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Visual experience is known to play a critical role in face
recognition. This experience is thought to enable the
formation of a view-invariant representation by learning
which features are critical to identify faces across views.
Discovering these critical features and the type of
experience that is needed to uncover them is
challenging. A recent study revealed a subset of facial
features that are critical for human face recognition.
Furthermore, face-trained deep convolutional neural
networks (DCNNs) were sensitive to these facial
features. These findings enable us now to ask what type
of face experience is required for the network to
become sensitive to these human-like critical features,
and whether it is associated with the formation of a
view-invariant representation and face classification
performance. To that end, we systematically
manipulated the number of within-identity and
between-identity face images during training and
examined its effect on the network performance on face
classification, view-invariant representation, and
sensitivity to human-like critical facial features. Results
show that increasing the number of images per identity,
as well as the number of identities were both required

for the simultaneous development of a view-invariant
representation, sensitivity to human-like critical
features, and successful identity classification. The
concurrent emergence of sensitivity to critical features,
view invariance and classification performance through
experience implies that they depend on similar features.
Overall, we show how systematic manipulation of the
training diet of DCNNs can shed light on the role of
experience in the generation of human-like
representations.

Introduction

Object recognition is a computationally challenging
task that humans resolve effortlessly. To successfully
classify objects into different categories, the brain
must create an identity-preserved representation that
is tolerant to within-class changes, such as viewpoint,
lighting, size, occlusion and so forth (DiCarlo & Cox,
2007). This is achieved by emphasizing features that
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remain unchanged across different variations, while
disregarding features that vary across these variations
(Raviv, Lupyan, & Green, 2022). The nature of the
experience that is required for the visual system to learn
which features are critical and generate a view-invariant
representation has so far remained unknown.

Recent advancements in machine vision have
successfully resolved the task of object and face
recognition with deep convolutional neural networks.
These algorithms, trained on thousands of images
in a supervised or self-supervised manner, now
perform on par with humans in face and object
classification (Simonyan & Zisserman, 2014). Whereas
the exact computations used by these algorithms
and their similarity to the computations used by
humans to resolve this task are unknown, recent
studies have uncovered notable similarities between
the representations generated by deep convolutional
neural networks (DCNNs) and the human brain
and mind (Abudarham, Grosbard, & Yovel, 2021;
Cichy & Kaiser, 2019; Groen et al., 2018; O’Toole
& Castillo, 2021). Thus, by studying the type of
experience that is required to generate human-like
representations in DCNNs, we can gain insights on the
ingredients that are needed for these representations to
emerge in humans.

In the current study, we adopted this approach to
shed light on the visual experience necessary for creating
a human-like, view-invariant representation of faces
with DCNNs. The role of experience in human face
recognition is well-established. Studies have shown that
face recognition is better for familiar than unfamiliar
faces (Young & Burton, 2018) and for faces from own
race than other race faces for which we have greater
visual experience (Laurence, Zhou, & Mondloch, 2016;
McKone et al., 2019; Tanaka, Heptonstall, & Hagen,
2017). Moreover, developmental studies indicate that
face recognition gradually improves with development,
including the ability to generalize across different
images of the same individual (Baker & Mondloch,
2019; Matthews & Mondloch, 2022). Many studies
have emphasized the importance of experience with
variable face images for successful face recognition
(Baker & Mondloch, 2019; Honig, Shoham, & Yovel,
2022; Kramer, Jenkins, Young, & Burton, 2017; Ritchie
& Burton, 2017). However, systematic manipulation of
human real-life experience with faces is not possible and
it is therefore hard to determine a direct link between
the visual diet that humans are exposed to and its
contribution to the generation of a face representation
that enables their face recognition abilities.

In a recent set of studies, Abudarham and colleagues
(Abudarham, Shkiller, & Yovel, 2019; Abudarham &
Yovel, 2016; Abudarham & Yovel, 2020) discovered
that humans are sensitive to a subset of facial features
that are critical for face identification. Replacing these
features changed the identity of a face (see Abudarham

et al., 2019, figure 1). Moreover, Abudarham and
colleagues (2016) found that human sensitivity to these
critical features remained invariant across variations
in head pose, which makes them potentially useful for
view-invariant identity classification. They further
revealed that face-trained, but not object-trained
DCNNs, showed similar sensitivity to this subset of
facial features. This indicates that experience with faces
is necessary to learn to use these features for identity
classification. These findings are also consistent with
recent studies showing human-like face effects such
as the face inversion effect and other-race effect in
face-trained but not object-trained DCNNs (Dobs,
Yuan, Martinez, & Kanwisher, 2023; Yovel, Grosbard,
& Abudarham, 2023). Furthermore, sensitivity to these
critical features and the generation of a view-invariant
representation were found in higher layers of the
face-trained network, whereas earlier layers showed no
preference to this subset of face features and evidence
for a view-specific face representation (Abudarham
et al., 2021). This human-like representation enables us
to link between humans and DCNNs view-invariant
representations and examine the type of visual diet that
is required for the development of successful identity
classification.

To this end, in the current study we systematically
manipulated the amount and type of visual-diet
and examined its effect on the generation of a
view-invariant representation, sensitivity to human-like
critical features and performance on face identity in
DCNNs. We manipulated experience by systematically
increasing the number of within-identity images or
between-identity images. This enabled us to assess
the relative importance of between-identity and
within-identity image variability. We then examined
these models on the following measures: First, we
examined performance of each of the trained DCNNs
on a standard face verification benchmark, the Labeled
Faces in the Wild, a face dataset that is commonly
used to assess performance of face-trained DCNNs
(Liao, Zhen, Dong, & Li, 2014) (Figure 1). Second, we
measured the distance between faces that differ in head
views to measure view-specific versus view invariance
representations (Figure 2). We also measured the
distance between faces that differ in noncritical features
or critical features, to measure sensitivity to human-like
critical features (Figure 3). These distances were
measured based on the pixel-based representation or
the identity-based representation of the images, which
is generated in the last hidden layer of the fully trained
face model. We then measured the similarity of the
representation that was generated for faces in the last
hidden layer of each trained network to the pixel-based
representation and the identity-based representation of
a fully trained face model. This enables us to determine
whether increasing the amount of training makes the
face representation more similar to the identity-based

Downloaded from jov.arvojournals.org on 07/21/2025



Journal of Vision (2025) 25(8):2, 1–12 Rosemblaum et al. 3

representation and less similar to the pixel-based
representation. Moreover, concurrent emergence of
view invariance and sensitivity to critical features along
with improved performance on face identity verification
as a function of the visual diet would suggest that they
depend on similar features (Figure 4). It will further
indicate the importance of experience to the generation
of these features.

General methods

Model

We used VGG-16 (Simonyan & Zisserman, 2014)
as a the base model, which we trained on different
numbers of face images. We selected this model because
it has been often used in previous studies (Abudarham
et al., 2021; Blauch, Behrmann, & Plaut, 2021; Dobs
et al., 2023). The representations used in the study are
extracted from the penultimate layer (FC7).

Train dataset

We used the VGGFace2 dataset (Cao, Shen, Xie,
Parkhi, & Zisserman, 2018) to train our networks.
VGGFace2 is a large-scale face recognition dataset
developed by the Visual Geometry Group at the
University of Oxford. It contains over 3 million images
of more than 8000 individuals, with each individual
represented by several hundred images. The images were
collected from a variety of sources and were annotated
with bounding boxes and labels indicating the identity
of the individuals.

Training protocol

We created 64 subsets of face images, which included
2, 5, 10, 50, 100, 200, 500, 1000 identities. For each of
these number of identities we selected one, five, 10,
20, 50, 100, 200, or 300 images per identity. Because
our test images were White, we also trained the
DCNNs only on white faces. For the small training
sets (1–100 identities, with all possible images per
identity), we trained each DCNN on 30 different data
sets to obtain robust performance measure of their
representations/performance. The results were then
averaged across the 30 networks. Representations were
extracted also from the fully-trained model that was
trained on the whole VGGface2 data set.

Stimuli
View-specific and view-invariant representations: To
examine whether the network generates a view-specific
or a view-invariant representation, we used images of

15 identities from the color FERET face-image dataset.
For each identity, we selected four images: a “reference”
frontal image, a second “frontal” image that is different
from the reference image, a quarter-left image, and a
half-left image. All images were of adult White males,
well-lit, with no glasses, hats or facial hair. The images
were cropped just below the chin to include only the
face, including the hair and ears. This resulted in four
types of face pairs: “Same-Frontal,” “Same-quarter
view,” “Same- half view,” and “Different- Frontal”
(See Figure 2A for examples of the four types of face
pairs, the original face images used in the study were
real faces not shown in this figure).
Critical features for face recognition: We used 25 face
identities to generate image pairs. For each of the 25
identities, we used an original image, an image with
modified critical features, and an image with modified
noncritical features (for more information about how
the face images were created see (Abudarham & Yovel,
2016). We also used a different unmodified image
of the same person, which we used as a reference
image. This allowed us to create four image pairs: the
“Same” pair, which compares the reference image to the
original image, the “Different” pair, which compares
the reference image to a reference image of a different
identity, the “Critical features” pair, which compares
the reference image to the original image with different
critical features, and the “Non-critical features” pair,
which compares the reference image to the original
image with different noncritical features. (See Figure 3A
for examples of the four types of face pairs, the original
face images used in the study were real faces not shown
in the figure).

Performance measures
We measured the performance of the trained

DCNNs on a face verification task using the standard
Labeled Faces in the Wild (LFW) benchmark (Liao
et al., 2014). LFW is a database of unconstrained
face images used for testing performance level of face
recognition algorithms. The data set contains more than
13,000 images of faces collected from the web, 1680 of
the people pictured have two or more distinct photos
in the data set. More information about this data base
can be found here https://vis-www.cs.umass.edu/lfw/.
We used 6000 pairs of face images. These pairs consist
of positive pairs, where both images show the same
person, and negative pairs, where the two images show
different people. The goal of the face verification task
is to determine if the two images in each pair belong
to the same person or not. We assessed the models’
performance by measuring the cosine distance between
the embeddings of pairs of faces. If the distance was
smaller than a predetermined optimal threshold, the
images were classified as the same person, otherwise
they were classified as different. The accuracy values
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reported here reflect performance achieved using the
optimal threshold for each model.
Extracting representations from DCNNs: To extract the
representations that were generated by the DCNNs,
we ran the trained models in evaluation mode on
a predefined set of image stimuli. The face images
were first aligned using the MTCNN face alignment
algorithm (Xiang & Zhu, 2017). After alignment, the
images were normalized with the standard ImageNet
normalization (M = [0.5, 0.5, 0.5], SD = [0.5, 0.5, 0.5]).
We first measured the pixel-based representations of all
face images. We then examined the representations at
the penultimate, fully connected (fc7) layer. This is the
final hidden layer that generates the final representation
that is transformed to the output probability layer.
Quantifying view-invariance of face-representations
in DCNNs: We calculated the Euclidean distances
between the penultimate layer (fc7) embeddings of the
following pairs of faces: same identity faces—same
view, same identity faces—quarter view, same identity
faces—half view, and different identity faces—same
view (as shown in Figure 2A) for 15 different identities.
The face alignment procedure failed to detect four of
the half-view faces, so we only had 11 face pairs in
the frontal-half-view condition. The distance scores
were normalized by dividing the measured distances
by the maximal distance value in each run across all
stimuli and conditions. This resulted in a normalized
score that ranged from 0–1. These distance scores were
calculated for each of the 64 DCNNs, as well as for
a pixel-based representation based on the pixel values
of the images and for the identity-based representation
based on the values of the penultimate (last hidden –
fc7) layer of the fully face-trained DCNN (Abudarham
et al., 2021). Finally, to measure the similarity between
each of the 64 trained DCNNs and the baseline models
(pixel-based and identity-based), we calculated the
Euclidian distance between the normalized mean
distances of the four types of face pairs (dividing the
distance of each pair by the sum of the distances of the
four pairs) of each trained DCNN with each baseline
models. Smaller distances indicate that the DCNN is
more similar to the pixel model (Figure 2D) or the
identity model (Figure 2E).
Measurement of sensitivity to critical features: We
calculated the Euclidean distances between the
representations of the following four conditions: Same,
Non-Critical, Critical, and Different (See Figure 3A).
Each condition includes 25 image pairs. Distances
were calculated for a pixel-based representation based
on the pixel values of the images and for the other
representations based on the penultimate layer. We
then performed the same analysis that is described
in the previous section to measure the similarity
of each of the 64 models with a pixel-based or an
identity-based representations (see Supplementary
Figure S2).

Results
Data reported in the results section can be found

in this OSF link: https://osf.io/huzkp/?view_only=
dfc6c75cc12b424d851794be43ca3f44. To assess the
effect of the visual diet on the generation of a
view-invariant representation of face identity, we
trained a DCNN (VGG-16) with the following training
diets: We created 64 subsets of face images, which
included all possible combinations of two, five, 10, 50,
100, 200, 500, and 1000 identities and one, five, 10, 20,
50, 100, 200, and 300 images per identity. For models
that are trained with a relatively smaller number of
faces (1–100 identities models), we trained the model
with thirty different sets of faces to avoid stimulus
specific effects. The results were then averaged across
the thirty models for each condition.

Effects of visual diet on face identity
classification

We measured the performance of the DCNNs on a
standard face verification task, Labeled Faces in the
Wild (LFW) benchmark (Liao et al., 2014). For each
of the networks we extracted the representation in
the last hidden (penultimate) layer (fc7) and assessed
performance on a same-different identity task (see
methods). Figure 1 shows that accuracy improves
for DCNNs trained on larger number of images.
Both the number of different identities as well as the
number of images per identity were needed to improve
performance. Accuracy did not exceed 75% if the
number of identities was below 10 for any number of
images per identity (up to 300 images per identity) or
if the number of images per identity was below five for
any number of identities (up to 1000 identities) (See
Supplementary Table S1 for report of performance
level values that are shown in Figure 1). This suggests
that identity face classification requires experience with
images of different identities but also with different
images of the same identity. This is further corroborated
in an examination of a subset of the DNNs that are
trained on the same total number of images (n = 10,000
images) but differ in the number of identities/number of
images per identity, showing an overall similar level of
performance (see Supplementary Figure S4A). We next
assessed how this experience changes the representation
from a view-specific to a view-invariant representation.

The emergence of a view-invariant
representation

To evaluate whether a representation that is generated
by a DCNN is view-specific or view-invariant, we
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Figure 1. Accuracy on a face verification task with LFW benchmark. Performance gradually improves as the number of identities
(color), and the number of images per identity (x-axis) increase. Chance level is 50%. Error bars indicate the standard error of the 30
samples that were tested for models that were trained on 100 identities or less.

used face images of 15 identities from which we
generated the following four types of pairs: same
identity: same view (frontal), same-identity: different
view (frontal vs. quarter view), same-identity: different
view (frontal versus half view), different identity-same
view (frontal) (Figure 2A). We measured the Euclidean
distance between the feature vectors of the four face
pairs for two base-line representations: Pixel-based
representation, which was the raw pixel values of the
test face images. Identity-based representation, which
was the representation in the penultimate layer of
a fully face-trained DCNN (>8000 identities with
approximately 300 images per identity, see methods).
The distance between the pixel-based representations of
each pair of faces showed a view-specific representation
as indicated by a larger distance between same
identity-different view face pairs (light blue bars)
than between different identity-same view face pairs
(red bar) (Figure 2B). As mentioned above, the face
alignment procedure (see methods) failed to detect 4
of the half-view faces, for this reason we only included
11 face pairs in the half-view condition. The statistical
analysis was therefore performed on these 11 identities
across all conditions. A repeated measure analysis of
variance (ANOVA) across the four face types reveal
a significant effect of face type (F(3,30) = 76.19, p <
0.001). Post hoc comparisons reveal that all conditions
were statistically different from one another (p < 0.02)
(see Supplementary Table S2 for all statistical tests).

The distance between the representations of each
pair of faces based on the penultimate layer of

the fully-trained network revealed a view-invariant
representation as manifested by a larger distance
between different identity-same view face pairs
than between same identity-different view face pairs
(Figure 2C). A repeated measure ANOVA across the
four face types reveal a significant effect of face type
(F(3,30) = 131.74, p < 0.001). Post hoc comparisons
reveal that all conditions were statistically different
from one another (p < 0.004) (see Supplementary
Table S2 for all statistical tests). On top of the larger
distance between different identity same-view faces and
same identity different view faces, we also see that the
representation preserves the view-specific information,
as evident by the larger distance between same identity
faces that differ in head views in larger viewing than
smaller viewing angles (the three blue bars). These
findings are consistent with Hill and colleagues who
proposed that the high-level identity representation of
DCNNs preserves both identity and view information.
(Hill et al., 2019).

Next, we measured the similarity between the
representations generated for the same four face pairs
in each of the trained models with the pixel-based
and the identity-based representations. We did that
by calculating the Euclidean distance between the
distribution of the four types of face pairs of the pixel-
based representation (Figure 2B) and identity-based
representation (Figure 2C) with the distribution of the
four types of face pairs in each of the 64 DCNN trained
models (see Supplementary Figure S1). The similarity
to the pixel-based distribution is presented in Figure 2D
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Figure 2. The emergence of a view-invariant face representation with visual experience. (A) The four types of face pairs used to test a
view-invariant representation. Same identity same view (dark blue), same identity quarter-left (light blue), same identity half-left
(lightest blue) and different identity same view (red). The DCNN was tested on real faces. The faces presented in the Figure are
generated by a graphic software (FaceGen), to depict the type of headview changes that were used in the experiment. (B) Disimilarity
scores (normalized distance) between the four types of face pairs based on the pixel layer reveals a view-specific representation. Error
bars indicate the standard errors across images of different identities. (C) Disimilarity scores (normalized distance) between the four
types of face pairs based on the penultimate layer of a fully face-trained DCNN reveals a view invariant representation. Error bars
indicate the standard errors across images of different identities. (D) The similarity (measured by Euclidean distance where smaller
values indicate higher similarity) of each DCNN with the pixel-based representations (panel B) is higher for DCNNs trained on smaller
number of images. (E) The similarity (measured by Euclidean distance) of each DCNN with the identity-based representation (panel C)
is higher for DCNNs trained on larger number of images. To see the representations of each DCNN see Supplementary Figure S1.

and to the identity-based distribution in Figure 2E.
We found that DCNNs that are trained on smaller
number of identities and images per identity generate
representations that are more similar to a view-specific,

image-based representation, and DCNNs that are
trained on larger number of identities and images per
identity generate a representation that is more similar
to a view-invariant, identity-based representation. In
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particular, we see that a DCNN that is trained on
large number of identities (500 or 1000) generate a
view-invariant representation with only 10 images
per identity. Examination of a subset of the DNNs
that were trained on the same total number of images
(10,000) but differed in the number of identities or
number of images per identity show that both between
identity and within identity variances contribute to the
emergence of this view invariant representation (see
Supplementary Figures S4B, S4C).

Sensitivity for human-like critical features

To evaluate whether the representations of
DCNNs are sensitive to human-like view invariant
critical features, we measured the distance between
representations of four types of face pairs of 25 different
identities (not included in the train set). Figure 3A
shows an example of each type of face pairs: “Same
identity” are different images of the same identity,
“Non-critical features” are same identity face pairs
in which noncritical features were replaced; “Critical
features” are same identity face pairs in which critical
features were replaced; and “Different identity” face
pairs. Figure 3B shows the Euclidean distances
between these face pairs based on their pixel-based
representations. A repeated measure ANOVA reveal
a significant effect of face type F(3, 72) = 7.25, p =
0.001. Post hoc comparisons revealed the pixel-based
distances of same identity pairs were smaller than the
distance between noncritical features pairs (t(24) =
3.75, p = 0.002), critical feature pairs (t(24) = 4.18, p
< 0.001) and different identity pairs (t(24) = 3.28, p =
0.006). Importantly, there was no difference between the
pixel-based distances of face pairs that differ in critical
and non critical features (t(24) = 0.42, p = 0.68). These
findings indicate that pixel information is not sensitive
to human-like critical features more than noncritical
features. Figure 3C shows the Euclidean distances
between representations of the same face pairs, based
on the penultimate layer of a fully face-trained DCNN
(Abudarham et al., 2019; Abudarham et al., 2021).
Here we see a much larger distance between faces
that differ in critical features than faces that differ in
noncritical features, indicating that the identity-based
representation is sensitive to human-like critical
features. We also show that faces that differ in critical
features are as different as different identity faces,
indicating that changing them is similar to changing the
identity of a face. A repeated measure ANOVA across
the four face types reveal a significant effect of face type
F(3, 75) = 175.51, p < 0.001. Post hoc comparisons
reveal that all conditions were statistically different
from one another (p < 0.001) (see Supplementary Table
S3 for all statistical tests), except face pairs that differ
in critical features and different face pairs, which did

not differ statistically (t(24) = 0.684, p = 0.5). These
findings are consistent with our definition of critical
features, which are features that changing them change
the identity of the face.

Next, we measured the similarity of the
representations to the four face pairs that were
generated by each of the face-trained models with
the pixel-based and identity-based representations.
We calculated the Euclidean distance between the
distribution of the four types of face pairs of the
pixel-based representation (Figure 3B) and identity-
based representation (Figure 3C) with the distribution
of the four types of face pairs in each of the 64
DCNN trained models (see Supplementary Figure S2).
The distances from the pixel-based distribution are
presented in Figure 3D and from the identity-based
distribution in Figure 3E. DCNNs that were trained
on smaller number of images were more similar to
the image-based representation showing no sensitivity
to critical features over noncritical features, whereas
DCNNs that were trained on a larger number of
images were more similar to models that are sensitive
to human-like critical features. Examination of a subset
of the DNNs that were trained on the same total
number of images (10,000) but differed in the number
of identities or number of images per identity show that
both between identity and within identity variances
contribute to the sensitivity to critical features (see
Supplementary Figures S4D, S4E).

Abudarham and Yovel (2016) suggested that humans
are sensitive to critical features because they enable
a view-invariant representation of face identity,
which is needed for successful face recognition across
different appearances of the same identity. To examine
these correspondences, we computed sensitivity to
noncritical features by subtraction of face pairs that
differ in noncritical features from same identity faces
(Figures 4A, 4B) and sensitivity to critical features by
subtraction of face pairs that differ in critical features
from same identity faces (Figures 4C, 4D). We then
examined the strength of a linear relationship across all
64 DCNNs with accuracy on face verification based on
the LFW benchmark (Figures 4A, 4C, y-axis) and with
a measure that indicates a view invariant representation
(Figures 4B, 4D, y-axis). The view invariant measure
was calculated by subtracting the distance between
different face pairs (red bar in Figure 2) from the
distance between same identity different head view
face pair (light blue in Figure 2). Thus a negative score
indicates a view-specific representation and a positive
score indicate a view-invariant representation.

Figure 4 shows a strong linear relationship between
sensitivity to critical features and accuracy on the LFW
benchmark (Figure 4C). It also shows a strong linear
relationship between sensitivity to critical features
and the emergence of a view-invariant representation
(Figure 4D). There was no such linear relationship
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Figure 3. The emergence of sensitivity to critical features with visual experience: (A) The four types of face pairs that are used to test
sensitivity for critical features. Same identity (blue), noncritical features changed (purple), critical features changed (green) and
different identity (red). The DCNN was tested on real faces. The faces presented in the Figure were generated by a graphic software
(FaceGen) to depict the feature manipulations that were performed on the real face images. (B) Disimilarity scores (normalized
distance) between the four types of face pairs based on the pixel layer reveals no sensitivity to human-like critical features. Error bars
indicate the standard errors across images of different identities. (C) Disimilarity scores (normalized distance) between the four types
of face pairs based on the penultimate layer of a fully face-trained DCNN reveales high sensitivity to human-like critical features. Error
bars indicate the standard errors across images of different identities. (D) The similarity (measured by Euclidean distance where lower
values are higher similarity) of each DCNN to the pixel-based representations (panel B) is higher for DCNNs trained on smaller number
of images. (E) The similarity (measured by Euclidean distance) of each DCNN to the identity-based representation (panel C) is higher
for DCNNs trained on larger number of images. To see the representations of each DCNN see Supplementary Figure S2.

between sensitivity to noncritical features (distance
between pairs of faces that differ in noncritical features)
and performance on face verification task (Figure 4A)
or the emergence of a view invariant representation
(Figure 4B).

We calculated the linear relationship between
sensitivity to noncritical features and sensitivity
to critical features, with performance on LFW
(Figures 4A, 4C) and the view invariant representation
(Figures 4B, 4D). To compare the fit of the models, we
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Figure 4. Sensitivity to human-like critical features is correlated with performance on face verification and the emergence of a view
invariant representation: (A) Sensitivity to noncritical features, measured by the distance between same identity faces that differ in
noncritical features, and performance on face verification task do not emerge concurrently as a function of experience. (B) Sensitivity
to noncritical features does not emerge concurrently with a view-invariant representation as a function of experience. (C) Sensitivity
to critical features, measured by the distance between same identity faces that differ in critical features, and performance on face
verification task emerges concurrently as a function of experience. (D) Sensitivity to critical features emerges concurrently with a
view-invariant representation as a function of experience.

computed the R2 of each model and the variance of the
residuals. As seen in our results, the linear relationship
between the sensitivity to critical features (distance
between pairs of faces the differ in critical features)
with LFW and view-invariant is much stronger (larger
variance and lowerR2) than the sensitivity to noncritical
features (distance between pairs of faces that differ in
noncritical features). Overall, these findings further

support the relationship between the emergence of view
invariance and performance on face identity task with
the emergence of sensitivity to critical features but not
with sensitivity to noncritical features. DCNNs that are
sensitive to human-like critical features (larger distance
between faces that differ in critical features) show better
performance on a face verification task and a view
invariant representation (bottom, right) (Table 1).
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Predicted ∼ predictor
R2

adjusted
Variance
(residuals)

LFW ∼ Non Critical (Figure 4A) 0.3 0.69
View Invariant ∼ Non Critical (Figure 4B) 0.21 0.77
LFW ∼ Critical (Figure 4C) 0.89 0.1
View Invariant ∼ Critical (Figure 4D) 0.86 0.14

Table 1. Results of a linear regression of the distance between
face pairs that differ in critical and noncritical features and
performance on LFW and the view-invariant representation.

Discussion

Successful face recognition depends on the ability
to generalize across different images of the same
identity and discriminate between images of different
identities. The goal of the current study was to leverage
the success of DCNNs in face recognition and their
similarity to human-like representations (Abudarham
et al., 2021; Blauch et al., 2021; Dobs et al., 2023), to
examine whether success on a face verification task,
the emergence of a view-invariant representation and
sensitivity to human-like critical facial features emerge
concurrently as a function of the amount and type of
experience with faces. Our findings show that increasing
both the number of images per identity and number of
identities, concurrently improved verification accuracy,
the emergence of a view-invariant representation and
sensitivity to human-like critical facial features. These
findings suggest a critical role for experience with faces
in the generation of these representations.

For many years cognitive scientists and computer
scientists have attempted to reveal the critical features
that enable human-level face recognition performance.
Despite the success of current machine learning
algorithms to recognize faces at, or even above,
human-level performance, it is still unknown which
features are used by these algorithms to perform this
task. Studies in humans revealed a subset of facial
features for which humans showed high perceptual
sensitivity. Furthermore, changing these features
changed the identity of the face, indicating their
importance for human face recognition (Abudarham
et al., 2019). Abudarham and colleagues (2016) further
suggested that these features enable a view-invariant
representation, as they remain invariant across different
head-views (Abudarham & Yovel, 2016). In the current
study, we were able to link these two phenomena
and their relationship with verification accuracy by
showing that they emerge concurrently as a function of
the amount of experience with faces during training
(Figure 4, Supplementary Figure S4). Particularly, we
found that increased sensitivity to changes in critical
features was strongly associated with the emergence of

view invariance (Figure 4C) and improved performance
on a face verification task (Figure 4D) as a function
of the amount of faces that DNNs were trained
with. These findings suggest that these identity-based
representations rely on similar features. Such a linear
relationship was not found for sensitivity to changes
in noncritical facial features (Figures 4A, 4B). These
findings are consistent with the finding changes
in noncritical features had a similar effect on the
pixel-based and the identity-based representation, in
contrast to the much larger distance that was found for
changes in critical features in the identity relative to
the pixel-based representation (Figures 3B, 3C). Taken
together, sensitivity to critical features, a view-invariant
representation and performance on face recognition
emerge concurrently along the hierarchy of visual
processing as well as with increased experience.

The relevance of these findings to human face
recognition should be evaluated considering the nature
of human experience with faces during development.
Recent studies that have used head-mounted cameras on
infants’ foreheads during the first year of their life show
that during this period, they were primarily exposed
to three main identities from myriad of different
appearances and head-view (Fausey, Jayaraman, &
Smith, 2016). It is only later during development that
the number of identities start increasing reaching a
few thousands of familiar identities in adults (Jenkins,
Dowsett, & Burton, 2018). Indeed, performance in
face recognition improves slowly and requires several
years to reach adult level performance (Matthews
& Mondloch, 2022). To better learn about effects
of human-like experience from face recognition
algorithms, it is necessary to train the algorithms on a
more human-like type of experience with faces, which
is different from the training set and training protocols
of current face recognition algorithms (Vong, Wang,
Orhan, & Lake, 2024; Yoshida & Smith, 2008).

Another important difference between human
and face recognition algorithms is that human face
recognition primarily concerns the recognition of
familiar faces (Burton, Bruce, & Hancock, 1999; Young
& Burton, 2018), whereas face recognition algorithms
are trained to classify untrained (unfamiliar) identities.
In the current study, we used unfamiliar faces to test
the representation of face recognition algorithms and
learn about their ability to generalize to unlearned
examples. However, if the goal of the human face
recognition system is to only classify socially relevant
familiar identities, computer algorithms that aim
to model human face recognition should take this
consideration into account. Given that an important
aspect of familiar face recognition is their semantic
representations, the development of familiar face
recognition may be better modeled with multi-modal
visual-semantic algorithms (Shoham, Grosbard,
Patashnik, Cohen-Or, & Yovel, 2024; Vong et al., 2024).
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Recent studies that examined human-like
representations in DCNNs revealed other similarities
between humans and DCNNs. This includes a much
larger drop in performance for inverted than upright
faces than the drop that is found for objects (Dobs
et al., 2023; Yovel et al., 2023). The Thatcher illusion
in which distorted faces look more similar to normal
faces when they are inverted than upright was also
found in face-trained but not object-trained DCNNs
(Jacob, Pramod, Katti, & Arun, 2021). A drop in
performance for the race of faces that the algorithms
was not trained on (i.e. lower performance for Asian
faces in a DCNN trained on White faces) is also
typically found in DCNNs similar to the human other
race effect (Dobs et al., 2023; O’Toole & Castillo, 2021).
The approach that we used in the current study enables
us now to ask what kind of experience is required for
these human-like representations to emerge.

In summary, recent advances in machine learning
that enable face recognition algorithms to reach
human-level performance, and the similarity between
the representations generated by humans and machines
(Abudarham et al., 2021; Dobs et al., 2023; Jacob et al.,
2021), offer us new computational tools to explore the
factors that mediate human face recognition. Future
studies will further investigate the contribution of
more specific characteristics of face images, such as
their pose, expression, and lighting, to the generation
of a view-invariant representation and sensitivity to
view-invariant human-like critical features.

Keywords: face recognition, deep learning, experience,
view invariance, critical features
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