introduction
An accumulating body of research implicates a network of brain
regions in reward learning and decision making (Schultz, 2002;
O’Doherty, 2004). Single-unit neurophysiology studies implicate
dopamine neurons in encoding reward prediction errors (PEs)
during classical and instrumental conditioning, consistent with
reinforcement learning (RL) models of decision making (Mon-
tague et al., 1996; Schultz et al., 1997; Schultz, 2002; Morris et al.,
2006). In RL, prediction errors are used to update expectations of
future reward associated with a set of stimuli or actions, which are
then subsequently used to guide action selection (Sutton and
Barto, 1998; Dayan and Abbot, 2001; Dayan and Balleine, 2002;
Daw and Doya, 2006). Human neuroimaging studies have re-
vealed activity in target areas of dopamine neurons most promi-

nently in the ventral and dorsal striatum, consistent with RL PE
signals (Delgado et al., 2000; Knutson et al., 2000; Pagnoni et al.,
2002; O’Doherty et al., 2003, 2004; McClure et al., 2003, 2004;
Rodriguez et al., 2006). Error signals in ventral striatum have
been found during both classical and instrumental conditioning,
indicative of a role for this structure in mediating learning of
expected reward in general, whereas dorsal striatum has been
found to be more strongly engaged during instrumental condi-
tioning tasks (O’Doherty et al., 2004; Tricomi et al., 2004), impli-
cating this area in learning related to action selection for reward
(O’Doherty et al., 2004; Seger and Cincotta, 2005).

A functional interpretation of RL signals in the striatum im-
plies that these signals should relate to behavioral performance
on such tasks, a relationship about which much less is known.
Such predictions help to distinguish the RL hypothesis from in-
terpretations of striatal activity that are less committed to a spe-
cific behavioral function, such as those stressing a relationship
between neural signals and stimulus salience (Zink et al., 2006),
echoing similar ideas about dopaminergic spiking in animals
(Redgrave et al., 1999). Pessiglione et al. (2006) showed previ-
ously that PE activity in striatum was modulated by administra-
tion of dopamine agonists and antagonists, and that such modu-
lation exerted a corresponding influence on behavioral
performance. In this study, we aim to exploit spontaneously oc-
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curring differences in decision making abilities (Stanovich and
West, 2000; Stanovich, 2003; Newell, 2005) of untreated healthy
subjects to further study the relations between RL and decision
making in humans. For this purpose, we used a simple four-
armed bandit decision making task in which subjects choose be-
tween one of four options, each with a different, fixed reward
probability ranging from 0.75 down to 0.25 (Friedland, 1998). To
perform optimally, subjects need to learn to choose the actions
associated with the highest probability of reward. Yet, remarkably
even on such a simple task, �50% of subjects fail to choose op-
timally even after �100 trials (Joel et al., 2005). The aim of the
present study is to use functional neuroimaging to study the re-
lationship between these spontaneous differences in behavioral
performance and neural signals. We hypothesized that better be-
havioral performance would accompany more robust PE activity
in either the dorsal or ventral striatum.

Materials and Methods
Subjects. Thirty right-handed healthy normal subjects (one subject dis-
carded because of a clinical finding) participated in the experiment
(mean age, 27.4; range, 22–39) of which 15 were female. The subjects
were preassessed to exclude those with a prior history of neurological or
psychiatric illness. All subjects gave informed consent, and the study was
approved by the Ethics committee of the Tel Aviv Sourasky Medical
Center and by the Ethics committee in the Department of Psychology in
Tel Aviv University.

Imaging procedure. A GE 3.0T Excite scanner (General Electric, Mil-
waukee, WI) was used to acquire gradient echo T2*-weighted echo-
planar images (EPI) with blood oxygenation level-dependent (BOLD)
contrast. Each volume comprised 40 axial slices of 3.0 mm thickness and
3.125 in-plane resolution. All images were acquired using a standard
quadrature head coil. The following parameters were used: repetition
time (TR), 3000 ms; echo time (TE), 30 ms; flip angle, 90°; and a 64 � 64
matrix with a field of view of 20 � 20 cm 2. A total of 968 volumes were
scanned in four separate scanning runs composed of two task sessions
and two control sessions as described below. For each subject, a T1-
weighted image was also acquired.

Task. The task is an adaptation of Friedland’s card betting task for
event-related functional magnetic resonance imaging (fMRI) (Friedland,
1998). In this task, subjects are invited to choose on each trial a card from
one of four stationary decks. Each deck contains two types of cards:
winning cards and losing cards. When subjects select a winning card they
obtain 100 points (which are converted after the experiment into the
monetary equivalent of 2 United States cents). Selection of a losing card
results in no points. At the beginning of each trial, subjects “bet” a fixed
amount of 50 points, thus selection of a winning card results in an overall
gain of 50 points, whereas selection of the losing card results in an overall
loss of 50 points. The subjects are invited to choose from the decks in
order to select as many winning cards as possible and hence win as many
points as possible. However, the subjects are not aware that the decks
differ in the probability of obtaining a winning card. One deck yields
winning cards on 75% of occasions, another deck on 60%, and the two
other decks yield winning cards on 40 and 25% occasions, respectively.
Thus, the optimal strategy for the subjects is to choose the 75% deck once
they have worked out the contingencies. As in the original Friedland’s
card-betting task used by Joel et al. (2005), all the decks are built in a
pseudorandomized manner to ensure that the actual experienced prob-
ability of winning on a particular deck does not deviate within every 10
sequential choices, by �10% from the designated probability of winning
for that deck. This ensures that no more than four cards of the same type
(win/lose) appear one after the other in the 75 and 25% decks, and no
more than three cards of the same type in the 60 and 40% decks. Each
deck is randomly allocated to one of four positions on the screen at the
beginning of the task and remains stationary for the entire task. The
colors of the cards are pseudorandomized and counter-balanced across
subjects.

Each trial begins with the cards in the four decks facing down and the

subjects are prompted to choose a deck, thereby committing to a 50 point
bet. The maximum time to choose a deck is 2 s. If a deck is chosen in this
time, a green rectangle appears around the chosen deck to indicate that a
choice has been made. Three seconds later the card on the top of the
chosen deck is turned over to reveal the color of the card, and whether it
was a winning card worth 100 points or a losing card with 0 points. The
outcome is then presented for 1.5 s. The last part of the trial is a fixation
cross, which remains on the screen until a total trial duration of 7 s is
reached. On trials where subjects fail to respond in 2 s, a # sign is super-
imposed over all the decks for 2 s to signify a missed trial. This is then
followed by a fixation cross for 3 s until the next trial is triggered. Subjects
are not provided with a running total and are only informed of the total
points accumulated at the end of the experiment. The trial structure is
summarized in Figure 1 A. In addition to the gambling trials, low-level
null event trials are also included whereby a fixation cross is presented for
the full 7 s.

Experimental procedure. The task was presented to subjects on a com-
puter monitor using presentation (Neurobehavioral Systems, Albany,
CA) projected onto a screen, visible via an angled mirror on top of the
fMRI head coil.

Before the experiment began, subjects were informed that the proba-
bility of wining on the decks remains stationary throughout the experi-
ment. They were instructed to try and win as many points (later con-
verted to money) as they can with no specific instructions regarding the
structure of the task. They were also told that in addition to being reim-
bursed according to the amount of points won directly on the task, the
subject obtaining the highest points over all would obtain a grand prize
equivalent to $20 US dollars (USD). Subjects’ gained on average $2.5
USD (�$0.25 SD) by the end of the experiment.

In addition to the card betting task, a control task was also performed
by the subjects. The control task is identical in length and structure to the
card-betting task, except that there are no monetary rewards involved in
the control task. The decks in the control task also contain similar per-
centages of two card colors (signified by different colors than the ones
used in the card-betting task) as used in the betting task (75, 60, 40, and
25%). Subjects were explicitly instructed to perform the control task as a
condition of their participation in the experiment, although they did not
receive rewards during this part of the experiment.

The total time taken for the functional imaging was 48 min and 24 s
(for the task and control sessions together). Each of the four parts (two of
task and two of control) consisted of 75 trials of either the card-betting
task or control task and 25 null event trials (242 volumes in each part
including the first six volumes which were discarded in analysis, to allow
magnetization stabilization). The order of presentation of the task and
control sessions was completely counterbalanced across subjects. Before
scanning, the subjects underwent a short practice session which included
both task and control trials.

Postexperiment ratings
After subjects were removed from the scanner, they were asked to
report pleasantness ratings for each of the decks, using a scale
ranging from 1 to 7, where 1 equaled the least pleasant and 7 the
most pleasant. The subjects were also asked to rank the decks in
order of their preference where 4 equaled the best deck, and 1 the
worst, as well as to provide an assessment of the assumed proba-
bility of winning on each deck, using a number from 0 to 100.

Psychological questionnaires and demographic data
After the postexperiment ratings, subjects filled in several ques-
tionnaires, all in Hebrew: Friedland’s chance-luck questionnaire
for identifying tendency toward chance or luck attribution to
events (for a full description, see Joel et al., 2005); the obsessive-
compulsive personality scale from the Wisconsin Personality
Disorders Inventory (Klein et al., 1993) and the obsessive-
compulsive inventory (Foa et al., 2002) to assess any possible
relation between obsessive-compulsive personality traits or
symptoms and task performance; the NEO-R questionnaire
(Costa and McCrae, 1992a,b) to try and probe for correlations
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between the “big 5” personalities and behavior in the task; and the
Beck depression inventory (BDI) (Beck et al., 1961; Beck, 1988)
to test for correlations between performance in the task and
depression.

Subjects were also asked to report their age, years of education
and the Israeli equivalent of their SAT scores.

Group level analysis
Subjects were split into groups according to whether they reached
the learning criterion or not. The criterion was showing a statis-
tically significant preference for the high-probability (HP) decks
(75 and 60%) in the last 40 trials of the task (i.e., choosing these
decks on �25 trials according to the binomial distribution
around p � 0.5). The contrast images computed for each subject
were taken to the group random effects level and comparisons
were conducted between the learner group and the nonlearner
group to determine areas showing enhanced correlations with PE
signals in learners compared with nonlearners. The structural T1
images of all subjects were normalized to a standard template.
The normalized images were then used to create a normalized
structural mean image on which the t maps were over laid to
obtain anatomical localization.

Reinforcement model-based analysis
Subjects’ decisions were modeled as a function of previous
choices and rewards using a temporal-difference algorithm. Spe-
cifically, the predicted value Vi for each option (deck) i was up-
dated in the direction of the obtained reward using a delta rule
with learning rate a whenever deck i was chosen. To capture
low-order autocorrelation in the choices (Lau and Glimcher,
2005), we also maintained for each deck i, an index ci tracking
how recently it had been chosen, and allowed this to bias choices.
Specifically, when deck i was chosen, ci was set to one, whereas cj

for all other decks j � i were decayed exponentially (by multipli-
cation with a decay factor d). The probability of choosing option
i was taken to be softmax in a weighted sum of the value and its
choice fraction [i.e., proportional to exp(� � (Vi � b � ci)]; note
that the coefficient b can be negative to capture a tendency to
alternate or positive for perseveration. Free parameters (learning
rate a, softmax inverse temperature �, weighting b for the choice
recency index, and the time constant d for decay of the choice
recency index) were selected to optimize the likelihood of the
behavioral data. For fMRI analyses, the behavior of all members
of the learner group was fit with a single set of parameters; a
second single set of parameters was fit to the behavior of all mem-
bers of the nonlearner group. A more detailed description of the
model fitting procedure as well as additional fits of the model to
individual subjects’ behavior are provided in the supplemental
material. The fit model was then run on each subject’s choices
and rewards to estimate their trial-by-trial reward predictions Vi

and the PE in these values, which were used as parametric regres-
sors for the fMRI analysis as described below. The parametric
regressors were modeled by convolving outputs from the RL
model with a vector containing impulse events. For the PE regres-
sor we modulated the impulse events at two time points within
the trial: the first was the mid time point between stimulus onset
and response time and the second time point was at reward de-
livery. At the first time point, the prediction error was defined as
the temporal difference between the value expected given the
choice, Vc, defined as above, and the initial value that would be
expected before knowing the choice. (We defined the latter as the
policy averaged value, i.e., using a separate variable Vavg updated
according to a delta rule with the same learning rate as the choice

values, but on each trial regardless of which option was chosen)
(Daw et al., 2006b) (see also O’Doherty et al., 2004). The predic-
tion error at the time of the outcome was then the difference
between the observed reward and the reward expected given the
choice.

Image analysis
Analysis of fMRI data were performed in SPM2 (Wellcome De-
partment of Imaging Neuroscience, Institute of Neurology, Lon-
don, UK). To correct for subject motion, images were realigned
to the first volume, then spatially normalized to a standard T2*
template with a resampled voxel size of 3 � 3 mm. Images were
then spatially smoothed by applying a Gaussian kernel with a full
width at half maximum of 8 mm. High-pass filtering with a cutoff
period of 128 s was also applied to the data.

Prediction error signals were generated for each subject as
described above and then convolved with a canonical hemody-
namic response function and regressed against each subjects’
fMRI data. Subjects’ gains were entered in the design matrix. The
six scan-to-scan motion parameters produced during realign-
ment were included to account for residual effects of scan-to-scan
motion. Contrast images were computed at the single subject
level by subtracting PE signals during the control task from the PE
signals during the card betting task.

Time-course analysis
Time courses were collected at the single subject level. This was
done by searching for the peak activation in the contrast of PE
signals in the task subtracted by PE signals in the control session
of each subject. A sphere of 8 mm was defined around the loca-
tion of the group peak voxel in the random effects analysis which
showed the difference between learners and nonlearners ([18, 15,
15], Montreal Neurological Institute (MNI) coordinates). For
each individual subject the locus of the peak activation was
checked to ensure that the peak chosen within this sphere fell
within the anatomical boundaries of the striatum. This criterion
was met for all subjects and hence all were included in this anal-
ysis. Then a volume of 8 mm was defined around the specific
single subject activation found in the process defined above to
collect the raw signal from the peak in that sphere. Effects of no
interest were removed except for PE in the task and control ses-
sions of each subject. Then trials which had high positive PE
according to the model (�0.4) were binned from each subject’s
time course. The same procedure was applied to bin trials with
negative PE (smaller than �0.4). The data were then smoothed
from 3 to 1 s using linear interpolation in Matlab (MathWorks,
Natick, MA). All the trials of each type were averaged, first across
all trials within each subject and then further averaged across
subjects in each of the groups of learners and nonlearners sepa-
rately to produce group level time courses.

Results
Behavioral results
Learners versus nonlearners
Fifty-nine percent of subjects (17 subjects) were classified as learners
and 41% (12 subjects) were classified as nonlearners based on our
criterion (Fig. 1B), a distribution similar to that reported in previous
behavioral studies using this task (Joel et al., 2005).

Demographic data of the two groups classified according to
the learning criterion are shown in Table 1. As can be seen, the
only significant difference between the two groups was in task
performance. No differences were seen in age, years of education
or in Israeli SAT scores.
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Pleasantness ratings
We found a significant difference between the learner and non-
learner groups in postexperiment ratings of pleasantness for the
different decks, as shown by a significant interaction between
deck (25, 40, 60, or 75%) and group (learner vs nonlearner) in a
repeated measures ANOVA (F(3,81) � 5.884; p 	 0.002). A
Tukey’s post hoc test revealed that this interaction effect is driven
by a significantly decreased pleasantness rating for the 75% deck
in the nonlearners compared with the learners (at p 	 0.02) (Fig.
1C).

Preference rankings
A similar effect was also found for preference rankings with a
significant deck by group interaction (F(2,54) � 12.43; p 	 0.0001)
also being driven by a significantly decreased preference ranking
for the 75% deck in the nonlearners compared with the learners
(at p 	 0.0001) (Fig. 1D). Because of the dependency between
rankings (forcing allocation of 1-2-3-4 to the decks) we per-

formed this ANOVA and subsequent
Scheffe post hoc analysis only on the 40, 60,
and 75% decks.

Probability estimation
We also found a marked difference be-
tween the groups in subjects’ estimation of
the probability of winning on the decks
(Fig. 1E). The learner group showed aver-
age probability estimates that are remark-
ably close to the actual underlying proba-
bilities of winning on each of the decks
(with estimated probabilities of 30, 41, 61,
and 73 for the 25, 40, 60, and 75% decks,
respectively). It should be noted that at no
point were subjects given explicit informa-
tion about the actual probabilities of win-
ning on each of the decks. These ratings
showed a significant linearly increasing
trend in probabilities assigned to the decks
(F(1,27) � 43.43; p 	 0.00001). However,
in the nonlearner group the average
probability estimates deviated markedly
from the actual probabilities, with esti-
mated probabilities of 47, 47, 58, and 53
assigned to the 25, 40, 60, and 75%
decks, respectively. Indeed, no signifi-
cant linearly increasing trend in proba-
bility estimation across the decks was
observed in the nonlearners (F(1,27) �
1.17; p � 0.2).

Reaction times and completed trials
To address the possibility that subjects in
the nonlearner group failed to show
learning purely because of a lack of en-
gagement or attention to the task, we ex-
amined the reaction time taken to re-
spond for each group. Should the groups
differ in the time to take a decision this
could support the possibility that sub-
jects in the two groups were differen-
tially engaged in the task. However, a di-
rect comparison between reaction times
taken to respond to each of the high-
probability decks (60 and 75%) sepa-
rately and together (referred to as HP

decks) along the seven blocks of 20 trials showed that the learn-
ers and nonlearners did not differ significantly in reaction times (for
choosing the 75% deck, F(6,156) � 1.08, p � 0.375; for choosing the
60% deck, F(6,132) � 1.06, p � 0.387; for choosing both HP decks,
F(6,132) � 0.926, p � 0.478). The comparison was performed only on
the 60 and 75% decks as many of the subjects in the learners group
ceased choosing the 25 and 40% decks along the task and therefore
only the analysis on the 60 and 75% decks included an adequate
number of subjects (at least n � 12 in each group). A set of two
sample independent Student’s t tests (Table 1) comparing the total
RTs of each group, in the task and control sessions separately, re-
vealed no significant difference between the two groups in either the
task or control conditions (task, p � 0.8; control, p � 0.2). An addi-
tional analysis comparing the number of successfully completed tri-
als, where subjects responded within the 2 s limit, in the task and
control sessions separately, also revealed no significant differences

Figure 1. A, General outline of a trial in the card-betting task. The task contained four decks of cards. Each deck had a predefined
probability of winning of either 75, 60, 40, or 25%. On each trial, subjects had to choose one of the four decks. Participants were
unaware of the probability assigned to each deck. B, Subjects’ performance during fMRI scanning. Separation into two groups was
based on subjects’ choices on the two HP decks (75 and 60%) in the last 40 trials of the task. C–E, Postexperiment ratings show
significant interaction between groups (learners and nonlearners) in pleasantness ratings (C) and preference rankings (D). E, In the
probability assessment question, a significant linear trend is seen in the learners group but not in the nonlearners group.

Table 1. Demographic and behavioral data of subjects in both groups

Average (SD)
nonlearners

Average (SD)
learners

Gender (male/total) 5/12 9/17
Age (years) 27.8 (5.2) 26.6 (3.4)
Education (years) 14.8 (1.7) 15.2 (1.9)
Number of choices of HP decks on last 40 trials of task*

(learning criterion)
20.4 (3.4) 33.2 (5.5)

Israeli SAT score 678.1 (66.4) 696.4 (56.1)
Completed trials task (of 150) 148.9 (1.2) 148.52 (2.1)
Completed trials control (of 150) 147.8 (3.3) 148 (3.1)
RT task session (ms) 525 (80) 535 (135)
RT control session (ms) 521 (85) 573 (118)

No significant differences were found between the two groups except for task performance (number of choices on the 60 and 75% decks in the last 40 trials
of the task (*p 	 0.000001). All other independent t test comparisons were not significant (p � 0.2 to p � 0.8). In all of the above shown comparisons, n �
17 for learners and n � 12 for nonlearners, except for SAT scores where n � 15 for learners and 10 for nonlearners.
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between groups for both the task and con-
trol conditions (task, p � 0.5; control, p �
0.8).

Psychological questionnaires
We did not find any significant difference
(Student’s t test, all p values � 0.2) be-
tween learners and nonlearners in any of
the questionnaires filled by subjects. The
only questionnaire showing a tendency
was the BDI with p � 0.09 (two-tailed,
t(27) � 1.77) with higher depression scores
for the learner group. This trend is consis-
tent with the finding of the study by Joel et
al. (2005) in which major depressive dis-
order patients were most likely to belong
to the group of learners compared with the
other groups in that study. It should be
noted that none of the subjects in our cur-
rent study were clinically depressed ac-
cording to BDI criteria (which requires a
score higher than 18; the highest score in
our sample was 15).

Model fitting
The best fitting model parameters for each
group are shown in supplemental Tables 1
and 2, and analyzed in the supplemental
Results (available at www.jneurosci.org as
supplemental material). The relationship
between model parameters and the num-
ber of choices of the HP decks (75 and
60%) in the last 40 trials of the task is illustrated in supplemental
Figure 1 (available at www.jneurosci.org as supplemental
material).

Neuroimaging results
Learners
In the learner group, we found significant correlations be-
tween our model-derived learning signals and neural activity
in both the ventral and dorsal striatum, significant at p 	
0.001 (Fig. 2 A). These results are consistent with previous
reports of prediction error signals in these areas during instru-
mental conditioning.

Nonlearners
In the nonlearner group, we did not find significant correlations
with PE signals in either ventral or dorsal striatum at p 	 0.001.
Instead, we found only weak striatal correlations at a much lower
significance level ( p 	 0.05) (Fig. 2B presents the nonlearners at
p 	 0.001). The regression coefficients for prediction errors in
ventral striatum are plotted separately for learner and nonlearner
groups in supplemental Figure 2 (available at www.jneurosci.org
as supplemental material).

Learners and nonlearners
Moreover, in a direct statistical comparison between prediction
error-related activity in the learner and nonlearner groups, we
found that learners showed significantly greater prediction error-
related activity in the dorsal striatum than nonlearners (Fig. 2C).
This analysis is significant at p 	 0.001 uncorrected, and also at
p 	 0.05 false discovery rate after small volume correction of the
anatomically defined caudate nucleus. The group peak MNI co-
ordinates are [18 15 15]. Parameter estimates of the direct com-
parison between learners and nonlearners in these coordinates

can be seen in Figure 2D. At the whole brain level, no regions
were found to survive whole brain correction at p 	 0.05 (fami-
lywise error corrected). We report areas showing effects outside
of our striatal regions of interest at p 	 0.001 uncorrected in
supplemental Table 3 (available at www.jneurosci.org as supple-
mental material).

Time course plots from dorsal striatum
For illustration purposes and to examine the trial averaged time
course of activity in this area, we separated trials according to the
magnitude of prediction errors predicted to occur on those trials.
We extracted time courses from all trials with a high positive
prediction error at the time of outcome (PE �0.4) from the peak
voxels showing PE related activity in each individual subject sep-
arately for the learner and nonlearner groups. The rationale for
searching individual peaks is to overcome anatomical misalign-
ment. The group averaged time course data for high positive
prediction errors are reported in Figure 2E. This plot reveals that
the learner group shows a strong positive BOLD signal increase at
9 s into the trial, consistent with a prediction error being solicited
at approx. 3.5 s into the trial at the time when the outcome was
revealed (taking into account a 6 s hemodynamic lag). However,
the nonlearners did not show a strong PE signal at the expected
time in the trial. Instead, this group showed evidence of a later
peak in signal, a response profile not accounted for by the RL
model. A similar time course analysis was conducted for trials
associated with a strong negative prediction error (where PE is
less than �0.4) (Fig. 2F). A difference was also observed between
the groups in the magnitude of negative prediction errors elicited
in nonlearners compared with learners, although the difference
between groups appeared more subtle than in the positive pre-
diction error case.

Figure 2. Random effects analysis showing PE correlations in ventral and dorsal striatum. A, The learners group showed
significant correlations in bilateral ventral striatum and right dorsal striatum (n � 17; p 	 0.001). B, The nonlearners group did
not show significant correlations in a similar threshold (n � 12; p 	 0.001). C, A direct comparison between PE correlated activity
in the learners group and the nonlearners group, showed enhanced activity in learners compared with nonlearners in right dorsal
striatum ( p 	 0.001). D, Parameter estimates of the direct comparison between learners and nonlearners. E, F, Time courses of
the two groups in the right dorsal striatum during trials with high PE (E) and negative PE (F ) learners show stronger activity in both
of these trial types than nonlearners.
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Differences between effects of positive and negative
prediction errors
To test for a significant difference between the degree of impair-
ment of nonlearners in generating positive compared with nega-
tive prediction error signals, we modeled positive and negative
prediction errors responses as separate regressors in an additional
analysis and computed an interaction effect between group
(learner vs nonlearner) and error type (positive vs negative) at the
group random effects level. We found no significant interaction
effect even at p 	 0.05 uncorrected anywhere in the striatum, but
confirmed our finding of a significant difference for the main
effect of group in dorsal striatum (pooling over positive and neg-
ative error signals) at p 	 0.001. These results indicate that non-
learners were not differentially impaired at generating positive
compared with negative prediction errors, but rather showed an
impairment at prediction error signaling in general.

Differences in responses to outcome receipt
We also tested for differences between the groups in responses to
receipt of outcomes. No significant differences were found be-
tween the groups for this contrast even at p 	 0.005 uncorrected.
We then tested for differences in activity on gain compared with
loss trials between the groups. Again, no significant differences
were found even at p 	 0.005 uncorrected.

Correlation analysis with learning efficacy
To address whether the results described above are an artifact of
the specific categorization procedure used to assign subjects as
learners and nonlearners, we also conducted a correlation analy-
sis between the degree of learning in each subject as measured by
the number of choices on the two high-probability decks in the
last two blocks and the degree of prediction error activity across
subjects. This analysis revealed an area of dorsal striatum
whereby neural responses to prediction errors were correlated
across subjects with the degree of learning exhibited by those
subjects (Fig. 3A). This result bolsters the above categorical group
analysis by demonstrating that the above results are not depen-
dent on the specific group categorization procedure used. Figure
3B shows the scatter plot of single-subject parameter estimates
versus learning criterion (number of choices on the 60 and 75%
decks in the last 40 trials of the task).

Use of unitary versus separate model-parameter fits for the
two groups
In all of the fMRI results reported above the model parameters
(learning rate, exploration constant) were derived from behav-
ioral fits to the learner group. These parameters were then used to
generate regressors for both learner and nonlearner groups. This
leaves open the possibility that nonlearners show poor correla-
tions with prediction error signals because this group uses differ-
ent model parameters than learners. To address this possibility
we also derived model parameters separately from the nonlearner
group and used these parameters to generate regressors for the
nonlearners. Even in this case, we found the same pattern of
results showing activity in ventral and dorsal striatum in learners,
no observed activity in nonlearners and significant differences
between learners and nonlearners in the same area of dorsal stri-
atum (all at p 	 0.001), suggesting that these effects are robust to
the use of different model parameters in the nonlearner group.

Discussion
Human subjects vary widely in performance on choice and deci-
sion tasks (Stanovich and West, 2000; Stanovich, 2003; Newell,
2005). Here, we used a simple four-armed bandit task in which

subjects are almost evenly split into two groups on the basis of
their performance: those who do learn to favor choice of the
optimal action, and those who do not. To determine the neural
basis of this group difference we scanned both groups with fMRI
while they performed the task and analyzed their neural activity
using a reinforcement learning model. We found that these
groups differ markedly in the degree to which RL signals in the
striatum are engaged. Whereas learners showed robust predic-
tion error signals in both the ventral and dorsal striatum during
learning, nonlearners showed a significantly decreased predic-
tion error signal. Moreover, neural activity in a region of dorsal
striatum (and only there) was significantly more correlated with
PE signals in learners than in nonlearners. Note that these results
are not inconsistent, because they arise from tests asking different
statistical questions. Although the visible difference between the
threshold maps for each group separately might suggest that they
differ throughout both dorsal and ventral striatum, when we for-
mally compare the groups, we can only reject the null hypothesis
of no difference in a more constrained area of dorsal striatum.

These findings suggest that one crucial factor which distin-
guishes those subjects who succeed in learning to choose advan-
tageously on simple decision making tasks from those who do
not, is the degree to which RL signals are engaged. These results
are consistent with reinforcement learning theories of instru-
mental conditioning, whereby a reward prediction error signal is
functionally involved in behaviorally expressed learning. Such
signals are suggested to be carried by the phasic activity of dopa-
mine neurons, which project heavily to both the ventral and dor-
sal striatum (Schultz, 2002). Previous human imaging studies
have reported PE signals throughout the striatum during both
classical and instrumental conditioning (O’Doherty, 2004).
Modulation of dopamine by systemic administration of dopami-

Figure 3. Second-level analysis showing simple regression between the learning criterion
and PE in right dorsal striatum. A, Simple regression analysis shows correlation in right dorsal
striatum between the learning criterion used (number of choices on the two HP decks in the last
40 trials of the task) and PE contrast maps of each subject. B, Scatterplot of the learning criterion
and parameter estimates in the simple regression analysis shown in A.
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nergic agonists and antagonists has also been shown to modulate
PE activity in striatum as well as to alter behavioral performance
(Pessiglione et al., 2006). The present study demonstrates that
even under natural conditions, without the external administra-
tion of drugs, neural PE signals relate to spontaneously occurring
differences in behavioral performance. We also extend these re-
sults, by showing a graded relationship (in addition to a group-
wise difference) between behavioral and neural measures. This
latter finding helps to rule out the possibility that our results are
attributable to our group categorization procedure. Rather these
findings suggest that our results reflect a more continuous rela-
tionship between performance and prediction error signaling.
When taken together with previous findings, these results lend
support to the possibility that error signals in the striatum are
causally related to behavioral performance in reward-related in-
strumental decision-making tasks in humans.

As discussed above, whereas nonlearners showed an absence
of significant prediction error signals in both ventral and dorsal
striatum, we only observed a significant difference in PE activity
between groups in the dorsal striatum. These findings are broadly
consistent with a role for dorsal striatum analogous to the “actor”
in actor/critic models of instrumental conditioning (Joel et al.,
2002; Suri, 2002; O’Doherty, 2004) whereby the dorsal striatum
in particular is involved in implementing reward-based action
selection (O’Doherty et al., 2004; Morris et al., 2006), whereas the
ventral striatum is involved in reward-learning more generally.
Our finding of a significant correlation across both groups be-
tween individual subject performance and the degree of predic-
tion error activity in dorsal striatum indicate that our results are
not merely an artifact of the specific criteria we used to split
subjects into groups of learners and nonlearners, but rather, even
when subjects are not split into arbitrary groups, performance on
the task can be explained by activity in dorsal striatum. A previ-
ous study by Lohrenz et al. (2007) adds additional support to the
claim that dorsal striatum is involved in implementing reward-
based action selection. In that study the authors used a more
complex decision making reward task and found that signals in
dorsal striatum correlated with a novel “fictive error” signal that
strongly predicted subjects’ behavior in subsequent decisions.

Although we have shown that prediction error activity in stri-
atum discriminates learners from nonlearners, the present study
has not addressed why these two groups differ in the degree to
which PE activity is elicited. One mundane possibility is that
subjects in the nonlearner group were simply less motivated to
perform well on the task, and/or failed to attend to the task. Our
findings that the learner and nonlearner groups did not differ
significantly in reaction times during task and/or control ses-
sions, and additionally did not differ in the number of success-
fully completed trials, provides relatively strong evidence against
this interpretation. Had subjects in one group been less moti-
vated or less engaged in the task, then this should have been
reflected by a consistent difference in the amount of time taken to
make a choice on each trial or in the number of missed trials. The
learner and nonlearner groups did not differ in age, years of
education or in the Israeli equivalent of SAT scores. Both groups
had on average 15 years of formal education and were approx. 1.5
SDs above the general Israeli population mean in SAT scores.
Thus, the suboptimal performance on the task by the nonlearners
is unlikely to be attributable to low intellect or education. Fur-
thermore, the groups did not differ on standardized personality
questionnaires suggesting that performance differences appear to
be unrelated to commonly measured personality traits.

Dopaminergic drugs have been shown to have varying effects

across individuals (Cools and Robbins, 2004), presumably re-
flecting differences in underlying dopaminergic function. In a
similar manner our two groups may differ in the degree of en-
dogenous striatal dopamine release or else in the degree of sensi-
tivity of striatal neurons to afferent dopaminergic modulation.
An important future step will be to measure dopamine uptake
using ligand PET measures in these two groups, to determine
whether they do differ in basic dopamine function. Such func-
tional differences could emerge as a result of a genetic polymor-
phism or else as a result of experience-dependent effects. More-
over, it will be useful to determine whether differences in
performance between subjects persist after repeated exposure to
the same or related decision making tasks. If these groups dem-
onstrate stable and consistent differences in performance, this
would suggest that these groups represent distinct subpopula-
tions with differential capacity to generate reward PE signals and,
thus, to learn to choose adaptively on simple choice tasks.

However, a more parsimonious hypothesis is that learners and
nonlearners differ not in dopaminergic physiology, but rather in
their construal of the relevant features of the decision problem, or
in reinforcement-learning terms: their model of the state space
(Daw et al., 2006a). According to this explanation, the reward PE
signal is engaged in the nonlearners, but responds to different and
irrelevant features of the decision problem. This would lead to a
failure to learn the task, and a failure on our part to detect the
signals because we examined their relationship to task-relevant
features. If this hypothesis is true, then subjects in the nonlearner
group would be able to learn the task successfully once given
appropriate instructions as to the relevant stimuli and states in
the task.

To conclude, in the present study we show that prediction
error activity in human striatum correlates with differences in
behavioral performance on a simple choice-based decision mak-
ing task. These findings suggest that the engagement of PE sig-
nals, likely originating from dopaminergic neurons in the mid-
brain, may play a critical role in facilitating appetitive
instrumental learning in humans.
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