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Abstract 
 
Visual experience is known to play a critical role in face recognition. This experience is 

believed to enable the formation of a view-invariant representation, by learning which 

features are critical for face identification across views. Discovering these critical features 

and the type of experience that is needed to uncover them is challenging. We have 

recently revealed a subset of facial features that are critical for human face recognition. 

We further revealed that deep convolutional neural networks (DCNNs) that are trained on 

face classification, but not on object categorization, are sensitive to these facial features, 

highlighting the importance of experience with faces for the system to reveal these critical 

features. These findings enable us now to ask what type of experience with faces is 

required for the network to become sensitive to these human-like critical features and 

whether it is associated with the formation of a view-invariant representation and face 

classification performance. To that end, we systematically manipulated the number of 

within-identity and between-identity face images and examined its effect on the network 

performance on face classification, view-invariant representation, and sensitivity to 

human-like critical facial features. Results show that increasing the number of images per 

identity as well as the number of identities were both required for the simultaneous 

development of a view-invariant representation, sensitivity to human-like critical features, 

and successful identity classification. The concurrent emergence of sensitivity to critical 

features, view invariance and classification performance through experience implies that 

they depend on similar features. Overall, we show how systematic manipulation of the 

training diet of DCNNs can shed light on the role of experience on the generation of 

human-like representations. 
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Object recognition is a computationally challenging task that humans resolve effortlessly. 

To successfully classify objects into different categories, the brain must create an identity-

preserved representation that is tolerant to within-class changes, such as viewpoint, 

lighting, size, occlusion and so forth (1). This is achieved by emphasizing features that 

remain unchanged across different variations, while disregarding features that vary across 

these variations (2). The nature of the experience that is required for the visual system to 

learn which features are critical and generate a view-invariant representation have so far 

remained unknown.  

Recent advancements in machine vision have successfully resolved the task of object and 

face recognition with deep convolutional neural networks. These algorithms, trained on 

thousands of images in a supervised or self-supervised manner, now perform on par with 

humans in face and object classification (3). Whereas the exact computations employed 

by these algorithms and their similarity to the computations used by humans to resolve 

this task are unknown, recent studies have uncovered notable similarities between the 

representations generated by DCNNs and the human brain and mind (4–7). Thus, by 

studying the type of experience that is required to generate human-like representations 

in DCNNs, we can gain insights on the ingredients that are needed for these 

representations to emerge.  

In the current study, we adopted this approach to shed light on the visual experience 

necessary for creating a human-like, view-invariant representation of faces with DCNNs. 

The role of experience in human face recognition is well-established. Studies have shown 

that face recognition is better for familiar than unfamiliar faces (8) and for faces from own 

race than other race faces for which we have greater visual experience (9–11). Moreover, 

developmental studies indicate that face recognition gradually improves with 

development, including the ability to generalize across different images of the same 

individual (12,13). Many studies have emphasized the importance of experience with 

variable face images for successful face recognition (12,14–16). However, systematic 
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manipulation of human real-life experience with faces is not possible and it is therefore 

hard to determine a direct link between the visual diet that humans are exposed to and 

its contribution to the generation of a face representation that enables their face 

recognition abilities.  

In a recent set of studies, Abudarham and colleagues (6,17,18) discovered that humans 

are sensitive to a subset of facial features that are critical for face identification. Replacing 

these features changed the identity of a face (see supplementary Figure 1). Moreover, 

Abudarham and colleagues (2016) found that human sensitivity to these critical features 

remained invariant across variations in head pose, which makes them potentially useful 

for view-invariant identity classification. They further revealed that face-trained, but not 

object-trained DCNNs, showed similar sensitivity to this subset of facial features. This 

indicates that experience with faces is necessary to learn to use these features for identity 

classification. These findings are also consistent with recent studies showing human-like 

face effects such as the face inversion effect and other-race effect in face-trained but not 

object-trained DCNNs (19,20). Furthermore, sensitivity to these critical features and the 

generation of a view-invariant representation were found in higher layers of the face-

trained network, whereas earlier layers showed no preference to this subset of face 

features and evidence for a view-specific face representation (6). This human-like 

representation enables us to link between humans and DCNNs view-invariant 

representations and examine the type of visual diet that is required for the development 

of successful identity classification.  

To this end, in the current study we systematically manipulated the amount and type of 

visual-diet and examined its effect on the generation of a view-invariant representation, 

sensitivity to human-like critical features and identity classification in DCNNs. In particular, 

we manipulated experience by gradually increasing the number of within-identity images 

or between-identity images to examine their relative contributions to the generation of 

human-like, view-invariant representation. Concurrent emergence of these 
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representations as a function of the visual diet would suggest that they depend on similar 

features. Data reported in the results section can be found in this OSF link:  

https://osf.io/huzkp/?view_only=dfc6c75cc12b424d851794be43ca3f44 
 

Results 

To assess the effect of the visual diet on the generation of a view-invariant representation 

of face identity, we trained a DCNN (VGG-16) with the following training diets: We created 

64 subsets of face images, which included all possible combinations of 2, 5, 10, 50, 100, 

200, 500, 1000 identities and 1, 5, 10, 20, 50, 100, 200, 300 images per identity. For models 

that are trained with a relatively smaller number of faces (1-100 identities models), we 

trained the model with thirty different sets of faces to avoid stimulus specific effects. The 

results were then averaged across the thirty models for each condition.  

Effects of visual diet on face identity classification 

We measured the performance of the DCNNs on a standard face verification task, Labeled 

Faces in the Wild (LFW) benchmark (21). For each of the networks we extracted the 

 

Figure 1: Accuracy on a face verification task with Labeled faces in the wild (LFW) 
benchmark. Performance gradually improves with increase in the number of identities 
as well as the number of images per identity. 
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representation in the penultimate layer (FC7) and assessed performance on a same-

different identity task (see methods). Figure 1 shows that accuracy improves for DCNNs 

trained on larger number of images. Both the number of different identities as well as the 

number of images per identity were needed to improve performance.  Accuracy did not 

exceed 75% if the number of identities was below 10 for any number of images per 

identity (up to 300 images per identity) or if the number of images per identity was below 

5 for any number of identities (up to 1000 identities) (See Supplementary Table 1 for 

complete report of performance levels). This suggests that identity face classification 

requires experience with images of different identities but also with different images of 

the same identity.  

We next assessed how this experience changes the representation from a view-specific to 

a view-invariant representation.  

The emergence of a view-invariant representation. 

To evaluate whether a representation that is generated by a DCNN is view-specific or 

view-invariant, we used face images of 15 identities from which we generated the 

following four types of pairs: same identity: same view (frontal), same-identity: different 

view (frontal vs. quarter view), same-identity: different view (frontal vs. half view), different 

identity-same view (frontal) (Figure 2A). We measured the Euclidean distance between the 

feature vectors of the four face pairs for two base-line representations: Pixel-based 

representation, which was the raw pixel values of the test face images. Identity-based 

representation, which was the representation in the penultimate layer of a fully face-

trained DCNN (>8000 identities with approximately 300 images per identity, see 

methods).  The distance between the pixel-based representations of each pair of faces 

showed a view-specific representation as indicated by a larger distance between same 

identity-different view face pairs (light blue bars) than between different identity-same 

view face pairs (red bar) (Figure 2B). The distance between the representations of each 

pair of faces based on the penultimate layer of the fully-trained network revealed a view-
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invariant representation as manifested by a larger distance between different identity-

same view face pairs than between same identity-different view face pairs (Figure 2C) (6). 

 

Figure 2: The emergence of a view-invariant face representation with visual experience.  
A. The four types of face pairs used to test a view-invariant representation. Same identity same 
view (dark blue), same identity quarter-left (light blue), same identity half-left (lightest blue) 
and different identity same view (red). B. Disimilarity scores (normalized distance) between the 
four types of face pairs based on the pixel layer reveals a view-specific representation. C: 
Disimilarity scores (normalized distance) between the four types of face pairs based on the 
penultimate layer of a fully face-trained DCNN reveales a view invariant representation.  D. The 
similarity (measured by Euclidean distance) of each DCNN with the pixel-based representations 
(panel B) is higher for DCNNs trained on smaller number of images.  E. The similarity (measured 
by Euclidean distance) of each DCNN with the identity-based representation (panel C) is higher 
for DCNNs trained on larger number of images. To see the representations of each DCNN see 
Supplementary Figure 3. 
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Next, we measured the similarity between the representations generated for the same 

four face pairs in each of the trained models with the pixel-based and the identity-based 

representations. We did that by calculating the Euclidean distance between the 

distribution of the four types of face pairs of the pixel-based representation (Figure 2B) 

and identity-based representation (Figure 2C) with the distribution of the four types of 

face pairs in each of the 64 DCNN trained models (see supplementary Figure 2). The 

similarity to the pixel-based distribution is presented in Figure 2D and to the identity-

based distribution in Figure 2E. We found that DCNNs that are trained on smaller number 

of identities and images per identity generate representations that are more similar to a 

view-specific, image-based representation, and DCNNs that are trained on larger number 

of identities and images per identity generate a representation that is more similar to a 

view-invariant, identity-based representation. In particular, we see that a DCNN that is 

trained on large number of identities (500 or 1000) generate a view-invariant 

representation with only 10 images per identity.  

Sensitivity for human-like critical features 

To evaluate whether the representations of DCNNs are sensitive to human-like view 

invariant critical features, we measured the distance between representations of four 

types of face pairs of 25 different identities (not included in the train set). Figure 3A shows 

an example of each type of face pairs: "Same identity" are different images of the same 

identity, "Non-critical features" are same identity face pairs in which non-critical features 

were replaced (see supplementary Figure 1 bottom); "Critical features" are same identity 

face pairs in which critical features were replaced (see supplementary Figure 1 top); 

"Different identity" face pairs.  Figure 3B shows the Euclidean distances between these 

face pairs based on their pixel-based representations. The distance was similar for faces 

that differ in critical or in non-critical features, indicating that pixel information is not 

sensitive to human-like critical features more than non-critical features. Figure 3C shows 

the Euclidean distances between representations of the same face pairs, based on the 
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penultimate layer of a fully face-trained DCNN (6,17). Here we see a much larger distance 

between faces that differ in critical features than faces that differ in non-critical features, 

indicating that the identity-based representation is sensitive to human-like critical 

features. We also show that faces that differ in critical features are as different as different 

identity faces, indicating that changing them is similar to changing the identity of a face.  

Figure 3: The emergence of sensitivity to critical features:  
A. The four types of face pairs that are used to test sensitivity for critical features. Same identity 
(blue), non-critical features changed (purple), critical features changed (green) and different 
identity (red). B. Disimilarity scores (normalized distance) between the four types of face pairs 
based on the pixel layer reveals no sensitivity to human-like critical features. C: Disimilarity 
scores (normalized distance) between the four types of face pairs based on the penultimate 
layer of a fully face-trained DCNN reveales high sensitivity to human-like critical features.  D. 
The similarity (measured by Euclidean distance) of each DCNN to the pixel-based 
representations (panel B) is higher for DCNNs trained on smaller number of images.  E. The 
similarity (measured by Euclidean distance) of each DCNN to the identity-based representation 
(panel C) is higher for DCNNs trained on larger number of images. To see the representations 
of each DCNN see Supplementary Figure 3. 
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Next, we measured the similarity of the representations to the four face pairs that were 

generated by each of the face-trained models with the pixel-based and identity-based 

representations. We calculated the Euclidean distance between the distribution of the four 

types of face pairs of the pixel-based representation (Figure 3B) and identity-based 

representation (Figure 3C) with the distribution of the four types of face pairs in each of 

the 64 DCNN trained models (see supplementary Figure 3). The distances from the pixel-

based distribution are presented in Figure 3D and from the identity-based distribution in 

Figure 3E.  DCNNs that were trained on smaller number of images were more similar to 

the image-based representation showing no sensitivity to critical features over non-

critical features. Whereas DCNNs that were trained on a larger number of images were 

more similar to models that are sensitive to human-like critical features.  

Abudarham and Yovel (18) suggested that humans are sensitive to critical features 

because they enable a view-invariant representation of face identity which is needed for 

successful face recognition across different appearances of the same identity. To examine 

these correspondences, we computed the correlations between the distance between 

pairs of faces of same identity that differ in non-critical featrures (Figure 4A,B) and the 

distance between pairs of same identity faces that differ in critical features (Figure 4C,D) 

and examined their correlations across all 64 DCNNs with accuracy on face verification 

based on the LFW benchmark (Figure 4A,C) and with a measure that indicates a view 

invariant representation (Figure 4B,D). The view invariant measure was the difference 

between different face pairs (red bar in Figure 2) and same identity different head view 

face pair (light blue in Figure 2). As can be seen in Figure 2, the relative distance between 

these two bars changes drastically between the pixel-based representation in which 

different identity-same view faces are more similar than same identity-different view faces 

(Figure 2B) and the identity-based, view-invariant representation in which the distance 

between same identity – different view faces is much smaller than same view different 
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identity faces (Figure 2C). Thus, a positive difference between these face pairs indicate a 

view invaraint represnetaion and a negative distance a view-specific representation).  

Figure 4 shows a strong linear relationship between sensitivity to critical featurs (distance 

between pairs of faces that differ in critical features) and accuracy of the DCNN on the 

LFW benchmark (Figure 4C, r(62) = 0.95). It also shows a strong linear relationship 

between sensitivity to critical features and the emergence of a view-invariant 

representation (Figure 4D, r(62) = 0.93). There was no such linear relationship between 

sensitivity to non-critical features (distance between pairs of faces that differ in non-

critical features) and performance on face verification task (Figure 4A, r(62) = 0.56) or the 

emergence of a view invariant representation (Figure 4B, r(62) = 0.47).  
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Discussion 

 
Successful face recognition depends on the ability to generalize across different images 

of the same identity and discriminate between images of different identities. The goal of 

the current study was to leverage the success of DCNNs in face recognition and their 

similarity to human-like representations (6,19,22), to examine whether success on a face 

verification task, the emergence of a view-invariant representation and sensitivity to 

human-like critical facial features emerge concurrently as a function of the amount and 

type of experience with faces. Our findings show that increasing both the number of 

images per identity and number of identities, concurrently improved verification accuracy, 

the emergence of a view-invariant representation and sensitivity to human-like critical 

facial features. These findings suggest a critical role for experience with faces in the 

generation of these representations.  

For many years cognitive scientists and computer scientists have attempted to reveal the 

critical features that enable human-level face recognition performance. Despite the 

success of current machine learning algorithms to recognize faces at, or even above, 

human-level performance, it is still unknown which features are used by these algorithms 

to perform this task. Studies in humans revealed a subset of facial features for which 

humans showed high perceptual sensitivity. Furthermore, changing these features 

changed the identity of the face (see Supplementary Figure 1) indicating their importance 

Figure 4: Sensitivity to human-like critical features is correlated with performance on face 
verification and the emergence of view invariance representation: A. Sensitivity to non-critical 
features, measured by the distance between same identity faces that differ in non-critical features 
(see supp figure 1), and performance on face verification task do not emerge concurrently as a 
function of experience. B. Sensitivity to non-critical features do not emerge concurrently with a 
view-invariant representation as a function of experience. C. Sensitivity to critical features, measured 
by the distance between same identity faces that differ in critical features (see supp figure 1), and 
performance on face verification task emerges concurrently as a function of experience. D. 
Sensitivity to critical features emerges concurrently with a view-invariant representation as a 
function of experience. 
 
 
 
DCNNs that are sensitive to human-like critical features (larger distance between faces that differ 
in critical features) show better performance on a face verification task and a view invariant 
representation (bottom, right). 
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for human face recognition (17). Abudarham and colleagues (2016) further suggested that 

these features enable a view-invariant representation, as they remain invariant across 

different head-views (18). In the current study, we were able to link these two phenomena 

and their relationship with verification accuracy by showing that they emerge concurrently 

as a function of the amount of experience with faces during training (Figure 4). These 

findings suggest that these identity-based representations rely on similar features.  

The relevance of these findings to human face recognition should be evaluated 

considering the nature of human experience with faces during development. Recent 

studies that have used head-mounted cameras on infants’ foreheads during the first year 

of their life show that during this period, they were primarily exposed to three main 

identities from myriad of different appearances and head-view (23). It is only later during 

development that the number of identities start increasing reaching a few thousands of 

familiar identities in adult. (24) Indeed, performance in face recognition improves slowly 

and requires several years to reach adult level performance (13). To better learn about 

effects of human-like experience from face recognition algorithms, it is necessary to train 

the algorithms on a more human-like type of experience with faces, which is different 

from the training set and training protocols of current face recognition algorithms (25,26). 

Another important difference between human and face recognition algorithms is that 

human face recognition primarily concerns the recognition of familiar faces (8,27), 

whereas face recognition algorithms are trained to achieve impeccable classification of 

unfamiliar identities. In the current study, we used unfamiliar faces to test the 

representation of face recognition algorithms and learn about their ability to generalize 

to unlearned examples. However, if the goal of the human face recognition system is to 

only classify socially relevant familiar identities, computer algorithms that aim to model 

human face recognition should take this consideration into account. Given that an 

important aspect of familiar face recognition is their semantic representations, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2024. ; https://doi.org/10.1101/2024.06.08.597949doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.08.597949
http://creativecommons.org/licenses/by-nc-nd/4.0/


development of familiar face recognition may be better modelled with multi-modal 

visual-semantic algorithms (26,28).  

Recent studies that examined human-like representations in DCNNs revealed other 

similarities between humans and DCNNs. This includes a much larger drop in performance 

for inverted than upright faces than the drop that is found for objects (19,20). The Thatcher 

illusion in which distorted faces look more similar to normal faces when they are inverted 

than upright was also found in face-trained but not object-trained DCNNs (29) A drop in 

performance for the race of faces that the algorithms was not trained on (i.e. lower 

performance for Asian faces in a DCNN trained on White faces) is also typically found in 

DCNNs similar to the human other race effect (7,19). The approach that we used in the 

current study enables us now to ask what kind of experience is required for these human-

like representations to emerge.  

In summary, recent advances in machine learning that enable face recognition algorithms 

to reach human-level performance, and the similarity between the representations 

generated by humans and machines (6,19,29), offer us new computational tools to explore 

the factors that mediate human face recognition. Future studies will further investigate 

the contribution of more specific characteristics of face images, such as their pose, 

expression, and lighting, to the generation of a view-invariant representation and 

sensitivity to view-invariant human-like critical features.  

General Methods 
Model 

We used VGG-16 (3) as a the base model, which we trained on different numbers of face 

images. We selected this model because it has been often used in previous studies 

(6,19,22). The representations used in the study are extracted from the penultimate layer 

(FC7). 
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Train Dataset 

We used the VGGFace2 dataset (30)  to train our networks. VGGFace2 is a large-scale face 

recognition dataset developed by the Visual Geometry Group at the University of Oxford. 

It contains over 3 million images of more than 9,000 individuals, with each individual 

represented by several hundred images. The images were collected from a variety of 

sources and were annotated with bounding boxes and labels indicating the identity of the 

individuals.  

Training protocol 

We created 64 subsets of face images, which included all possible combinations of 2, 5, 

10, 50, 100, 200, 500, 1000 identities and 1, 5, 10, 20, 50, 100, 200, 300 images per identity. 

For the small training sets (1-100 identities, with all possible images per identity), we 

trained each DCNN on thirty different data sets to obtain robust performance measure of 

their representations/performance. The results were then averaged across the thirty 

networks. Representations were extracted also from the fully-trained model that was 

trained on the whole VGGface2 data set.  

Stimuli 

View-specific and view-invariant representations 

To examine whether the network generates a view-specific or a view-invariant 

representation, we used images of 15 identities from the color FERET face-image dataset. 

For each identity, we selected four images: a "reference" frontal image, a second "frontal" 

image that is different from the reference image, a quarter-left image, and a half-left 

image. All images were of adult Caucasian males, well-lit, with no glasses, hats or facial 

hair. The images were cropped just below the chin to include only the face, including the 

hair and ears. This resulted in four types of face pairs: "Same-Frontal", "Same-quarter 

view", "Same- half view" and "Different- Frontal" (See Figure 2A for examples of the four 

types of face pairs). 

Critical features for face recognition 
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We used 25 face identities to generate image pairs. For each of the 25 identities, we used 

an original image, an image with modified critical features, and an image with modified 

non-critical features (for more information about how the face images were created see 

(18). We also used a different unmodified image of the same person, which we used as a 

reference image. This allowed us to create four image pairs: the "Same" pair, which 

compares the reference image to the original image, the "Different" pair, which compares 

the reference image to a reference image of a different identity, the "Critical features" 

pair, which compares the reference image to the original image with different critical 

features, and the "Non-critical features" pair, which compares the reference image to the 

original image with different non-critical features. (See Figure 3A for examples of the 4 

types of face pairs). 

Stimuli 

Performance measures 

 We measured the performance of the trained DCNNs on a face verification task 

using the standard Labeled Faces in the Wild (LFW) benchmark (21) including 6,000 pairs 

of face images for testing. These pairs consist of positive pairs, where both images show 

the same person, and negative pairs, where the two images show different people. The 

goal of the face verification task is to determine if the two images in each pair belong to 

the same person or not. We assessed the models’ performance by measuring the cosine 

distance between the embeddings of pairs of faces. If the distance was smaller then a pre-

determined threshold, the images were classified as the same person, otherwise they were 

classified as different. The accuracy values reported here reflect performance achieved 

using the optimal threshold for each model. 

Quantifying view-invariance of face-representations in DCNNs 

We calculated the Euclidean distances between the penultimate layer (fc7) 

embeddings of the following pairs of faces: same identity faces - same view, same identity 

faces - quarter view, same identity faces - half view, and different identity faces - same 
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view (as shown in Figure 2A) for 15 different identities. (The face alignment procedure 

failed to detect 4 of the half-view faces, so we only had 11 face pairs in the frontal-half-

view condition).  The distance scores were normalized by dividing the measured distances 

by the maximal distance value in each run across all stimuli and conditions. This resulted 

in a normalized score that ranged from 0-1. These distance scores were calculated for 

each of the 64 DCNNs (see Supplementary Figure 2), as well as for a pixel-based 

representation based on the pixel values of the images and for the identity-based 

representation based on the values of the penultimate (last hidden – fc7) layer of the fully 

face-trained DCNN (6). Finally, to measure the similarity between each of the 64 trained 

DCNNs and the baseline models (pixel-based and identity-based), we calculated the 

Euclidian distance between the normalized mean distances of the four face pairs (dividing 

the distance of each pair by the sum of the distances of the four pairs) of each trained 

DCNN with each baseline models. Smaller distances indicate that the DCNN is more 

similar to the pixel model (Figure 2D) or the identity model (Figure 2E). 

Measurement of sensitivity to critical features 

We calculated the Euclidean distances between the representations of the 

following four conditions: Same, Non-Critical, Critical and Different (See Figure 3A). Each 

condition includes 25 image pairs. Distances were calculated for a pixel-based 

representation based on the pixel values of the images and for the other representations 

based on the penultimate layer. We then performed the same analysis that is described 

in the previous section to measure the similarity of each of the 64 models with a pixel-

based or an identity-based representations (see Supplementary Figure 3).  
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Supplementary Material 
 

  

Supplementary Figure 1: An example of the effect of changing critical or non-critical 
features on the face of George Clooney. Upper row: Changing five critical features 
gradually. Bottom row:   Changing five non-critical features gradually. Abudarham et al 
(2019) shows that changing five critical features changes the identity of the face, whereas 
changing five non-critical features does not change the identity of a face.  
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Supplementary Table 1: Accuracy on the face verification task for each of the DCNNs that were 
trained on different number of identities (IDs) / different number of images per identity (see 
Figure 1). 
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  Supplementary Figure 2: A view invariant representation The Euclidean distance between the face pairs 

shown in Figure 2A for each of the 64 DCNNs that were trained on different number of identities and different 
number of images per identity. The lines indicate the two baseline models: the pixel-based representations 
(dotted line, see Figure 2B) and the identity-based representation (solid line, see Figure 2C). Figure 2D,E 
show the similarity between the pattern of findings in each DCNN with the baseline models. 
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Supplementary Figure 3: Sensitivity to critical features  The Euclidean distance between the face 
pairs shown in Figure 3A for each of the 64 DCNNs that were trained on different number of identities 
and different number of images per identity. The lines indicate the two baseline models: the pixel-
based representations (dotted line, see Figure 3B) and the identity-based representation (solid line, see 
Figure 3C). Figure 3D,E show the similarity between the pattern of findings in each DCNN with the 
baseline models.   
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