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Abstract  19 

A hallmark of high-level visual cortex is its functional organization of neighboring areas that are selective to 20 

single categories such as faces, bodies and objects. However, visual scenes are typically composed of multiple 21 

categories. How does category-selective cortex represent such complex stimuli? Previous studies have shown 22 

that the representation of multiple stimuli can be explained by a normalization mechanism. Here we propose 23 

that a normalization mechanism that operates in a cortical region composed of neighboring category-selective 24 

areas, would generate a representation of multi-category stimuli that varies continuously across category-25 

selective cortex as a function of the magnitude of category selectivity to its components. By using fMRI, we 26 

can examine this correspondence between category-selectivity and the representation of multi-category 27 

stimuli along a large, continuous region of cortex.  To test these predictions, we used a linear model to fit the 28 

fMRI response of human participants (both sexes) to a multi-category stimulus (e.g. a whole person) based on 29 

the response to its component stimuli presented in isolation (e.g., a face or a body). Consistent with our 30 

predictions, the response of cortical areas in high-level visual cortex to multi-category stimuli varies in a 31 

continuous manner along a weighted mean line, as a function of the degree of its category-selectivity. This 32 

was the case for both related (face+body) and unrelated (face+wardrobe) pairs. We conclude that the 33 

functional organization of neighboring category-selective areas may enable a dynamic and flexible 34 

representation of complex visual scenes that can be modulated by higher-level cognitive systems according to 35 

task demands.  36 

Significance Statement  37 

It is well established that high-level visual cortex is composed of category-selective areas that reside in nearby 38 

locations. Here we predicted that this functional organization together with a normalization mechanism would 39 

generate a representation for multi-category stimuli that varies as a function of the category selectivity to its 40 

components.  Consistent with this prediction, in an fMRI study we found that the representation of multi-41 

category stimuli varies along high-level visual cortex in a continuous manner along a weighted mean line in 42 

accordance with the category selectivity of a given area. These findings suggest that the functional 43 
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organization of high-level visual cortex enables a flexible representation of complex scenes that can be 44 

modulated by high-level cognitive systems according to task demands. 45 

Introduction 46 

A fundamental feature of primates’ high-level visual cortex is its division to category-selective areas, such as 47 

face, body or object-selective regions that reside in nearby locations (Downing, Jiang, Shuman, & Kanwisher, 48 

2001; Kanwisher, McDermott, & Chun, 1997; Kanwisher & Yovel, 2006; Malach et al., 1995; Grill-Spector & 49 

Weiner, 2014). This division to category-selective areas has led to numerous studies that have examined the 50 

profile of response of these areas to isolated stimuli of these categories. Nevertheless, visual scenes are 51 

typically composed of multiple objects and it is therefore essential to understand the nature of their 52 

representation in high-level visual cortex.  53 

To study the representation of multi-category stimuli, previous single neuron and fMRI studies have examined 54 

the relative contribution of the isolated stimuli to the response of multi-category stimuli. These studies found 55 

different patterns of response in different areas of high-level visual cortex. Whereas the response in object-56 

general areas, such as IT in monkeys (Zoccolan, Cox, & DiCarlo, 2005) or LOC in humans (Baeck, Wagemans, & 57 

de Beeck, 2013; Macevoy & Epstein, 2009) was a mean or a weighted mean response of the isolated stimuli, 58 

the response in category-selective areas, such as face- or scene-areas  (Bao & Tsao, 2018; Reddy, Kanwisher, 59 

& Vanrullen, 2009) was similar to the response to the preferred category (i.e., a max response). A 60 

normalization model was proposed to account for these findings. According to the normalization model, the 61 

response of a neuron to a stimulus is divided by the response of its surrounding neurons (Carandini & Heeger, 62 

2012; Fig. 1a) and therefore reduces the response to multi-category stimuli relative to the response to the 63 

preferred stimulus when presented alone. Nonetheless, the differences between specific implementations of 64 

the normalization model (i.e., responses diverging from mean to max) that were found in different category-65 

selective areas were not addressed. To account for these differences, Bao and Tsao (2018) suggested that the 66 

response to multiple-category stimuli may vary as a function of the homogeneity of the normalization pool. If 67 

the surrounding neurons are selective to the same category as the recorded neuron (i.e., a face-neuron in a 68 
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face-selective area), the normalization pool is unresponsive to the non-preferred stimulus and therefore does 69 

not reduce the response of the recorded neuron to its preferred stimulus, yielding a max response.  70 

Here we provide a general framework for the relationship between category-selectivity and the 71 

representation of multi-category stimuli, as detailed below (see Figure 1), by showing this correspondence 72 

with functional MRI across a large continuous area of cortex. Category-selectivity, as measured with fMRI, can 73 

provide an estimate of the proportion of neurons that are selective to each of the measured categories and 74 

therefore with a measure of the homogeneity of the normalization pool. A voxel that shows high selectivity to 75 

a given category has a larger proportion of neurons selective to this category and therefore a homogeneous 76 

normalization pool. A voxel that shows a similar response to different categories reflects a mixture of category-77 

selective neurons and therefore a heterogeneous normalization pool. We therefore predict that the response 78 

to multi-category stimuli will vary from a max response in category-selective areas to a mean response in areas 79 

that show similar response to multiple categories, such as in the borders between two category-selective areas 80 

(Fig. 1b). More generally, we predict that the response to multi-category stimuli will be a weighted mean of 81 

the response to each of its components, and that the magnitude of category-selectivity to each of the stimuli 82 

determines its weights (Fig. 1c-e). Support for this prediction will offer a general framework for the various 83 

findings reported in previous studies that looked at the representation of multi-category stimuli in different 84 

category-selective regions.  85 
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 86 

Figure 1: (a) The normalization equation (Reynolds & Heeger, 2009). The response of a neuron is divided (normalized) 87 

by the sum of the responses of the surrounding neurons. Here we show the response to a face (F) and a body (B) 88 

presented together. (b) A surface map of face- and body-selective areas with the predicted response based on the 89 

normalization equation: a face-selective area (blue) and a body-selective area (red) contain homogeneous surrounding 90 

neurons that are selective to the same category, and therefore resulting in a max-like response. An area in the border 91 

between the face and body-selective areas (purple) contains a heterogeneous surrounding of face-selective neurons 92 

and body-selective neurons. If half of the neurons are face selective and half are body selective, then the response to a 93 

face and a body should be the mean of the responses to the isolated stimuli. (c) Using mathematical derivations of the 94 

normalization equation (a), the response to a pair of stimuli can be described as a weighted mean of the responses to 95 

the isolated stimuli. The weights (𝛽! and 𝛽") are the contribution of the face and the body to the face+body response 96 

and are determined by the proportions of face and body-selective neurons within the normalization pool. The fMRI 97 

BOLD signal reflects the response of a sum of neurons with similar normalization pools, and therefore the same linear 98 

relationship between the pair and the isolated stimuli also applies for the fMRI response, with the same weights as for 99 

the single neuron equation. (d) The normalization equation further predicts that the difference between the weights 100 

corresponds to the difference in the proportions of face and body selective neurons, (e) and that the sum of weights is 101 

slightly higher than 1 (i.e., 1 plus a small positive term). Formal derivations can be found at 102 

https://github.com/LibiKl/multiple_objects_fMRI_analysis.  103 
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Materials and Methods 104 

To test the correspondence between the magnitude of category-selectivity and the representation of multi-105 

category stimuli in high-level visual cortex, we ran two fMRI studies. In the first study the multi-category 106 

stimulus was a whole person (face + body) (Fig. 2a) and we estimated the response to the multi-category 107 

stimulus based on the response to the isolated components, a face and a body, by fitting a linear model to the 108 

data (Reddy et al., 2009). In a second experiment, we replicated these findings and generalized them to a 109 

face+object stimulus (Fig. 2b).    110 

Participants 111 

Thirty-Two healthy volunteers with normal or corrected-to-normal vision participated in both experiments. 112 

Fifteen volunteers (6 women, ages 19-37, 13 right-handed) participated in Experiment 1 and seventeen 113 

healthy volunteers (11 women, ages 20-30, 14 right-handed) that did not participate in Experiment 1 114 

participated in Experiment 2. Two participants were excluded form analysis of Experiment 2 due to technical 115 

difficulties. Participants were paid $15/hr. All participants provided written informed consent to participate in 116 

the study, which was approved by the ethics committees of the Sheba Medical Center and Tel Aviv University, 117 

and performed in accordance with relevant guidelines and regulations. The sample size for each experiment 118 

(N=15) chosen for this study was similar to sample size of other fMRI studies that examined the representation 119 

of multiple objects in high-level visual cortex (10-15 subjects per experiment) (see for example: Baeck et al., 120 

2013; Baldassano et al., 2016; Kaiser & Peelen, 2017; Kaiser et al., 2014; Macevoy & Epstein, 2009; MacEvoy 121 

& Epstein, 2011; Reddy et al., 2009; Song et al., 2013) 122 

Stimuli 123 

Face+body stimuli. The face+body stimuli set was used in both Experiment 1 and Experiment 2. Stimuli 124 

consisted of 40 grey-scale images of a whole person standing in a straight frontal posture with their 125 

background removed downloaded from the internet (20 men and 20 women identities). Each image of a 126 

person was cut into two parts approximately in the neck area resulting in a face stimulus and a headless body 127 
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stimulus for each identity (Figure. 2a). The isolated face and body stimuli were presented in the same location 128 

they occupied in the whole person stimulus. A blue fixation dot was presented at a constant location around 129 

the neck on the screen across all conditions (at the center and upper part of the display) (Figure 2a). The size 130 

of the whole person image was approximately 3.5X12.2 degrees of visual angle. 131 

Face+object stimuli. The face+object stimuli set was used in Experiment 2 in addition to the face+body stimuli 132 

set. Stimuli consisted of pictures of faces, wardrobes and faces-above-wardrobes (Figure 2b). The face stimuli 133 

were the same 40 images of faces used in the face+body stimuli. For the object stimuli we used 40 images of 134 

grey-scale wardrobes with their background removed that were taken from the internet. We digitally 135 

manipulated the images of the wardrobes so that the object location, size (number of pixels on the screen), 136 

contrast and luminance will be matched to the 40 pictures of headless bodies from the face+body stimuli. The 137 

face+object stimuli were created by placing the wardrobe images right below the face in the same location of 138 

the body, i.e. a face above a wardrobe with no gap between them. A blue fixation dot was presented at a 139 

constant location on the screen across all conditions right over the neck in the same location as in Experiment 140 

1) (Figure 2b). The size of the face+object pair was similar to the face+body and was approximately 3.5X12.2 141 

degrees of visual angle. 142 

Functional localizer stimuli. Functional localizer stimuli of Experiment 1 were grey-scale images of faces, 143 

headless-bodies, non-leaving objects (Figure 2C), and images of the whole person that were not included in 144 

analyses of this study. Functional localizer stimuli of Experiment 2 were grey-scale pictures of faces, headless-145 

bodies, non-leaving objects, and scrambled objects (Figure 2C). The size of the stimuli was approximately 146 

5.5X5.5 degrees of visual angle.  147 



 

 8 

 148 

Figure 2: (a) A Face-Body stimulus set: face, body, and face+body stimuli, taken from the same images. The fMRI 149 

response to these stimuli was used to estimate the contribution of the face and the body to the face+body 150 

representation. Participants were asked to fixate on the blue-dot and perform a one-back task (see Methods) (b) A 151 

Face-Object stimulus set: face, object, and face+object stimuli, all taken from the same images. Participants were asked 152 

to fixate on the blue-dot and perform a one-back task. We used wardrobes as the objects, which were matched to the 153 

body stimuli in terms of low-level visual properties. The fMRI response to these stimuli was used to estimate the 154 

contribution of the face and the object to the face+object representation. (c) Functional localizer stimulus set: faces, 155 

bodies, objects and scrambled objects. Functional localizer data were used to define category-selective regions of 156 

interest and to measure the voxel-wise selectivity to specific categories, independently from the data that were used to 157 

estimate the contribution of each part to the multi-category representation. 158 

 159 

Apparatus and Procedure 160 

fMRI acquisition parameters. fMRI data were acquired in a 3T Siemens MAGNETOM Prisma MRI scanner in 161 

Tel Aviv University, using a 64-channel head coil. Echo-planar volumes were acquired with the following 162 

parameters: repetition time (TR) = 2 s, echo time = 30 ms, flip angel = 82°, 64 slices per TR, multi-band 163 

acceleration factor = 2, acceleration factor PE = 2, slice thickness = 2 mm, field of view = 20 cm and 100 × 100 164 

matrix, resulting in a voxel size of 2 × 2 × 2 mm. Stimuli were presented with Matlab (The MathWorks Inc.) and 165 

Psychtoolbox (Brainard, 1997; Kleiner et al., 2007) and displayed on a 32” high definition LCD screen 166 

(NordicNeuroLab) viewed by the participants at a distance of 155 cm through a mirror located in the scanner. 167 

Anatomical MPRAGE images were collected with 1 × 1 × 1 mm resolution, echo time = 2.88 ms, TR = 2.53 s.  168 

Experimental procedure – Experiment 1. The study included a single recording session with six runs of the 169 

main experiment and three runs of functional localizer. Each of the six main-experiment runs included 5 triads 170 
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of face, body and face+body mini-blocks. Fig. 3 shows an example of two such triads. The order of face, body 171 

and face+body mini-blocks within each triad was counter-balanced across triads and runs. Each mini-block 172 

included eight stimuli of which seven were of different identities and one identity repeated for the 1-back 173 

task. The identities presented in the face, body and face+body mini-blocks within a triad were different. Thus, 174 

each run included face, body and face+body stimuli of 35 different identities (7 identities x 5 triads). The 35 175 

identities were randomly chosen from the set of 40 identities. Each mini-block lasted 6 seconds and was 176 

followed by 12 seconds of fixation. A single stimulus display time was 0.325 seconds, inter-stimulus-interval 177 

was 0.425 seconds. Subjects performed a 1-back task (one repeated stimulus in each block). Each run began 178 

with six seconds (3 TRs) of fixation (dummy scan) and lasted a total of 276 seconds (138 TRs). Subjects were 179 

instructed to maintain fixation throughout the run and their eye movements were recorded with an Eye 180 

tracker (EyeLink®). 181 

 182 

Figure 3: Experimental procedure. Each run had 15 blocks of 3 conditions (5 blocks each). See Methods for a full 183 

description of the procedure. 184 

 185 
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Experimental procedure – Experiment 2. The experiment included a single recording session with six runs of 186 

the main experiment and three runs of localizer. The main experiment included 3 runs of face, body and 187 

face+body stimuli identical to Experiment 1. In addition, 3 runs of face, object and face+object stimuli were 188 

presented using the same design used for the face and body runs (Fig. 3). The face+object runs were presented 189 

before the face+body runs to avoid the priming of a body in the object and face+object mini-blocks. Subjects 190 

were instructed to maintain fixation throughout the run and their eye movements were recorded with an Eye 191 

tracker (EyeLink®). 192 

Functional Localizer. Each run of the functional localizer in both experiments included 21 blocks: 5 baseline 193 

fixation blocks and 4 blocks for each of the four experimental conditions: faces, bodies, objects and persons 194 

(analysis of person condition is not included in this paper) in Experiment 1 and faces, bodies, objects and 195 

scrambled objects in Experiment 2. Each block presented 20 stimuli of 18 different images of which two 196 

repeated twice for a 1-back task. Each stimulus was presented for 0.4 sec with 0.4 sec Inter-stimulus interval. 197 

Each block lasted 16 seconds. Each run began with a six-seconds fixation (3 TRs) and lasted a total of 342 198 

seconds (171 TRs).  199 

Data analyses 200 

fMRI Data Analysis and preprocessing 201 

fMRI analysis was performed using SPM12 software, Matlab (The MathWorks Inc.) and R (R Development Core 202 

Team, 2011) costumed scripts, STAN (Carpenter et al., 2017) for Bayesian model fitting and Freesurfer (Dale, 203 

Fischl, & Sereno, 1999), pysurfer (https://pysurfer.github.io) and Python (http://www.python.org) costumed 204 

scripts for the surface generation and presentation. The code that was used for data analyses is available at 205 

https://github.com/LibiKl/multiple_objects_fMRI_analysis. The first three volumes in each run were acquired 206 

during a blank screen display and were discarded from the analysis as “dummy scans”. The data were then 207 

preprocessed using realignment to the mean of the functional volumes and co-registeration to the anatomical 208 

image (rigid body transformation). For the whole-brain analysis that was performed on data collected in 209 

Experiment 2 across participants, spatial normalization to MNI space was applied. Otherwise, data used for all 210 
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other analyses remained in subject’s native space. Spatial smoothing was performed for the localizer data only 211 

(5 mm). A GLM was performed with separate regressors for each run and for each condition, including 24 212 

nuisance motion regressors for each run (6 rigid body motion transformation, 6 motion derivatives, 6 square 213 

of motion and 6 derivatives of square of motion), and a baseline regressor for each run. In addition, a 214 

"scrubbing" method (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) was applied for every volume with 215 

frame-displacement (FD) > 0.9 by adding a nuisance regressor with a value of 1 for that specific volume and 216 

zeros for all other volumes. Percent signal change (PSC) for each voxel was calculated for each experimental 217 

condition in each run by dividing the beta weight for that regressor by the beta weight of the baseline for that 218 

run. 219 

Experiment 1:  220 

Region of interest (ROI) analysis. Based on the functional localizer data, face- and body-selective voxels were 221 

defined individually for each subject using contrast t-maps. Regions of interest (ROI) were defined as clusters 222 

(>10 voxels) of voxels selective to a given category (p<10-4) within specific anatomical locations: (1) Fusiform 223 

face area (FFA): Face>Object within the Fusiform gyrus; (2) Fusiform body area (FBA): Body>Object within the 224 

Fusiform gyrus. The overlap area was defined as the conjunction between face and body selective ROIs and 225 

included all voxels that were both face- and body-selective as described above. The 30 most selective voxels 226 

from each ROI within the right hemisphere were analyzed with the main experiment data. ROIs with less than 227 

30 voxels were excluded from further analysis.  This criterion resulted in the following number of subjects that 228 

were included in the analysis for each ROI: FFA: N=13; FBA: N=11; Overlap area: N=11. (see Figure 5 for the 229 

stability of the results across different number of voxels even with very low number of subjects).  230 

Linear model fitting. The mean percent signal change (PSC) across runs to the face, the body and the 231 

face+body conditions from the main experiment data were extracted for each voxel within each ROI of each 232 

subject. For each subject and each ROI, we fitted a regression model for the response of the 30 most selective 233 

voxels to predict the response to the face+body based on the responses to the isolated face and the isolated 234 

body (i.e., the percent signal change, PSC) in each of these voxels:  235 
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 (𝐹𝑎𝑐𝑒 + 𝐵𝑜𝑑𝑦)!"# = 𝛽$
($&) ∙ 𝐹𝑎𝑐𝑒!"# + 𝛽&

($&) ∙ 𝐵𝑜𝑑𝑦!"# + 𝜀($&) (1) 

The beta coefficients 𝛽!
(!#) and 𝛽#

(!#) indicate the contribution of the face and the body to the face+body 236 

response for each area and each subject (The beta coefficients of the multi-category response model are not 237 

the same as the betas derived from the standard fMRI GLM analysis. The betas from the standard fMRI GLM 238 

analysis are used to determine the percent signal change (PSC) to each of the single- and multi-category stimuli 239 

as a measure of the fMRI response to that stimuli). We calculated the mean of the beta coefficients of the 240 

model, the mean difference between the coefficients and their mean sum across subjects. To examine 241 

whether the linear model based on the normalization mechanism (Fig. 1c, equation 1) is the best fit to the 242 

data, we estimated a Bayesian hierarchical model to predict the response to a face+body based on the 243 

response to the face and the body including the data from all subjects for each ROI. In addition, we estimated 244 

two other Bayesian hierarchical models: one with an addition of an intercept term, and another with the 245 

addition of an interaction between the face and the body. We then calculated Bayes factors to compare the 246 

models.  247 

Univariate voxel-wise analysis. For each voxel within each ROI we compared the PSC to the face+body to the 248 

maximum PSC to the face and the body, and calculated the proportion of voxels that showed smaller response 249 

to the face+body, i.e., 𝑓𝑎𝑐𝑒 + 𝑏𝑜𝑑𝑦 < max	(𝑓𝑎𝑐𝑒, 𝑏𝑜𝑑𝑦). This analysis was done to assure that weighted 250 

mean response is not due to saturation of the BOLD response to face+body. 251 

Searchlight analysis. For the searchlight analysis, we defined a face and body-selective region based on the 252 

localizer data by the contrast [(Face+Body)/2 > Object] (p<10-4) within the ventro-temporal and lateral 253 

occipital cortex. In addition, we defined two control areas: early visual cortex (EVC) and the Parahippocampal 254 

place area (PPA). EVC was extracted by performing an inverse normalization from an MNI space Brodmann 255 

area 17 mask to each subject's native space. We matched the number of voxels in EVC to the number of voxels 256 

within the category-selective region for each subject by randomly choosing voxels from EVC. Because our 257 

functional localizer did not include scene images, the PPA was defined by using Neurosynth (Yarkoni, Poldrack, 258 

Nichols, Van Essen, & Wager, 2011, https://neurosynth.org), a meta-analysis tool for extracting cognitive 259 

maps. We used an association map with the term “Place” and thresholded with FDR criterion of 0.01. We than 260 
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masked the image to include only the right parahipocampal cortex. This image was than underwent inverse 261 

normalization from an MNI space to each subject's native space. The Neurosynth-defined PPA included less 262 

voxels than the face and body selective areas and therefore all voxels were included in the analysis. For each 263 

subject we defined a moving mask of a sphere of 27 voxels. For each sphere we fitted a linear model with its 264 

voxel data as features to predict the response to the face+body based on the response to the face and the 265 

body. The beta coefficients of these models represent the contribution of the face and the body to the 266 

response of the face+body of each sphere within the searchlight area. We then plotted a surface map of the 267 

beta coefficients of all spheres within the searchlight area to present the spatial distribution of the beta 268 

coefficients. We calculated R2 for each sphere and the median R2 across all spheres.  Since the R2 is calculated 269 

to models without intercept, it is possible to get a negative R2 value, i.e. that this model can be worse in 270 

predicting the dependent variable compared to a model with only an intercept. 271 

To examine the relationship between the difference between the face and body beta coefficients and the 272 

selectivity to face over a body (i.e., the t values of the contrast Face>Body from the independent functional 273 

localizer data) we performed a Pearson correlation across subjects. To assess the level of significance of the 274 

correlations, the correlation values were transformed to fisher's Z, and a one-sample t-test was used against 275 

a null-hypothesis of zero. To reduce statistical dependency in our dataset because of the overlapping moving 276 

mask, we used for the correlation analysis an interleaved mask, taking only spheres that their center is not 277 

immediately adjacent to another. 278 

Experiment 2:  279 

ROI Analysis. Based on the functional localizer data, face- body- and object-selective voxels were defined 280 

individually for each subject. Regions of interest (ROI) were defined as clusters (>10 voxels) of category 281 

selective voxels (p<10-4) within specific anatomical locations that show preference to a single category relative 282 

to all other categories: (1) Fusiform face area (FFA): Face > Body, Object & Scrambled-object within the 283 

Fusiform gyrus; (2) Fusiform body area (FBA): ): Body > Face, Object & Scrambled-object within the Fusiform 284 

gyrus; (3) Ventral object area: Object > Face, Body & Scrambled-object within the medial part of the ventral 285 

temporal cortex. Note that we used a modified and also well-accepted (e.g., Peelen & Downing, 2005; Weiner 286 
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& Grill-Spector, 2010, 2011) version of the ROI definitions relative to Experiment 1 (for example, FFA were 287 

defined in Experiment 1 with the contrast Face>Object, in opposed to the current Face>Body, Object & 288 

Scrambled-object). This modified ROI definition was used to prevent a bias for the body relative to the 289 

wardrobe when comparing the face+body and face+objects pairs in areas that were defined by excluding only 290 

the object category and not the body category. However, this modification in the ROI definition results in the 291 

absence of an overlap between face-selective and body-selective areas. As in Experiment 1, the 30 most 292 

selective voxels from each ROI in the right hemisphere were chosen for model fitting. ROIs with less than 30 293 

voxels were excluded from further ROI analysis. This criterion resulted in the following number of subjects 294 

that were included in the analysis for each ROI: FFA: N=15; FBA: N=14; Object-selective area: N=13. 295 

The model fitting described in Experiment 1 was used to separately predict the response to the face+body 296 

based on the response to the face and the body (equation 1) and to predict the response to the face+object 297 

based on the response to the face and the object using the following equation: 298 

Similar to Experiment 1, we calculated the beta coefficients of the model, the mean difference between the 299 

coefficients and their mean sum for each model across subjects. 300 

To examine whether the pattern of response to face+body and face+object is different, we ran a repeated 301 

measure ANOVA with Pair Type (face+body, face+object) and ROI (face-selective, body/object selective) as 302 

within-subject factors and the difference between the coefficients as a dependent variable. We excluded from 303 

this analysis subjects that did not had 30 voxels for all three ROIs (3 subjects excluded).  304 

Searchlight analysis. For the searchlight analysis, we defined a category-selective region based on the localizer 305 

data by the contrast [(Face+Body+Object)/3 > Scrambled Object (p<10-4)] within the Ventro-temporal cortex 306 

and Lateral Occipital-temporal cortex. A similar analysis that was performed in Experiment 1 was performed 307 

separately to the face+body runs and the face+object runs.  308 

Whole-brain analysis. To examine whether the relationship between category-selectivity and the 309 

representation of multiple stimuli is indeed confined to category-selective cortex, we conducted a whole brain 310 

 (𝐹𝑎𝑐𝑒 + 𝑂𝑏𝑗𝑒𝑐𝑡)!"# = 𝛽$
($() ∙ 𝐹𝑎𝑐𝑒!"# + 𝛽(

($() ∙ 𝑂𝑏𝑗𝑒𝑐𝑡!"# + 𝜀($() (2) 
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analysis. For this analysis, data was spatially normalized to MNI space in addition to all other preprocessing 311 

steps. We performed the same searchlight analysis as described in the previous section for each subject over 312 

the whole brain. We used a parcellation based on functional connectivity and anatomy (Schaefer et al., 2018) 313 

to divide the brain to 400 parcels. For each parcel and each subject, we calculated a Pearson correlation 314 

between the difference in the contribution of the isolated stimuli to the multi-category stimulus of each model 315 

and the difference in category selectivity as described in the searchlight analysis method section. To assess 316 

the level of significance of the correlations, the correlation values were transformed to fisher's Z, and a one-317 

sample t-test (one tailed) corrected for multiple comparisons was used to assess if the correlation value 318 

averaged across participants was significantly higher than zero for each brain parcel.  319 

Results 320 

Experiment 1 – The representation of multi-category stimuli in category-selective areas 321 

Experiment 1 was designed to test the prediction that the response to multi-category stimuli (face + body) will 322 

be a weighted mean of the response to each of its components (a face and a body), and that the weights will 323 

be determined by the magnitude of category-selectivity to each of the stimuli and will therefore vary 324 

continuously along category-selective cortex.   325 

Region of interest (ROI) analysis 326 

First, we examined the contribution of the face and the body to the face+body response in the face- and body-327 

selective areas. For each individual subject, we extracted the face-selective area (Face>Object), body-selective 328 

area (Body>Object) and the overlap between these areas (i.e. areas that are selective to both faces and bodies) 329 

using the independent functional localizer data (see Fig. 4 for an example of these areas in a representative 330 

subject). For each subject and each area within the right ventro-temporal cortex we fitted a linear regression 331 

model (equation 1) to estimate the contribution of the isolated face and body to the response to face+body, 332 

indicated by the beta coefficients 𝛽!
(!#) and 𝛽#

(!#), respectively. Figure 4 depicts the contribution of the face 333 

and the body to the response to the face+body as was derived based on the 30 most selective voxels of each 334 
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subject's ROI (see Figure 5 for similar findings with different numbers of voxels).  All areas showed a significant 335 

contribution of both the face and the body to the face+body representation across all subjects, indicated by 336 

positive non-zero face and body coefficients (𝛽′𝑠 = [0.39-0.74], all p values < .0001, all Cohen’s d values > 337 

1.754).  338 

Based on derivations of the normalization model (Fig. 1) we can further predict that the difference between 339 

the coefficients will correspond to the degree of selectivity of a cortical area to the different parts. In other 340 

words, the face coefficient should be higher than the body coefficient in face-selective areas, and vice versa 341 

for body-selective areas. (Fig. 1d). Results were consistent with this prediction. We found that in the FFA, 342 

which is composed of mainly face-selective neurons, the contribution of the face was larger than the 343 

contribution of the body [𝛽!
(!#) − 𝛽#

(!#): mean=0.334, t(12)=2.846, p=0.015, 95% Confidence Interval (C.I.): 344 

(0.078, 0.590), Cohen’s d=0.789]. Conversely, in the FBA, which is composed of mainly body-selective neurons, 345 

the contribution of the body was larger than the contribution of the face [𝛽!
(!#) − 𝛽#

(!#): mean=-0.298, t(10)=-346 

4.358, p=0.001, 95% C.I. (-0.451, -0.146), Cohen’s d=1.314]. In the area of overlap between the FFA and the 347 

FBA, which is selective to both faces and bodies, there was no significant difference between the contribution 348 

of the face and the body [𝛽!
(!#) − 𝛽#

(!#): mean=0.070, t(10)=-0.628, p=0.544, 95% C.I. (-0.177, 0.316), Cohen’s 349 

d=0.189].  350 

Consistent with our predictions (Fig. 1e), we found that the sum of the beta coefficients was slightly larger 351 

than 1 [mean sum (s.e.m.): FFA: 1.145 (0.049); FBA: 1.110 (0.028); Overlap: 1.191 (0.024)]. Note that our model 352 

did not limit the sum of the coefficients to 1 but they could take any value. In addition, the response to the 353 

face+body is more consistent with a weighted mean response rather than an additive response, as indicated 354 

by the coefficients being smaller than 1 [all p-values <0.01, all Cohen’s d values > 1.144], and the sum of these 355 

coefficients is lower than 2 [all p values <0.001, all Cohen’s d values > 4.815]. Finally, we rule out an alternative 356 

explanation that the weighted mean response is due to saturation of the BOLD response to multiple stimuli. 357 

We found that 53.24% of the voxels in our data [FFA: 53.33%, FBA: 58.48%, Overlap: 47.88%] showed higher 358 
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response to one of the single stimuli (a face or a body) relative to the response to the combined stimulus 359 

(face+body).  360 

 361 

Figure 4: Experiment 1: Left: A scatterplot of the beta coefficients for the face and the body that best fit the response 362 

of the 30 most selective voxels within each subject's ROI to the face+body stimulus. Each dot indicates the results of a 363 

single subject within an ROI (in the right hemisphere). 𝛽! indicates the contribution of the face to the face+body 364 

response and 𝛽" indicates the contribution of the body to the face+body response. The large diamonds indicate the 365 

group mean (error bars indicate s.e.m.). Right: a brain surface of one representative subject showing the location of the 366 

face-selective, body-selective and the overlap areas in ventro-temporal cortex. 367 

 368 

 369 

Figure 5: ROI analysis across different number of voxels. Analysis reported is based on 30 voxels for each ROI (marked 370 

in grey) (a) The number of subjects across different sizes of category-selective ROIs. As the size of the ROI increases the 371 

number of subjects decreases. (b) Mean 𝛽! and (c) mean 𝛽" across subjects for each ROI size. (error bars indicate 372 

s.e.m) These data indicate that results are highly stable across different ROI sizes and number of subjects, even when 373 

analysis includes very small sample sizes. 374 
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To further assess if the weighted mean model (i.e., the normalization model, Fig. 1c) is the best fit to the data, 375 

we compared this model to two other models – one model with a non-zero intercept and another model with 376 

an interaction between the face and the body (i.e., a non-linear relationship between the isolated components 377 

and the multi-category stimulus). We found that the model that best explains our results is a linear model with 378 

only the face and the body as predictors (see Table 1). 379 

 Comparing models with and 
without intercept (BF) 

Comparing models with and 
without interaction (BF) 

FFA 2.14*10^5 1.94*10^5 
FBA 3.45*10^7 5.36*10^4 
Overlap 6.75 1.15*10^4 

 380 

Table 1: Experiment 1 – Model comparison. In order to compare the proposed model predicted by the normalization 381 

equation (Fig. 1c) to other models across all subjects, we used a Bayesian hierarchical model to predict the 382 

representation of the face+body stimulus based on the response to the face and the body. For each area we fitted 383 

three models (face and body; adding an intercept; adding an interaction). Values in the table indicate the Bayes Factor 384 

(BF) for the comparison between the model with only face and body factors to the other models, showing that this 385 

model best explain the results within all ROIs.  386 

 387 

Searchlight analysis 388 

Next, we assessed the contribution of the face and the body to the face+body representation along the face 389 

and body areas within the right occipito-temporal and lateral-occipital areas. For each individual subject, we 390 

measured the response to face, body and the face+body stimuli of each voxel in these anatomical locations. 391 

We then applied a moving mask of a sphere of 27 voxels. For each sphere, we fitted a linear model to the 392 

responses of the voxels within the sphere to predict the response to the face+body based on the responses to 393 

the face and the body (Fig. 1c).  394 

Figure 6a-b depicts the beta coefficients for the face and the body, i.e. the contribution of the face and the 395 

body to the face+body response in the face and body selective area of a single subject placed on a surface 396 

map of his brain. Figure 6c-d shows the distribution of category selectivity of the same subject within the same 397 

region for the face and the body as indicated by the independent functional localizer data. Overall, Figure 6 398 

demonstrates the correspondence between the selectivity and the contribution of the face and the body to 399 
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the face+body representation throughout the continuum of the face- and body-selective regions: areas with 400 

high selectivity to faces and low selectivity to bodies show high contribution of the face to the face+body 401 

representation, while areas with low selectivity to faces and high selectivity to bodies show high contribution 402 

of the body to the face+body representation. 403 

 404 

Figure 6: Experiment 1: Results of a representative subject plotted on the cortical surface for voxels that were selective 405 

to either faces or bodies: (a) The contribution of the face to the face+body representation as indicated by the face 406 

regression coefficients (𝛽!). (b) The contribution of the body to the face+body representation as indicated by the body 407 

regression coefficients (𝛽"). (c) Selectivity to faces (t map of Face>Object). Selectivity was determined based on 408 

independent functional localizer data. (d) Selectivity to bodies (t map of Body>Object). Selectivity was determined 409 

based on independent functional localizer data. 410 

 411 

Figure 7a depicts the beta coefficients for the face and the body, i.e. the contribution of the face and the body 412 

to the face+body response, of all spheres within the face and body-selective cortices in the right occipito-413 

temporal and lateral areas of all subjects. The coefficients are scattered along the weighted mean line, 414 
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indicating a sum of coefficients that is slightly higher than 1 [mean sum=1.071, 95% C.I. (1.036, 1.106)], 415 

consistent with the derivations based on the normalization model (Fig. 1e). Figure 7d displays the distribution 416 

of R2 of the models for all spheres indicating a good fit of the linear model to the data [median R2=0.90]. The 417 

color of each dot indicates the selectivity to the face relative to the body, as measured by the independent 418 

functional localizer. Furthermore, consistent with our predictions (Fig. 1d), the difference between the 419 

contribution of the face and the body to the face+body representation, (i.e. the difference between the beta 420 

coefficients) is correlated with the face and body-selectivity as measured by the independent functional 421 

localizer data. To examine the statistical significance of this correlation, the correlation was computed for each 422 

subject and transformed to a Fisher’s z score and the mean across subjects was compared to a null hypothesis 423 

of a correlation lower than zero [mean r=0.446, t(14)=9.653, p<0.0001 (one tailed), 95% C.I.  (0.373, 0.513), 424 

Cohen’s d=0.479].  425 

To examine whether the correspondence between category-selectivity and the representation of multiple 426 

stimuli is  restricted to areas that are selective to the stimulus components, we performed a similar searchlight 427 

analysis over two control areas: Early visual cortex (EVC) (Figure 7b,e) and the Parahippocampal place area 428 

(PPA) (Figure 7c,f). EVC is sensitive to low-level features of the stimuli but not to high-level categories. PPA is 429 

part of high-level visual cortex, but is selective to places and not to the categories included in the stimuli of 430 

this experiment. Results show that the linear model does not fit as well in the EVC and PPA when compared 431 

to the face- & body-selective areas, as indicated by the R2 distributions (median R2: EVC=0.722; PPA=0.487). 432 

Moreover, the sum of beta coefficient is slightly lower than 1 [EVC: mean sum=0.949, 95% confidence interval 433 

(C.I.): (0.897, 1.002); PPA: mean sum=0.813, 95% C.I.:(0.739, 0.887)], indicating a lower fit to the normalization 434 

model predictions. Furthermore, the difference between the contribution of the face and the body to the 435 

face+body representation, (i.e. the difference between the beta coefficients) is not positively correlated with 436 

the face and body-selectivity as measured by the independent functional localizer data in EVC [mean r=-0.131, 437 

t(14)=-3.240, p=0.997 (one-tailed), 95% C.I.: (-0.201, -0.060), Cohen’s d=0.132] and shows a much lower 438 

positive correlation in PPA [mean r=0.094, t(14)=1.872, p=0.041 (one-tailed), 95% C.I.: (0.006, 0.181), Cohen’s 439 

d=0.094]. In order to directly compare between the ROIS, we ran a repeated measure ANOVA with ROI (face 440 
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and Body selective area, EVC, PPA) as a within-subject factor and the correlation values (after Fisher z 441 

transformation) as a dependent variable. We found a significant effect for ROI indicating a difference in the 442 

correlations between the areas [F(2,28)=38.354, p<0.0001, 𝜂%&=0.672]. Taken together, the relationship 443 

between category selectivity and the contribution of the face and the body to the face+body response was 444 

not found in control areas that are not selective to these categories. 445 

 446 

Figure 7: Experiment 1: (a-c) The beta coefficients of all spheres of all subjects in a region of interest  indicating the 447 

contribution of the face (𝛽!) and the body (𝛽") to the response to the face+body (equation (1)). The color of each dot 448 

indicates the selectivity for the face relative to the body based on independent functional localizer data [(a) Face and 449 

body selective area; (b) early visual cortex (EVC); (c) Parahippocampal place area (PPA)]. (d-f) Histograms of the R2 450 

values of the linear models accounting for the response to the face+body of all spheres (negative values can be 451 

observed for models without intercept, see Methods data [(d) Face and body selective area; (e) EVC; (f) PPA].  452 

 453 

Experiment 2 – The representation of related and unrelated multi-category stimuli in category-454 

selective areas 455 
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Experiment 2 was designed to test whether the correspondence between category-selectivity and multi-456 

category representation that we found in Experiment 1 applies also to non-related pairs of stimuli.   457 

ROI analysis:  458 

First, we ran the same analysis reported above to examine the contribution of the face and the body to the 459 

face+body response in face-selective area. We first defined the ROIs similar to the way they were defined in 460 

Experiment 1 (FFA: Face > Object; FBA: Body > Object, including an overlap area) to assure that we replicate 461 

the same findings. Results showed similar findings [FFA: 𝛽!
(!#) − 𝛽#

(!#): mean=0.510, t(14)=4.318, p<0.001, 462 

95% C.I. (0.257, 0.7763), Cohen’s d=1.115; FBA: 𝛽!
(!#) − 𝛽#

(!#): mean=-0.412, t(12)=-3.198, p=0.008, 95% C.I. 463 

(-0.693, -0.131), Cohen’s d=0.887; Overlap area: 𝛽!
(!#) − 𝛽#

(!#): mean=0.151, t(10)=2.060, p=0.066, 95% C.I. (-464 

-0.012, 0.315), Cohen’s d=0.621]). However, in order to compare between the face+body and face+object 465 

findings, in Experiment 2 we used a modified definition of the ROIs than the definition used in Experiment 1, 466 

where each category was subtracted from all other categories (FFA: Face > Object, Body & Scrambled-object; 467 

FBA: Body > Object, Face & Scrambled-object) to prevent a bias toward one of the categories (see Methods). 468 

This definition excludes the face-body overlap areas, but still replicates results of Experiment 1  in face- and 469 

body-selective areas (Fig. 4a), with both the face and the body contributing to the response of the face+body 470 

stimulus [𝛽!
(!#) and 𝛽#

(!#) of both FFA and FBA >0, all p-values <0.001 except for p=0.002 for 𝛽#
(!#) in FFA, all 471 

Cohen’s d values >0.984, see Fig. 8a]. Furthermore, the relative contribution of the face and the body varied 472 

as a function of the face and body selectivity (Fig. 1d), replicating the results of Experiment 1: in the FFA the 473 

contribution of the face was higher than the contribution of the body [𝛽!
(!#) − 𝛽#

(!#): mean=0.494, 474 

t(14)=4.169, p<0.001, 95% C.I. (0.240, 0.747), Cohen’s d=1.076], while in the FBA the contribution of the body 475 

was higher than the contribution of the face [𝛽!
(!#) − 𝛽#

(!#): mean=-0.382, t(13)=-3.442, p=0.004, 95% C.I. (-476 

0.622, -0.142), Cohen’s d=0.920]. The sum of coefficients in both face and body areas was again slightly over 477 

1 [mean sum (s.e.m.): FFA: 1.042 (0.066); FBA: 1.098 (0.054)] consistent with our model (Fig. 1e). 478 

Next, we performed similar analyses for the face+object stimuli. For each subject we fitted a regression model 479 

for the 30 most selective voxels within the face-selective area (Face > Object, Body& Scrambled-object) and 480 
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the object-selective area (Object > Face, Body & Scrambled-object) to predict the response to the face+object 481 

based on the responses to the face and the object (equation 2). Similar to the face+body findings, the face- 482 

and object-selective areas showed a significant contribution of both the face and the object to the face+object 483 

representation across all subjects, indicated by positive, non-zero coefficients of both the face and the object 484 

[𝛽!
(!') and 𝛽'

(!') of both FFA and object-selective area >0, all p-values<0.001, all Cohen’s d values >1.266. see 485 

Figure 8b]. In addition, the selectivity of the area determined the relative contribution of the face and the 486 

object to the face+object representation (Fig. 1d). Specifically, we found that in the FFA, which is mainly 487 

selective to faces, the contribution of the face was higher than the contribution of the object [𝛽!
(!') − 𝛽'

(!'): 488 

mean=0.413, t(14)=6.737, p<0.001, 95% C.I. (0.282, 0.545), Cohen’s d=1.740], while in the object-selective 489 

area, the contribution of the object was higher than the contribution of the face [𝛽!
(!') − 𝛽'

(!'): mean=-0.512, 490 

t(12)=-5.753, p<0.001, 95% C.I. (-0.706, -0.318), Cohen’s d=1.596]. The sum of coefficients, again, was slightly 491 

over 1 consistent with our model (Fig. 1e) [mean sum (s.e.m.): FFA: 1.090 (0.043); Object area: 1.096 (0.047)]. 492 

The face+body stimuli are different from the face+object stimuli in that the former are a familiar combination 493 

whereas the latter are not. Previous studies have predicted different patterns of representations to familiar 494 

than non-familiar object combinations (Baldassano et al., 2016; Kaiser & Peelen, 2018; Song et al., 2013) 495 

whereas others did not find such difference (Baeck et al., 2013; Kaiser et al., 2014). To examine whether the 496 

pattern of response to face+body and face+object is different, we ran a repeated measure ANOVA with Pair 497 

Type (face+body, face+object) and ROI (face-selective, body/object selective) as within-subject factors and the 498 

difference between the coefficients as a dependent variable. We excluded from this analysis subjects that did 499 

not had 30 voxels in each of the three ROIs (3 subjects). As expected, the main effect of the ROI was significant 500 

[F(1,11)=54.382, p<0.0001], indicating that the selectivity of the ROI accounts for the relative contribution of 501 

each of the single categories to their multi-category stimuli. Importantly, we found no support for differences 502 

between Pair Type [F(1,11)= 1.361, p=0.268, 𝜂%&=0.030], as well as no interaction between the ROI and Pair 503 

Type [F(1,11)=0.024, p=0.808, 𝜂%&=0.0003]. Thus, the same normalization framework accounts for the two 504 

types of multi-category stimuli. 505 
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 506 

Figure 8: Experiment 2: (a) Beta coefficients for the face and the body predicting the response of the 30 most selective 507 

voxels within each subject's ROIs to the face+body stimulus. 𝛽!
(!") is the contribution of the face to the face+body 508 

response and 𝛽"
(!") is the contribution of the body to the face+body response. Each dot indicates the results of a single 509 

subject within an ROI. The large diamonds indicate the group mean (error bars indicate s.e.m.). (b) Beta coefficients for 510 

the face and the object predicting the response of the 30 most selective voxels within each subject's ROIs to the 511 

face+object stimulus. 𝛽!
(!%) indicates the contribution of the face to the face+object response and 𝛽%

(!%) indicates the 512 

contribution of the object to the face+object response. Each dot indicates the results of a single subject within an ROI. 513 

The large diamonds indicate the group mean (error bars indicate s.e.m.).  514 

 515 

Searchlight analysis 516 

A similar searchlight analysis as described in Experiment 1 was performed for the face+body (equation (1)) 517 

and the face+object stimuli (equation (2)) in ventrotemporal and lateral-occipital areas that are selective to 518 

faces, bodies or objects relative to scrambled objects (i.e., category-selective cortex).  Figure 9a depicts the 519 

beta coefficients for the face and the body, i.e. the contribution of the face and the body to the face+body 520 

response of all spheres within the category-selective cortices of all subjects. Although this area contains also 521 

voxels that are selective to objects, results are similar to Experiment 1. Specifically, the difference in the 522 

contribution of the face and the body to the face+body representation, (i.e. the difference between the beta 523 

coefficients) is positively correlated with the selectivity to the face relative to the body as predicted [mean 524 

r=0.386, t(14)=8.444, p<0.0001 (one-tailed), 95% C.I.=(0.312, 0.456), Cohen’s d=2.180], and the sum of 525 
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coefficients is slightly higher than 1 [mean sum=1.013, 95% C.I.=(0.970, 1.056)],  replicating the results of 526 

Experiment 1. 527 

We performed the same analysis for the face+object model over the same searchlight area and found similar 528 

results to the face+body findings (Fig. 9b): The beta-coefficients are scattered along the weighted mean line 529 

with a sum of coefficients that is slightly higher than 1 [mean sum=1.015, 95% C.I.=(0.993, 1.038)] and the 530 

difference in the contribution of the face and the object to the face+object representation (i.e., the difference 531 

between the coefficients) is correlated with the selectivity to the face relative to the object as expected [mean 532 

r=0.395, t(14)=11.193, p<0.0001 (one tailed), 95% C.I.=(0.338, 0.449) , Cohen’s d=2.890] (Fig. 1d-e).  533 

 534 

Figure 9:  Results of searchlight analysis in Experiment 2. (a) The beta coefficients of all spheres in the category 535 

selective cortices of all subjects indicating the contribution of the face (𝛽!
(!")) and the body (𝛽"

(!")) to the response to 536 

the face+body (equation (1)). The color of each dot indicates the selectivity to the face relative to the body based on 537 

independent functional localizer data. There was a positive correlation between category selectivity (Face>Body) and 538 

difference between betas (𝛽!
(!") − 𝛽"

(!")) (b) The beta coefficients of all spheres in the category selective cortices 539 

(same as (a)) of all subjects indicating the contribution of the face (𝛽!
(!%)) and the object (𝛽%

(!%)) to the response to the 540 

face+object (equation (2)). The color of each dot indicates the selectivity for the face relative to the object based on 541 

independent functional localizer data. There was a positive correlation between category selectivity (Face>Object) and 542 

difference between betas (𝛽!
(!%) − 𝛽%

(!%)). 543 
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To compare the spatial distribution of the beta-coefficients and category selectivity, we plotted the difference 544 

between the coefficients and the difference between the selectivity to each pair of categories on brain surface 545 

maps of one representative subject along his category-selective cortex. (Fig. 10a-d). Figure 10a shows the 546 

difference between the face and body coefficients (i.e., difference between the contribution of the face and 547 

the contribution of the body to the face+body representation). Figure 10b shows the selectivity to the face 548 

relative to the selectivity to the body as measured by the independent functional localizer data. It can be seen 549 

that cortical areas that show higher contribution of the face to the face+body representation correspond to 550 

face-selective clusters (red in both figures), and that areas that show higher contribution of the body to the 551 

face+body representation correspond to body-selective clusters (blue in both figures). Figure 10c shows the 552 

difference between the contribution of the face and the object to the face+object representation for the same 553 

category-selective area. Figure 10d shows the selectivity to the face relative to the object based on the 554 

functional localizer data. Similar to the face+body results, areas that show higher contribution of the face to 555 

the face+object representation correspond to face-selective clusters (red in both figures), and areas that show 556 

higher contribution of the object to the face+object representation correspond to object-selective clusters 557 

(blue in both figures).  558 
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 559 

Figure 10: Experiment 2: Results of searchlight analysis of one representative subject plotted on the cortical surface 560 

show the correspondence between the difference between the coefficients of the two categories and the magnitude of 561 

their selectivity in category-selective cortex. Note that Figure 3 shows a map of the coefficients and here we show a 562 

map of the difference between the coefficients. (a) The difference between the contribution of the face and the body 563 

to the face+body representation as indicated by the difference between the regression coefficients. A larger difference 564 

corresponds to a higher contribution of the face than the body to the representation of the face+body stimulus. (b) 565 

Selectivity to faces relative to bodies (t map of Face>Body). Selectivity was determined based on independent 566 

functional localizer data. (c) The difference between the contribution of the face and the object to the face+object 567 

representation as indicated by the difference between the regression coefficients. A larger difference corresponds to a 568 

higher contribution of the face than the object to the representation of the face+object stimulus. (d) Selectivity to faces 569 

relative to objects (t map of Face<Object) based on independent functional localizer data. 570 

 571 

Whole-brain analysis 572 

To reveal whether the correspondence between category-selectivity and multi-category representation is a 573 

unique property of the category-selective visual cortex, we performed an unconstrained whole-brain 574 
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searchlight analysis, similar to the searchlight analysis described in the previous section. We used a 575 

parcellation of 400 parcels (Schaefer et al., 2018) and for each parcel and each subject we calculated the 576 

Pearson correlation between category selectivity and the difference between the betas in our model. Figure 577 

11a,c depict the correlation for each parcel of the right hemisphere for the face+body and the face+object 578 

model, respectively, averaged across subjects (after Fisher’s z transformation). Figure 11b,d depict parcels 579 

that show significant correlation across subjects for the two models (one-tailed t-test with N=15, p<0.05 580 

corrected for multiple comparisons). Only parcels within high-level visual cortex (ventro-temporal and lateral-581 

occipital areas) showed significant correlations. Moreover, the pattern of correlations is different for the 582 

face+body model and the face+object model. The ventro-medial areas, which are typically selective to 583 

inanimate stimuli show a positive correlation for the face+object model but not for the face+body model, 584 

further indicating the correspondence between components of the multi-category stimuli and the selectivity 585 

to its components. 586 
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 587 

Figure 11: Experiment 2: Results of whole-brain searchlight analysis. (a) Correlation between the difference between 588 

the contribution of the face and the body to the face+body representation and difference between category selectivity 589 

(Face>Body of localizer data) in each parcel, averaged across subjects. (b) Parcels showing significant positive 590 

correlation as described in (a) (one-tailed t-test across subjects of Fisher’s z transformed correlations, p<0.05 corrected 591 

for multiple comparisons of 400 parcels). Selectivity to faces relative to bodies (t map of Face>Body). Selectivity was 592 

determined based on independent functional localizer data. (c) Correlation between the difference between the 593 

contribution of the face and the object to the face+object representation and difference between category selectivity 594 

(Face>Object of localizer data) in each parcel, averaged across subjects. (d) Parcels showing significant positive 595 

correlation as described in (c) (one-tailed t-test across subjects of Fisher’s z transformed correlations, p<0.05 corrected 596 

for multiple comparisons of 400 parcels). 597 



 

 30 

Discussion  598 

The current fMRI study demonstrated a remarkable correspondence between the spatial distribution of 599 

category-selectivity and the representation of multi-category stimuli across high-level, category-selective 600 

cortex (Figures 5-11). We further showed that this correspondence is restricted to category-selective visual 601 

cortex (Figure 7,11). Consistent with our predictions (Figure 1), we found that the relative contributions of 602 

each category (i.e. the model coefficients) to the multi-category response are determined by the magnitude 603 

of category selectivity in a given cortical area, and therefore vary across different areas of category-selective 604 

cortex. These findings are consistent with a normalization mechanism (Bao & Tsao, 2018; Macevoy & Epstein, 605 

2009; Reddy et al., 2009) but go beyond previous reports in several ways: (1) By showing that the 606 

representations of multi-category stimuli is determined by the category selectivity to their component stimuli, 607 

we provide a general framework to the various findings reported in previous studies that showed either a 608 

mean or a max response in different areas of category-selective cortex. (2) By using fMRI, we can show this 609 

principle of operation across a large, continuous region of category-selective visual cortex and that it is 610 

restricted to this cortical region (3) We found that this weighted linear model accounts for the representations 611 

of both related (face+body) and non-related (face+wardrobe) multi-category stimuli. 612 

Our findings are consistent with a recent single unit recording study (Bao & Tsao 2018), that proposed that 613 

the response of a neuron to multi-category stimuli may vary as a function of the homogeneity of category-614 

selectivity of the surrounding neurons. If the surrounding neurons are selective to the same category (i.e., 615 

homogeneous normalization pool) as the recorded neuron (i.e., a face neuron in a face-selective area), the 616 

normalization pool is unresponsive to the non-preferred stimulus and therefore does not reduce the 617 

response of the recorded neuron to its preferred stimulus, yielding a max response. Thus, areas with high 618 

concentration of neurons selective to a single category give priority to the preferred stimulus, filtering out 619 

the non-preferred stimuli, resulting in a max response (Bao & Tsao, 2018; Reddy et al., 2009) (See Figure 1b). 620 

This operation enables hard-wired de-cluttering at early stages of visual processing (Bao & Tsao, 2018) in 621 

category-selective areas. In contrast, in areas with a mixed population of category-selective neurons, the 622 



 

 31 

surrounding neurons respond to the non-preferred stimuli, yielding similar, possibly competitive, 623 

representations to different categories, resulting in a mean response. By generating a response to multiple 624 

stimuli that ranges from a mean to a max response, the normalization mechanism keeps the neuronal 625 

response within the dynamic range preventing saturation of the neural response (Carandini & Heeger, 2012). 626 

The fMRI results reported in the current study add to the neuronal findings by demonstrating the 627 

correspondence between the functional organization of high-level visual cortex and the representation of 628 

multi-category stimuli across a large area of cortex with varying degrees of category selectivity that cannot 629 

be obtained in neurophysiological studies. This is enabled by two features of the fMRI signal: First, the 630 

magnitude of category-selectivity measured with fMRI provides a measure of the homogeneity of the 631 

normalization pool, an important factor in the representation of multiple categories as derived from the 632 

normalization equation (Fig. 1). Second, fMRI enables exploring the pattern of response across a large, 633 

continuous area of cortex with different mixtures of category-selective neurons. This pattern of response 634 

indicates that the representation of the multi-category stimulus changes gradually in a way that corresponds 635 

to the profile of category-selectivity (Fig. 6,7,9,10,11). These results propose a continuous mode of 636 

organization of high-level visual cortex, rather than the more common, discrete-like depiction of category-637 

selective cortex.  638 

Nevertheless, functional MRI cannot determine whether the response of neurons to a face and a body in the 639 

overlap area that is selective to both faces and bodies reflects neuronal saturation of neurons that are 640 

selective to either a face or a body, or a mean response of two populations of face-selective and body-641 

selective neurons. Based on single unit recording studies we believe that the latter alternative is more likely.  642 

First, Bao & Tsao (2018) showed that the response of face-selective neurons to two simultaneously 643 

presented faces is the mean response to the two isolated faces, indicating no evidence for neuronal 644 

saturation. Thus, even if neurons that are selective to either faces or bodies exist, they are more likely to 645 

show a mean response to a face and a body rather than neuronal saturation. Secondly, the normalization 646 

mechanism function as a “gain control” mechanism, preventing neurons from reaching saturation even 647 

when presented with more than one preferred stimulus (Carandini & Heeger 2012).  648 
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Previous neuroimaging and single unit recording studies reported mixed findings of either a mean response 649 

(Macevoy & Epstein, 2009; Zoccolan et al., 2005), a weighted mean response (Baeck et al., 2013) or a max 650 

response (Bao & Tsao, 2018; Reddy et al., 2009) to multiple stimuli in different areas of category-selective 651 

cortex. Our study proposes a general framework that accounts for these various findings, by showing that the 652 

representation of multiple stimuli vary across high-level visual cortex as a function of the category-selectivity 653 

in different cortical regions. Other neuroimaging studies that examined the representation of multiple stimuli 654 

have asked whether the response to a pair of stimuli deviates from a simple mean model, in particular for 655 

pairs of stimuli that show a meaningful relationship between them (Baldassano et al., 2016; Fisher & Freiwald, 656 

2015; Kaiser & Peelen, 2018; Kaiser et al., 2014; MacEvoy & Epstein, 2011; Song et al., 2013). In these studies, 657 

a deviation from a simple mean response was considered as evidence for integration or a holistic 658 

representation of the complex stimulus. The main advantage of the linear model we used here is that it 659 

provides us with a direct measure of the type of deviation from the mean that the data show and can therefore 660 

decide between a weighted mean response, an additive response or a non-additive response. Our findings 661 

show that the deviation from the mean reflects a weighted mean response. We found no evidence for a non-662 

additive response to the combined stimulus and therefore no support for a holistic representation. This was 663 

the case both for the meaningful pair of face+body stimuli as well as for the non-meaningful face+wardrobe 664 

pair that generated similar representations. Similar results were reported by Baeck et al. (2013) that found 665 

the same representations for related and unrelated pairs of objects. Thus, the normalization mechanism 666 

operates in a similar manner for related and unrelated pairs of stimuli in object-category selective cortex. 667 

Finally, although we refer to the model as a weighted mean model (i.e., sum of weights of 1), derivations of 668 

the normalization model as detailed in Figure 1, predict that the sum of coefficients will be slightly higher than 669 

1. Indeed, our results reveal that the sum of the coefficients is slightly higher than 1, consistent with 670 

predictions of the normalization model as well as with previous findings (Reddy et al., 2009).  671 

Three additional studies that examined the representation of the whole person are noteworthy. Kaiser et al. 672 

(2014) reported no deviation from the mean in the response to a face and a body in a person-selective area 673 

(area defined by a whole person > objects). This area is likely to correspond to the overlap area reported in 674 
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our study that is selective to both faces and bodies, and therefore consistent with our findings (Fig. 4). Song 675 

et al. (2013) reported that only the right FFA showed a deviation from the mean for the response of the whole 676 

person and interpreted that as evidence for a holistic representation. This deviation, however, may reflect a 677 

weighted mean response rather than a non-additive response.  Finally, Fisher & Freiwald (2015) examined the 678 

contribution of the face and body to the whole person in a monkey fMRI study and found a super-additive 679 

(more than the sum) response in anterior but not posterior face areas, in particular, in area AF in the dorsal 680 

bank of the superior temporal sulcus. The human analog of area AF is likely to be in the superior temporal 681 

sulcus (Yovel & Freiwald, 2013) an area that we did not examine in the current study that may apply a different 682 

mode of operation than the ventral visual cortex (see also Baldassano et al., 2016). 683 

To summarize, our findings reveal a general framework of operation according to which the contribution of 684 

each stimulus to the representation of multiple stimuli in a given cortical area is determined by its profile of 685 

category-selectivity. We therefore suggest that the functional organization of neighboring patches of neurons, 686 

each selective to a single or more categories, enables a flexible representation of complex visual scenes, where 687 

both de-cluttering and competition operate in different cortical areas, using the same type of neurons and the 688 

same mechanism of normalization. This type of organization may permit high-level cognitive processes to bias 689 

the response to any of these different representations according to task demands (Desimone & Duncan, 1995; 690 

Reynolds & Heeger, 2009) making the taxing operation of understanding complex visual scenes dynamic and 691 

flexible.  692 

Data Availability 693 

The code that was used for data analysis is available at 694 

https://github.com/LibiKl/multiple_objects_fMRI_analysis. Data that was collected in this study will be 695 

available at https://openneuro.org after publication. 696 
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