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Abstract

■ Target objects required for goal-directed behavior are typi-
cally embedded within multiple irrelevant objects that may inter-
fere with their encoding. Most neuroimaging studies of high-level
visual cortex have examined the representation of isolated ob-
jects, and therefore, little is known about how surrounding
objects influence the neural representation of target objects. To
investigate the effect of different types of clutter on the distrib-
uted responses to target objects in high-level visual areas, we
used fMRI and manipulated the type of clutter. Specifically, target
objects (i.e., a face and a house) were presented either in isola-
tion, in the presence of a homogeneous (identical objects from
another category) clutter (“pop-out” display), or in the presence
of a heterogeneous (different objects) clutter, while participants
performed a target identification task. Using multivoxel pattern

analysis (MVPA) we found that in the posterior fusiform object
area a heterogeneous but not homogeneous clutter interfered
with decoding of the target objects. Furthermore, multivoxel
patterns evoked by isolated objects were more similar to multi-
voxel patterns evoked by homogenous compared with hetero-
geneous clutter in the lateral occipital and posterior fusiform
object areas. Interestingly, there was no effect of clutter on the
neural representation of the target objects in their category-
selective areas, such as the fusiform face area and the parahip-
pocampal place area. Our findings show that the variation among
irrelevant surrounding objects influences the neural representa-
tion of target objects in the object general area, but not in object
category-selective cortex, where the representation of target
objects is invariant to their surroundings. ■

INTRODUCTION

Natural scenes are typically comprising multiple objects
presented simultaneously. A central goal of our visual
system is to extract task-relevant objects from such clut-
tered displays. Nonetheless, the majority of neuroimaging
studies of high-level visual cortex have examined the
neural representation of isolated objects, and therefore,
relatively little is known about the extent to which simul-
taneously presented irrelevant objects affect the neural
responses to task-relevant objects.

Recently, a few neuroimaging studies have examined
the responses to objects presented simultaneously with a
second nontarget object (Reddy, Kanwisher, & VanRullen,
2009; Reddy & Kanwisher, 2007). These studies showed
that response patterns to target objects in the general
object area—the lateral occipital complex (LOC)—were
interrupted by a nontarget object presented simulta-
neously. Another study showed increased change in BOLD
response in LOC when a target object was presented with
several nontarget objects (Jeong & Xu, 2013). A few other
studies have focused on objects presented within natural
scenes. Neural patterns in object general cortex evoked
by target objects embedded within a scene were similar
to patterns elicited by same-category objects presented

in isolation and could be discriminated from those evoked
by objects from other categories (Seidl, Peelen, & Kastner,
2012; Peelen & Kastner, 2011; Peelen, Fei-Fei, & Kastner,
2009). Interestingly, it has been shown that the neural
patterns of scenes were predicted by the patterns evoked
by their constituent objects (MacEvoy & Epstein, 2011).
One important aspect that has not been addressed in

these previous studies is the effect of different types of
clutters on the representation of target objects and spe-
cifically the effect of the variation among the surrounding
irrelevant objects. In particular, many behavioral studies
have shown that detection of target stimuli is better when
presented among homogenous surrounding stimuli (i.e.,
pop-out displays) compared with heterogeneous stimuli
(Duncan & Humphreys, 1989; Treisman & Gormican,
1988). Consistent with these behavioral studies, a recent
fMRI study employed a neural competition paradigm to
assess competition among low-level stimuli comprising
Gabor gratings in a homogeneous clutter (pop-out display)
compared with a heterogeneous clutter (Beck & Kastner,
2005). To measure neural competition, stimuli were pre-
sented either simultaneously or sequentially, whereas a
lower fMRI signal to simultaneous compared with sequen-
tial presentation reflects competition among multiple
stimuli in the former but not the latter display (Kastner,
De Weerd, Desimone, & Ungerleider, 1998). Competi-
tion effect was evident for heterogeneous clutter but wasTel Aviv University
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eliminated for a pop-out display in early visual cortical
areas V1 and V2/ VP as well as area V4. This paradigm,
however, does not allow to directly examine the effect of
the type of clutter on the representation of the target
stimulus.
The current study directly examined the effect of the

type of clutter on the representation of the target stimuli
by manipulating the type of clutter and assessing how it
may influence the decoding and representational pattern
of target objects. We used objects rather than low-level
visual stimuli to compare the effect of clutter in object
general areas and object category-selective cortex, which
showed different sensitivity to effects of clutter (Reddy
et al., 2009; Reddy & Kanwisher, 2007). To that effect, we
presented target objects either in isolation, in the presence
of a homogeneous clutter comprising three identical
objects from another category, or in the presence of a
heterogeneous clutter comprising three objects from dif-
ferent categories (Figure 1). On the basis of previous be-
havioral (Nothdurft, 1993; Duncan & Humphreys, 1989;
Treisman & Gormican, 1988) and neuroimaging (Beck &
Kastner, 2005) studies, we predicted that heterogeneous
clutter will interfere with decoding and representation of
target objects more than homogeneous clutter. On the
basis of recent findings showing that responses to preferred
objects in a clutter display were preserved in category-
selective areas (Reddy & Kanwisher, 2007), we expected
no such effect of the type of clutter in these category-
selective areas.

METHODS

Participants

Nineteen healthy volunteers (age=19–32 years, 11women)
with normal or corrected-to-normal vision participated in

the experiment. All participants gave written informed
consent to participate in the study approved by the
Tel-Aviv Sourasky Medical Center. Three participants were
excluded from the analysis: one because of excessive
head movements in the scanner, one because of long
periods of sleep during the experiment, and one because
object general brain areas could not be identified during
analysis.

Experimental Procedure

High-resolution fMRI data were collected in a 3T GE MRI
scanner, using an eight-channel head coil. EPI sequence
was used to collect fMRI data with a repetition time of
2 sec, echo time of 35 msec, 23 slices per repetition time,
slice thickness of 2.4 mm with no gap, and field of view
of 20 cm. The acquisition matrix was 96 × 96 (in-plane
resolution 2.08 × 2.08 mm), which was reconstructed into
128 × 128 matrix (in-plane resolution 1.56 × 1.56 mm).
Brain coverage included the entire occipital and tem-
poral lobes. Stimuli were presented using Psychtoolbox2
for Matlab (Brainard, 1997) and projected on an MRI-
compatible screen inside the scanner. In the main experi-
ment, target stimuli from two categories were presented
among irrelevant surrounding objects (clutter). Target
stimuli were presented under three clutter conditions
(Figure 1): (a) in isolation (no-clutter condition); (b) in
the presence of a homogeneous clutter comprising three
identical objects from a category that is different from the
target object categories, thus yielding a pop-out display;
(c) a heterogeneous clutter comprising three objects
from different categories all different from the target object
categories. Targets were faces and houses, and nontarget
objects were cars, chairs, and shoes. Two of the six exem-
plars from each category were used in each run, and the
stimuli presented in the first three runs were then pre-
sented again in the three last runs. The nontargets in the
homogeneous display varied throughout a block. Stimuli
were grayscale images of 3.9° × 4.1° and were presented
on a 768 × 1024 pixel screen around a fixation dot at four
locations: top left, top right, bottom right, and bottom
left. The stimuli were presented as close as possible to
the fixation dot and were centered 2.4° away from the
fixation dot on both x and y axes. They were presented
for 200 msec, followed by a 1300-msec intertrial interval,
arranged in blocks of eight trials of the same condition
(12-sec block duration). Each run of the main experiment
consisted of initial 6-sec fixation dummy scans, two blocks
for each condition, and three blocks of a baseline fixation
dot (a total of 186 sec). Locations of target and nontargets
were counterbalanced within block, and categories and
order of experimental conditions were counterbalanced
across blocks and runs. Participants were asked to per-
form 1-back task on the target by pressing a response
box button while fixating on the fixation dot and were
explicitly instructed to maintain fixation and not to move
their gaze away from the fixation dot. Responses were

Figure 1. Experimental conditions. The experiment included two
target objects (faces, houses) presented in three clutter conditions
(no clutter, homogeneous clutter, and heterogeneous clutter).
Nontarget objects were cars, chairs, and shoes. Images for each of
these six conditions were presented in blocks. Participants were
asked to perform a 1-back task on the identity of the target while
maintaining their eyes on a fixation dot.
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collected to assess the effect of clutter on identification of
the target stimuli.

Additionally to the main experiment, a standard func-
tional localizer was used to provide an independent data
set to define ROIs. The functional localizer included
four object categories presented in a blocked design:
faces, scenes, objects, and scrambled objects. Each block
lasted 12 sec and included 15 stimuli, each presented
for 300 msec with a 500-msec interstimulus interval.
Category block order was counterbalanced within and
across runs. Each localizer run consisted of an initial
6-sec fixation dummy scans, four blocks for each cate-
gory, and five blocks of a baseline fixation dot (a total
of 258 sec). To maintain vigilance, participants were asked
to perform a 1-back task on the presented stimuli by
pressing a response box button. Each participant com-
pleted three localizer runs.

Data Analysis

Preprocessing

Statistical parametric mapping (SPM5) software was used
for the data analysis. The first three dummy volumes in
each run were discarded from the analysis. The data were
then preprocessed using coregistration to the anatomical
scan, slice timing correction, and realignment. Spatial
smoothing with a 5 × 5 × 5 mm kernel was applied
for the functional localizer only. A general linear model
was estimated for each participant using a canonical
hemodynamic response function with seven regressors
for the main experiment and five regressors for the func-
tional localizer to account for the experimental condi-
tions and fixation blocks.

ROI Analysis

Four ROIs were defined using the functional localizer data.
Object general regions (posterior fusiform gyrus [pFs] and
lateral occipital (LO)] were defined using objects >
scrambled objects t contrast maps ( p < .00001), with
exclusion masking of faces > objects and scenes > objects
t contrasts ( p < .05). These two areas comprise the LOC,
and we considered them separately as previous evidence
suggests they show different effects for cluttered displays
(MacEvoy & Epstein, 2011). Category-selective regions
were defined using faces > objects and scenes > objects
t contrast maps ( p < .00001) for the fusiform face area
(FFA) and parahippocampal place area (PPA), respectively.

Voxelwise-based Analysis

Voxelwise-based analysis (classification using multivariate
pattern analysis [MVPA] and similarity analysis using cor-
relations) was performed using raw intensity values, which
are equivalent to β estimates in a blocked design (Misaki,
Kim, Bandettini, & Kriegeskorte, 2010). Following standard

preprocessing using SPM5, a full-scan raw intensity values
were extracted for each ROI, condition, and run. Each
voxelʼs full-scan values in each run were normalized to
z scores. Then, two volumes at the beginning of each
block (4 sec) were excluded from analysis to account for
the hemodynamic lag.

Controlled ROI Size for Voxelwise-based Analysis

To allow the comparison between participants and ROIs,
the size of ROI was controlled. For the analysis, the
47 most activated voxels in each ROI (based on the
t contrast maps used for defining each ROI) were used.
ROIs with a smaller number of voxels were excluded from
analysis. This number of voxels was chosen to maximize
both the number of participants that can be included in
the analysis and the number of voxels used for each ROI,
mainly based on the size of the pFs, which had the smallest
number of voxels on average. However, to assure the
robustness of the results, the analysis was also conducted
using a large range of ROI sizes (30–80 voxels).

Classification Using MVPA

Voxelwise-based classification was performed to measure
decoding performance for discrimination between the
target objects. For each condition, the mean intensity
across all voxels was subtracted from each voxel intensity
value (Axelrod & Yovel, 2012; Misaki et al., 2010; Serences,
Saproo, Scolari, Ho, & Muftuler, 2009). This procedure
was performed for each run separately. Then the intensity
values of each block were averaged for each voxel. Each
run consisted of two blocks for each condition and a total
of six runs yielded 12 voxelwise patterns for each condition
that were used for classification. Support vector machine
classification was conducted using LibSVM library for
Matlab. A leave-one-run-out (two patterns) cross-validation
procedure was repeated six times, and the decoding per-
formance was averaged. Classification was performed
between the two target categories (faces, houses) for
each clutter condition (no clutter, homogeneous clutter,
heterogeneous clutter) separately, and decoding per-
formance for the different clutter conditions was then
averaged across participants. To verify classification
chance level of 50%, we conducted a permutation test with
1000 repetitions, in which the patterns were randomly
labeled. The average decoding performance of the per-
mutation test across participants in all the ROIs and clutter
conditions was in the range of 49.8–50.2%, confirming
chance level of 50%.

Voxelwise Pattern Similarity Analysis

Similarity between pairs of conditions was assessed using
correlations between the elicited voxelwise response pat-
terns. We computed correlations based on both the entire
data set and split-halves of the data. We first computed
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correlations based on the entire data set. For each con-
dition, the average voxelwise pattern was computed
across all blocks and runs. Correlation between the
no-clutter condition and each of the clutter conditions
(homogeneous, heterogeneous) was computed and
compared within each target category (faces, houses)
separately. To be able to measure the within-condition
similarity, thus provide a baseline of the similarity of the
no-clutter condition with itself, we also computed split-
half correlations. Correlations between the no-clutter
condition and itself as well as between the no-clutter con-
dition and each of the clutter conditions (homogeneous,
heterogeneous) were computed and compared within
each target category (faces, houses) separately. For each
pair of conditions, the voxelwise pattern was computed
across all blocks in half of the data (three runs) and cor-
related with the average pattern that was computed
based on the other half of the data. The split-half correla-
tions across all possible split-halves of the data were then
averaged to get the similarity measure between the two
conditions.

Average fMRI Signal Analysis

Time courses were extracted for each of the six conditions
of the main experiment using the MarsBaR ROI toolbox
for SPM (Brett, Anton, Valabregue, & Poline, 2002) within
each of the predefined ROIs. The average percentage
signal change at repetition times of 3–6 from block onset
were averaged across all blocks for each condition and
ROI and was used as the dependent measure for the
average activity.
Statistical analysis was conducted using SPSS 20. Two-

tailed paired t test was used for statistically comparing
two samples, unless otherwise specified.

Eye Tracking Control

Eye movements of six participants were tracked in the
scanner. We used iView X MRI-LRsystem (SMI Senso-
motoric Instruments) with a sampling rate of 50 Hz. For
four participants, we did not manage to acquire data
because of unsuccessful calibration and misidentification
of the pupil. One of these four participants was also
excluded from the whole analysis because we were unable
to identify object general areas in his data. Therefore, eye
tracking data were analyzed for the two remaining par-
ticipants. The system output files were converted into a
text format and analyzed using a custom-made Matlab
code for each participant separately. For each run, the
median x and y eye position coordinates during fixation
blocks were computed and subtracted from the x and
y eye coordinates during the experiment blocks. The x
and y coordinates for each condition were then pooled
across the two experiment blocks of each condition in
each run, and their mean and standard deviation were
computed.

RESULTS

Behavioral Effects of Clutter

We assessed the effect of clutter on behavioral perfor-
mance by computing both accuracy and RTs. The overall
accuracy level was very high (mean ± SEM: 95.2 ± 0.9%).
Repeated-measures ANOVA of the proportion of correct
responses with clutter condition (no clutter, homogeneous
clutter, and heterogeneous clutter) and category (face,
house) as within-subject factors showed no effect for the
clutter condition, F(2, 30) < 1, and no interaction, F(2,
30) < 1. Repeated-measures ANOVA of the RTs with clutter
condition and category as within-subject factors revealed a
marginally significant main effect for clutter condition, F(2,
30) = 3.2, p = .05, and no interaction, F(2, 30) = 2.9, p >
.05. RTs across categories were shorter for the no-clutter
(mean ± SEM: 0.54 ± 0.02 sec) condition compared with
heterogeneous clutter (mean ± SEM: 0.56 ± 0.02 sec),
t(15) = 2.5, p = .02. There was no significant difference
in RTs between the no-clutter and homogeneous clutter
(mean ± SEM: 0.55 ± 0.02 sec) conditions, t(15) = 1,
p = .4, or between the two clutter displays, t(15) = 1.7,
p = .1.

Effect of Clutter on Target Object Representation
in Object General Areas

Effect of Clutter on Decoding Performance

We first asked whether clutter interferes with the decoding
of the target stimuli. Discrimination between faces and
houses was evaluated for the three clutter conditions based
on the voxelwise pattern, resulting in the accuracy level of
classification (decoding performance) for each condition
and ROI (see Methods for details). A two-way repeated-
measures ANOVA of decoding performance with hemi-
sphere and clutter condition as within-subject factors
revealed no interaction between the factors in both pFs
and LO (pFs: F(2, 12) < 1, p = .6; LO: F(2, 28) < 1, p =
.6); therefore, decoding performance was averaged across
hemispheres.

Classification between faces and houses was highly
successful even in the presence of clutter: Decoding
performance for each of the three clutter conditions was
significantly above chance level in the two ROIs (one-tailed
one-sample t test against 50% on decoding performance
for all clutter conditions: t > 3.5, p < .004).

We then examined the effect of clutter on the level of
decoding (Figure 2A) and found a significant difference
between the clutter conditions in the pFs, but not in LO.
Two-way repeated-measures ANOVA revealed a significant
interaction between clutter condition and ROI, F(2, 28) =
4.65, p= .02 (one-way repeated-measures ANOVA for each
ROI: pFs: F(2, 30) = 3.8, p = .03; LO: F(2, 28) = 1.4, p =
.27). We next asked whether the presence of a clutter re-
duced decoding performance relative to the no-clutter
condition in the pFs. Decoding did not differ significantly
when a homogeneous clutter was added, compared with
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the no-clutter condition, t(15) = 0.1, p = .9. However, a
heterogeneous clutter significantly reduced classification
performance, t(15) = 2.4, p = .03. To further investigate
the effect of the type of clutter, we asked whether de-
coding performance in the pFs was interrupted by the
heterogeneous display to a larger extent compared with
the homogeneous display and found that decoding per-
formance was significantly better for the homogeneous
clutter condition compared with the heterogeneous one,
t(15) = 3.2, p = .006 (Figure 2A). The same analysis was
conducted using varying sizes of ROIs (30–80 voxels) to
verify that the effect is not limited to a specific ROI size.
Decoding performance increased as a function of ROI
size but showed similar effects of clutter on decoding per-
formance across the range of ROI sizes (Figure 2B), indicat-
ing the robustness of this finding. Decoding performance
in the pFs for the homogeneous clutter condition was
larger compared with the heterogeneous clutter ( p <
.05 for 40, 50, and 70 voxels; .05 < p < .08 for 30, 60,
and 80 voxels). In the LO, there were no differences
between the clutter conditions across the range of ROI

sizes (F < 2.5, p > .1). Thus, the discrimination between
the two categories is interrupted by a heterogeneous
clutter, but not by a homogeneous clutter in the pFs.

Effects of Clutter on Pattern Similarity

To further investigate the effect of the type of clutter
on the neural representation, we tested the similarity
between neural patterns of responses evoked under the
different clutter displays. The magnitude of similarity
between each of the clutter conditions and the no-clutter
presentation was assessed using correlation between their
evoked voxelwise patterns across the entire data set
within each category (see Methods for details). Repeated-
measures ANOVA with hemisphere, clutter condition
(homogeneous clutter, heterogeneous clutter), and cate-
gory (face, house) as within-subject factors revealed no
interaction between the factors in both pFs and LO (F< 1);
therefore, the similarity values were averaged across
hemispheres. In both pFs and LO, the multivoxel pattern
evoked by the no-clutter condition was more similar to

Figure 2. Neural representations
of target objects are modulated
by the type of clutter in object
general areas. (A) Voxelwise
pattern-based discrimination
between the two target
categories under the three
clutter conditions in object
general areas. (B) Decoding
performance in the pFs for
the two target categories is
presented for the three clutter
conditions across a range of
ROI sizes used for classification.
(C) Voxelwise pattern-based
similarity in object general
areas. Similarity was computed
between the no-clutter condition
and the homogeneous
or heterogeneous clutter
conditions for each target
category separately. Error
bars indicate SEM. For A and C,
*p < .05, **p < .01.
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the pattern evoked by the homogeneous than the hetero-
geneous displays, for both categories (pFs: t(15) = 2.7,
p = .018 for faces, t(15) = 3.9, p = .001 for houses; LO:
t(14) = 2.4, p = .03 for faces, t(14) = 3.2, p = .006 for
houses; Figure 2C). In other words, the neural representa-
tion of the homogeneous clutter resembled the no-clutter
pattern more than that of the heterogeneous clutter.
These findings imply that the content of the task-irrelevant
clutter is represented in LOC, at least partially, and not just
the number of stimuli. To ensure that the results we ob-
tained are not limited to a specific ROI size, we conducted
the same analysis for each ROI using a broad range of ROI
sizes. The same pattern of findings was evident, showing
greater similarity between homogeneous and no-clutter
displays compared with the heterogeneous clutter and
the no-clutter conditions for the two categories across all
ROI sizes (t > 2.2, p < .05).
To provide a baseline for the between-condition similari-

ties, we also computed correlations based on split-halves
of the data, which allowed measuring the similarity be-
tween the no-clutter condition and itself. This analysis in-
dicates whether the representation of a single stimulus is
different from each of the 2 four-stimulus displays but
does not assess the effect of clutter on the discriminability
of the target objects. Repeated-measures ANOVA with
hemisphere, clutter condition (no-clutter, homogeneous
clutter, heterogeneous clutter), and category (face, house)
as within-subject factors revealed no interaction with
hemisphere in both pFs and LO ( p > .1); therefore, the
similarity values were averaged across hemispheres.
Repeated-measures ANOVA with clutter condition and
category as within-subject factors revealed no interaction
with category in both pFs and LO (pFs: F(2, 30) < 1, p= .5;
LO: F(2, 28) = 2.4, p= .1) and a significant effect of clutter
condition (pFs: F(2, 30) = 10.5, p < .001; LO: F(2, 28) =
30.8, p < .001). In both pFs and LO, the multivoxel pat-
tern evoked by the no-clutter condition was more similar
to itself than to the pattern evoked by both the homo-
geneous and the heterogeneous displays across categories
(pFs: t(15) > 3.3, p < .005; LO: t(15) > 6, p < .001).
These findings indicate that the representation of a single-
stimulus display is not the same as the four-stimulus
display. In contrast to the clear significant differences
between the two clutter displays observed in pFs and
LO when correlations were computed based on the entire
data set as described above, there was no difference in
similarity between each of the clutter displays to the no-
clutter condition, in both pFs and LO, when the split-half
correlations were used (pFs: t(15) = 0.9, p = .4; LO:
t(14) = 0.9, p = .38). This is most likely because of the
use of only half of the data, which may yield noisier voxel-
wise patterns across runs that are less sensitive to effects
that can be revealed when the entire data are considered.
Indeed, the level of similarity obtained by the split half ana-
lysis was much lower than the level of similarity found
when all the data set was included (averaged across ROIs,
clutter conditions, and categories: t(14) = 11.5, p < .001).

Similar results were obtained when computing similarity
using varying ROI sizes.

Effect of Clutter on Target Object Representation
in Category-selective Areas

We next assessed the effects of clutter on responses to
preferred objects in category-selective areas. On the basis
of previous findings that showed robustness of response
to clutter in these areas (Reddy & Kanwisher, 2007), we
expected a smaller or no effect of clutter on the represen-
tation of target objects compared with the object general
areas.

Effect of Clutter on Decoding Performance

We used MVPA to assess the effect of clutter on decoding
performance in category-selective areas (Figure 3A). A
two-way repeated-measures ANOVA of decoding perfor-
mance with hemisphere and clutter condition as within-
subject factors revealed no interaction between the factors
in the FFA and PPA (FFA: F(2, 22) = 2.2, p = .1; PPA: F(2,
30) = 2.4, p= .11). Therefore, decoding performance was
averaged across hemispheres.

Decoding performance in the FFA and PPA for each
of the three clutter conditions was significantly above
chance level (one-tailed one-sample t test against 50%
on decoding performance for all clutter conditions: t >
5.5, p< .001) and was not affected by the clutter condition
(one-way repeated-measures ANOVA: FFA: F(2, 26) < 1,
p = .7; PPA: F(2, 30) < 1, p = .9). These results imply
that in category-selective areas target discrimination is
not affected by either the presence of a clutter or the type
of the clutter. The lack of effects was also evident when
we conducted classification in each ROI using varying
ROI sizes (one-way repeated-measures ANOVA, p > .29).

Effects of Clutter on Patterns Similarity

The voxelwise pattern similarity between each of the
two clutter conditions and the no-clutter condition in the
FFA and PPA was assessed using correlation to test for
the effect of the type of clutter on the response pattern
(Figure 3B). Repeated-measures ANOVA with hemisphere,
clutter condition, and category as within-subject factors
revealed no interaction between the factors in both FFA
and PPA (F < 1); therefore, similarity level was averaged
across hemispheres. In both ROIs, there was no effect of
the clutter type on the neural representations: The voxel-
wise pattern similarity between the heterogeneous clutter
and the no-clutter condition was not significantly different
from the similarity between the homogeneous clutter and
the no-clutter conditions for both categories (FFA: t(13) <
1.3, p > .23; PPA: t(15) < 1.1, p > .3). Similar results were
obtained when computing similarity using varying ROI
sizes. These findings imply that in category-selective areas
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the pattern of response does not contain information
about the content of the clutter.

To further explore the representation of single-stimulus
display compared with four-stimulus display, we also com-
puted correlations based on split-halves of the data, which
allowed measuring the similarity between the no-clutter
condition and itself to serve as a baseline for the between-
condition similarities. Repeated-measures ANOVA with
hemisphere, clutter condition (no clutter, homogeneous
clutter, heterogeneous clutter), and category (face, house)
as within-subject factors revealed no interaction with
hemisphere in both FFA and PPA ( p > .05); therefore,
the similarity values were averaged across hemispheres.
Repeated-measures ANOVA with clutter condition and
category as within-subject factors revealed no interaction
with category in both FFA and PPA (FFA: F(2, 26) < 1,
p = .8; PPA: F(2, 30) < 1, p = .5) and a significant effect
of clutter condition (FFA: F(2, 26) = 3.4, p < .05; PPA:
F(2, 30) = 14.9, p < .001). In the FFA, the multivoxel pat-
tern evoked by the no-clutter condition was more similar
to itself than to the pattern evoked by the homogeneous
clutter across categories, t(13) = 3.2, p = .007, and there

was no difference between the similarity of the no-clutter
condition and itself and the similarity of the no-clutter and
heterogeneous clutter conditions, t(13) = 0.9, p = .4. In
the PPA, the multivoxel pattern across categories evoked
by the no-clutter condition was more similar to itself
than to the pattern evoked by both the homogeneous
and the heterogeneous displays, t(15) > 4.2, p < .001.
These findings suggest that the representation of a four-
stimulus display is different than a single-stimulus display
in the PPA and, to some extent, also in the FFA. Similar to
the results obtained when the entire data set was used for
the correlations, there was no difference in similarity
between each of the clutter displays to the no-clutter con-
dition in both FFA and PPA (FFA: t(13) = 1.7, p = .1; PPA:
t(15) = 0.9, p = .4). Similar results were obtained when
computing similarity using varying ROI sizes.

Effect of Clutter on Average fMRI Responses

We computed the average fMRI responses for the two
categories under the three clutter conditions in each of
the ROIs (Table 1). In all the ROIs, data were pooled

Figure 3. Neural representations
of preferred target objects
are insensitive to clutter in
category-selective areas.
(A) Voxelwise pattern-based
discrimination between faces
and houses under the
three clutter conditions
in category-selective areas.
(B) Voxelwise pattern-based
similarity in category-selective
areas. Similarity was
computed between the
no-clutter condition and the
homogeneous or heterogeneous
clutter conditions for each
target category separately.
Error bars indicate SEM.

Table 1. The Effect of Clutter on the Average Level of fMRI Signal

Faces Houses

No clutter Homogeneous Clutter Heterogeneous Clutter No clutter Homogeneous Clutter Heterogeneous Clutter

pFs 0.188 ± 0.1 0.45 ± 0.08 0.44 ± 0.12 0.54 ± 0.12 0.67 ± 0.12 0.77 ± 0.1

LO 0.52 ± 0.08 0.67 ± 0.1 0.66 ± 0.1 0.55 ± 0.1 0.67 ± 0.11 0.76 ± 0.09

FFA 1.1 ± 0.1 1.1 ± 0.12 1.1 ± 0.12 0.26 ± 0.07 0.22 ± 0.08 0.33 ± 0.08

PPA −0.52 ± 0.05 −0.33 ± 0.05 −0.33 ± 0.06 0.1 ± 0.06 0.15 ± 0.06 0.27 ± 0.05

Percent signal change (%) is presented for the two categories under the three clutter conditions for each of the ROIs (mean ± SEM ).
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across hemispheres using a weighted average based on
the relative volumes of the areas, as no differences were
found between the two hemispheres.
In object general areas, the overall response was modu-

lated by the presence of the clutter regardless of its type.
Two-way repeated-measures ANOVA with clutter condition
and category as within-subject factors revealed significant
effect for clutter condition (pFs: F(2, 30) = 15.85, p <
.001; LO: F(2, 30) = 15.97, p < .001) and no interaction,
F(2, 30) < 1.5, p > .25. In both pFs and LO, the response
to the no-clutter condition was significantly smaller than
the homogeneous and heterogeneous clutter conditions,
t(15) > 4.1, p< .001, and there was no difference between
the two types of clutters, t(15) < 1.4, p > .19.
In category-selective areas, the FFA and PPA, we found

different effects: clutter had no effect on the average fMRI
response in the FFA ( p> .3) but did modulate the average
response to the target stimuli in the PPA. In the PPA,
repeated-measures ANOVA with clutter condition and cate-
gory as within-subject factors revealed a significant effect
of clutter condition, F(2, 30) = 27.2, p < .001, and no
interaction, F(2, 30) = 2.85, p > .07. The three clutter
conditions were significantly different from each other,
t(16) > 2.4, p < .03, with the smallest response to the
no-clutter condition and the largest response to the hetero-
geneous clutter condition.
We concluded that, although the average response carry

some information about the clutter display in the LOC
and PPA, it might comply to the number of presented
stimuli, rather than the type of clutter, in particular in the
LOC. This may be consistent with previous evidence for
retinotopic organization in these areas (e.g., Brewer, Liu,
Wade, &Wandell, 2005; Hasson, Levy, Behrmann, Hendler,
& Malach, 2002; Sereno, Pitzalis, & Martinez, 2001). How-
ever, the voxelwise pattern provides additional data com-
pared with the average signal regarding the information
conveyed in the neural response, as was demonstrated by
both the current study and many previous studies (e.g.,
Haynes & Rees, 2006; Haxby et al., 2001).

Analysis of Eye Movements

Eye tracking data inside the scanner were collected and
analyzed for two participants during scanning to ensure
that the participants maintained fixation throughout the
experiment. Analysis of eye position showed that partici-
pants were fixating on the fixation dot without moving
their eyes toward the center of the target stimuli across
all the experimental conditions. The mean x and y coordi-
nates across conditions and runs overlapped with the fixa-
tion dot for both participants. We further wanted to ensure
that there were no differences in eye positions across con-
ditions. For each participant, the x and y coordinates were
averaged for each condition and run. Then two-way
repeated-measures ANOVA was computed for each coordi-
nate, with category and clutter condition as within-subject
factors, for each participant separately (Axelrod & Yovel,

2012; Schwarzlose, Swisher, Dang, & Kanwisher, 2008).
For the two participants and two coordinates, there was
no main effect of category or clutter condition and no
interaction between the two ( p > .05). Similar analysis of
the standard deviation of each coordinate in each condi-
tion and run showed no main effect of category or clutter
condition and no interaction between the factors for both
participants ( p > .05), implying that the variability of eye
position was similar across the experimental conditions.

DISCUSSION

The current study investigated the neural representation
of target objects when presented simultaneously with
irrelevant nontarget objects (clutter), simulating real-world
cluttered scenes containing target objects required for
goal-directed behavior. Furthermore, by manipulating the
variation among irrelevant objects, we examined how dif-
ferent types of clutter may influence the representation
of target objects in high-level visual object areas. Specifi-
cally, we showed that a heterogeneous but not homo-
geneous clutter (pop-out) interfered with decoding of
target objects in the pFs part of the object area. Consistent
with that, complementary analysis of the similarity among
the response patterns of the two clutter types and the
isolated display revealed that the response pattern to an
isolated target object was more similar to its pattern when
presented with a homogeneous clutter than when pre-
sented with a heterogeneous clutter. Interestingly, decod-
ing of preferred target objects in category-selective areas
(i.e., faces and houses in the face and place-selective
areas) were not affected by the presence of the clutter or
the type of the clutter.

The effect of homogenous and heterogeneous clutter
on the representation of target stimuli has been shown
long ago in behavioral studies (Duncan & Humphreys,
1989; Treisman & Gormican, 1988), and their neural cor-
relates have been demonstrated for simple visual stimuli
in both neurophysiological (Kastner, Nothdurft, & Pigarev,
1999; Nothdurft, Gallant, & Van Essen, 1999; Knierim &
van Essen, 1992) and neuroimaging (Beck & Kastner,
2005) studies in early visual areas. More recent studies
have examined the representation of multiple objects in
higher-level visual areas. Decreased decoding performance
was found for target objects presented simultaneously
with one other object, compared with objects presented
in isolation (Reddy & Kanwisher, 2007), indicating the
cost of clutter and in line with a previous evidence for
the processing of context information in LOC (Altmann,
Deubelius, & Kourtzi, 2004). Here, we expanded these
findings by using clutters comprising multiple objects as
well as different types of clutters and showed that hetero-
geneous but not homogenous clutter interferes with the
target representation. Findings from other studies, mainly
focusing on target objects presented in natural scenes
containing multiple objects, have demonstrated that cate-
gorical information about single objects embedded in a
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scene could be well extracted from their multivoxel pattern
response (Peelen et al., 2009). Furthermore, a scene could
be well represented based on the information obtained by
its constituent objects (MacEvoy & Epstein, 2011; Park,
Brady, Greene, & Oliva, 2011). Manipulation of the type
of clutter in our study allowed us to show that different
types of clutter may differently influence the representa-
tion of a task-relevant target object.

In contrast to the effect of clutter that we found in
LOC, our results showed that, although the addition of
the nontarget objects to a preferred target object (faces
and houses) was represented in their category-selective
brain areas (FFA and PPA), the decoding of preferred
target objects was not modulated by the presence of
clutter. These findings are in line with the robustness to
clutter previously demonstrated in these areas when a
target was presented with one nontarget object (Reddy &
Kanwisher, 2007). This dissociation between general object
areas and category-selective areas may imply that, although
object general areas represent information about both
targets and surrounding objects, specialized category-
selective areas disregard the irrelevant information of non-
preferred stimuli. These findings may be consistent with
recent behavioral studies showing pop-out effect for faces
even when presented among heterogeneous object display
(Hershler & Hochstein, 2005). Future studies are needed
to assess whether the same remains when the irrelevant
clutter is composed of multiple preferred objects, like
displays of faces in a crowd.

Another issue to consider is the difference we observed
between the pFs and LO. For both areas, we found that
clutter information was represented, but it significantly
interfered with decoding of the target objects in the pFs
but not in the LO. The decoding and similarity analyses
provide different and complementary information about
the effect of clutter on object representation. The decoding
analysis measures the discriminability between conditions,
and we used it here to assess the level of discrimination
between the target objects (face and house) within each
of the three clutter types. Therefore, it reflects the nature
of the representation of the target objects themselves. The
similarity analysis measures the relative distance between
the representations of two conditions in the representa-
tional space. We compared within-category correlations
between the no-clutter condition and each of the clutter
conditions, thus measuring the representation of the
entire display (i.e., target and clutter), rather than the tar-
get objects per se. Therefore, the effect of clutter type
found in LO using the similarity analysis, but not the de-
coding analysis, implies that clutter is represented in LO
to some extent but does not modulate the discriminability
of the target objects as it does in the pFs. Other studies
also showed differences between the two areas in regard
to representation of multiple-object displays (MacEvoy &
Epstein, 2011): Prediction of scene representations from
their constituent objects failed to exceed chance level in
the pFs but was above chance level in the LO. Both these

results and the results presented in the current study sug-
gest that target object representations are modulated by
the surrounding objects in pFs, but not in LO. However,
further studies are required to clarify the distinctive roles
of the pFs and LO in the processing of multiple-object dis-
plays. It is noteworthy that all ROIs exhibited discrimina-
tion between the target object categories significantly
above chance level for all clutter conditions: Even when
information about the clutter interfered with decoding,
the target objects could still be well discriminated, in
accordance with the high success rate in the task across
all conditions. This implies that irrelevant clutter infor-
mation could be still filtered out efficiently, even in the
pFs, though to a lesser extent.
Finally, our findings raise an important question regard-

ing the neural coding scheme that may underlie the effect
of irrelevant clutter objects on the response to target ob-
jects. One possibility is that information about each of
the irrelevant nontarget objects is represented as random-
ized noise added to the pattern of the target object repre-
sentation, without an actual representation for the category
of each object. According to this coding scheme, the
magnitude of added noise increases with the number of
objects, and a large amount of noise then leads to an inter-
ference with decoding. This view predicts that the number
of objects in a clutter, rather than the variation of their
identity or category, will influence decoding of target stim-
uli. Thus, homogeneous and heterogeneous clutters are
expected to interfere with decoding to a similar extent
relative to an isolated display as long as they contain the
same number of irrelevant objects. A second coding
scheme is based on previous theoretical (Bundesen,
Habekost, & Kyllingsbaek, 2005, 2011) and experimental
(MacEvoy & Epstein, 2009, 2011; Reddy et al., 2009;
Zoccolan, Cox, & DiCarlo, 2005; Reynolds, Chelazzi, &
Desimone, 1999) studies that suggested weighted average
mechanism for the representation of multiple simul-
taneously presented objects. According to this coding
scheme, each of the task-irrelevant nontarget objects is
represented with its own pattern, additionally to the pat-
tern of the target object, and these patterns sum up, pos-
sibly via a weighted average mechanism, based on their
relative behavioral significance, to generate a combined
response pattern. The relative weights may vary between
areas, also depending on the category of the target object
and the nontarget objects, as well as other factors such
as attention, thus leading to reduced decoding in some
of the areas, and preserved performance in others. Impor-
tantly, this coding scheme predicts that the representa-
tions of target objects may be sensitive to the variability
among nontarget objects, thus yielding different effects
for homogeneous and heterogeneous clutters. For exam-
ple, nontargets in a heterogeneous display may attract
more attention than in a homogeneous display; thus, some
of the areas have a larger weight in the final response pat-
tern. Our findings, showing differences in the responses
to the two types of clutters in the pFs and LO, together
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with previous evidence demonstrating the processing of
multiple objects and clutter information in object general
areas (MacEvoy & Epstein, 2009, 2011; Reddy et al., 2009;
Reddy & Kanwisher, 2007; Altmann et al., 2004) seem
consistent with this latter putative mechanism.
Although the nontarget objects may gain some consider-

able representational weight in the object general area,
these weights may be minimized in the more fine-grained
selective processing in the PPA and FFA, thus resulting in
the lack of effect for clutter type that we found in these
areas. However, given there was no differential effect for
the two clutter types in these regions, it may be that the
nontarget objects are represented as randomized noise,
and our data would not allow us to conclude which coding
scheme may be at work there. In conclusion, neural repre-
sentations of objects embedded in clutter displays have
gained considerable interest in the past few years. This
study is the first to show the effect of different types of
clutters on the neural representation of target objects.
Specifically, we demonstrated that heterogeneous clutter,
but not homogeneous one (pop-out display), interfered
with the representation of target objects in the object gen-
eral area. Further questions that should be investigated in
future studies are how representations of target objects
are affected by other types of clutters and contextual dis-
plays, which are perceptually and/or semantically related
to the target object.
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