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Findings of average differences between females and males in the structure of specific
brain regions are often interpreted as indicating that the typical male brain is different
from the typical female brain. An alternative interpretation is that the brain types typical
of females are also typical of males, and sex differences exist only in the frequency of
rare brain types. Here we contrasted the two hypotheses by analyzing the structure of
2176 human brains using three analytical approaches. An anomaly detection analysis
showed that brains from females are almost as likely to be classified as “normal male
brains,” as brains from males are, and vice versa. Unsupervised clustering algorithms
revealed that common brain “types” are similarly common in females and in males and
that a male and a female are almost as likely to have the same brain “type” as two
females or two males are. Large sex differences were found only in the frequency of
some rare brain “types.” Last, supervised clustering algorithms revealed that the brain
“type(s)” typical of one sex category in one sample could be typical of the other sex
category in another sample. The present findings demonstrate that even when similarity
and difference are defined mathematically, ignoring biological or functional relevance, sex
category (i.e., whether one is female or male), is not a major predictor of the variability
of human brain structure. Rather, the brain types typical of females are also typical of
males, and vice versa, and large sex differences are found only in the prevalence of
some rare brain types. We discuss the implications of these findings to studies of the
structure and function of the human brain.

Keywords: sex differences, gender differences, brain, MRI, female brain, male brain

INTRODUCTION

Findings of average differences between females and males in the structure and function of specific
brain regions as well as evidence from in vitro and in vivo studies that sex can affect the structure
and function of brain cells are often interpreted as indicating that the typical male brain is different
from the typical female brain (e.g., Baron-Cohen, 2002; Ingalhalikar et al., 2014; Larson et al., 2015;
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Ecker et al., 2017; Wierenga et al., 2017). At its extreme,
the interpretation is that brains from females and from males
belong to two distinct categories, just as male and female
genitals are. This interpretation is very common in popular
discussions of sex and the brain (e.g., Sax, 2005; Brizendine,
2006), but can also be found in scientific publications, as in
the following statements: “males and females are biologically
different not only with regards to gonads and secondary
sexual characteristics but also in the structure and, more
importantly, the function of many other organs including
the brain” (Grgurevic and Majdic, 2016, p. 1481), and “sex-
specific differences in dopaminergic, serotonergic, and gamma-
aminobutyric acid (GABA)ergic markers indicate that male
and female brains are neurochemically distinct” (Cosgrove
et al., 2007, p. 847). The less extreme interpretation, which is
more common in scientific publications and which is the one
challenged in the present study, is that although there is overlap
between females and males in brain structure, the typical female
brain differs from the typical male brain. This is evident in
describing average group-level differences between females and
males as if they were characteristics of females and males, or
in assuming that human brains are aligned along a continuum
between a typical male brain and a typical female brain. The
former is evident in statements such as: “During developmental
periods, male brains tend to be structured to facilitate within-
lobe and within-hemisphere connectivity . . . In contrast, female
brains tend to have better interhemispheric connectivity and
better cross-hemispheric participation. . . ” (Tyan et al., 2017,
p. 380). The latter may be seen in the description of the aim of
a recent study: “to examine the probability of autism spectrum
disorder along a normative phenotypic axis ranging from the
characteristic female to male brain phenotype” (Ecker et al., 2017,
p. 330).

In contrast, one of us (Joel, 2011, 2012; Joel et al., 2015;
Joel and Fausto-Sterling, 2016) has claimed that group-level sex
differences in specific brain features do not “add-up” to create
two types of brains, one typical of females and the other typical
of males, but rather that what is typical of both males and females
is a brain comprised of a “mosaic” of features, some in the form
more common in males and some in the form more common in
females. Under this scheme, the brain types typical of females are
also typical of males and vice versa, but there are sex differences
in the frequency of rare brain mosaics. For example, brains
comprised of only features with the form that is more common
in males than in females are rare in the population, but of the
people with such brains, there are more males than females (Joel
and Fausto-Sterling, 2016).

The present study used two analytical approaches, new in this
context, to contrast the two hypotheses – the hypothesis that
the typical female brain is different from the typical male brain
and the hypothesis that the brain types typical or females are
also typical of males, but differences exist in the frequency of
rare brain types. The first analytical approach used an anomaly
detection algorithm to test whether the “types” of brain typical
of females are also typical of males, and vice versa. Anomaly
detection aims to build a model of “normal” items so that it
can detect an “abnormal” item when it appears, without having

a priori knowledge on the characteristics of the “abnormal” item
or on what distinguishes it from the “normal” items. In this sense
it is unsupervised learning. Here, an anomaly detection algorithm
was applied to examples of brains from a single sex category
(say, females) to create a model of brains of this sex category,
and then the model was used to identify for every new brain
(i.e., from females who were not included in the training set and
from males) whether it belongs to this group of brains (“normal”)
or does not (“anomalous”). Next, the exact same analysis was
repeated, but this time using brains from the other sex category
(i.e., males) to create the model. If the brain types typical of
males are also typical of females, similar proportions of females
and males are expected to be labeled as “normal” in the test
stage, regardless of the sex category of the brains used to create
the model. In contrast, if the brain types typical of males differ
from the brain types typical of females, more females than males
are expected to be labeled as “normal” following training on
brains from females, and more males than females are expected
to be labeled as “normal” following training on brains from
males.

Anomaly detection can only answer whether the brain types
typical of one sex category are also typical of the other sex
category, and vice versa. To answer whether there are large
sex differences in the prevalence of rare (i.e., “anomalous”)
brain types we complemented the anomaly detection analysis
with unsupervised clustering. Two algorithms were used to find
clusters that best describe variability in a population of human
brains regardless of sex category. Each algorithm was run nine
times, to create between 2 and 10 clusters, and the proportion
of males and females within each cluster was assessed. Assuming
that each cluster represents a brain “type,” if the brain types
typical of females are also typical of males, similar proportions
of females and males are expected in the large clusters – that is,
in the brain types typical of humans, but different proportions of
females and males are expected in some of the small clusters –
that is, in some of the rare brain types. In contrast, if the brain
types typical of females are different from the brain types typical
of males, some large clusters are also expected to show large sex
differences in the proportion of females and males, with some
clusters being predominantly female, and others predominantly
male.

While a failure to find large sex differences in the proportion
of females and males in the large clusters indicates that sex
category is less important than other variables in determining
brain structure, it does not indicate that brains cannot be
clustered according to sex category. As has been previously
argued (Joel, 2011) and demonstrated (Chekroud et al., 2016;
Del Giudice et al., 2016; Joel et al., 2016; Rosenblatt, 2016),
the existence of group-level sex differences in the structure of
specific brain regions suffices for predicting, with accuracy above
chance, whether a brain’s owner is male or female. In this sense,
brains can be classified as “male” and “female” (Chekroud et al.,
2016; Del Giudice et al., 2016; Rosenblatt, 2016). The question
is whether this classification indeed captures a core difference
between human females and males, or rather is specific to the
subpopulation of humans on which the classification model was
built. With this question in mind, two algorithms of supervised

Frontiers in Human Neuroscience | www.frontiersin.org 2 October 2018 | Volume 12 | Article 399

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00399 October 11, 2018 Time: 19:30 # 3

Joel et al. Sex and Typical Human Brains

clustering were applied to find the two clusters which best
separate brains from females and brains from males in four
subpopulations, each from a different geographical region. We
then tested whether the brains considered typical of males and
females in one subpopulation were also typical of males and
females in other subpopulations.

In all parts of the study, in order to increase the generalizability
of our conclusions we used two datasets of magnetic resonance
images of human brains, analyzed with two methods (volume-
and surface-based analysis), as well as different linear and
non-linear dimensionality reduction transformations of the
information extracted by these methods. In all analyses, the
different methods were applied to all the data available in a dataset
[this is in contrast to Joel et al. (2015) where only regions showing
the largest sex differences were included in the analysis].

We would like to note that all the analytical approaches
applied in the present study treat similarity and difference in a
mathematical sense and not in a biological sense. Thus, it is not
known, and has not been tested in the present study, whether and
in what biological sense (structurally or functionally) a brain is
more similar to other brains that are similarly classified than to
brains from another classification/cluster. In fact, we claim here
(see the section “Discussion”) and elsewhere (e.g., Joel et al., 2016)
that the mosaic nature of the brain makes such classifications
functionally meaningless.

We would also like to note that we do not attempt to
disentangle the effects of sex from the effects of gender – the set
of psychological and environmental variables that correlate with
sex (e.g., socioeconomic status, type of education, and personality
characteristics; Fausto-Sterling, 2000; Fine, 2010; Rippon et al.,
2014; Joel and Fausto-Sterling, 2016; Joel and McCarthy, 2016;
Maney, 2016). In the present study we ignore the probable effects
of gender on observed differences between females and males in
brain structure, as we ask whether these differences, regardless
of their cause (sex, gender, their interactions), “add up” to create
two distinct brain types, one typical of males and the other typical
of females (for a mathematical illustration of this problem, see
Joel and Fausto-Sterling, 2016). We use “sex” and not “gender”
throughout the text, as the measure obtained in the different
datasets and used here for analysis is sex category (female, male)
as marked by participants, and not measures of gender (e.g.,
gender identity and gender role).

MATERIALS AND METHODS

Data Collection and Preparation for
Analysis
Imaging Data
Data were obtained from three sources: Tel-Aviv University
and the 1000 Functional Connectomes Project (Biswal et al.,
2010), which were combined into a single sample named
Connectomes+ (this dataset can be found online1), and the Brain
Genomics Superstruct Project (GSP) Open Access Data Release
(Holmes et al., 2015). For details of the imaging protocols and the

1https://github.com/human-brain/article-code

datasets included from the 1000 Functional Connectomes Project
see Joel et al. (2015).

Volume-Based Analysis
Images were analyzed using MATLAB (MathWorks, Natick, MA,
United States) and SPM8 (Wellcome Department of Cognitive
Neurology, London, United Kingdom2). Gray matter volume was
assessed with the optimized voxel-based morphometry (VBM)
protocol (Good et al., 2001), using the standard segmentation
and registration tools available in the software. Images were
normalized, segmented, modulated, and smoothed with an 8-mm
Gaussian kernel. Voxels were mapped into 116 regions according
to the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002, Supplementary Appendix I), and mean
gray matter volume was calculated for each region for each
participant.

Surface-Based Analysis
The FreeSurfer software package (Athinoula A. Martinos Center
for Biomedical Imaging, Harvard University, Cambridge, MA,
United States3) was used to generate the surface representations
of the cortex and to delineate 68 regions (see Supplementary
Appendix II for the full list of regions). For each participant
we calculated the average cortical thickness (gray–white matter
boundary to pial boundary; Fischl et al., 2004) and total cortical
volume for each of these regions, as well as the volumes
of 77 white matter regions and of 23 subcortical structures
(Supplementary Appendix II). In addition, we calculated the
“corrected” volumes of these 168 regions using the power-
proportion method (Liu et al., 2014). (For review and discussion
of the controversy regarding the “right” way to take individual
differences in total brain volume into account see, for example,
Liu et al., 2014; Pintzka et al., 2015; Snoek et al., 2018).

Additional Datasets
To validate our approach, we also applied the anomaly
detection and the unsupervised clustering algorithms to the
facial morphology of two primate species and to highly gender-
stereotyped behaviors in university students.

Primates’ Faces
The x, y, and z coordinates of 20 landmarks located on the
face of 90 monkeys (31 Cebus apella and 59 Macaca fascicularis)
were kindly provided by Corner and Richtsmeier (1991) and
Richtsmeier et al. (1993a,b). These data were corrected for inter-
species differences in skull size and analyzed to yield 190 distances
between 20 facial landmarks (Del Giudice et al., 2016). These 190
distances were used in all subsequent analyses.

Gender-Stereotyped Behaviors (Carothers and Reis,
2013)
Data were obtained from Harry Reis. The data consisted of
10 highly gender-stereotyped activities (boxing, construction,
playing golf, playing video games, scrapbooking, taking a bath,
talking on the phone, watching porn, watching talk shows,

2http://www.fil.ion.ucl.ac.uk/spm
3http://surfer.nmr.mgh.harvard.edu/fswiki
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cosmetics) of 263 students (106 men, 157 women) from
an introductory-level psychology class at a large Midwestern
American University. These activities were specifically selected
to differentiate between men and women of this specific culture
(all |Cohen’s d| > 1.00, Carothers and Reis, 2013). Applying
taxometric methods to these data yielded “male” and “female”
classes, each containing about 90–93% of the students from the
corresponding sex category (Figure 2d in Carothers and Reis,
2013).

In all datasets, in order not to bias the analysis due to unequal
number of females and males, we randomly selected females so
that the number of females and males would be equal.

Dimensionality Reduction
Due to dependencies, data points in high-dimensional big data
usually reside in a lower dimensional subspace. Here, in addition
to analyzing the data in the original space (following a z-score
transformation), both linear and non-linear dimensionality
reduction methods were applied.

Principal Component Analysis (PCA)
Principal component analysis is a linear dimensionality reduction
method, in which distance between subjects (e.g., brains)
in the low-dimension space represents the distance between
subjects on the most significant principal components of the
original data. The first principal component explains the largest
possible variance (eigenvalue) and each succeeding component
explains the highest variance possible under the constraint
of orthogonality to the preceding components (Jolliffe, 1986;
Hotelling, 1993). The dimension of the low-dimensional space
(i.e., the number of principal components used) is determined
by sorting the eigenvalues and finding the smallest number of
eigenvalues that incorporate most of the variance, according to
some criterion (Halko et al., 2011; Aizenbud et al., 2016). The
cutoff applied here is the common “elbow” (the scree test, Cattell,
1966), the number of components where the cumulative sum of
eigenvalues has unit slope. Although this and other thresholding
methods have been improved by studying asymptotics of the plot
of the sorted principal components (e.g., Cangelosi and Goriely,
2007; Gavish and Donoho, 2014), our data display a clear break
on all occasions, so the choice of hard threshold is not critical.

Diffusion Mapping (DM)
Diffusion mapping is a non-linear dimensionality reduction
method, in which distance between points in the low-dimension
(embedded) space represents the diffusion distances of the
original data (Coifman and Lafon, 2006). DM was performed
as previously described (Salhov et al., 2015), with (a required
parameter) ε set as the third power of the mean value of
the data. To preserve distances in the embedded space, three
approximations of the DM embedding were used: Isometric
DM (µIDM, Salhov et al., 2015) and incomplete pivoted QR
decomposition with (ICPQR) and without the DM kernel
(ICPQRd, Salhov et al., 2015; Bermanis et al., 2016). The first
two were used with ε set as in DM and several values of (another
required parameter) µ (10−8, 10−6, 10−4, and 10−2). ICPQRd
was used with the same values of µ as for µIDM and ICPQR.

Anomaly Detection
Anomaly detection refers to a process that identifies in a given
dataset patterns that do not conform to established or expected
“normal” behavior. In the training step, the average Euclidean
distance between every data point in the training set and its
k nearest neighbors was calculated. In the detection step, the
average Euclidean distance between the new data point and its
k nearest neighbors was calculated, and if it was larger than a
threshold, the data point was classified as “abnormal.” In the
present study, half of the runs were carried out with brains from
females as the training set, and half with brains from males as the
training set. In each run, half of the brains from the training sex
category were used as the training set and the other half of the
brains from this sex category as well as half of the brains from
the other sex category were used as the test set. The algorithm
was applied 72 times for each dataset, with nine k-values (10, 15,
20, . . . , 50) and eight thresholds (40%, 45%, 50%, . . . , 75%; note
that the higher the threshold, the higher the classification of data
points as “normal”) (David, 2009).

Unsupervised Clustering
K-Means
This method partitions the observations into k clusters chosen
so as to minimize the within-cluster sum of squares. Each
observation is assigned to the cluster with the nearest mean
(Lloyd, 1957). The initial clusters were randomly chosen using
the method described in Jongen et al. (2009).

Hierarchical
This method clusters data points on the basis of the local
geometry of the data. It starts with each data point being a
cluster, and in each step merges two clusters into one (whence the
name hierarchical clustering) until a desired number of clusters is
reached (David and Averbuch, 2012). The Ward linkage method
was used to choose the two clusters that should be merged in each
step (Ward, 1963).

Modeling the Dependence of Sex
Disparity on Cluster Size
To test the hypothesis that a disparity in the proportion of
females and males in a cluster depends on cluster size, we took
sex disparity as P = max(q, 1−q), where q is the proportion of
females in the cluster. Assuming that a cluster of size n chooses P
from a distribution with mean p(n) and standard deviation s(n),
the data obtained by the two clustering algorithms were used to
estimate these two functions, as smooth functions of cluster size
(Supplementary Appendix III).

Supervised Clustering
Support Vector Machine (SVM)
Support vector machine training algorithms (Vapnik, 1995) use a
set of training examples, each marked as belonging to one of two
categories (e.g., male and female), to build a model that assigns
new examples into one of the categories. The version applied
here used SVM with linear kernel based on sequential minimal
optimization algorithm (Platt, 1998).
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Random Forests
Random forests (Ho, 1995; Breiman, 2001) is a supervised
learning method for classification that is based on the “divide and
conquer” principle. It avoids overfitting by aggregating multiple
decision trees.

Software
Analyses were performed with Matlab R2017a, using the
toolboxes: “MATLAB” – v9.2, “System Identification Toolbox” –
v9.6, “Statistics and Machine Learning Toolbox” – v11.1, “Curve
Fitting Toolbox” – v3.5.5, “Bioinformatics Toolbox” – v4.8,
“Parallel Computing Toolbox” – 6.10, and “MATLAB Distributed
Computing Server” – v6.10. The code can be found online4.

RESULTS

Anomaly Detection: Are the Brain Type(s)
Typical of Females Also Typical of Males,
and Vice Versa?
We used the gray matter volume of 116 regions defined using
VBM of 466 females and 466 males from Joel et al.’s (2015) study
(Connectomes+). Figure 1A presents the percent of males (out
of males, X-axis) who were classified as “normal” [i.e., correct
classification when the model was built on males (pluses) and
incorrect classification when it was built on females (circles)],
and the percent of females (out of females, Y-axis) who were
classified as “normal,” for each of the 864 runs of the algorithm
[once with brains from females as the training set (circles) and
once with brains from males (pluses) × six data transformation
methods × nine k-values × eight threshold values]. As can be
seen, the percent of females classified as “normal” when the
algorithm was trained on brains from males was very similar
to the percent of males classified as “normal” following such
training, and vice versa (compare the distribution of the pluses
and circles to the y = x black line). In fact, on average, brains from
females were 1.09 more likely to be classified as “normal” than
brains from males were, when training was carried out on brains
from females, and 1.07 more likely to be classified as “normal”
than brains from males were, when training was carried out on
brains from males.

For comparison, all the applications of the anomaly detection
algorithm to the facial morphology dataset detected all the
faces from the species they were not trained on, as anomalous
(Figure 1B). Applying the anomaly detection algorithm to the
gender-stereotyped behaviors dataset revealed that females were
at least 31 more likely to be classified as “normal” than males
were, when training was carried out on females, and males were at
least 22 more likely to be classified as “normal” than females were,
when training was carried out on males (at least, because these are
the mean ratios over the non-zero “normal” cases, Figure 1C).

We next repeated the same analysis on the data of 622 females
and 622 males obtained from the Brain GSP. This dataset was
more homogenous than the first dataset in terms of age (18–
35 years of age compared with 18–79 years), geographical region

4https://github.com/human-brain/article-code

(all participants underwent scanning in Boston, United States,
compared with scanning in Tel-Aviv, Beijing, Cambridge, and
other locations), and imaging parameters (a single imaging
protocol compared with different protocols in different imaging
sites). The results obtained with the GSP dataset were similar
to those obtained with the Connectomes+ dataset in that on
average, brains from females were 1.16 more likely to be classified
as “normal” than brains from males were, when training was
carried out on brains from females, and brains from males were
1.05 more likely to be classified as “normal” than brains from
females were, when training was carried out on brains from males
(Figure 1D).

To test whether the pattern of results obtained in the two
brain imaging datasets was dependent on the type of analysis
of the imaging data (VBM), we performed the same analysis on
a subgroup of the GSP sample (559 females, 559 males), whose
T1-weighted images were preprocessed for cortical surface-based
analysis. Analysis of the cortical thickness of 68 cortical regions
yielded very similar results to those obtained with the VBM
analysis of these data (Figure 1E and Table 1).

Last, we analyzed the “uncorrected” volume (rather than
cortical thickness) of the 68 cortical regions as well as of 23
subcortical gray matter regions and 77 white matter regions
(Figure 1F and Table 1). This analysis yielded a somewhat
different pattern of results, especially when brains from females
were used as the model, with brains from females being on
average 3.05 more likely to be classified as “normal” than brains
from males were. (When training was carried out on brains from
males, brains from males were 1.68 more likely to be classified
as “normal” than brains from females were.) Because previous
studies found that observed sex differences in the brain are
largely attributed to differences in brain size (e.g., Im et al., 2008;
Hänggi et al., 2014; Jäncke et al., 2015; Coupe et al., 2017), we
repeated the same analysis on the volume of the 168 gray and
white matter regions after “correcting” for differences in brain
volume using the power-proportion method (Liu et al., 2014).
This analysis revealed that similar proportions of females and
males were labeled as “normal,” regardless of the sex category
used for training (Figure 1G and Table 1).

Unsupervised Cluster Analysis: Are
There Similar or Different Proportions of
Females and Males in “Typical” and
“Rare” Human Brain “Types”?
Divisions Into Two Clusters
Figure 2A presents the results of applying the hierarchical
(squares) and k-means (rhombuses) clustering algorithms to the
Connectomes+ dataset. The figure presents for each division the
percent of females (out of females) and the percent of males
(out of males) contained in the larger of the two clusters. All
the divisions yielded a large cluster that contained over half
of the females (55–85%) and over half of the males (58–76%),
with the proportions of females and males within each cluster
being very similar (compare the distribution of the squares and
rhombuses to the y = x black line). The division showing the
largest difference (i.e., the most separating division) yielded a
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FIGURE 1 | Continued
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FIGURE 1 | Anomaly detection. (A, C–G) The percent of males (out of males, X-axis) and the percent of females (out of females, Y-axis) that were classified as
“normal,” when the model was built on males (pluses) and when it was built on females (circles) from (A) Connectomes+ VBM data, (C) Carothers and Reis’
behavioral data, (D) GSP VBM data, (E) GSP cortical thickness data, (F) GSP volume data, (G) GSP ICV-“corrected” volume data. (B) The percent of capuchins (out
of capuchins, X-axis) and the percent of macaques (out of macaques, Y-axis) that were classified as “normal,” when the model was built on macaques (circles) and
when it was built on capuchins (pluses). The results from each dimension reduction method are marked with a different color. Across all brain-related datasets
presented in the figure, the number of dimensions that were included in the analysis ranged between 2 and 94, median = 13. DM, diffusion mapping, Euclidean
distances; ICPQR, incomplete pivoted QR decomposition with the kernel of the diffusion map; ICPQRd, incomplete pivoted QR decomposition without the kernel of
the diffusion map; µIDM, isometric diffusion map; PCA, principle component analysis.

cluster containing 66% of the females and 56% of the males.
This means that under the greatest separation between females
and males, the chances for a male and a female to be in the
same cluster were 52%, compared to 55 and 51%, which were
the chances, respectively, that two females or two males would
be in the same cluster (see Table 1 for these chances in the best
separating case and on average, for each clustering algorithm
separately).

For comparison, when cluster analysis was applied to the
primate facial morphology data (Figure 2B), under all divisions,
the chances that a macaque and a capuchin would be in the same
cluster were 0%, compared to a 100% chance that two macaques
or two capuchins would be in the same cluster (Table 1). When
cluster analysis was applied to the gender-stereotyped behaviors
(Figure 2C), the chances that a male and a female would be in
the same cluster under the best separating division were 12%,
compared to 81 and 96%, which were the chances, respectively,

that two females or two males would be in the same cluster
(Table 1).

Cluster analysis of the GSP-VBM and GSP-cortical thickness
datasets yielded similar results to those obtained with the
Connectomes+ dataset, in that the proportions of females and
males within a single cluster were quite similar regardless
of the clustering algorithm being used or the type of data
transformation (Figures 2D,E). As a result, the chances that a
female and a male would be in the same cluster were similar to
the chances that two females or two males would be in the same
cluster (Table 1). However, in contrast to the Connectomes+
dataset in which in all divisions the larger cluster contained most
of the females and most of the males, this was true for only
some of the divisions of the GSP datasets (all of which were
created by the hierarchical algorithm). In the remaining divisions,
one cluster contained most of the females and the other cluster
contained most of the males.

TABLE 1 | Details of datasets and summary of main findings

Number of
characteristics and
subjects

Anomaly detection Unsupervised clustering
K-means

Unsupervised clustering
hierarchical

Primate faces 190
Capuchin, 31
Macaque, 31

∗ C&Mc: 0.00 (0.00)
C&C: 1.00 (1.00)
Mc&Mc: 1.00 (1.00)

C&Mc: 0.00 (0.00)
C&C: 1.00 (1.00)
Mc&Mc: 1.00 (1.00)

Gendered behaviors 10
Female, 101
Male, 101

“Male” model: 22∗∗

“Female” model: 31∗∗
F&M: 0.12 (0.14)
F&F: 0.81 (0.77)
M&M: 0.96 (0.98)

F&M: 0.08 (0.13)
F&F: 0.86 (0.82)
M&M: 0.98 (0.95)

Connectomes+ VBM 116
Female, 466
Male, 466

“Male” model: 0.93
“Female” model: 1.09

F&M: 0.52 (0.52)
F&F: 0.55 (0.55)
M&M: 0.51 (0.51)

F&M: 0.68 (0.59)
F&F: 0.74 (0.62)
M&M: 0.64 (0.58)

GSP VBM 116
Female, 622
Male, 622

“Male” model: 1.05
“Female” model: 1.16

F&M: 0.49 (0.49)
F&F: 0.54 (0.53)
M&M: 0.50 (0.50)

F&M: 0.48 (0.55)
F&F: 0.53 (0.56)
M&M: 0.51 (0.59)

GSP, SBA, cortical thickness 68
Female, 559
Male, 559

“Male” model: 1.05
“Female” model: 1.06

F&M: 0.50 (0.50)
F&F: 0.50 (0.50)
M&M: 51 (51)

F&M: 0.61 (0.55)
F&F: 0.67 (0.57)
M&M: 0.57 (0.55)

GSP, SBA, volume 168
Female, 559
Male, 559

“Male” model: 1.68
“Female” model: 3.05

F&M: 0.35 (0.35)
F&F: 0.71 (0.71)
M&M: 0.61 (0.61)

F&M: 0.37 (0.42)
F&F: 0.73 (0.72)
M&M: 0.56 (0.64)

GSP, SBA, volume, split by brain size 168
Female, 559
Male, 559

S&L: 0.19 (0.19)
S&S: 0.89 (0.89)
L&L: 0.75 (0.75)

S&L: 0.26 (0.34)
S&S: 0.94 (0.82)
L&L: 0.63 (0.71)

GSP, SBA, “corrected” volume 168
Female, 559
Male, 559

“Male” model: 1.23
“Female” model: 0.96

F&M: 0.51 (0.51)
F&F: 0.51 (0.51)
M&M: 0.53 (0.53)

F&M: 0.60 (0.62)
F&F: 0.56 (0.59)
M&M: 0.67 (0.67)

Anomaly detection: The mean ratio of the classification rate as “normal” for the group on which the model was built and for the other group. Unsupervised clustering:
Chances to be in the same cluster, in the best separating case and on average (in brackets). ∗Was not calculated because the classification rate as “normal” for the other
species was always zero. ∗∗Mean over the non-zero “normal” cases. C, capuchin; F, female; L, large; M, male; Mc, macaque; S, small.
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FIGURE 2 | Unsupervised clustering: dividing into two clusters. (A, C–F, H) The percent of females (out of females, X-axis) and the percent of males (out of males,
Y-axis) that were included in the larger clusters in each of the divisions into two clusters by the hierarchical (squares) and k-means (rhombuses) clustering algorithms
of (A) Connectomes+ VBM data, (C) Carothers and Reis’ behavioral data, (D) GSP VBM data, (E) GSP cortical thickness data, (F) GSP volume data, (H) GSP
ICV-“corrected” volume data. (B) The percent of macaques (out of macaques, X-axis) and the percent of capuchins (out of capuchins, Y-axis) that were included in
one of the clusters in each of the seven divisions into two clusters by the hierarchical (squares) and k-means (rhombuses) clustering algorithms. (G) The percent of
small brains (out of small brains, X-axis) and the percent of large brains (out of large brains, Y-axis) that were included in the larger cluster in each of the divisions into
two clusters by the hierarchical (squares) and k-means (rhombuses) clustering algorithms. DM, diffusion mapping, Euclidean distances; ICPQR, incomplete pivoted
QR decomposition with the kernel of the diffusion map; ICPQRd, incomplete pivoted QR decomposition without the kernel of the diffusion map; µIDM, isometric
diffusion map; PCA, principle component analysis.
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FIGURE 3 | Unsupervised clustering: dividing into 2–10 clusters. (A–F) The sex disparity (i.e., the largest of the proportion of females and the proportion of males in
a cluster, Y-axis) as a function of cluster’s size (X-axis) of every cluster, following divisions into 2–10 clusters (the number of clusters is marked with different colors) of
the (A) Connectomes+ VBM data, (B) Carothers and Reis’ behavioral data, (C) GSP VBM data, (D) GSP cortical thickness data, (E) GSP volume data, and (F) GSP
ICV-“corrected” volume data.
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FIGURE 4 | Unsupervised clustering: dividing into 2–10 clusters. (A–F) The estimated sex disparity (P, Y-axis) as a function of cluster size (X-axis), following division
into 2–10 clusters of the (A) Connectomes+ VBM data, (B) Carothers and Reis’ behavioral data, (C) GSP VBM data, (D) GSP cortical thickness data, (E) GSP
volume data, (F) GSP ICV-“corrected” volume data. The solid curve presents the mean P, and the two dashed curves present mean P ±1 standard deviation.

A different pattern of results was obtained when we analyzed
the “uncorrected” volume of 168 gray and white matter regions.
All the divisions yielded a large cluster containing most (82–93%)
of the subjects of one sex category and a medium to large minority
(26–50%) of the subjects from the other sex category (Figure 2F
and Table 1). Under the best separating division, the chances for
a male and a female to be in the same cluster were 35%, compared
to 71 and 61%, which were the chances, respectively, that two
females or two males would be in the same cluster. Yet, repeating
the same analysis on the “corrected” volumes revealed that all
the divisions yielded a large cluster that contained over half of
the females (51–84%) and over half of the males (62–92%), with
very similar proportions of females and males in each cluster
(Figure 2G and Table 1). This latter result suggests that, when
applied to “uncorrected” volumes, the algorithms were dividing
brains into large and small rather than into male and female.
To further test this possibility, we assessed the composition of
the clusters obtained when the “uncorrected” data were used, in
terms of large versus small brains [defined, respectively, as above

and below the median of the intracranial volume (ICV); with this
definition, 83% of the females had a small brain and 83% of the
males had a large brain]. Indeed, this analysis revealed that the
large cluster contained 94–100% of the small (or large) brains and
between 15 and 42% of the large (or small) brains (Figure 2H and
Table 1).

Divisions Into 2–10 Clusters
Figure 3A presents sex disparity (i.e., the larger of the proportion
of males and the proportion of females, Y-axis) in a cluster,
as a function of the cluster’s size (X-axis), following divisions
of the Connectomes+ VBM dataset into 2–10 clusters (clusters
obtained following division into the same number of clusters
are painted in the same color; note that the figure depicts all
the clusters that were created by the two clustering algorithms
following the different dimension reduction methods). As can
be seen, the variability in sex disparity in the very small clusters
(less than 100 brains) was very high, with no sex differences
(i.e., sex disparity close to 0.5) in some clusters and very large
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sex differences (up to approximately six times more brains
from one sex category) in other clusters. The variability in sex
disparity dropped dramatically as the cluster size increased, with
very similar proportions of females and males in clusters with
more than 300 brains (the dataset included 936 brains). We
next applied a mathematical model to identify the mean and
standard deviation of sex disparity (P) as a function of cluster
size (Figure 4A). As can be seen, the mean and variability of
P dropped quickly with increasing cluster size, and stabilized
around 0.52 with very little variability (the central curve presents
the mean P, and the other two curves present mean P±1 standard
deviation). For comparison, a similar analysis of the gendered

behaviors revealed that most clusters, irrespective of size, showed
a large difference in the proportion of females and males in the
cluster, with P around 0.9 (Figures 3B, 4B).

Last, we calculated for every division the chances that a female
and a male would be in the same cluster and the chances that two
males or two females would be in the same cluster. As was the case
with divisions into two clusters, these chances were very similar
also following divisions into 3–10 clusters (Table 2).

Analysis of the GSP-VBM and GSP-cortical thickness datasets
revealed results very similar to those obtained with the
Connectomes+ dataset, with P stabilizing around 0.56 and 0.53,
respectively (Figures 3C,D, 4C,D), and very similar chances

TABLE 2 | Mean (SD) chances to be in the same cluster, for 3–6 and 7–10 divisions.

Mean (SD) chances to be in the same cluster, for 3–6 divisions

Number of clusters: 3 4 5 6

K H K H K H K H

Connectomes+ VBM F&M 0.36 (0.003) 0.38 (0.042) 0.27 (0.002) 0.27 (0.020) 0.22 (0.014) 0.24 (0.015) 0.18 (0.012) 0.20 (0.018)

F&F 0.38 (0.005) 0.40 (0.047) 0.28 (0.007) 0.28 (0.022) 0.23 (0.016) 0.26 (0.016) 0.20 (0.018) 0.22 (0.019)

M&M 0.35 (0.002) 0.37 (0.037) 0.26 (0.002) 0.27 (0.019) 0.21 (0.009) 0.24 (0.014) 0.18 (0.006) 0.20 (0.016)

GSP VBM F&M 0.34 (0.014) 0.37 (0.047) 0.25 (0.002) 0.28 (0.025) 0.21 (0.009) 0.24 (0.028) 0.17 (0.002) 0.20 (0.013)

F&F 0.36 (0.026) 0.40 (0.053) 0.27 (0.002) 0.31 (0.026) 0.22 (0.003) 0.25 (0.033) 0.19 (0.001) 0.21 (0.017)

M&M 0.36 (0.002) 0.38 (0.048) 0.26 (0.002) 0.29 (0.026) 0.22 (0.012) 0.24 (0.032) 0.18 (0.002) 0.20 (0.015)

GSP, SBA, cortical thickness F&M 0.37 (0.003) 0.39 (0.027) 0.28 (0.018) 0.32 (0.040) 0.23 (0.009) 0.24 (0.014) 0.18 (0.017) 0.20 (0.017)

F&F 0.37 (0.001) 0.39 (0.038) 0.29 (0.009) 0.32 (0.053) 0.23 (0.002) 0.24 (0.009) 0.19 (0.008) 0.21 (0.013)

M&M 0.37 (0.005) 0.40 (0.022) 0.29 (0.015) 0.33 (0.035) 0.23 (0.011) 0.24 (0.024) 0.20 (0.013) 0.21 (0.018)

GSP, SBA, volume F&M 0.24 (0.002) 0.27 (0.059) 0.18 (0.003) 0.19 (0.026) 0.14 (0.002) 0.16 (0.010) 0.12 (0.012) 0.15 (0.011)

F&F 0.48 (0.004) 0.46 (0.035) 0.36 (0.002) 0.42 (0.032) 0.31 (0.005) 0.34 (0.038) 0.26 (0.005) 0.30 (0.023)

M&M 0.42 (0.001) 0.47 (0.032) 0.33 (0.002) 0.33 (0.042) 0.28 (0.003) 0.29 (0.027) 0.24 (0.008) 0.25 (0.029)

GSP, SBA, “corrected” volume F&M 0.38 (0.032) 0.40 (0.045) 0.27 (0.003) 0.31 (0.029) 0.22 (0.011) 0.24 (0.013) 0.19 (0.008) 0.21 (0.022)

F&F 0.36 (0.021) 0.38 (0.034) 0.26 (0.003) 0.30 (0.025) 0.22 (0.009) 0.23 (0.013) 0.18 (0.006) 0.21 (0.020)

M&M 0.41 (0.048) 0.43 (0.059) 0.30 (0.007) 0.34 (0.033) 0.24 (0.014) 0.27 (0.018) 0.20 (0.010) 0.23 (0.027)

Mean (SD) chances to be in the same cluster, for 7–10 divisions

Number of clusters: 7 8 9 10

K H K H K H K H

Connectomes+ VBM F&M 0.17 (0.010) 0.17 (0.019) 0.15 (0.005) 0.16 (0.020) 0.13 (0.007) 0.14 (0.011) 0.11 (0.007) 0.13 (0.013)

F&F 0.18 (0.019) 0.19 (0.019) 0.16 (0.006) 0.18 (0.021) 0.14 (0.007) 0.15 (0.010) 0.13 (0.007) 0.15 (0.011)

M&M 0.17 (0.019) 0.17 (0.019) 0.14 (0.003) 0.16 (0.020) 0.13 (0.009) 0.13 (0.009) 0.11 (0.004) 0.13 (0.011)

GSP VBM F&M 0.15 (0.004) 0.17 (0.013) 0.13 (0.007) 0.15 (0.014) 0.12 (0.008) 0.11 (0.008) 0.11 (0.006) 0.12 (0.013)

F&F 0.17 (0.005) 0.19 (0.011) 0.14 (0.008) 0.16 (0.012) 0.13 (0.006) 0.12 (0.011) 0.12 (0.006) 0.13 (0.016)

M&M 0.16 (0.004) 0.18 (0.015) 0.14 (0.007) 0.16 (0.018) 0.13 (0.008) 0.11 (0.006) 0.11 (0.007) 0.12 (0.012)

GSP, SBA, cortical thickness F&M 0.16 (0.016) 0.18 (0.018) 0.14 (0.019) 0.16 (0.027) 0.12 (0.014) 0.14 (0.020) 0.11 (0.015) 0.12 (0.013)

F&F 0.17 (0.003) 0.19 (0.011) 0.15 (0.010) 0.17 (0.018) 0.13 (0.007) 0.15 (0.012) 0.12 (0.008) 0.13 (0.010)

M&M 0.18 (0.009) 0.19 (0.018) 0.15 (0.012) 0.17 (0.028) 0.14 (0.008) 0.15 (0.020) 0.12 (0.012) 0.13 (0.010)

GSP, SBA, volume F&M 0.10 (0.007) 0.11 (0.012) 0.09 (0.004) 0.09 (0.007) 0.08 (0.007) 0.09 (0.007) 0.07 (0.004) 0.08 (0.009)

F&F 0.22 (0.002) 0.24 (0.019) 0.20 (0.013) 0.21 (0.028) 0.19 (0.015) 0.20 (0.021) 0.16 (0.003) 0.17 (0.008)

M&M 0.21 (0.005) 0.21 (0.020) 0.18 (0.015) 0.18 (0.010) 0.15 (0.014) 0.16 (0.013) 0.14 (0.009) 0.16 (0.017)

GSP, SBA, “corrected” volume F&M 0.16 (0.007) 0.18 (0.015) 0.14 (0.005) 0.15 (0.017) 0.12 (0.004) 0.14 (0.013) 0.11 (0.004) 0.12 (0.004)

F&F 0.15 (0.006) 0.17 (0.010) 0.13 (0.003) 0.15 (0.012) 0.12 (0.004) 0.13 (0.012) 0.11 (0.004) 0.12 (0.003)

M&M 0.17 (0.011) 0.20 (0.020) 0.15 (0.008) 0.17 (0.022) 0.13 (0.005) 0.15 (0.015) 0.12 (0.005) 0.14 (0.006)

F, female; H, hierarchical; K, k-means; M, male.
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FIGURE 5 | Supervised clustering. (A) The distribution of brains from females (circles) and from males (triangles) from the GSP (blue) and Beijing (green) datasets
following z-score transformation of the combined GSP and Beijing datasets (B) and when each dataset was transferred to z-scores prior to transferring the
combined dataset into z-scores. (C–F) The percent of females (out of females, X-axis) and the percent of males (out of males, Y-axis) that were correctly classified
as female or male, respectively, by a model created by SVM (C,D) or random forests (E,F) on the GSP VBM data, when the model was tested on the entire test
dataset (C,E) or only on participants aged 18–35 years (D,F). The classification rates for the GSP data (blue dots) were calculated using 10-folds cross-validation.
The classification rates for Tel-Aviv, Cambridge, and Beijing are marked in green, purple, and red, respectively. The z-scores transformation is marked with a plus.

that a female and a male would be in the same cluster and
that two males or two females would be in the same cluster
(Table 2). In contrast, analysis of the GSP “uncorrected” volumes

revealed a different pattern of results: Large sex differences
existed regardless of cluster size, as reflected in mean P around
0.70 and large variability of P (Figures 3E, 4E), and the chances
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that a female and a male would be in the same cluster were about
half the chances that two males or two females would be in the
same cluster (Table 2). As with the other analyses, analysis of
the same dataset following “correction” for brain size revealed
a pattern of results very similar to the one obtained with the
VBM and cortical thickness datasets, with P stabilizing around
0.52 (Figures 3F, 4F) and very similar chances that a female and
a male would be in the same cluster and that two males or two
females would be in the same cluster (Table 2).

Supervised Clustering: Are the Brain
Types Typical of Females and Males in
One Subpopulation Also Typical of
Females and Males in Other
Subpopulations?
For this analysis we used the VBM data of four subpopulations,
each from a different geographical region – Boston (the GSP
dataset), Tel-Aviv, Cambridge, and Beijing. As has previously
been reported (e.g., Lee et al., 2005; Tang et al., 2010), there were
differences between the four datasets in their spread over space
(e.g., Figure 5A). Therefore, each dataset was first transformed
to z-scores, to assure that all samples share the same center and
spread (compare, e.g., Figures 5A,B). SVM was then applied to
the GSP-VBM dataset, which was the largest among the VBM
datasets from a single geographical region. Applying 10-folds
cross-validation to the six transformations of the GSP-VBM
dataset (blue dots in Figure 5C), the classification rates varied
between 72 and 82% (average = 76.5%) for males (Y-axis),
and between 72 and 80% (average = 76.6%) for females (X-
axis), depending on the data transformation method (the plus
marks the z-score transformation). Under the best separation, the
chances for a male and a female to be in the same cluster were
32%, compared with 68 and 68% for two females and two males,
respectively.

We next tested whether the model created to best separate
between brains from females and males in the GSP-VBM dataset
similarly separates brains from females and males in datasets
obtained in Tel-Aviv (red), Cambridge (purple), and Beijing
(green). For each test dataset, following dimension reduction on
the combined GSP and test dataset, a model was built on the
GSP data, and then the classification rate for the test dataset
was calculated using this model, both for the entire test dataset
(Figure 5C) and for a subset of individuals in the same age
range as in the GSP-VBM dataset (18–35 years old, Figure 5D).
Whereas accuracy rates for the Cambridge sample were similar
to those for the GSP sample, they were lower for the Beijing and
Tel-Aviv samples.

Last, we applied SVM (using 10-folds cross-validation) to
each of the Cambridge, Beijing, and Tel-Aviv samples, and
compared the classification of each brain using these models, to
the classification according to the model created using the GSP
dataset. We found that the percent of brains that were similarly
classified by the GSP model and by a model created on the
test sample was often not statistically different from the percent
expected if the two models were not related, but very different

from the percent expected if the “male” and “female” clusters
created by the two models were completely overlapping (Table 3).

Repeating these analyses using another supervised clustering
algorithm, random forests, yielded a similar pattern of results:
Classification rates of between 65 and 70% (average = 68%) for
males, and between 67 and 73% (average = 71%) for females
from the GSP dataset (Figure 5E); applying the GSP model to
the test samples yielded higher accuracy rates for the Cambridge
sample, but lower rates for the Tel-Aviv and Beijing samples
(Figures 5E,F); and comparing the classification by the GSP
model to the classification of a model created on each test dataset
revealed that the percent of brains that were similarly classified
by the two models was often not statistically different from the
percent expected if the two models were not related, but very
different from the percent expected if the “male” and “female”
clusters created by the two models were completely overlapping
(Table 3).

DISCUSSION

The results of the various approaches applied in the present study
are at variance with the belief that the effects of sex on brain
structure “add up” to create two types of brain, one typical of
females and the other typical of males. Rather, they support the
claim that the types of brain typical of females are also typical
of males, and that large sex differences exist in the prevalence of
some rare brain types (Joel, 2011, 2012; Joel et al., 2015; Joel and
Fausto-Sterling, 2016).

Specifically, the anomaly detection analysis revealed that
regardless of sample, type of analysis of the MR images (volume-
and surface-based), type of data (“corrected” volume of gray
matter regions extracted by VBM, “corrected” volume of gray
and white matter regions, and “uncorrected” cortical thickness
extracted by FreeSurfer), and type of dimension reduction, the
forms of brain typical of females were also typical of males, and
vice versa. In contrast, when the “uncorrected” volume of gray
and white matter regions was considered, the anomaly detection
algorithm could better differentiate between brains from females
and brains from males. Note, however, that this better detection
rate (1.68 and 3.05, compared to <1.25 for the other datasets) was
still much lower than that obtained for the gender-stereotyped
behaviors (>22). In addition, this better separation was attributed
to the difference between females and males in total brain volume.

Applying unsupervised clustering algorithms to divide brains
into two clusters revealed that regardless of sample, type of
analysis of the MR images (except for the “uncorrected” volumes,
see below), type of data, type of dimension reduction, and
clustering algorithm, the proportions of males and females in
the large cluster were similar (even when clusters were of
comparable size). Whether the brain “type” most common in
females was also the brain “type” most common in males,
depended, however, on the sample and clustering algorithm. In
two datasets (Connectomes+ and GSP “corrected” volume), this
description was preferred by the two algorithms, whereas in the
remaining two datasets (GSP-VBM and GSP-cortical thickness),
this description was almost always preferred by the hierarchical
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TABLE 3 | Comparing models created by the supervised clustering algorithms on different samples (ages 18–35 years only).

SVM

Tel Aviv Beijing Cambridge

Self GSP U P A Self GSP U P A Self GSP U P A

z-scores 53 71 51 82 47ns,2 73 75 61 98 71ns,2 66 86 62 80 74ns,ns

PCA 59 72 54 86 59ns,2 74 69 59 95 751,2 79 73 63 93 771,2

DM 72 69 59 98 67ns,2 64 75 57 89 69ns,2 70 78 61 92 762,2

µIDM 73 70 60 97 69ns,2 66 75 58 91 69ns,2 73 78 63 95 782,2

ICPQR 74 64 57 90 64ns,2 63 59 53 96 661,2 77 74 63 97 832,2

ICPQR 54 62 51 93 51ns,2 70 61 54 91 62ns,2 78 71 62 93 761,2

Random forests

Tel Aviv Beijing Cambridge

Self GSP U P A Self GSP U P A Self GSP U P A

z-scores 78 63 58 85 65ns,2 64 67 55 97 792,2 72 81 63 91 832,ns

PCA 70 58 54 88 58ns,2 66 64 55 98 69ns,2 73 77 63 96 76ns,2

DM 70 65 56 92 55ns,2 58 69 53 89 62ns,2 64 81 58 82 69ns,ns

µIDM 72 56 53 84 53ns,2 60 66 53 94 59ns,2 70 73 59 97 70ns,2

ICPQR 70 60 53 86 61ns,2 56 61 51 95 641,2 65 74 57 91 761,1

ICPQR 69 62 54 85 58ns,2 69 65 56 94 66ns,2 71 75 60 96 72ns,2

Self, the percent of brains from the test sample that were correctly classified by a model created on the test sample (applying 10-folds cross-validation); GSP, the percent
of brains from the test sample that were correctly classified by a model created on the GSP sample; U, the percent of brains expected to be similarly classified by the
GSP and Self models if they were unrelated; P, the percent of brains expected to be similarly classified by the GSP and Self models if they were perfectly overlapping; A,
the actual percent of brains similarly classified by the GSP and Self models; the uppercase text marks whether this percentage was significantly different from the percent
expected if the models were unrelated and perfectly overlapping, respectively. ns, not significant; 1, p < 0.0014 (alpha following the Dunn–Šidák correction for multiple
comparisons); 2, p < 0.0001; PCA, principle component analysis; DM, diffusion mapping, Euclidean distances; µIDM, isometric diffusion map; ICPQR, incomplete pivoted
QR decomposition with the kernel of the diffusion map; ICPQRd, incomplete pivoted QR decomposition without the kernel of the diffusion map.

algorithm, but not by the k-means algorithm. Yet, even in cases
where the majority of females were in one cluster and the majority
of males in the other, the proportions of males and females in each
cluster were similar, so that in all cases a female and a male were
almost as likely to have the same brain type (i.e., be in the same
cluster) as two females or two males. This was also true when
brains were separated into a larger number of clusters (3–10).
This latter analysis further revealed that large sex differences in
the proportion of females and males in a cluster might exist, but
only in small clusters (typically of size less than 150 brains). This
result supports Joel’s hypothesis that whereas the forms of brain
typical of females are also typical of males and vice versa, there
are sex differences in the prevalence of some rare brain types.

Only when unsupervised clustering was applied to the
“uncorrected” volume of gray and white matter regions, brains
from females and males were more separated, with the chance
that two males or two females would be in the same cluster being
about twice the chance that a female and a male would be in
the same cluster. It is noteworthy that this ratio, while higher
than that obtained when unsupervised clustering algorithms were
applied to “uncorrected” cortical thickness or to “corrected”
volume of gray and white matter regions (∼1.1), is much lower
than the ratio obtained by these algorithms when applied to the
gender-stereotyped behavior (>6). Moreover, as was the case for
the anomaly detection analysis, the better separation achieved for
the “uncorrected” volume of gray and white matter regions was

attributed to the differences between females and males in total
brain volume.

The present finding that the main morphological difference
between brains from females and from males is in total brain
volume is in line with previous reports that most sex differences
in the morphology of specific brain structures disappear or
become trivial when total brain volume is factored out (e.g.,
Im et al., 2008; Hänggi et al., 2014; Jäncke et al., 2015; Coupe
et al., 2017). We leave the question of whether brain volume is
directly controlled by sex-specific influences or is a by-product
of sex differences in body size, to others. Yet, what our study
shows is that human females and males are highly similar in brain
architecture, that is, in the relations between the size of different
brain structures, with brain architectures common in one sex also
common in the other, and large sex differences existing only in the
frequency of some rare brain architectures.

As expected, a supervised clustering algorithm achieved better
separation between brains from females and brains from males
than the unsupervised algorithms. Thus, applying SVM to the
“corrected” volume of gray matter regions, the best separation
achieved for the GSP-VBM dataset was 80.4% of the males in one
cluster and 78% of the females in the other cluster (compared to
57 and 62%, respectively, which was the best separation achieved
for this dataset with an unsupervised clustering algorithm). With
this classification rate, which is similar to those obtained by
others for similar datasets (Chekroud et al., 2016; Del Giudice

Frontiers in Human Neuroscience | www.frontiersin.org 14 October 2018 | Volume 12 | Article 399

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00399 October 11, 2018 Time: 19:30 # 15

Joel et al. Sex and Typical Human Brains

FIGURE 6 | (A) A bivariate scattergram of the number of features at the “female-end” (X-axis) and at the “male-end” (Y-axis) in females (red) and males (green) in
Carothers and Reis’ gender-stereotyped behavioral dataset. Using the actual distributions of males and females in the sample, a “male-end” and a “female-end”
zones were arbitrarily defined as the scores of the 33% most extreme males and females, respectively, and an “intermediate” zone was defined as the area
in-between these two (adapted from Joel et al., 2015). (B) Same as A, but for the 10 facial morphology features showing the largest differences between the two
primate species. (C) An illustration of the gender mosaic in four hypothetical participants. Scores on the 10 gender stereotyped behaviors are represented using a
pink–white–blue (“female-end”–“intermediate”–“male-end”) color code. Each horizontal line represents a single participant and each column represents a single
behavior.

et al., 2016; Rosenblatt, 2016), the chances that two males or two
females would be in the same cluster (68%) were about twice
the chances that a female and a male would be in the same
cluster (32%) – higher than that obtained when unsupervised
clustering algorithms were applied to this dataset, but much
lower than the ratio obtained by these unsupervised algorithms
when applied to gender-stereotyped behaviors. Moreover, the
classification rates obtained by the supervised algorithm were
lower when the models created on the GSP-VBM dataset were
tested on some of the other datasets, and, most importantly, the
“male” and “female” clusters of the GSP models often did not
match the “male” and “female” clusters of models created on the
test dataset. In other words, even after “correcting” for inter-
sample differences in gross measures of the brain, there were
inter-sample differences in the spread of brains from females
and from males, so that brain types that were considered typical
of one sex category in one sample were sometimes considered
typical of the other sex category in another sample. Although
the present study cannot reveal the cause of these inter-sample
differences, their existence does not support a universal division
into a female-typical and a male-typical brain structure.

The present conclusion that the brain types typical of females
are also typical of males, and vice versa, is restricted to the
specific analytical approaches that were used in the present
study. Clearly, it is possible that different results would be
obtained using other approaches or other brain-related datasets.
We would like to stress, however, that in our view, the finding
that most human brains are comprised of unique mosaics of
features, some more common in females, some more common

in males, and some similarly common in females and males, is
sufficient for concluding that human brains do not belong to
two types, and it is not necessary to further demonstrate that
there is no mathematical sense in which brains from females
and from males are separable. This point can be made clear by
contrasting the primate facial morphology data with the gender-
stereotyped behavior data, which are both separable into two
(more or less) distinct types using mathematical tools, but show
opposite patterns of mosaicism. Thus, whereas the number of
participants with a mosaic of gender-stereotyped behaviors is
much higher than the number of participants who show internal
consistency in their gender characteristics [i.e., they have either
only “female-end” (i.e., more common in females compared
to males) or only “male-end” (i.e., more common in males
compared to females) characteristics, Figure 6A], the reverse
is true for the primate facial morphology data (Figure 6B, see
also Del Giudice et al., 2016). We suggest that the interpretation
of these results should be that the primate facial morphology
data come from two distinct populations (as is indeed the case)
whereas the human gender-stereotyped behaviors do not, because
the high degree of mosaicism makes the division of humans into
two clusters functionally meaningless, even though it is possible
mathematically. Consider, for example, a division of humans into
two clusters or types on the basis of the number of “female-end”
and “male-end” characteristics – one type, characterized by more
“male-end” than “female-end” characteristics, would contain 99%
of the males and 14% of the females in Carothers and Reis’
sample, whereas the other type, characterized by more (or the
same) number of “female-end” than “male-end” characteristics,
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would contain 86% of the females and 1% of the males. Thus,
a person’s sex category can be used to quite accurately predict
whether s/he will have more “female-end” or more “male-end”
characteristics. However, one’s sex category does not provide
information on the number of “female-end” and “male-end”
characteristics nor on which characteristics are “female-end” and
which are “male-end.” Yet, it is this latter type of information that
defines a person’s character or behavior. Consider for example
two hypothetical participants, Participant 1 and Participant 2,
whose gender mosaic is presented in Figure 6C. Both have
four “male-end” characteristics (in blue) and three “female-
end” characteristics (in pink), and thus belong to the same type
of humans. However, in terms of the actual composition of
their gender characteristics, they are almost as different as two
participants can be. In contrast, Participant 1 is very similar to
Participant 3, and Participant 2 is very similar to Participant 4,
even though Participants 3 and 4, which have three “male-end”
and four “female-end” characteristics, belong to the second type
of humans.

Last, we would like to stress that the present demonstration
that brain architectures common in females are also common in
males and that large sex differences exist only in the frequency
of some rare brain architectures, cannot be directly linked
to similarities and differences between males and females in
behavior or in susceptibility to pathology. This is because,
as discussed above, the present analytical methods may have
grouped together brains that differ widely morphologically, and
because brain morphology cannot directly be linked to normal
and abnormal behavior (De Vries, 2004; de Vries and Södersten,
2009).

CONCLUSION

We have recently discovered that most human brains are
composed of unique mosaics of features, and concluded that
human brains do not belong to two distinct types, “male”
and “female,” and that one’s sex category provides very little
information about the specific composition of one’s unique brain
mosaic (Joel et al., 2015). The present study supports these
conclusions by showing that even when biological relevance is
ignored, the structure of human brains does not fit into two
distinct types of brain, one typical of males and the other typical
of females. Moreover, although it is possible to use one’s brain
architecture to predict whether this person is female or male
with accuracy of ∼80%, one’s sex category provides very little
information on the likelihood that one’s brain architecture is
similar to or different from someone else’s brain architecture. This
is because the brain types typical of females are also typical of
males, and large sex differences are found only in the prevalence
of some rare brain types.

It follows that whereas both female and male participants
should be used in every study of the structure and function of
the human brain to better represent the entire variability of our
species, the use of sex category as a variable in analyzing the
results of such studies should not be the default. This is because in
studies of the typical human brain (as opposed to studies of rare

conditions, such as autism, schizophrenia, etc.) using sex category
as a variable would not control for sex category-related variability
but rather lead to the detection of chance differences between
the groups of females and males in the study (Joel, 2011; Joel
and Fausto-Sterling, 2016; Joel and McCarthy, 2016). Evidence
supporting this claim has been published recently (David et al.,
2018).

On the basis of the present and our previous study (Joel
et al., 2015), we suggest that detection of differences between
females and males in a given system (e.g., the brain, the immune
system) should not be unconditionally interpreted as indicating
that there is one form of the system which is typical of males,
and another, typical of females. Nor should such a conclusion be
based on the ability to mathematically divide the data into two
clusters, one including mostly females and the other including
mostly males. Rather, to conclude that a system comes in two
forms, one typical of females and the other typical of males, one
needs to demonstrate that internal consistency is much more
prevalent than mosaicism (Joel et al., 2015, 2016). Regarding the
brain, our previous and present findings call for a shift in our
conceptualization of the relations between sex and the brain from
dimorphism to mosaic, and for the development of analytical
methods that take into account the variability in the human brain
(rather than treat it as noise) as well as individual differences in
the specific composition of the brain mosaic. Analytical methods
with the above characteristics have been developed for working
with other types of data. Specifically, with the explosion of large-
scale biological data following the sequencing of the human
genome, methods for analysis of large-scale gene expression
data have been developed and used for detecting patterns of
change that are characteristic of specific disorders. In parallel,
the understanding that genes and proteins do not work in
isolation has led to the development of methods for describing
how genes/proteins work in a network. Given that information
processing in the brain also depends on networks that are
comprised of many brain regions rather than on regions working
in isolation, we believe that such methods are necessary also for
studying the relation between brain structure and (dys)function.
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