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Abstract 

Face recognition is a computationally challenging task. Deep convolutional neural networks 

(DCNNs) are brain-inspired algorithms that have recently reached human-level performance in 

face and object recognition. However, it is not clear to what extent DCNNs generate a human-like 

representation of face identity. We have recently revealed a subset of facial features that are used 

by humans for face recognition. This enables us now to ask whether DCNNs rely on the same facial 

information and whether this human-like representation depends on a system that is optimized 

for face identification. In the current study, we examined the representation of DCNNs of faces 

that differ in features that are critical or non-critical for human face recognition. Our findings show 

that DCNNs optimized for face identification are tuned to the same facial features used by humans 

for face recognition. Sensitivity to these features was highly correlated with performance of the 

DCNN on a benchmark face recognition task. Moreover, sensitivity to these features and a view-

invariant face representation emerged at higher layers of a DCNN optimized for face recognition 

but not for object recognition. This finding parallels the division to a face and an object system in 

high-level visual cortex. Taken together, these findings validate human perceptual models of face 

recognition, enable us to use DCNNs to test predictions about human face and object recognition 

as well as contribute to the interpretability of DCNNs.  

 

Keywords: Face Recognition, Deep Convolutional Neural Networks, Artificial Intelligence, High-

level visual system, Face Space, Explainability 

 

Highlights: 

 Deep convolutional neural networks (DCNNs) use human-like facial features. 

 Sensitivity to these features is larger in face- than object-trained DCNNs. 

 Sensitivity to these features is larger in higher than lower layers of DCNN. 

 Sensitivity to these features is highly correlated with DCNN performance. 

 Face-trained DCNNs are valid computational models of human face recognition. 
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1. Introduction 

Recent advances in artificial intelligence (AI) enable machines to solve complex tasks at the 

level of human performance. This remarkable achievement can potentially offer a computational 

model for human intelligence. However, in most cases, these algorithms and the nature of the 

representations that they generate are too complex to provide an interpretable solution that can 

be tested in humans (Voosen, 2017). To overcome this challenge, we can more simply ask whether 

these algorithms rely on the same representation that humans use to perform the task. In case 

they do, this will both validate models that are based on human behavior as well as advance 

algorithm interpretability. Here, we use this approach to explore one of the most well-known 

achievements of AI, the ability to recognize faces.  

Face recognition is a computationally challenging task that requires discrimination of 

numerous images to different identities and at the same time identifying the same person across 

highly variable appearances. Discovering the solution for this taxing task has been an ongoing 

effort of both cognitive and computer scientists. The goal of research in both fields is to uncover 

the nature of the representation that determines the identity of a face (O’Toole, Castillo, Parde, 

Hill, & Chellappa, 2018; Taigman, Yang, Ranzato, & Wolf, 2014; Valentine, 2001). But do humans 

and machines reach a similar solution? Do they rely on the same facial information for face 

recognition? Answering this question by integrating the complementary approaches used in these 

two disciplines, will advance our understanding of both human and machine face recognition, and 

ultimately offer a possible solution to this unresolved problem.   

To assess whether DCNNs generate a human-like face representation, we employed our 

recent findings based on human psychophysical experiments, which revealed a subset of view-

invariant facial features that are critical for human face recognition (Abudarham & Yovel, 2018; 

Abudarham, Shkiller, & Yovel, 2019; Abudarham & Yovel, 2016). To demonstrate that these 

features are critical for human face recognition, we used a reverse-engineering approach and 

defined critical features as features that changing them changes the identity of a face. Fig. 1 shows 

the effect of changing critical and non-critical features on the identity of George Clooney. Our 
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findings showed that none of the celebrity faces that we tested was recognized after replacing 4-

5 critical features (Abudarham, Shkiller, & Yovel, 2019). Similar findings were also reported in an 

identity matching task of pairs of unfamiliar faces (Abudarham & Yovel, 2016). In other words, 

pairs of unfamiliar faces that differed in 5 critical features were judged as different identity faces. 

 

 

 

 

 

 

 

 

 

 

 

 

These findings, however, were based on perceptual judgments performed by humans, on 

a limited set of pre-selected, namable facial features, such as eye shape or lip thickness. Thus, it is 

necessary to validate the relevance of these features for face recognition with a system that has 

reached human-level performance but is agnostic to the semantic meaning of these features. 

Deep convolutional neural networks (DCNNs) optimized for face recognition have recently 

reached human-level performance (Phillips et al., 2018; Taigman et al., 2014) and are therefore 

ideal to validate models of human perception.  

There are two main advantages for using DCNNs to validate models of human visual 

processing, on top of their human-level performance: First, DCNNs have a brain-inspired 

hierarchical architecture. Recent studies have shown that earlier layers of DCNNs represent low-

 
Figure 1: An example demonstrating the effect of feature changes on face identity (George 
Clooney). Changing five critical features (top row) changes the identity of a face, whereas 
changing five non-critical features (bottom row) did not change the identity of Clooney (for more 
details see Abudarham & Yovel, 2016; Abudarham et al., 2019).  
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level visual features, similar to primates’ early visual cortex; intermediate layers correspond to 

representations in mid ventral temporal cortex (Grossman et al., 2019) and high-level layers 

represent high-level visual features that support object/face recognition (Khaligh-Razavi & 

Kriegeskorte, 2014; Kubilius, Bracci, & Op de Beeck, 2016; Yamins & DiCarlo, 2016). We therefore 

predict that sensitivity to the critical facial features used by humans will emerge at higher layers 

of the network. Second, it is well-established that faces engage specialized neural mechanisms 

that diverge from a general object processing system at higher levels of visual processing. With 

DCNNs, we can fully control the type of stimuli that these models are trained with, and this way 

separately model a face recognition and an object recognition system. We predict that sensitivity 

to the critical facial features will be found in higher layers of a system that is optimized for face 

recognition but not for object recognition. Support for these predictions will not only advance our 

understanding of human face recognition but can also inform face-trained DCNNs, which are 

based on millions of parameters and were therefore criticized for providing non-interpretable 

solutions (Marcus, 2018; Voosen, 2017).  

2. Study 1 

In a series of studies, we discovered a subset of view-invariant facial features that are used 

by humans to recognize faces (Abudarham & Yovel, 2018; Abudarham et al., 2019; Abudarham & 

Yovel, 2016). To discover these features, we asked human participants to compare pairs of faces 

presented from the same view or different views on a list of 20 facial features. For example, 

participants were asked to indicate which of two faces has thicker lips, thicker eyebrows, a larger 

nose and so on. Results showed that humans show high perceptual sensitivity for a subset of these 

features for both same view and different view faces (for more details see Abudarham & Yovel, 

2016). This subset of facial features includes the hair, lip-thickness, eye-color and shape, and 

eyebrow-thickness. We further found that when these features are modified, faces cannot be 

identified and are judged as different identities (see Figs. 2A and 1, for an example of George 

Clooney). We therefore named these view-invariant features, critical features, as they are critical 

for the identity of a face. In contrast, we discovered another set of features that were not well 

discriminated across faces presented from the same or different head-views. These features 

include eye-distance, face-proportion, mouth-size and nose-shape. We then found that changing 
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faces by modifying these features did not change the identity of a face. These features were 

therefore named non-critical features (Figs. 2A and 1).  

To examine the sensitivity of DCNNs to critical and non-critical facial features, we 

computed the Euclidian distance between face-representations of two types of face-pairs: an 

original face vs. the same identity in which we modified critical features, and an original face vs. 

the same identity in which we modified non-critical features. As a reference, we also measured 

the distance between same identity and different identity face pairs (see Fig. 2A). If the face-

trained DCNN is sensitive to the same critical/view-invariant features as humans, the distance 

between faces that differ in critical features will be larger than faces that differ in non-critical 

features. Furthermore, the distance between faces that differ in critical features will be similar to 

the distance between different identity faces. We further examined how the sensitivity to these 

features evolves from low-level to high-level layers of the network and whether it is specific to a 

DCNN that is trained for face but not for object recognition. 

3. Methods: 

3.1. Stimuli:  

25 face identities were used to generate image pairs. For each of the 25 identities we had 

an original image, an image in which we replaced critical features (modified from the original 

image), and an image in which we replaced non-critical features (also modified from the same 

original image) (for more information about the creation of the face images, see (Abudarham & 

Yovel, 2016)). In addition, we had a different non-modified image of that person, which we used 

as a reference image. Thus, we created four image pairs: Same– the reference image vs. the 

original image, Different– the reference image vs. a reference image of a different identity, Critical 

features– the reference image vs. the original image with different critical features, and Non-

Critical features– the reference image vs. the original image with different non-critical features 

(See Fig. 2A for example face pairs). 
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3.2. Face-trained and Object-trained DCNNs: 

For the object-trained DCNN we used the pre-trained inception_v3 DCNN from 

https://pytorch.org/docs/stable/torchvision/models.html, that was trained to classify the 1000 

categories of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC, http://image-

net.org/challenges/LSVRC/). This object-trained DCNN was not trained for face identification but 

only for object classification. For face training we took the same inception_v3 DCNN (defined in 

https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py), and trained it 

on a subset of the VGGFace2 face image dataset 

(http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/), by randomly selecting 1000 identities from 

the dataset, taking the first 300 images for each identity as train data, and 50 images per identity 

as validation data. We started with random weights, using the default training parameters of 

https://github.com/pytorch/examples/blob/master/imagenet/main.py and trained the network 

for 120 epochs of 1000 iterations each.  

To measure the DCNN level of performance on a face verification task, we used the 

standard Labeled Faces in the Wild (LFW) benchmark (http://vis-www.cs.umass.edu/lfw/). This 

test was performed by running a forward pass (inference) for LFW images and extracting the 

representations from the penultimate fully connected (fc) layer of each DCNN. We then measured 

the Euclidian distance between LFW image pairs and calculated the best accuracy measure 

(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑢𝑚𝑏𝑒𝑟 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
) across all possible distance thresholds (between 

the minimum and maximum distance). Accuracy of the face-trained DCNN on LFW was 96.5%, 

whereas the accuracy of the object-trained DCNN was 69.8%. The performance of the face-trained 

DCNN on LFW (96.5%) is somewhat lower than the current state-of-the-art (http://vis-

www.cs.umass.edu/lfw/results.html),  because the training set that we used was limited to 300K 

images, but is still very close to human performance level (97.53%) (http://vis-

www.cs.umass.edu/lfw/results.html#Human). 

To assure that results are generalized to other DCNN, the same training set and procedure 

was used to train the DCNN VGG-16 

https://pytorch.org/docs/stable/torchvision/models.html
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
https://github.com/pytorch/examples/blob/master/imagenet/main.py
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/results.html
http://vis-www.cs.umass.edu/lfw/results.html
http://vis-www.cs.umass.edu/lfw/results.html#Human
http://vis-www.cs.umass.edu/lfw/results.html#Human
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(https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py). Performance of 

VGG-16, trained on the same 300K images, on LFW was 94.3%.  

3.3. Extracting representations from DCNNs:  

 To extract the representations that were generated by the DCNNs, we ran the trained 

models in evaluation mode on a predefined set of image stimuli (see Stimuli section above). The 

face images were first aligned using the MTCNN face alignment algorithm (Xiang & Zhu, 2017). 

Following alignment, the images were normalized with the standard ImageNet normalization 

(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]).  

 We first measured the pixel-based representations of all face images. We then examined 

the representations at the penultimate, fully connected (fc) layer. This is the layer that generates 

the final representation that is transformed to the output probability layer. We then examined the 

representations across the different layers of the network:  "Conv2d_1a_3x3", "Conv2d_2a_3x3", 

"Conv2d_2b_3x3", "Conv2d_3b_1x1", "Conv2d_4a_3x3", "Mixed_5b", "Mixed_5c", "Mixed_5d", 

"Mixed_6a", "Mixed_6b", "Mixed_6c", "Mixed_6d", "Mixed_6e", "Mixed_7a", "Mixed_7b", 

"Mixed_7c".  

 To measure the distances between representations we computed the Euclidian distance 

between pairs of faces (python’s numpy linalg.norm method). Because this distance is influenced 

by the size of each layer, the absolute values cannot be compared directly across layers. To 

compare between dissimilarity measures across different layers and between DCNNs and humans 

we normalized the distance scores by dividing the measured distances by the maximal distance 

value in each layer across all stimuli and conditions. This yielded a normalized score that ranged 

from 0-1 (see Figure S3 for absolute distance scores). 

4. Results 

4.1. The Representation of Critical Facial Features in Face-trained and Object-trained DCNNs 

Figure 2A shows an example of the four types of face pairs. We performed an ANOVA with 

Face Type (Same, Non-Critical, Critical, Different) as a repeated measure and normalized distance 

between face pairs as the dependent variable. Figure 2B (left) shows performance on an identity 

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
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similarity rating task performed by humans (reported in Abudarham et al., 2019). A repeated 

measure ANOVA reveals a main effect of Face Type (F(3,72) = 538.78, p < .001, 2
p = .95). Post hoc 

comparisons (corrected for multiple comparisons) showed that all face pairs differ significantly 

from one another (t(24) > 17, p < .0001, Cohen’s d > 3.3), except no difference between faces that 

differ in critical features and different identity faces (p = .76). These findings indicate that changing 

critical features changes the identity of a face. Figure 2B (right) shows the distances between face 

pairs based on pixel-based representation. A significant effect of Face Type (F(3,72) = 7.22, p < 

.001, 2
p = .23) reflects a smaller distance between same identity face pairs than all other face pairs 

(t(24) > 3.2, p < .001, Cohen’s d range 0.66-0.84), but no difference between faces that differ in 

non-critical features, critical features and different identity faces (t(24) < 1, p > .65, Cohen’s d 

range 0.08-0.17). Thus, perceptual differences between faces that differ in critical and non-critical 

features are not due to image-based differences. 

We then examined the average distances across all face identities of each of the face pairs, 

based on the representation in the penultimate, fully connected (fc) layer of the face-trained and 

the object-trained DCNNs (Fig. 2C). A mixed ANOVA with Training Type (Face, Object) as a between 

groups factor and Face Type (Same, Non-Critical, Critical, Different) as repeated measures on 

dissimilarity scores of all face pairs revealed a significant interaction between the two factors 

(F(3,144) = 57.37, p < .001, 2
p = .54). The difference between critical and non-critical features was 

larger in the face-trained than the object-trained networks (F(1,48) = 10.65, p < .002, 2
p = .18). 

The difference between Same and Different pairs was also larger in the face-trained than object-

trained networks (F(1,48) = 116.55, p < .001, 2
p = .71).   

We then compared the representation of the fc layer of the object or face-trained DCNNs 

to human’s similarity ratings of the same stimuli (Fig. 2B, left). A mixed ANOVA with System 

(Human, DCNN) as a between-subject factor and Face Type (Same, Non-Critical, Critical, Different) 

on dissimilarity scores of all face identities, was performed separately for the face-trained and the 

object-trained DCNNs. These ANOVAs revealed a significant interaction for humans and object-

trained DCNN (F(3,144) = 135.58, p < .001, 2
p = .74) and a much smaller difference between 

humans and face-trained DCNN  (F(3,144) = 9.84, p < .001, 2
p = .17). As can be seen in Figure 2 (B, 

C), distances between the different types of face pairs were relatively similar for the object-trained 
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DCNN, whereas both humans and the face-trained DCNN showed a larger difference between 

same and different identity pairs, as well as a larger difference between critical and non-critical 
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feature changes relative to the object-trained DCNN (see Fig. S1 for the contribution of individual 

facial features to the distance between face pairs).  
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We then examined the sensitivity to critical features across the different layers of the face-

trained and object-trained DCNNs. Inspection of Figure 2D shows that the sensitivity to face 

identity (difference between Same and Different pairs) and to critical features in particular 

(difference between critical and non-critical features), increases gradually across the layers, 

reaching its maximal value at higher layers of the face-trained DCNN. The face representations at 

earlier layers of both DCNNs, and the higher layers of the object-trained DCNN, were less sensitive 

to face identity as well as to critical features. Indeed, a mixed ANOVA with Training Type (Face, 

Object) as a between groups factor and Layer (all 17 layers) and Face Type (Same, Non-Critical, 

Critical, Different) as repeated measures, on the dissimilarity scores of 25 face identities, revealed 

a significant interaction of the three factors (F(48,2304) = 30.53, p < .001, 2
p  = .39).  

4.2 Face training for specific layers (i.e. Fine Tuning) of the object-trained DCNN:  

Comparison of the face-trained and object-trained DCNNs indicates that the 

representation of critical and non-critical images at early layers of the networks is similar. These 

findings indicate that selective training of the final layers of the object-trained network on face 

recognition may suffice to generate a representation that is sensitive to critical features. As can 

be seen in Figure 2D, the stage in the hierarchy of processing where the representations of the 

two DCNNs diverge is at 3-5 last layers of the DCNNs. To further examine the exact point of 

Figure 2: A. An example of the four conditions with the face of George Clooney, including a face pair of 
same identity faces, a face pair in which non-critical features were modified, a face pair in which critical 
features were modified and different identity faces. The effects are similar for unfamiliar faces B. left: 
Normalized human similarity ratings indicate no difference between faces that differ in critical features 
and different identity faces. Right: Distances between the pixel-based representations of the four face 
pairs indicate no difference between faces that differ in critical features non-critical features and different 
identity faces. C. The representation at the penultimate, fc layer of a face-trained DCNN (left) and object-
trained DCNN (left). D. The representations across the different DCNN layers show that sensitivity to 
critical features emerges at higher layers of the face-trained DCNN. Low-level layers of both DCNNs and 
high-level layers of the object-trained DCNN were less sensitive to critical features (Critical > Non Critical) 
as well as to face identity (Different > Same).  E. Training the final layers of the object-trained DCNN on 
face identification (fine-tuning) starting from layer mixed_7b (left) generated a representation that was 
similar to the fully-trained face DCNN, whereas training that started from layer mixed_7c (FT1) generated 
a representation that was more similar to an object-trained network. Error bars indicate the standard 
error of the mean dissimilarity across image pairs. 
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divergence, we took the object-trained DCNN and re-trained it with the same face images that 

were used to train the face-DCNN (i.e. 1000 identities with 300 images each), updating the weights 

of each layer at a time, until the representation was similar to the fully face-trained network (a 

procedure known as "fine-tuning") (see Fig. 2E).   

First, we trained the weights between layer mixed_7c and layer fc (we name this condition 

fine-tuning 1 (FT1)). Performance on LFW was 83.3%. A repeated measure ANOVA with Training 

type (Full, FT1) and Face Type (Same, Non-Critical, Critical, Different) on the representation of the 

last layer, revealed a significant interaction (F(3,72) = 29.88, p < .001, 2
p = .55), indicating highly 

different face representations for the two DCNNs. Next, we repeated the same procedure, for the 

weights between layer mixed_7b and Mixed_7c (we name this condition fine-tuning 2 (FT2)). 

Performance on LFW was 95.7%, similar to the performance of the fully trained face network. Also, 

the difference between the representations of the fine-tuned and fully-trained networks was not 

significant (F(3,72) = 1.05, p = .38, 2
p = .04). As can be seen in Figure 2, the representations of a 

fully-trained DCNN (Fig. 2C) and FT2 (Fig. 2E) are nearly identical. 

Finally, to assess whether sensitivity to critical features is associated with better 

performance on a face identification task, we measured the performance of each of the layers of 

the face-trained DCNN on the benchmark 

face verification task (LFW), as explained in 

the Methods section of Study 1. We then 

computed a measure of sensitivity to critical 

features, by subtracting the distances 

between the representations of pairs that 

differ in critical features and pairs that differ 

in non-critical features for each layer. A 

higher difference indicates greater 

sensitivity to critical features. We then 

computed the correlations between the two 

measures. Figure 3 shows a very strong 

correlation (r = 0.98) indicating that 

Figure 3: Performance on a benchmark face 

verification task (LFW) for each of the 17 layers of the 

network is highly correlated with sensitivity of each 

layer to critical features. Higher sensitivity to critical 

features is associated with higher performance on a 

face matching task, highlighting their importance for 

face identification. The shaded area indicates 95% 

confidence interval for the linear model. 
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increased sensitivity to critical features used by humans, is associated with improved performance 

of the DCNN on a benchmark face identity task (LFW).    

To examine whether the pattern of findings that was found with Inception-V3, can be generalized 

to other DCNNs, we trained another commonly used network, VGG-16 (Simonyan & Zisserman, 

2014), with the same face and object data sets, and performed the same analysis. Figure 4 shows 

that results of VGG-16 were very similar to Inception-V3 (see Fig. 2D), with a larger difference 

between Different and Same identity faces, and between critical than non-critical features, in 

higher layers of a face-trained DCNN than an object-trained DCNN, and a similar pattern of results 

in lower layers of both networks. A mixed ANOVA with Training Type (Face, Object) as between 

groups factor and Face Type (Same, Non-Critical, Critical, Different) as repeated measures on 

dissimilarity scores of 25 face pairs revealed a significant interaction between the two factors 

(F(18,864) = 14.49, p < .001, 2
p = .23), indicating different patterns of results in a face and object-

trained network. 

 

 

 

 

 

 

 

 

 

 

 

5. Discussion 

Results of Study 1 indicate that face-trained DCNNs are sensitive to the same critical/view-

invariant features used by humans for face recognition. Importantly, the sensitivity to these facial 

features emerges only at the higher layers of the face-trained DCNNs. Object-trained DCNNs were 

 

Figure 4: Results with VGG-16 trained with faces (left) or objects (right) were similar to 

results revealed with Inception-V3 (see Fig. 2D). Error bars indicate the standard error 

of the mean dissimilarity across image pairs. 
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significantly less sensitive to critical features in higher-layers of the network. Interestingly, the 

representations of faces in low-level layers were similar in the face and object-trained DCNNs. 

Consistent with these findings, retraining of the last two layers of an object-trained network with 

faces, generated similar sensitivity to critical features and performance level on a face verification 

task, as a DCNN that was fully trained with faces. These patterns of results are consistent with the 

architecture of the primate visual system, which extracts similar features from faces and objects 

in low-level visual regions but diverge to a face and an object system only at high-level visual 

processing. Thus, face recognition depends on a system that is specifically tuned to face-specific 

features. Indeed, the sensitivity to these view-invariant, critical facial features was strongly 

correlated across the DCNN layers with performance on a face verification task that requires 

matching faces across variable appearances (Fig. 3). Higher layers showed increased sensitivity to 

critical features than lower layers and also improved performance on a benchmark face 

verification task (LFW).   

It is important to note that we do not suggest that face-trained DCNNs are specifically 

tuned to measure lip-thickness or eye-shape, nor do we suggest that face neurons are tuned that 

way. We do propose, however, that the type of information that humans and DCNNs rely on for 

face recognition is correlated with the critical features that we discovered. Our previous 

psychophysical studies indicated that critical features are useful for face identification because 

they remain invariant across different head-views (Abudarham & Yovel, 2016). These findings 

imply that the sensitivity to critical features that we reveal in higher layers of the network will 

correspond with the emergence of a view invariant representation of face identity. We examined 

this hypothesis in Study 2.  

6. Study 2 

Results of Study 1 show that high-performance face-recognition in a face-trained DCNN, is 

correlated with sensitivity to the subset of view-invariant, critical facial features used by humans 

to recognize faces. Face recognition depends on the generation of a view-invariant representation 

of faces, to enable generalization and discrimination of faces across different appearances. 

Therefore, the sensitivity of the face-trained but not object-trained systems to critical facial 
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features, predicts that the face-trained DCNN will generate a view-invariant face representation, 

whereas the object-trained DCNN will generate a view-specific representation. The hierarchical 

architecture of DCNNs enables us also to examine at what stage of processing the view-invariant 

representation is generated. Single unit recording studies of the face areas of the macaque have 

shown that a view-invariant representation is generated in the anterior face area (AM), whereas 

posterior face areas show a view specific representation (ML) (Freiwald & Tsao, 2010). 

Accordingly, we expect a view-specific representation in earlier layers of the DCNN and a view-

invariant representation in the higher layers. Freiwald & Tsao (2010) also showed evidence for a 

mirror-symmetric representation (i.e. similar response to left-right head-view faces) at 

intermediate stages of face processing, consistent with human fMRI findings (Axelrod & Yovel, 

2012; Kietzmann, Swisher, König, & Tong, 2012).  

To examine whether, and at what stage of processing, a view-invariant representation is 

generated in a face-trained and an object-trained network, we measured the distances between 

representations generated for images of the same identity in different head views, relative to pairs 

of different identity same view faces (Fig. 5A). A view-invariant representation is indicated by a 

larger distance between different identity faces in the same head view, than same identity faces 

presented from different views. A view-specific representation is indicated by a larger distance 

between same identity faces presented from different views, than different identity faces 

presented from the same view.  

7. Methods 

7.1. Stimuli:  

To quantify view-invariance we used images of 15 identities from the color FERET face-image 

dataset (Phillips, Wechsler, Huang, & Rauss, 1998). For each identity we took four images: a frontal 

image, hereby referred to as the “reference” image; a second frontal image, different from the 

“reference” image, hereby referred to as the “frontal” image; a quarter-left image, and a half-left 

image. All face images were of adult Caucasian males, had adequate lighting, with no glasses, hats 

or facial hair. The images were cropped just below the chin to leave only the face, including the 
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hair and ears. Four types of face pairs were generated. Same Frontal, Same quarter view, Same 

half view and Different Frontal (Fig. 5A).  

7.2. Quantifying view-invariance of face-representations in DCNNs: 

We computed the Euclidian distance between the representations of the following pairs of faces 

for the 15 different identities: Same identity faces- same view, Same identity faces – quarter view, 

Same identity faces – half view, Different identity faces – same view (see Fig. 5A). The face 

alignment procedure failed to detect 4 of the half-view faces, for this reason we only had 11 face 

pairs in the frontal – half-view condition. These distances were computed across the different 

layers of the face-trained, and object-trained DCNNs. The face images used in the current study 

enable us to also examine whether and at what stage of processing face-trained DCNNs generate 

a mirror-symmetric representation. We expand on this topic in supplementary material. 

8. Results 

8.1 A view-invariant representation in Face-trained but not Object-trained DCNNs 

 

Figure 5 depicts the average normalized Euclidian distances between the representations 

generated by the face-trained and object-trained DCNNs, for pairs of images of the three same-

identity conditions – same identity frontal view, same identity quarter-left view, same identity 

half-left view as well as the different identity-same frontal view (see Fig. 5A), in the penultimate fc 

layer (Fig. 5B) and across all layers (Fig. 5C). A view-invariant representation is indicated by smaller 

distances for same-identity pairs across different views, compared with images of different 

identities from the same view. A view-specific representation is indicated by similar distance 

scores of same and different identity faces from the same view and higher distance for same 

identity faces from different views. 

A repeated measure ANOVA with DCNN training (Face, Object) and Head-view (Same 

Frontal, Same quarter left, Same half left and Different frontal) on distances between face pairs in 

the penultimate, fc layer of the two DCNNs, revealed a significant interaction (F(3,63) = 40.49, p < 

.0001, 2
p = .67). This interaction reflects the view-invariant representation in the face-trained and 
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view-specific representation in the object-trained networks (Fig. 5B). In the face-trained DCNN, 

the distances between different identity faces were the largest and significantly different from 

distances between same identity faces across different head views (p < .001, corrected for multiple 

comparisons, Cohen’s d = 2.3 – 7.49). In contrast, for the object-trained DCNN the distances 

between different identity faces were significantly smaller than the distances for same identity 

different-view faces (p < .005, Cohen’s d = (-0.68) – (-1.8)).  

We also examined the representations across the different layers (Fig. 5C). A significant 

interaction between DCNN training, Head-view and Layer (F(48,1008) = 29.15, p < .0001, 2
p  = 

.58), indicates different representations for identity and head-view across layers in the two 

networks. Inspection of Fig. 5C shows that the representations in the face and object-trained 

DCNNs were similar at the initial layers, which showed a view-specific representation, but different 

for higher layers, which remained view-specific for the object-trained DCNN but became view-

invariant for the face-trained DCNN. This was indicated by higher dissimilarity for same identity 

faces across head views than different identity, and same identity faces within the same head-

view in lower layers of the face and object-trained DCNNs. In the higher layers of the DCNNs, 

starting at mixed-7c, we see a view invariant representation of face identity for the face-trained 

but not the object-trained DCNN.  (See supplementary material for report of a mirror-symmetric 

representation). 

Next we examined whether, similar to sensitivity to critical features, fine tuning of the last 

two layers of an object-trained DCNN on face identification, will generate a view invariant 

representation. Fig. 5D (right) shows that fine tuning of the last layer (FT1 - weights between layers 

Mixed_7c and fc) still generates a view-specific representation. A repeated measure ANOVA with 

Training type (Full, FT1) and Face Type (Same, quarter-left, half-left, Different) on the 

representation of the last layer, revealed a significant interaction (F(3,30) = 101.23, p < .001, 2
p = 

.91), indicating different face representations for the a fully face-trained and the FT1 DCNN. Next, 

we repeated the same procedure, after fine-tuning of another layer (FT-2 - the weights between 

layer mixed_7b and Mixed_7c). Here, the interaction was only marginally significant (F(3,30) = 

3.05, p = .04 (uncorrected), 2
p = .23) overall showing a view-invariant representation. As can be 
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seen in Figure 5, the representations of a fully-trained face DCNN (Fig. 5C-middle) and FT2 (Fig. 

5D, left) both generate a view-invariant representation of face identity.  
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To examine whether results generalize to other DCNN, we examined the representations of the 

four face pairs in VGG-16 that was trained with faces or objects, similar to Study 1. Figure 6 shows 

that results were similar to the findings we revealed with Inception-v3 (Fig. 5C). A significant 

interaction between DCNN training (Face, Object), Face Type and Layer (F(18,360) = 70.65, p < 

.0001, 2
p  = .78), indicating different representations for identity and head-view across the layers 

of the face and object-trained networks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A. To quantify view invariance, pairs of same identity faces from the same frontal view or 
different views as well as same-view different identity faces were used. B. The normalized Euclidian 
distances between the representations of each pair were computed based on pixel-based measures 
(left) and for the penultimate fc layer of the face-trained (middle) and object-trained (right) DCNNs. 
Results show higher dissimilarity for different identity same-view faces than same identity faces 
across head views - indicating an identity-based, view-invariant representation in the face-trained 
DCNNs. The object-trained DCNN shows higher dissimilarity for same identity different-view faces, 
than for different identity same-view faces, indicating a view-specific, identity-independent 
representation. C. The representations across the layers indicate a view-specific representation in 
both the face and object-trained networks for low-level and mid-level layers, but a view-invariant 
representation only for the higher-layers of the face-trained network. D. Re-training the final layers 
of object-trained DCNN with faces (fine-tuning) starting from layer mixed_7b (FT2) generated a view-
invariant representation that was similar to the fully-trained face DCNN, whereas training that stated 
from layer mixed_7c (FT1) generated a view-specific representation that was more similar to an 
object-trained network. Error bars indicate the standard error of the mean dissimilarity across image 
pairs. 

Figure 6: Results with VGG-16 that was trained with faces (left) or objects (right) were similar 

to results revealed with Inception-V3 (see Fig 5C). Error bars indicate the standard error of 

the mean dissimilarity across image pairs. 
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9. Discussion 

Results of Study 2 show that a view-invariant representation of face identity emerges at 

higher levels of processing of a system that is specifically tuned to faces. The face-trained DCNN 

was trained on different appearances of many different identities and this way learned which 

features are useful for the generation of a view-invariant face representation. Importantly, a 

network that was trained with objects and was able to classify 1000 different categories of objects 

across their different appearances, did not generate a view-invariant representation of face 

identity. The representation of the object-trained network was view-specific and was similar 

across its different layers to the representation that was generated in lower-level layers of the 

face-trained network. Finally, consistent with the sensitivity to critical features (Fig. 1E), fine tuning 

the last two layers of an object-trained network for face identification, generated a view-invariant 

representation of face identity that was similar to the fully trained face network.  These results 

show a correspondence between the generation of a view-invariant representation of face 

identity, the sensitivity to human-like critical features and performance level in face identity tasks, 

all emerge in high-level layers of a face-trained network.  

 In a recent study, Hill and colleagues (2019) examined the representation of the 

penultimate layer of a DCNN to face identity and head-view. Their findings show how information 

about both identity and head-view is preserved at the top layer of the network. These results are 

consistent with our findings that also show sensitivity to head view, as indicated by the differences 

between the same identity faces that differ in head views (the three blue bars in Fig. 5B), as well 

as to face identity, indicated by a larger distance between different identity and same identity 

faces (the red vs. the blue bars in Fig. 5B). Hills and colleagues examined only the top layer of a 

face-trained network, while our study shows that a view-invariant representation emerges at the 

top layer of a face-trained network, but not at its lower layers. We also show that a view-invariant 

representation does not emerge in an object-trained network that represent faces in a view-

specific manner.  

The emergence of a view-invariant representation at higher-level of face processing, 

following a view-specific representation at lower and mid-level face areas, is in line with findings 

reported in single unit recordings of face neurons in different face patches along the hierarchy of 
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the face network of the macaque (Freiwald & Tsao, 2010). In particular, a view-specific 

representation that was not sensitive to face identity was found in the posterior face-area (area 

ML) whereas a view-invariant, identity-selective representation was found in the more anterior 

face-area (area AM). This pattern of response parallels the DCNN representations of the face-

trained but not the object-trained network and indicates that the view-invariant representation 

depends on a system that is tuned to view-invariant, high-level facial features. One difference 

between the representation of head-view in DCNN and the primate face system was recently 

highlighted by Yildrim and colleagues (2020). Yildrim and colleagues (2020) examined the 

correspondence between the response of face neurons in different face areas of the macaque’s 

brain with a DCNN (VGG-16) and an inverse graphic model (EIG). They found that an inverse 

graphic model, but not the DCNN, displayed a mirror-symmetric representation in its intermediate 

(f4) layer, before a view-invariant representation emerged, similar to the primate brain. Our 

findings also show that a mirror-symmetric representation and a full view-invariant representation 

emerged at the same layer of a DCNN (VGG-16) (Fig. S2), unlike the hierarchy in the primate face 

system. Yildrim and colleagues have also shown that EIG was better correlated with human 

performance than VGG, in two tasks which require 3D information: matching of faces with no 

texture information or with fish-eye style shape deformation, and the “hollow-face illusion”. It will 

be interesting to test whether an EIG network, which explicitly codes 3D shape as well as texture 

information, codes the changes in the critical features described here, which humans use for face 

recognition. 

10. General Discussion 

The question of how humans recognize faces has been extensively studied in the past half-

century (O’Toole et al., 2018; Young & Bruce, 2011). To answer this question, we need to unravel 

the nature of the representation that enables face identification in face images that vary greatly 

in illuminations, expressions and head-views. The same quest has also occupied computer 

scientists, who have aimed to generate algorithms that resolves this task (Taigman et al., 2014). 

Despite their recent success in reaching human-level performance, DCNNs have not provided us 

with an interpretable solution to this task. Here we combined our understanding of human face 
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recognition, and the brain-inspired architecture of DCNNs, to unravel the nature of the 

representation that enables face recognition.  Our findings show that both systems reach a similar 

solution. First, we found that DCNNs that were optimized for face recognition, without any explicit 

training of the features used by humans for face recognition, developed sensitivity to these 

features (Fig. 2B). Second, the sensitivity to these features emerged gradually in higher layers of 

the network (Fig. 2D) and was highly correlated with performance of each layer on a benchmark 

face verification task (Fig. 3), further stressing the importance of these features for face 

identification. Third, a system that was optimized for object recognition was less sensitive to these 

view-invariant facial features across all its layers (Fig. 2B, D) and did not perform well on the 

benchmark face identity task. Importantly, fine-tuning the last two layers of the object-trained 

network with faces, generated a representation that was similar to a fully trained face network 

(Fig. 2E). Similarly, a view-invariant representation of face identity was found only in higher layers 

of the face-trained network, whereas low-level layers and all layers of the object-trained network 

generated a view-specific face representation (Fig. 5B). Fine tuning the last two layers of the object 

trained network on faces, generated again a similar representation as the fully trained face 

network (Fig. 5E). These results parallel the division to a face and an object system at high-level 

visual cortex, where lower visual areas represent faces and objects similarly and diverge to 

separate systems only in high-level visual areas. Taken together these findings indicate that 

sensitivity to view-invariant facial features, that are critical for human face recognition, and a view-

invariant representation of face identity, emerge at higher levels of processing of a system that is 

optimized for face identification.  

Our findings are in line with a recent study that used a DCNN (VGG-16) to model human 

familiar face recognition (Blauch, Behrmann, & Plaut, 2020; see also Yovel & Abudarham, 2020). 

It is well established that human face identification is better for familiar than unfamiliar faces 

(Jenkins, White, Van Montfort, & Mike Burton, 2011; Ritchie et al., 2015). Blauch et al (2020) 

showed that this gap in performance is not mediated by the perceptual representation that is 

generated in the penultimate layer of the DCNN, but by the output, identification layer that is 

specifically tuned to the familiar, trained identities. Our findings that the penultimate layer of a 

DCNN is sensitive to critical features complement these results. We have recently shown that 
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humans use the same critical features both for familiar and unfamiliar faces (Abudarham et al., 

2019). Accordingly, we suggest that the penultimate perceptual layer of DCNNs extracts critical 

features from both familiar and unfamiliar faces. This representation is then used by the output 

layer to classify face images to different familiar identities. This classification operation provides 

an additional advantage, relative to performance that is merely based on perceptual distances 

between face images.  

 Our findings highlight the importance of specific training with faces for the generation of 

view-invariant facial features. Such training enables the system to learn which features are both 

invariant across different appearances of the same identity and are also useful for discrimination 

between identities. The features that we tested here are based on results of our previous studies 

that used faces of adult male Caucasian faces, and may not generalize to faces of other races. For 

example, hair and eye color, which are both invariant and discriminative for Caucasian faces, are 

invariant in Asian and African faces but may not be discriminative for these races. Indeed, it is well 

established that humans show poor recognition for races for which they have low experience with, 

an effect known as the Other Race Effect (Rhodes, Locke, Ewing, & Evangelista, 2009). Similarly, 

DCNNs were shown to be biased for the races that are included in their training set. State of the 

art and commercial algorithms that were developed in western countries show much lower 

performance for African and Asian faces than Caucasian faces (Phillips, Jiang, Narvekar, Ayyad, & 

O’Toole, 2011; Wang, Deng, Hu, Tao, & Huang, 2018). Thus, both human and DCNN 

representations indicate that the features that the face system is tuned to may not be selective 

merely to faces, but to facial features that are useful for the specific category of faces we have 

experience with. This further highlights the degree of specificity in visual experience that is 

required for intact face recognition.  

 An important difference between the face and object-trained DCNNs is that the object 

DCNN is trained to classify among many different categories, but not within different exemplars 

of the same category, whereas the face-trained DCNN is trained to classify different exemplars 

within the category of faces. The goal of our study was to compare an object-general system, 

similar to the lateral occipital complex (Malach et al., 1995), to a face-selective system, similar to 

the FFA (Kanwisher & Yovel, 2006). A comparison between the representations that are generated 
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for faces and a specific category of objects was beyond the scope of the current study but is 

worthwhile pursuing in future studies. Such an investigation may test the expertise hypothesis 

(e.g., Gauthier, Skudlarski, Gore, & Anderson, 2000; Tarr & Gauthier, 2000) by comparing the 

performance and the representations generated by the a face-trained DCNN and DCNNs 

optimized for the recognition of specific object categories (Dailey, Cottrell, & Padgett, 1997).   

Finally, DCNNs have been criticized for being “black box” machines that are based on 

millions of parameters, and therefore reverse engineering their underlying feature representation 

is a great challenge (Cichy & Kaiser, 2019; Marcus, 2018). Here we show that insights from reverse 

engineering of the human mind, and the discovery of features that are used by humans, can shed 

light on the type of information used by DCNNs to accomplish their human-level performance. 

This similarity between the perceptual representations of humans and DCNNs is not trivial, given 

the many differences between the architecture and computations performed by the human brain 

and a feed-forward DCNN (Marcus, 2018). However, our findings indicate that feed-forward 

DCNNs are sensitive to the same features used by humans, and can be therefore used to test 

predictions on human visual processing.  

 In summary, with recent advances in artificial intelligence, humans and machines are now 

performing tasks of similar complexity. The discovery that they generate similar representations 

and reach a similar solution can advance our understanding of both the biological and the artificial 

systems (Ma & Peters, 2020). The approach we used here for the study of face recognition can be 

similarity applied to other cognitive tasks to improve our understanding of human cognition and 

the interpretability of artificial neural networks.   
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