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Abstract. Human face-recognition processes must maintain high levels of performance under different 
viewing conditions. An important dimension of variability is image resolution, which is affected by 
distance, refractive errors, and light levels. Here, we investigate how changes in resolution modulate the 
visual-system’s ability to detect featural versus configural changes in face images. It has been suggested 
that at lower spatial frequencies the visual system relies predominantly on configural information, yet, 
to our knowledge, no experiments have systematically examined this idea. We determined subjects’ 
relative sensitivities to configural and featural changes for systematically degraded images. We show 
that overall configuration and local features are processed equally well at the different resolution 
levels, supporting the idea of a holistic face-representation that encompasses both feature shape 
information and information about the distance between the features. These data have also enabled us 
to derive lower bounds for the resolution needed to effectively use each type of information. Our data 
are replicated with a completely different face stimulus set, but are not replicated when subjects were 
shown houses instead of faces. Overall, these results suggest that at lower spatial frequencies, facial 
representations embody both configural and featural attributes equally, and provide a platform for 
investigating the essence of holistic facial representations for low-resolution images.
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1	 Introduction
One of most salient aspects of the human visual system is its ability to recognize faces under 
conditions that drastically reduce image quality. Probing the limits of this ability can provide 
a valuable understanding of the cognitive processes by which the brain retrieves the identity 
of a face. Some of the most important and rigorously studied aspects of the face arise from 
the shape and spacing of the major internal features (eyes, nose, and mouth). While most 
studies have explored the relative roles of these cues under manipulations less likely to be 
found in natural settings (eg inversion and high spatial filtering), surprisingly few studies 
have quantified their contribution under situations that mimic frequently occurring real-
world viewing. In this study we measure how performance in detecting internal feature shape 
and the distances between them is affected by resolution.

The emphasis this study places on investigating face recognition in low-resolution 
images stems directly from the fact that reducing the amount of information available in 
an image may provide insights about the critical attributes necessary for face recognition. 
More specifically, normal viewing conditions are rarely optimal: viewing distances might 
be large, the optics of the eyes might have refractive errors, and the transparency of the 
atmosphere might be compromised by haze or smoke. By explicitly focusing on conditions 
of low spatial frequency, the results of this study are likely to be more applicable to certain 
aspects of real-world viewing conditions, such as recognizing a face through a hazy lens or 
from a distance (Loftus and Harley 2005). Such knowledge is potentially significant for the 
design of artificial vision systems that have to operate under sub-optimal conditions. For 
instance, an airport face recognition system has to be robust against reductions in resolution 
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caused by large viewing distances, poor lighting, or motion blur. Additionally, experiments 
with impoverished images allow us to implicitly characterize the performance of people with 
low vision. Such information is valuable for developing rehabilitation programs and devices.

A key question in face recognition research pertains to the roles of two sources of 
information that are available from the internal parts of the face. “Featural cues” (also 
sometimes referred to as “local cues”) are derived from isolated components of the face, 
such as the shape and size of the eyes, nose, or mouth; “configural cues” (or “second-order 
relations”) refer to the metric distances between these elements.(1) In past years, the most 
common view has been that information about spacing between the parts in a face is coded 
separately from local shape cues, as was suggested by their differential effect on performance 
under various spatial manipulations (Bruce et al 1991, 1994; Carey and Diamond 1977; Ellis 
et al 1979; Haig 1984). To test such assumptions, numerous studies have created two sets of 
faces that differ from one another, either only in the spacing of individual features or only 
in local information by changing the shape, color, or luminance of features (for review see 
McKone and Yovel 2009; Maurer et al 2002; Peterson and Rhodes 2006). Such manipulations 
have been measured under different viewing conditions, including facial inversion (see Maurer 
et al 2002 for review; Freire et al 2000; Le Grand et al 2001; McKone and Yovel 2009; Rhodes 
and Tremewan 1994; Sekuler et al 2004) and spatial-frequency filtering (Harmon and Julesz 
1973; Morrone et al 1983; Ruiz-Soler and Beltran 2006). While the evidence is somewhat 
inconclusive, many studies of the face-inversion effect have shown reduced accuracy and 
increased reaction time for discriminating between faces that differ in their second-order 
relations more than faces that differ in local feature information (Bruce and Young 1998; 
Freire et al 2000; Le Grand et al 2001; Rhodes and Tremewan 1994). Taken together, these 
findings suggest that separate mechanisms may be involved in second-order relational versus 
featural processing of individual faces. These assumptions have become well-entrenched 
in face recognition research. However, a more recent line of research suggests that local 
feature information and the distances between features cannot be dissociated by the above 
manipulations, and that a face-specific holistic mechanism should, in principle, encompass 
both (Amishav and Kimchi 2010; Goffaux and Rossion 2006; McKone and Yovel 2009; 
also Farah et  al 1998; Tanaka and Farah 1993). This idea has been well described in a 
comprehensive review by McKone and Yovel (2009). They demonstrated that manipulating 
feature shape without color results in equal inversion effects for feature and configuration 
changes. Similarly, Amishav and Kimchi (2010) showed that it is the integration of features 
and their configuration that is crucial for processing upright faces. However, one thing this 
ongoing discussion on the relative roles of features and their configurations is lacking is 
how processing these two sources of information may be modified by degraded conditions 
that are more typical of real viewing situations. In this study we investigate how processing 
of second-order relations and local feature shape in faces is influenced by different levels of 
image resolution.

It is known that making face images blurry makes them less recognizable (Loftus and 
Harley 2005). Additionally, it is widely believed that the processing of low-pass filtered 
upright faces is based primarily on configural cues, since local diffusive filtering is expected 
to degrade local featural details to a greater extent than larger scale configural information 
(Bachmann 1991; Bachmann et  al 2004; Collishaw and Hole 2002; Costen et  al 1994; 
(1) In face-recognition literature, the term “configural processing” suffers from ambiguity, as it is used 
to refer to either: (1) sensitivity to first-order relations, where a face is perceived as two eyes arranged 
above a nose which are above a mouth, (2) sensitivity to second-order relations, or the metric distances 
between the internal features (Carey and Diamond 1977), or (3) holistic processing, or the idea that 
a face is perceived as a Gestalt (Tanaka and Farah 1993). In this paper we always use the words 
“configural processing” to refer to (2). The words “holistic processing” are used to refer to (3).
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Sergent 1986). However, there have been surprisingly few attempts to experimentally test 
this notion. In fact, the only studies that have directly compared the roles of configural 
and featural cues at different spatial frequencies have used low, medium, and high spatial 
frequencies (Boutet et al 2003; Flevaris et al 2008; Goffaux et al 2005; Goffaux and Rossion 
2006), and have come up with contradictory results. Importantly, low-pass frequency 
filtering differs qualitatively from band-pass frequency filtering because, rather than 
preserving information from specific regions within the frequency domain (eg  5–8 cycles 
per face), blurring extends to include different levels of spatial frequency that fall below a 
particular cutoff (eg  anything below 5 cycles per face) more consistent with the effect of 
natural viewing challenges, such as refractive errors or large viewing distances. A few other 
studies have looked at holistic processing as a function of low versus high spatial frequencies 
(Collishaw and Hole 2002; Goffaux 2009; Goffaux and Rossion 2006). Another study found 
that adults are able to recognize the identity of blurred faces with reasonable accuracy (Hayes 
1988; Sergent 1986), but are severely impaired if the faces are simultaneously blurred and 
inverted—presumably because blurring removes featural information and inversion disrupts 
sensitivity to second-order relations (Collishaw and Hole 2000). However, to our knowledge, 
a systematic investigation of processing feature and configuration information for faces 
presented at different extents of low-pass filters has yet to be performed. If the results of such 
a study will point towards dissociation, this would suggest separable processing of these two 
information sources when viewed under degraded conditions. A lack of dissociation would 
suggest a holistic processing method that uses information from both local features and their 
mutual distances. With this as the motivating context, our objective here is to experimentally 
measure how the visual system’s relative sensitivity to local feature shape and distance 
information in a face changes for different degrees of low spatial frequencies.

1.1  Experiments
The overall experimental paradigm we have adopted is to assess participants’ ability to 
detect featural or configural transformations in face images as a function of image resolution. 
A trial involved presenting a pair of face images where the two members were either identical 
(‘same trials’) or differed configurally or featurally (‘different trials’). The observer’s task 
was to report whether the two images were identical or different. Comparing performance on 
featurally versus configurally different pairs provides us with a way for assessing the relative 
effectiveness of the two kinds of cues. Conducting such tests across a range of resolution 
levels yields information about how cue effectiveness varies as a function of the extent of 
low-pass filtering.

While the conceptual design of the experiment appears straightforward, actually 
implementing it presents a challenge. In order to determine whether a transformation (here 
low-pass filtering) differentially affects the two kinds of cues, it is imperative to construct a 
stimulus set such that performance across the two cues is balanced under normal conditions 
(no filtering). In other words, the stimulus set should consist of those images for which humans 
are equally good at detecting configural and featural changes under normal conditions. 
Without such controls, the results would be difficult to interpret. For instance, consider a 
stimulus set such that under normal conditions featural changes are detected much more 
robustly than configural changes. Suppose a given resolution level yields a disproportionately 
small decrease in feature performance, as opposed to configuration performance. The larger 
decline in configuration performance may be due to the visual system’s inability to perceive 
configural information at that given resolution level. Alternatively, the specific images used 
may have been quite difficult, even under normal conditions. Therefore, it is imperative to 
use a controlled set of stimuli for which subjects are equally good at detecting feature and 
configuration changes for high-resolution images. Any significant differences in detecting 
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the two manipulation types in high-resolution images would introduce a confounding 
variable to how these changes are detected in low-resolution images. Importantly, having 
this equalized baseline performance allows these data to be compared to previous research, 
since numerous previous studies have similarly measured subjects’ ability to detect feature 
versus configuration changes that are equally discriminable under normal viewing conditions 
(Boutet et al 2003; Riesenhuber et al 2004).

In summary, to reliably infer that performance level is indicative of the measured 
variable, it is necessary to control for difficulty of those variables under normal conditions. 
Experiment 1a was devoted to the collection of a large, well-controlled stimulus set. 
Subsequently, experiment 1b used this set to systematically assess cue effectiveness as a 
function of image resolution. Finally, experiment 2 was designed with two goals in mind: 
(i) to assess if the results found in experiment 1b can be replicated with a novel and more 
naturalistic set of face images and (ii) to determine if our results are face-specific.

The goal of experiment 1a was to collect a large and well-controlled stimulus set to use in 
experiment 1b, consisting of high-resolution image pairs for which subjects perform equally 
well at detecting configural and featural changes.

2	 Experiment 1a
2.1  Methods
2.1.1  Subjects. A total of thirty adults were randomly assigned to one of two mutually 
exclusive subject groups. Subjects had (self-reported) normal or corrected-to-normal vision.

2.1.2  Materials. 200 grayscale male and female frontal face images were used, as described 
below, to compile the pairs of faces. The faces were drawn from the MPIK database. To avoid 
easy cues of identification, the faces were cropped at the hairline, and did not have facial 
hair or spectacles. Using an image morphing program written in Matlab we made image 
manipulations which follow the procedure described in Riesenhuber et al (2004). Specifically, 
faces were size-normalized to measure 150 pixels in height (crown to chin). 100 of the images 
were arbitrarily assigned to be ‘source’ faces. Each source face was duplicated and prepared in 
10 configural versions, and 10 featural versions, differing in the position (configural pairs) or 
shape (feature pairs) of the eyes and/or mouth regions. Generation of configuration and feature 
changes followed the same general procedure used in previous studies (Freire et al 2000; 
Le Grand et al 2001; Mondloch et al 2002). Configural changes involved spatial shifts of the 
eyes and/or mouth, such that the basic facial symmetry was preserved. The eyes (including 
the eyebrows) were displaced a maximum of two pixels along the x‑axis (inward or outward) 
and/or two pixels along the y‑axis (up or down). The mouth was displaced a maximum of 
two pixels along the y‑axis (up or down). Both magnitude and direction of movement were 
randomly selected. Featural changes were accomplished by replacing the eyes and mouth 
of a source face with randomly selected ‘donor’ features (chosen from the remaining 100 
images). Donor features used on a given source face were selected from two different faces 
(for instance, a source face would receive eyes from donor 1 and mouth from donor 2), and 
the combination was not repeated in the stimulus set. Source faces were matched with donor 
features of the same gender.

Each of the 20 created images for a given source face was then paired once with itself, 
and once with another image that had undergone similar manipulation. Each of the resulting 
pairs was thus a member in one of three stimulus categories: configurally different (40 face 
pairs); featurally different (40 face pairs); same trials (80 face pairs).

The above procedure was repeated for each of the 100 source faces, resulting in a total of 
4000 unique pairs. We excluded faces with obvious image-manipulation artifacts. From the 
remaining, we generated a stimulus set comprising 2428 image pairs, with an equal number 
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of those pairs (607) belonging to each of the ‘different trials’ stimulus categories and 1214 
pairs belonging to the ‘same trials’ category. Collecting such a large image-pair database 
ensured that the stimuli used in the experiment included all possible feature/configuration 
changes.

2.1.3  Procedure. Two subject groups underwent the same experiment, with the exception 
that the stimulus set presented to each group consisted of different images. This design 
allowed us to collect data corresponding to a large stimulus set while avoiding noise due to 
subject weariness. The resulting data consisted of 15 different responses for each of the 2428 
image pairs.

Prior to beginning the experiment, both written and oral instructions were provided to the 
subjects. They were told that the goal of the experiment was to investigate how well they can 
distinguish between similar faces, and informed of the potential similarity of the two faces in 
any pair (like identical twins). It was specifically stressed that the task was not to decide if the 
two faces belong to the same person, but rather if the two facial images are identical. After 
a brief explanation of the experimental setup, subjects were instructed to judge whether two 
face pictures in an example pair were different or identical. By this example, the experimenter 
ensured that subjects fully understood the task.

Subjects were presented on average with 10 blocks, each with 100 image pairs. Order 
of presentation was randomly selected at the beginning of each experiment. In a given 
trial, a selected pair was presented as a sequence of two images using the following design: 
(a) fixation cross for 300 ms; (b) image 1 for 300 ms; (c) mask for 700 ms; (d) image 2 for 
300 ms; (e) blank screen; (f ) subject responds same/different by pressing one of two labeled 
keys. The mask was a spatially scrambled collection of image fragments drawn from many 
face images. Images were displayed in the center of a 19 inch monitor, where the remainder 
of the screen stayed neutral gray throughout the experiment. The screen’s resolution was set 
to 1024 × 768 pixels, and color-depth was set to 24 bits. Face width subtended approximately 
4 deg visual angle. Image selection, presentation, and the recording of subject input/behavior 
were controlled with a Matlab program.

2.2  Results and discussion
Performance across all pairs was used to select a set of 21 face pairs that yielded equal 
performance (~90%) on each of the pairs from each of the two ‘different trials’ stimulus 
categories and 42 face pairs from the ‘same trials’ stimulus category (appendix 1, figure A1). 
In addition to controlling for difficulty across the categories, the selected pairs consisted 
entirely of mutually exclusive source (‘outline’) faces, each of which was represented exactly 
once in each stimulus category. No given image repeated across categories. Appendix 1 
contains detailed information about the stimulus pairs selected from experiment 1a to be used 
in experiment 1b. It is important to note that not all feature displacements are necessarily 
processed globally. For example, horizontal displacement of the eyes can potentially 
be processed locally without regard to the rest of the facial configuration. The distinction we 
want to draw is between the nature of the changes: Changes in feature positions represent 
changes in second-order configuration, while feature replacement represents a change in 
featural information. Furthermore, since the displacement of the eyes and/or mouth was 
chosen randomly for each of the final 607 configurally different pairs independently, there 
are very few pairs for which only horizontal eye displacements were made. Nevertheless, 
to be conservative in our interpretation, we refrain from claiming that such pairs were not 
actually differentiated based on the local horizontal eye displacements. Note that of the 
21 configurally different pairs, only a single pair consisted of horizontal eye-displacement 
exclusively, while a range of other displacement combinations were represented in the 
remaining 20 image pairs.
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3	 Experiment 1b
In experiment 1a we collected a well-controlled stimulus set for use in experiment 1b. The 
goal of experiment 1b was to measure subjects’ ability to detect configural changes on the one 
hand, and featural changes on the other, as a function of systematic variations in resolution. 
Compiling the data across all resolution levels allowed us to determine relative sensitivities 
for detecting changes in the two kinds of cues and to discern any performance changes across 
resolution for either kind of facial information separately.

3.1  Methods
3.1.1  Subjects. Fifteen adults with self-reported normal or corrected-to-normal vision 
participated in experiment 1b. Subjects were naive as to the goals of the experiment. None 
had participated in experiment 1a.

3.1.2  Materials. The pairs yielded by experiment 1a were used to create 6 stimulus sets which 
differed in their resolution levels. Using Adobe Photoshop software, reductions in resolution 
were accomplished with a Gaussian filter (radii, in pixels, of the Gaussian filters used were: 
0.0 = no blur, 1.0, 2.0, 3.0, 4.0, 5.0 = highest blur; values correspond to the following 
cutoff frequencies: full-resolution, 14, 7, 5, 3.5, and 2.75 cycles per face width, respectively). 
The resulting stimulus set comprised 504 face pairs [(42 ‘different’ source faces +  42 ‘same’ 
source faces) × 6 blur levels].

3.1.3  Procedure. The procedural design was largely similar to the one described in 
experiment 1a, with a few adjustments. The experiment consisted of 6 blocks corresponding to 
the 6 blur levels. Subjects began the discrimination task at blur 5.0, and proceeded to the no‑blur 
condition in reverse order. Figure 1 shows example images for each of the 6 blur levels used.

3.2  Results and discussion
Our goal was to assess the relative effectiveness of detecting configural and featural cue changes 
for a face-matching task at different resolutions. The data in figure 2 (top) express average  d ′ 
scores as a function of resolution level, with stimulus categories as the parameters. d ′ scores 
were calculated for each subject using the following formula:  d ′ = z(hit rate) – z(false alarm), 
where z() is the z‑score. Hit-rates and false-alarm rates of 0 and 1 were adjusted using 1/n 
and (n–1)/n, respectively, where n = number of trials.

Figure 1. Example images of a given face at each of the 6 blur levels used, starting from the highest-
blur condition (leftmost top image), and proceeding to the no‑blur condition in raster order.
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The implementation of experiment 1a appears to have been effective at balancing the 
perceptibility of configural and featural cues in the baseline high-resolution images. For 
the no‑blur condition in experiment 1b, performance on the 2 manipulation types was equal 
as well as away from both ceiling and floor levels, making the comparisons at subsequent 
blur levels meaningful. It should be noted that, while it was appropriate to match difficulty in 
the no‑blur condition (as we have done), this does not mean that featural information is just 
as well perceived under normal circumstances.

In contrast to existing views, we found that configuration and feature changes were 
detected equally well across the different blur levels (figure 2, top). A repeated-measures 
omnibus ANOVA with 2 within-subject factors (blur and condition) revealed a significant 
main effect of blur (F5, 70 = 62.991, p < 0.0001, p

2h  = 0.818), no main effect of condition 
(F1, 14 = 3.305, p = 0.091, p

2h  = 0.191), and a significant interaction (F5, 70 = 3.107, p < 0.05, 
p
2h  = 0.182). The results thus indicate that overall performance is highly affected by the 

amount of blur applied to the image, and that this pattern may be affected by the type of 
manipulation (condition). To test the latter point, we performed 2-way paired t‑tests at every 
blur level separately and found significant difference between the conditions only at blur 
levels  3 (t14 = 3.527, p < 0.01) and  5 (t14 = 5.618, p < 0.0001). Given that performance at 
blur level 5 is essentially tantamount to guessing, no further conclusions could be drawn 
from this difference (although it is important to note that at this blur level, subjects were also 
slightly slower on the configuration trials, suggesting a small speed–accuracy trade-off when 
subjects are largely guessing). On the other hand, the significant difference found at blur 
level 3 suggests that at this particular level configuration changes may have been detected 
slightly better than feature changes. However, since this is the only blur level at which a 
condition-based difference was found, and since this slight difference in performance was 
not replicated in experiment 2, we conclude that these findings are not sufficient to draw any 
meaningful conclusions about the differential use of configuration versus feature cues.

An ANOVA test does not take into account that the blur levels are ordered in any 
particular way. We therefore performed trend analysis to measure how blur level modifies 
performance. A polynomial contrast on blur level indicated significant differences in both 
the linear (F1, 14 = 148.943, p < 0.0001) and cubic components (F1, 14 = 10.787, p < 0.01), 
resulting in a classic learning-shaped curve in which subjects began with stable performance 
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(blurs 5 and 4), then show a rapid improvement (blurs 3 and 2—the linear affect) followed 
by performance leveling out (blurs 1 and 0). Contrasts between each pair of adjacent blur 
levels revealed a significant difference between every successive blur levels ( p < 0.01 for 
all) except in progressing from blur 1 to 0. As a final solution, we performed trend analysis 
on each condition separately, to determine if performance on each condition was affected 
similarly by blur level (ie if the trends are qualitatively similar to each other and to overall 
performance). Indeed, we found a combination of linear and cubic effects on both the 
configuration trials (linear: F1, 14 = 107.028, p < 0.0001; cubic: F1, 14 = 12.828, p < 0.01) and 
the feature trials (linear: F1, 14 = 154.899, p < 0.0001; cubic: F1, 14 = 5.748, p < 0.05).

Reaction time data are shown in the lower panel of figure 2. Analysis of reaction 
time  data on all three experimental condition (features, configuration, and same trials) 
revealed a significant effect of blur level (F5, 70 = 9.408, p < 0.01, p

2h  = 0.402) but no effect 
of manipulation type (F2, 28 = 1.15, p = 0.331, p

2h  = 0.076) and no interaction (F10, 140 = 0.917, 
p = 0.4, p

2h  = 0.061). Although we did find a general pattern of increased reaction time as a 
function of increased blur level, all Bonferroni pairwise comparisons were non-significant. 
In the current experiment, reaction time data may not be a reliable test of performance, 
because subjects were explicitly instructed to focus more on correct responses as opposed 
to responding quickly. Therefore, all subsequent discussion will focus on accuracy measures 
only.

4	 Experiment 2
Experiment 2 followed the same general procedure described in experiment 1b, with one 
important addition: performance in detecting configuration versus feature changes as a 
function of resolution level was measured for both face and house stimuli. The goal was 
twofold: (i) to replicate the above findings using a completely different set of more naturalistic 
face stimuli, and (ii) to measure if the closely linked performance found between detecting 
configuration and features changes at the different resolutions is specific to faces.

4.1  Methods
4.1.1  Subjects. Fifteen adults with self-reported normal or corrected-to-normal vision 
participated in experiment 2. Subjects were naive as to the goals of the experiment. None 
had participated in experiments 1a or 1b.

4.1.2  Materials. The face and house stimulus sets used in the current experiment were 
generated with Photoshop and were identical to the stimuli used in a previous study (Yovel 
and Kanwisher 2004). For each stimulus class (faces and houses) 8 distinct images were 
compiled (4  with configuration changes and 4 with feature changes). Generation of the 
configuration and feature stimuli followed the procedure used by Le Grand et al (2001), with 
the important addition that the images were manipulated to yield an average performance 
of 80% correct on both manipulation types (features and configuration) and both stimulus 
classes (faces and houses). For the face images, a single male face devoid of facial hair or 
spectacles was cropped to include the hair region, and was then used to generate two sets 
of 4 faces each. In the configuration set, the eyes were displaced to be either closer together 
or farther apart and the mouth was displaced up toward the nose or down away from the 
nose. In the feature set, the eyes and mouth were replaced with similarly shaped eyes and 
mouth from a different face. For the house images, a single house, which included two upper 
windows, a lower left-side window and a lower right-side door was used to generate two 
sets of 4 houses each. In the configuration set, either the left-side windows and the right-
side window and door were moved closer together or farther apart or the right and left upper 
windows were moved closer to or farther from the roof. In the features set, all three windows 
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and the door were replaced by windows and doors taken from different house images. Within 
these image sets, each image was then paired once with itself (same pairs) and once with 
each of the other images in the set (different pairs), yielding a total set of 20 configuration 
pairs, 20 different pairs, and 40 same pairs per task (faces and houses). Face/house width 
subtended approximately 4 deg visual angle. Refer to figure 1 in Yovel and Kanwisher (2004) 
for the images used in the current experiment (note that because permission from the owner 
of the face used in the current experiment could not be obtained, the referenced figure shows 
a face that was generated via the same procedure and yielded similar behavior results to the 
face images used in the current experiment).

For each stimulus class (faces and houses), the image pairs were used to create 6 stimulus 
sets which differed in their resolution levels. Using Adobe Photoshop software, reductions in 
resolution were accomplished via Gaussian filter (radii, in pixels, of the Gaussian filters used 
were: 0.0 = no blur; 1.0; 2.0; 3.0; 4.0; 5.0 = highest blur; values correspond to the following 
cutoff frequencies, respectively: faces: full-resolution, 14, 7, 5, 3.5, and 2.75 cycles per face 
width; and houses: full-resolution, 24, 12, 8, 6, 4.75 cycles per house width). Thus, for each 
stimulus class, the resulting set comprised 480 pairs [(40 ‘different’ + 40 ‘same’) × 6 blur levels].

4.1.3  Methods. The procedural design was identical to the one described in experiment 1b, 
with one addition. Each subject performed the task on both stimulus classes (faces and 
houses). The two tasks were presented one after the other, and their order was counterbalanced 
across subjects.

4.2  Results and discussion
Experiment 2 had two goals: (i) to replicate face data from experiment 1b, and (ii) to 
investigate if the trends of data found in experiment 1b are specific to faces.

Figure 3 shows subjects’ performance on the face/house experiment. In comparing the 
curves for the two face manipulation types, it is clear that the pattern of results found in 
experiment 1b was replicated in experiment 2. Performance on the face images was found 
to have a significant main effect of blur (F5, 70 = 25.09, p < 0.0001, p

2h  = 0.642), no  main 
effect of manipulation type (F1, 14 < 2.053, p = 0.174, p

2h  = 0.128), and no interaction 
(F1, 14 < 1, p = 0.564, p

2h  = 0.051), supporting our previous finding that performance on both 
configuration and feature changes are similarly affected by resolution level for the face 
stimuli. Additionally, trend analysis on the face task in experiment 2 revealed similar trends to 
those found in experiment 1b: a significant combination of linear (F1, 14 = 61.654, p < 0.0001, 
p
2h  = 0.815) and cubic (F1, 14 = 9.918, p < 0.01, p

2h  = 0.415) trends. Further trend analysis 
done on each manipulation type separately revealed that this linear–cubic trend exists in 
both the features condition (linear: F1, 14 = 64.804, p < 0.0001; cubic: F1, 14 = 7.546, p < 0.05) 

Figure 3. [In color online.] Subjects’ d ′ performance for each manipulation type in experiment 2.
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and the configuration condition (linear: F1, 14 = 41.841, p < 0.0001; cubic: F1, 14 = 6.768, 
p < 0.05). The similarity in the results of the two experiments is especially striking, given that 
they were performed on completely different face sets. In fact, whereas the face set used in 
experiment 1b excluded external hair features, the set used in experiment 2 consisted of the 
entire face, making results on the latter particularly relevant for drawing conclusions about 
real-world viewing situations.

For experiment 2, a 2 stimulus-class × 2 manipulation-type × 6 blur repeated-measures 
omnibus ANOVA revealed a highly significant main effect of stimulus class (F1, 14 = 32.724, 
p < 0.0001, p

2h  = 0.7) and blur (F5, 70 = 36.505, p < 0.0001, p
2h  = 0.723), but no effect of 

manipulation type (F1, 14 < 1, p = 0.463, p
2h  = 0.039) and no significant 3-way interaction 

(F5, 70 = 0.959, p = 0.436, p
2h  = 0.064). Note that the absence of a 3‑way interaction does not 

justify us doing further analysis to compare the two tasks, and we are thus unable to claim 
face-specificity of the effect found above. Thus, while visual examination of the data together 
with the main effect of manipulation type suggest that overall performance on houses may 
be less sensitive to resolution than overall performance on faces (Biederman and Kalocsai 
1997), further experiments are needed in order to fully resolve possible domain differences 
in detecting feature and configuration changes as a function of resolution.

5	 General discussion
The underlying motivation of this study was to assess how well-known face mechanisms 
are influenced by conditions of low resolution. It has been previously suggested that low 
spatial frequencies may provide a means of dissociating featural and configural cues in faces, 
because at these frequencies, the feature information should supposedly be obliterated and 
the image should carry information about coarser features. For example, Loftus and Harley’s 
(2005) “distance as filtering” hypothesis assumes that faces are more difficult to perceive 
at increasing distances because progressively lower image frequencies cause a loss in 
increasingly coarser facial details. Further, in the mid-eighties, Sergent (1986) argued that 
the gradual blurring of a photograph degrades features of the face more rapidly than its 
configural information. However, this idea was never tested directly. In this study we showed 
that, contrary to the above mentioned notion, when feature and configuration changes were 
matched for difficulty at the full resolution condition (experiment 1a), subjects exhibited 
comparable ability at detecting changes in these two cues across varying levels of low spatial 
frequency (experiment 1b). The decline in performance on both the configuration and feature 
conditions followed a similar linear–cubic learning-shaped curve as a function of decreasing 
image resolution. Our results appear robust, since they were replicated with a very different 
and more naturalistic face stimulus set (experiment 2).

Two cautionary notes are in order. First, since configuration changes in our experiment 
were defined as second-order displacement of the internal features, our results make no claim 
about processing local versus global information, but rather only make a distinction between 
processing feature shape versus distances between features. Second, given the non-significant 
3‑way interaction found in experiment 2 we were unable to draw any conclusions about the 
face specificity of the above effects.

 Overall, our findings suggest that, for faces, both configuration and feature cues are 
equally encoded by the visual system at the different resolutions tested, and are consistent 
with theories of holistic face processing which encompass an integration of local feature 
shape information and their metric distances (Tanaka and Farah 1993; Young et  al 1987; 
Yovel and Kanwisher 2004).

Despite the ecological significance of low spatial frequency conditions for face 
recognition, few studies have actually tested how the usage of information that arises 
from features and their positions, is modified as a function of spatial frequency filtering. 
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Of those that have, none has measured how their relative processing is affected by different 
low spatial frequencies. Instead, studies have used band-pass filtered faces or compared a 
single level of high-pass versus low-pass filtered images, and have yielded contradictory 
results. Goffaux et al (2005) found that detection of configuration changes is preserved 
more in low spatial frequencies, whereas detection of feature changes is preserved more 
in high spatial frequencies. In contrast, Boutet et al (2003) found that high/low spatial 
frequency manipulations had identical effects on subjects’ abilities to detect configuration 
and feature changes. While it has yet to be resolved whether the detection of feature and 
configuration changes can be dissociated for high and low spatial frequencies, it is 
important to note that, similar to our study, Boutet et  al (2003) used stimuli that were 
equalized for performance in the full-resolution images. Therefore, his study on band-
pass spatial frequency filtering, taken together with our results on low spatial frequency 
filtering, strongly suggest a lack of dissociation between processes responsible for feature 
and configuration change detection as a function of the image’s available spatial frequency, 
consistent with the idea that it is may actually be holistic face processing that is affected 
by such resolution changes.

Our results contribute to the growing pool of findings that demonstrate a link between 
feature and configuration processing under different manipulations (childhood development: 
McKone and Boyer 2006; inversion: McKone and Yovel 2009), and are in line with the idea 
of an integrative holistic face processing mechanism that encompasses information from 
both feature shape and the metric distances between individual features. Furthermore, our 
findings show that the above link is preserved for different levels of low spatial frequency, 
providing an implicit description of how holistic face processing may be affected by low 
resolution. Nevertheless, additional experiments are necessary to fully characterize such a 
process. Relevant to this, a few studies have directly investigated how holistic face processing 
is affected by the different spatial frequencies available in an image. Again, most studies 
have focused on comparing performance when information from high, medium, and low 
spatial frequencies is available. For example, Goffaux and Rossion (2006) used the whole–
part advantage and composite-effect paradigms to demonstrate that holistic face mechanisms 
rely most dominantly on low rather than high spatial frequencies. In their study, the authors 
defined a cutoff frequency of 8 cycles per face for the low-pass filtered images, which 
approximately corresponds to blur levels 2 in our study. At these blur levels, we found that 
subjects’ performance on both features and configuration is still highly preserved. Our data 
are thus in agreement with Goffaux and Rossion’s (2006) findings, and provide a platform 
for understanding how holistic processing may behave under even lower spatial frequencies.

An interesting next step would be to directly measure how gradually increasing an image’s 
blur levels (such as the ones used in our study) affects holistic face processing. For example, if 
one was to find that holistic processing also shows a linear–cubic trend decline in performance 
as a function of increasing blur levels, this may, together with our data, suggest that feature 
shape and distances encompass a major part of what defines holistic processing. If, on the 
other hand, one finds a curve that declines more slowly than those demonstrated by our data, 
this may suggest an additional crucial aspect of holistic processing that is preserved at lower 
resolutions. For example, a recent study measured how holistic face processing is modified 
by viewing distance (McKone 2009). The author found an inverted U‑shaped response curve 
as a function of viewing distance (measured as visual angle), and provided an important 
measure of how holistic processing changes for a manipulation that is relevant to real-world 
viewing conditions (in this case distance). The discrepancy in curves between this study and 
ours may therefore reflect additional aspects of holistic face processing that are preserved as 
a function of reduced resolution. However, it is possible that the two curves may also differ 
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as a result of manipulation differences between the two studies. We used Gaussian blur in 
order to reduce resolution, whereas McKone used image size. While both manipulations 
reduce resolution, the former displays a large image with reduced resolution, whereas the 
latter displays the same coarse information over a smaller area and thus utilizes high spatial 
frequencies to convey image content. One way of resolving the origin of the discrepancy in 
results between the two studies would be to run a direct test of holistic face processing as a 
function of increased Gaussian blur.

Taken together, our results lead us to hypothesize that for many image resolutions of 
practical relevance, the distinction between configural and featural cues may eventually turn 
out to be an artificial one. Our results are consistent with a holistic processing model, as 
opposed to independent processing of isolated features on the one hand and their spatial 
relations on the other (Bruce and Young 1998; Riesenhuber et al 2004; Sekuler et al 2004), 
and emphasize the crucial need to investigate further aspects of face recognition under 
low-resolution conditions.
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Appendix 1

Figure A1. Entire different-pair stimulus set used in experiment 1b for configuration changes (left) 
and feature changes (right). Performance on each pair in the set yielded +90% recognition.
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Table A1. Displacement information about the 21 configurally different pairs presented in experiment 1b. 
Pixel displacement indicates the difference between the two images in the pair. Note that the number 
of pixels that the eyes were moved along the x-axis refers to the difference between a single eye 
(eg 3 pixel difference between the right eye in the first image and the right eye in the second image 
of a given pair).

Eyes /Pixels moved 
along x-axis

Eyes /Pixels moved 
along y-axis

Mouth /Pixels moved 
along y-axis

Total number 
of image pairs

0 0 4 1
0 3 3 1
0 4 3 2
1 1 3 1
1 1 4 2
1 2 3 1
2 1 3 2
2 2 3 2
2 2 4 2
3 0 3 3
3 0 4 1
4 0 0 1
4 0 4 2
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