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Abstract
How convincing is current evidence for unconscious processing? Recently, a major criticism suggested that some, if not 
much, of this evidence might be explained by a mere statistical phenomenon: regression to the mean (RttM). Excluding 
participants based on an awareness assessment is a common practice in studies of unconscious processing, and this post hoc 
data selection might lead to false effects that are driven by RttM for aware participants wrongfully classified as unaware. 
Here, we examined this criticism using both simulations and data from 12 studies probing unconscious processing (35 effects 
overall). In line with the original criticism, we confirmed that the reliability of awareness measures in the field is concern-
ingly low. Yet, using simulations, we showed that reliability measures might be unsuitable for estimating error in awareness 
measures. Furthermore, we examined other solutions for assessing whether an effect is genuine or reflects RttM; all suffered 
from substantial limitations, such as a lack of specificity to unconscious processing, lack of power, or unjustified assumptions. 
Accordingly, we suggest a new nonparametric solution, which enjoys high specificity and relatively high power. Together, 
this work emphasizes the need to account for measurement error in awareness measures and evaluate its consequences for 
unconscious processing effects. It further suggests a way to meet the important challenge posed by RttM, in an attempt to 
establish a reliable and robust corpus of knowledge in studying unconscious processing.
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Few topics in the history of cognitive science have evoked 
so much controversy and debate as the study of uncon-
scious processing (for recent discussions, see Moors & Hes-
selmann, 2017; Newell & Shanks, 2014; Peters et al., 2017; 
Rothkirch & Hesselmann, 2017; Rothkirch et al., 2022; 
Shanks, 2017). The main disagreement concerns the extent 
to which participants’ behavior is affected by information 
that is not accessible to them (e.g., information rendered 

invisible using some psychophysical method; for reviews, 
see Breitmeyer, 2015; Kim & Blake, 2005). In fact, when 
reviewing the history of the field, one might conclude that it 
is going in circles; at each iteration, strong claims are made 
about the scope of unconscious processing, which are then 
followed by methodological criticisms of some sort, ques-
tioning the validity of these claims (for a description of this 
process with respect to unconscious semantic processing, 
see Kouider & Dehaene, 2007). More recently, a surge of 
findings reporting remarkably complicated unconscious pro-
cesses (Mudrik et al., 2011; Sklar et al., 2012; Van Opstal, 
Calderon, et al., 2011a) was followed by a wave of replica-
tion failures (Biderman & Mudrik, 2017; Moors et al., 2016; 
Moors & Hesselmann, 2017; Stein et al., 2020; Zerweck 
et al., 2021) and methodological criticism (e.g., Meyen et al., 
2022; Rothkirch & Hesselmann, 2017; Rothkirch et al., 
2022; Schmidt, 2015; Shanks, 2017). And so, since its incep-
tion (see again Kouider & Dehaene, 2007), the field has been 
characterized by pendulum-like oscillations between assign-
ing high-level functions to unconscious processes and sug-
gesting that they strongly depend on conscious processing.
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A prominent line of criticism that has captured substan-
tial attention (Leganes-Fonteneau et al., 2021; Rothkirch 
et al., 2022; Shanks, 2017; Vadillo et al., 2022), and justly 
so, concerns Regression to the Mean (RttM), and how it 
might account for reported effects of unconscious processing 
(Shanks, 2017). This criticism targets the common practice 
of excluding participants who were aware of the presented 
stimuli (or trials where participants report such awareness), 
in an attempt to distil unconscious processing and avoid a 
situation where a group-level effect stems from participants 
who consciously processed the stimuli. Participant exclusion 
is typically done by setting some threshold for awareness; for 
example, if the participants are asked to perform an explicit 
judgment on the suppressed stimulus (e.g., determine 
whether an arrow points to the right or the left; an objective 
measure of awareness), the researchers might set a thresh-
old of accuracy (e.g., a threshold of 0.65 when the chance 
probability is 0.5) and exclude all participants who score 
higher than the threshold. Such use of an objective measure 
of awareness to exclude participants is fairly common in the 
field (e.g., N. Biderman & Mudrik, 2017; Hesselmann et al., 
2016; Huang et al., 2014, p. 10214; Kiefer, 2019; Rowe 
et al., 2020; Sklar et al., 2012; Stein et al., 2020).1

Yet as clearly demonstrated by Shanks (2017), such post 
hoc data selection is biased by RttM. An unaware subgroup 
is selected based on the observed scores in the objective 
awareness measure. By definition, these observed results 
are the combination of the true awareness scores and some 
measurement error. Critically, this measurement error is 
correlated with the observed score. That is, larger observed 
scores tend to have positive errors—overestimating aware-
ness—while smaller observed scores will have negative 
errors—underestimating awareness (see again, Shanks, 
2017, and Shanks et al., 2021, for a full explanation of this 
point). And so, it is likely that some of the participants who 
are classified as unaware are in fact aware: since we are only 
selecting the lower scores (i.e., participants who are below 
threshold), it is expected that these scores are more driven 
by negative errors that “push them” below the threshold, 
even though their true score is actually above the threshold. 
While the awareness scores of these misclassified partici-
pants make them seem unaware, their effect scores—that is, 

their performance on the task aimed at assessing whether 
unconscious processing took place—will be high, reflecting 
the fact that they were truly aware of the stimulus (for an 
illustration of this point, see Fig. 1). Thus, any evidence for 
unconscious processing from such a post hoc selected group 
might be due to aware participants who were misclassified 
as unaware. Indeed, using simulations Shanks (2017) has 
shown that in the absence of any unconscious effect, such 
RttM can lead to the false finding of unconscious processing.

Notably, the magnitude of RttM depends on the strength 
of the relationship between variables (e.g., their correlation). 
This highlights the issue of measure reliability; the larger the 
errors are (i.e., the less reliable the measure is),2 the more 
aware participants will be pushed below the threshold. Thus, 
using error-free awareness measures is one way to reduce 
the impact of RttM.3 However, measurement errors were 
shown to be large for cognitive measures in general (Huber 
et al., 2019), and with respect to implicit processing in par-
ticular (Vadillo et al., 2022). Below, we also show that this 
is especially prominent in measures of awareness used in 
studies of unconscious processing. Hence, we concede that 
the criticism raised by Shanks (2017) is of great importance 
to the field; without accounting for that problem, one cannot 
convincingly claim that findings indeed reflect unconscious 
processing, rather than RttM-based false findings.

How, then, can the field address this crucial point? One 
option is to avoid post hoc selection altogether. Some avoid 
excluding participants by only testing objective performance 
at the group level (e.g., Kouider & Dehaene, 2007; Stein 
et al., 2021; Van Opstal et al., 2010). Yet with this approach, 
some of the included participants might be highly aware of 
the stimuli (e.g., d′ = 3; Van Opstal et al., 2010). The ideal 
solution would be to design an experiment where all par-
ticipants are indeed unaware, so that no exclusion would be 
needed; however, given the individual differences between 
participants, this is not easy to accomplish (e.g., Albrecht 
et al., 2010; Hesselmann et al., 2016; Pessoa et al., 2006). 
Indeed, in some studies that attempted to do so, some of 
the participants were above chance when tested for objec-
tive visibility (e.g., Stein et al., 2020, 2021). Another pos-
sible solution is to tailor the experimental conditions for 
each participant via calibration (e.g., Hesselmann et al., 
2016), as was originally suggested by Shanks (2017), but 
this approach injects experimental variability, as conditions 

1 We focus here on objective measures of awareness, as the origi-
nal criticism was directed at them, and they are indeed widely used. 
However, some researchers opt for only using subjective measures 
(Avneon & Lamy, 2018; Sandberg et al., 2010; Sergent et al., 2005), 
and often exclude trials where participants report being aware of the 
stimuli. Shanks (2017) argued that the same criticism should hold for 
trial exclusion (see also Schmidt, 2015), but this has yet to be sys-
tematically demonstrated in the same way that was done for exclud-
ing participants based on objective measures. We accordingly set this 
question aside for now.

2 And, thus, the lower the correlation, as reliability sets the upper 
limit for correlation (Weir, 2005).
3 Notably, apart from measurement error, confounding variables can 
also reduce the correlations between variables, and lead to RttM. For 
example, if there is a third variable that is not measured and affects 
performance. In that case, awareness measurements per se could be 
perfectly reliable, but fail to estimate the contribution of that third 
variable, and RttM could still occur.
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vary between participants. Furthermore, it does not guar-
antee a complete lack of awareness, as visibility is likely 
to increase during the experiment due to practice (Schwie-
drzik et al., 2009). While changes in awareness might be 
addressed by online calibration throughout the experiment, 
this necessarily means that some of the trials would involve 
conscious processing (otherwise, no calibration would be 
needed), which might affect the unconscious trials (Lin & 
Murray, 2014). And so, avoiding post hoc selection might 

not be a feasible, practical solution for researchers targeting 
unconscious processing.

An alternative approach is to correct for the effect of 
RttM, or develop some statistical tool to test if the results 
could be explained by it. In fact, such solutions have been 
suggested by both Shanks and colleagues (Rothkirch et al., 
2022; Shanks, 2017; for detailed discussions see sections 
“Compatibility With RttM solution”, “Split solution”, and 
“Campbell and Kenny solution” in the Supplementary 
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Fig. 1  Simulated data illustrating linear relations between the effect 
(y-axis) and awareness performance (x-axis) in a combined sample 
where half the participants are truly unaware (blue) and half are truly 
aware (red). a Each circle represents the observed scores of an indi-
vidual participant, which is the sum of their true scores and the meas-
urement error. Filled circles indicate included participants. Empty 
circles depict the observed scores of excluded participants. Regres-
sion lines are depicted for the entire sample (gray), for the unaware 
participants (blue), and for the aware ones (red). b A zoomed-in view 
on the gray rectangle in Panel a. Black arrows links the observed (cir-
cles) and true (squares) awareness scores of each participant, respec-

tively. c The distribution of the measurement errors only is presented 
in blue (unaware participants) and red (aware participants), both 
for the entire sample (nonopaque) and for the included sample only 
(opaque). This further demonstrates that while the measurement error 
for the included unaware participants is practically equally distrib-
uted around zero, this is not the case for the aware participants who 
were included (as their observed scores were lower than the inclusion 
threshold, due to measurement error). For these participants, errors 
are highly biased to negative values, leading to RttM. (Color figure 
online)
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Materials), and by others (Goldstein et al., 2022; Leganes-
Fonteneau et al., 2021); see sections “Generative Bayesian 
Framework” and “Bayesian Awareness Categorization Tech-
nique [BACT]” in the Supplementary Materials). However, 
as we will show below, these solutions suffer from different 
limitations and underlying assumptions that render them 
less suitable for differentiating between genuine effects and 
RttM-based ones. Specifically, the suggested tests either 
assume that awareness scores are distributed normally, that 
their measurement error is independent of their true scores 
(homoscedasticity), or that they are linearly related to effect 
scores. The first two assumptions are problematic by defini-
tion when applied to objective measures of awareness. The 
normality assumption may hold if the sample includes only 
unaware participants, when the true scores are at chance and 
participants distribute symmetrically due to random meas-
urement error. However, objective performance is expected 
to distribute asymmetrically if all participants show above 
chance performance (where the distribution will be trun-
cated at the chance value), or if there is a mixed distribution 
of aware participants performing above chance, and unaware 
participants performing at chance level. The homoscedas-
ticity assumption is violated since objective measures are 
mostly based on alternative forced choice (AFC) tasks. In 
such tasks, the measurement error is correlated with aware-
ness scores, due to the properties of binomial noise. The 
third assumption, that the relations between awareness 
scores and the observed effect is linear, is also problem-
atic. There has not been, to our knowledge, a convincing 
demonstration that this is indeed the case. Though assuming 
a linear relationship between these two variables is com-
mon, it has not been supported by data. We accordingly 
argue that under this somewhat ambiguous situation, solu-
tions that do not rely on any such assumption are preferred. 
This argument is supported by previous works which have 
already criticized the practice of relying on this assumption 
of linear relations (or any parametric model) to extrapolate 
effect scores based on awareness in studies of unconscious 
processing (Dosher, 1998; Klauer et al., 1998; Merikle & 
Reingold, 1998; Rouder et al., 2007).

Beyond these potentially problematic assumptions, other 
solutions suffer from additional limitations. Some of them 
rely on the reliability of awareness measures. As we show 
below in the section “Reliability of Awareness Measures”, 
this reliability tends to be low. Other solutions require that 
all included participants show evidence for chance level per-
formance (using Bayes factors), which often leads to low 
power (see section “Testing the Proposed Solution” and 
section “Bayesian Awareness Categorization Technique 
[BACT]” in the Supplementary Materials).

Instead, we propose a new method, the nonparametric 
bootstrapping solution (henceforth the NPB solution), which 
does not rely on any of the above-mentioned assumptions. 

Our solution provides high specificity and relatively high 
power for detecting unconscious effects. As we explain in 
greater detail below, the NPB solution is a multi-phased 
nonparametric bootstrapping procedure. We first create a 
null distribution designed to mimic RttM, where no true 
unconscious effect exists, and the seemingly unconscious 
effects are completely driven by aware participants who were 
wrongly classified as unaware due to measurement error. 
Then, we ask how extreme the observed unconscious effect 
in the data is with respect to this null distribution.

In this paper, we explain why existing approaches fall 
short in dealing with RttM, and present our solution, while 
discussing its advantages and limitations. We describe both 
simulations and a reanalysis of real data. We collected 
datasets from 15 different publications,4 where 43 uncon-
scious processing effects were tested.5 Out of the collected 
effects, eight effects were not included in any analysis as 
no participants were excluded (the effects were reported in 
Van Opstal, Calderon, et al., 2011a; Van Opstal, de Lange, 
et al., 2011b; Van Opstal et al., 2010; see Supplementary 
Figure 1), leaving us with 12 studies and 35 effects. Datasets 
were collected by contacting the first authors of these papers, 
or using datasets from our lab. We intentionally looked for 
experiments reporting null results, positive results, or both. 
This allowed us to assess the reliability of awareness meas-
ures, examine the assumptions of the reviewed solutions, and 
compare their performance with the NPB solution. Before 
doing so, we will shortly describe the methods we have used 
for all simulations throughout this paper (with a few excep-
tions, described in the Supplementary Materials). Readers 
who are less interested in these more methodological details 
are welcome to skip to the “Reliability of Awareness Meas-
ures” section below.

4 Biderman et  al. (2020); Biderman and Mudrik (2017); Faivre 
et al. (2014, 2015); Hesselmann et al. (2015, 2016); Karpinski et al. 
(2019); Nakashima and Sugita (2018); Reber and Henke (2012); 
Reber et  al. (2014); Sklar et  al. (2012); van Gaal et  al. (2014); Van 
Opstal, Calderon, et al., 2011a; Van Opstal, de Lange, et al., 2011b; 
Van Opstal et  al., 2010. See also Supplementary Figure 1 for all of 
the relations between awareness and effect scores in each experiment. 
Importantly, datasets for which we had trial-by-trial data were reana-
lyzed to fit the purposes of this work. Specifically, we targeted main 
effects which were calculated as difference scores between two condi-
tions. Thus, the effects inspected here may differ from those reported 
in the original paper.
5 Note that we only focused on studies where the stimuli were ren-
dered invisible using some psychophysical manipulation. This is dif-
ferent from studies of implicit processing, analyzed in Vadillo et  al. 
(2022), where the stimuli are all consciously perceived, but the par-
ticipants are unaware of the process they perform on it (e.g., learn-
ing the governing rule or extracting some relevant information; Seger, 
1994).
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General simulations framework

Unless stated otherwise, the simulations reported in this 
work were performed in the following manner: Using 1,000 
iterations, we simulated trial-by-trial awareness and effect 
scores for each participant according to a combination of 
several controlled simulation parameters. Awareness scores 
were defined as performance in a 2AFC task and effect 
scores were defined as the difference between two experi-
mental conditions (e.g., trials where a prime and a target 
are either congruent or incongruent). True awareness scores 
were sampled according to a controlled simulation parameter 
defining the ratio of truly unaware participants as 0%, 25%, 
50%, 75%, or 100% of the entire sample. The true awareness 
scores of these unaware participants were fixed at chance-
level performance (accuracy rate of 0.5). The true aware-
ness scores of aware participants, on the other hand, were 
sampled from a half-normal distribution (truncated at 0.5, 
which is the proportion of correct responses for chance level 
performance) with a standard deviation of 0.15 (expected 
mean performance of 0.62, and a median lower than 0.6).

Then, we defined the true effect scores of the participants. 
We reasoned that for aware participants, an effect might be 
driven by both a conscious component and an unconscious 
component, while for unaware participants, only an uncon-
scious component should drive performance. The conscious 
component depended on a controlled parameter that defined 
the type of relation between the true awareness scores and 
the true effect (linear, exponential, quadratic, logistic or 
square root). This was done with an upper bound of Cohen’s 
d = 1.2, such that a very large effect was assigned to a fully 
aware participant, and an intermediate effect was assigned to 
a participant with intermediate awareness, depending on the 
simulated relation. The unconscious component was fixed 
either at Cohen’s d = 0 or 0.2, for simulating an absence/
existence of an effect, respectively. Then, for aware par-
ticipants only, the true effect was defined as the sum of the 
unconscious and the conscious components.

Observed awareness scores were sampled from a bino-
mial distribution with the number of simulated trials (a 
controlled simulation parameter that defines the number of 
repetitions of the awareness and effect measures for each 
participant), and the true awareness scores of each partici-
pant as parameters. Observed effect scores were generated 
by adding gaussian noise to the true effect scores.

The number of participants in our simulations was set to 
165, corresponding to the required sample size for detecting 
a small effect (Cohen’s d = 0.2), with 80% power (one-sided 
t test, alpha = 0.05; considering an expected rate of 5% false 
exclusions of participants due to a one-sided binomial test 
exclusion threshold). All of the code used to conduct these 
simulations is available at https:// osf. io/ 589nt/.

Reliability of awareness measures: 
A possible solution to RttM?

As explained above, RttM is driven by aware participants 
who are wrongfully considered unaware due to measurement 
error, leading to an overestimation of the “unconscious” 
effect (assuming that aware participants show a stronger 
effect). Thus, estimating the magnitude of the error, or the 
reliability of awareness measures, is key for estimating the 
threat by RttM. Potentially, if we could minimize measure-
ment error, thereby increasing reliability, RttM would be 
minimized—possibly to a point where it would no longer 
be potent enough to explain the results (Shanks, 2017; but 
see again Footnote 3). Indeed, some solutions focus on the 
reliability of awareness measures as means to deal with RttM 
(Rothkirch et al., 2022; Shanks, 2017; see again the Sup-
plementary Materials).

To assess the scope of the reliability problem in the data 
we obtained, we first analyzed the Spearman–Brown cor-
rected reliability of awareness measures (estimated across 
5,000 random splits) in all studies in which the trial-by-trial 
data was available (N = 18 experiments; Fig. 2). Adopting a 
threshold of 0.7 (Cortina, 1993), only four experiments were 
found to have reliable awareness measures (note that for two 
additional experiments in Sklar et al., 2012, no trial-by-trial 
data was not available. Thus, reliability was not analyzed 
here. Notably, they reported high reliabilities of .93 and .83, 
with 64 trials), with the others showed relatively low, and 
even negative, values (for similar results see Rothkirch et al., 
2022, where the reliability of awareness measures used in 
implicit learning and unconscious processing studies was 
assessed).

On the face of it, this seems like a major blow to the 
field; if the awareness measures used to demonstrate a lack 
of awareness are unreliable, how can we convincingly claim 
that any of our effects indeed represent unconscious pro-
cessing? The answer to this question lies, in our opinion, 
in the expected pattern of results if participants are truly 
unaware, which—as we claim below—should by definition 
lead to low reliability scores, even if the measure itself is 
in fact accurate. To understand that, we should first dive 
deeper into the meaning of reliability in this context. As 
a reminder, split-half reliability is calculated by iteratively 
dividing the data of each participant into two halves, and 
calculating the correlation between the two sets. In order 
for such correlations to be found, leading to high reliabil-
ity, individuals should systematically differ in the measured 
features. That is, the variability in these measures must be a 
meaningful one (Hedge et al., 2018; Spearman, 1910). Typi-
cally, for very noisy measures, low reliability will be driven 
by high measurement error that masks the true scores. Yet, 
in the case of unconscious processing, low reliability might 

https://osf.io/589nt/
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actually stem from the true scores rather than from measure-
ment error. Remember that if participants are truly unaware, 
their true awareness score should be at chance level. And so, 
there should be no meaningful variation in the true scores 
that the measure could capture (see Footnote 8 in Rothkirch 
et al., 2022, for a similar argument). Thus, the only thing 
that would differentiate between individuals is the random 
measurement error (see again Fig. 1). In that case, no cor-
relations should be found, because the measurement error, 
being random, will not covary systematically between the 
halves. Accordingly, the more truly unaware participants 
in the sample, the less reliable the measure will be. Inter-
estingly, a similar result was obtained outside the field of 
unconscious processing, when examining some of the most 
robust effects in cognitive science (e.g., Stroop, go/no-go, 
SNARC, or flanker tasks). There, although the effects are 
very robust, the reliability is low. This apparent paradox was 
explained in the same way described here: since the vari-
ability between individuals is low for very strong effects, 
correlational tools cannot serve as good indicators for reli-
ability (Hedge et al., 2018).

To test if this explanation could indeed account for the 
low reliability scores that we found, we ran a simulation that 
diverged from the general simulations framework described 
above, being only focused on awareness scores (and not the 
effect scores) since our goal was to examine the issue of 
reliability (see Supplementary section “Reliability Simula-
tion” for more details). We manipulated two factors: first, 
the number of trials in the awareness measure. This factor 
was chosen because the number of observations is known to 
affect reliability (see Supplementary Materials D in Hedge 

et al., 2018, for an analysis across different cognitive tasks), 
and this claim has specifically been raised in the field of 
unconscious processing (Meyen et al., 2022; Shanks, 2017; 
Vadillo et al., 2022). Thus, this served as a sanity check 
for our simulation, expecting to find higher reliability when 
more trials were used. Second, we manipulated the percent 
of truly unaware participants in the sample, to examine the 
extent to which variability in true awareness scores is needed 
for reliability (Hedge et al., 2018); if our argument above is 
correct, we should expect lower reliability the more truly 
unaware participants are included in the sample.

Both these expectations were borne out by the simulated 
data. We found that the number of trials affects reliability, 
so that the more trials one has, the higher the reliability 
and the narrower the distribution across iterations (Fig. 3). 
In line with our argument above, the only case where this 
did not happen is when the entire sample was composed of 
truly unaware participants, where reliability is distributed 
around zero for all trial numbers, and never crosses the 0.7 
threshold. And most importantly, low reliability was also 
found when there were 90% or even 75% unaware partici-
pants, especially when the number of trials was low (that 
is, the more the sample includes above-chance participants, 
the higher the reliability). Thus, with the same awareness 
measure, reliability dropped as a function of the percent 
of truly unaware participants, showing that it is the latter 
factor, rather than the reliability of the measure itself, that 
drives the observed low reliability scores (calculated using 
the Spearman–Brown method).

Focusing on samples with more aware participants allows 
us to further stress the point about the contribution of the 

Fig. 2  Analysis of reliability for awareness measures in the obtained 
datasets (N = 18; only datasets for which trial-by-trial data was 
included could be analyzed). Reliability was calculated using a split-
half reliability test with Spearman–Brown correction across 5,000 
random splits. Error bars depict the bootstrapped 95% CIs according 

to all random splits for each dataset. Numbers over the x-axis denote 
the average number of trials in the awareness measure. Red and blue 
bars denote reliability measures below and above the acceptable reli-
ability threshold we set (0.7). (Color figure online)
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number of trials to correctly assessing participants’ perfor-
mance (Meyen et al., 2022; Shanks, 2017; Vadillo et al., 
2022). In these samples, between-participants variability is 
meaningful (as true scores are not at chance), yet with a low 
number of trials, reliability is lower than 0.7. To further 
highlight the importance of the number of trials, we exam-
ined how it affects the power of binomial tests (which are 
often used as means to exclude participants; e.g., Rothkirch 
et al., 2015; Sklar et al., 2012) to detect an aware participant. 
We systematically manipulated the number of trials from 1 
to 500 for a given aware participant taking a 2AFC aware-
ness task (with varying accuracy levels: p = .55, .6, .65, 
and .8) and calculated the power of a binomial test to detect 
above-chance awareness. As Fig. 4 shows, when accuracy 
is high (0.8), even 23 trials suffice for 90% power. However, 
when accuracy is closer to chance, as is often the case in 
studying unconscious processing, a much larger number of 

trials is needed (for 0.6, 213 and for 0.55, 866). Notably, 
participants with such low accuracy are at a greater risk of 
being misclassified as unconscious (thus contaminating the 
group-level effect with conscious processing).

Taken together, two important conclusions should be 
drawn from the results of the current section. First, experi-
menters should assign a large enough number of trials for the 
awareness measures, especially when conducting a binomial 
test to screen out participants. Second, even with sufficient 
trials, as we explained above, it will be hard to draw any 
conclusions about measurement error from the obtained reli-
ability of their measures, especially if most participants are 
truly unaware. Thus, assessing the reliability of awareness 
measures (e.g., using Spearman–Brown) is not expected to 
yield meaningful insights about the reliability of the aware-
ness measures, as reliability is expected to be low exactly 
when the awareness manipulation is effective. Finally, given 

Fig. 3  Reliability simulation results across different samples, varying 
in the percentage of truly unaware participants (x-axis), and the num-
ber of trials (N = 30 [red], 50 [orange], 200 [green], and 500 [blue]). 

On the y-axis, the scores of Spearman–Brown-corrected reliability, 
for which the distribution across interactions appears for each sample 
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the latter conclusion, current approaches which rely on 
assessing reliability simply do not provide a good enough 
solution for RttM.

The proposed solution (NPB)

We are proposing a nonparametric solution for addressing 
RttM. The basic idea is to use resampling methods to cre-
ate surrogate datasets with no effect of interest (no uncon-
scious processing) while maintaining other properties of the 
original data, including the potential effect evoked by RttM. 
We then compare our observed effect to the distribution of 
effects estimated from surrogate data to determine whether 
RttM could explain our observation in the absence of uncon-
scious processing.

To motivate our method, we want to highlight two main 
approaches for dealing with the RttM problem, focus-
ing on the exclusion threshold. The usual situation is that 
participants are excluded from the analysis based on some 
threshold (so that only participants whose awareness scores 
are lower than that threshold are included; we will call this 
threshold the initial threshold). The impact of RttM on the 
group-level effect is driven by the misclassification of aware 
participants as unaware (truly aware participants, who ran-
domly fall below the exclusion threshold due to measure-
ment error). One potential approach is to lower the exclusion 
threshold (i.e., choose a conservative threshold), thereby 
reducing the potential for misclassified participants, and thus 
the magnitude of RttM-driven effects. The drawback of this 
approach is that it results in misclassifications in the other 
direction (truly unaware participants classified as aware), 
reducing the number of participants used in the analysis 
and thus the power of the statistical test. The second poten-
tial approach is to keep the initial threshold, and attempt to 
estimate the effect of RttM. As mentioned above, however, 
estimates of the effect of RttM are usually based on some 
assumptions about the data (normality, linearity, etc.), which 
are not always justified.

Our proposed solution uses resampling methods and com-
bines these two approaches without making any assumptions 
about the data. Starting with the initial threshold (e.g., the 
critical value of a binomial test or some fixed threshold set 
by the researcher, like 0.65) we compute an observed effect. 
We then estimate an adjusted (conservative) threshold for 
which participants below the threshold are almost certainly 
unaware. Participants below this adjusted threshold are then 
subjected to a permutation procedure to create surrogate 
data with no unconscious processing. Next, participants 
above the adjusted threshold are used to create a bootstrap 
sample of potentially aware participants that can be used to 
estimate the distribution of RttM-driven effects. Repeating 
this process many times allows us to estimate an empirical 

distribution of RttM-driven effects in the absence of uncon-
scious processing. If the observed effect lies outside a 95% 
confidence interval for the mean effect evoked by RttM 
(Fig. 5), we conclude that the effect cannot be explained by 
conscious processing and RttM.

Step 1: Determine an adjusted threshold

As the impact of RttM on the group-level effect is driven 
by the misclassification of aware participants as unaware, 
the solution first uses an exclusion threshold h (the initial 
threshold). In our simulations, we set the initial threshold 
to be the 97.5% percentile of a binomial distribution (with 
p = .5 and n = the average number of trials used to assess 
awareness; henceforth, the “chance distribution”), which is 
also the critical value of a two-sided binomial test of the 
hypothesis p > .5. We generally recommend that this method 
will be used to set the initial threshold, as this method was 
validated in our study.

The primary goal of Step 1 is to derive an adjusted thresh-
old for which participants below the threshold are almost 
certainly unaware. To determine if, and to what extent, the 
threshold should be adjusted, we compare the number of 
included participants with awareness scores lower than 
chance (i.e., located at the negative half of a binomial dis-
tribution around chance-level performance) with the num-
ber of included participants with awareness scores above 
chance (i.e., located at the positive half of the distribution) 
given that the true awareness score of such participants is 
0.5 (chance level performance), and that binomial noise is 
symmetric around zero, we should expect an equal num-
ber of truly unaware participants who are above and below 
chance. Thus, if we find asymmetry in the distribution of 
awareness scores around chance, this implies that some of 
these participants are actually aware. To put it explicitly, we 
assume that any deviation from symmetry in the distribution 
of awareness scores around chance level (i.e., when more 
participants are showing above chance performance than 
participants showing below chance performance) represents 
contamination by conscious participants, and requires the 
adjustment of the exclusion criterion.

Using this symmetry assumption, we quantify a measure of 
the potential contamination by aware participants. This meas-
ure will be later used for adjusting the initial threshold. To do 
so, we define δ = h − 0.5 to be the distance between the initial 
threshold and chance performance, used to then define equal-
sized negative [0.5 − δ, 0.5) and positive [0.5, 0.5 + δ] intervals 
on either side of chance, and count the number of participants 
in each interval (with the exact chance point belonging to the 
positive half). We subtract 1 from the squared ratio of these 
numbers to accentuate any deviance from symmetry while 
keeping a value of 0 for a completely symmetrical distribu-
tion. Then, we define a measure of asymmetry S (Eq. 1; N+ 
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and N− denote the number of participants in the positive and 
negative intervals of awareness scores):

Next, we use S to define an adjusted threshold (hadj). 
This new threshold is intentionally more conservative than 
the initial threshold, with the adjustment being a func-
tion of the potential contamination by conscious process-
ing assessed above using S. With the adjusted threshold, 
included participants should (almost certainly) be una-
ware. If the asymmetry measure S is negative (i.e., there 

(1)S =

(

N
+

N
−

)2

− 1

are more participants in the negative half than in the posi-
tive half of the chance distribution), or is equal to zero, 
we set the adjusted threshold equal to the initial threshold. 
Otherwise, we decrease h by weighting the standard devia-
tion of awareness scores, which is critical for the sensitiv-
ity of awareness tests (see again Fig. 4), by the asymmetry 
measure S, according to the following formula:

Again, h denotes the initial threshold, S is the  
asymmetry measure derived from Eq. 1, and 2

√

4n
 is two 

(2)hadj = h − S
2

√

4n
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Fig. 5  Demonstration of the steps of the proposed solution. Panel 
a: the negative and positive halves of the expected unaware scores 
according to the initial threshold (indicated by the black vertical line) 
are highlighted in red and green, respectively. The number of partici-
pants in each half is indicated above. The adjusted threshold  (hadj), 
indexed by the red vertical line, is set according to the asymmetry 
measure S; Panel b: blue and red dots are scores of participants that 
were classified as unaware and aware, respectively, according to the 
adjusted threshold. A permutations procedure nullifies the effect 
scores of the former group while the latter scores keep their original 

values; Panel c: bootstrapped awareness scores in different iterations, 
resulting in different participants being included in the calculation of 
the effects, defined by the initial threshold (h), mimicking the effect 
of RttM and conscious effects contamination; Panel d: an illustration 
of the resulting distributions of RttM driven effects, compared with 
the observed effect. Upper panel: the observed effect is not larger than 
95% of the values in the distribution of RttM-driven effects; Lower 
panel: similar to the upper panel, except that the observed effect is 
significantly greater than 95% of the RttM mimicked distribution. 
(Color figure online)
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standard deviations (SDs) of the average awareness score 
under the chance distribution (indexing the expected bino-
mial variability in awareness scores). Thus, the adjusted 
threshold is also a function of n, representing the number 
of trials (since the greater the number of trials, the smaller 
the standard deviation, and accordingly—the less substan-
tial the adjustment of the threshold). Our choice of adjust-
ment to the threshold is a heuristic method, and it is worth 
noting that other possible solutions might achieve the goal 
of separating unaware and potentially aware participants 
in a sufficiently conservative manner.

Step 2: Create surrogate data that can be used 
to estimate the null distribution of RttM

As a reminder, under the null hypothesis, there is no uncon-
scious effect (but there might be a conscious one). And so, 
if aware participants are misclassified as unaware due to 
measurement error, they might contribute to falsely find-
ing an unconscious effect. To create surrogate data that can 
be used to estimate this contamination (i.e., the impact of 
RttM) under the null hypothesis we need to emulate these 
two aspects: define truly unaware participants who show no 
effect, and potentially aware participants who might show 
it, and simulate new random measurement error that can 
lead to different patterns of misclassification, and thus con-
tamination by conscious processing due to RttM.

Step 2A: Define truly unaware and potentially aware 
participants, and nullify the effect of true unaware 
participants

To create surrogate data under the null hypothesis, we 
consider participants whose awareness score is below (or 
equal to) the adjusted threshold hadj, as truly unaware, and 
participants whose awareness score is above the threshold, 
as potentially aware. To ensure the surrogate data follow 
the null hypothesis, for each truly unaware participant, we 
nullify the effect scores by permuting the condition labels 
of each trial. The permutation procedure results in an aver-
age effect score of zero, while maintaining other marginal 
properties of the data. No manipulation is performed on the 
aware participants, so their effect scores remain the same 
(Supplementary Eq. 1).

Step 2B: Bootstrap awareness scores, to simulate 
the misclassification of aware participants 
as unaware

Following Step 2A, we have unaware participants who show 
no effect and aware participants who show an effect. When 

some of these aware participants would be misclassified 
as unaware, the group-level effect is contaminated by con-
scious processing due to RttM. To simulate this scenario, 
we manipulate the observed awareness scores by resampling 
awareness scores from a binomial distribution based on the 
number of trials used to measure awareness (so that boot-
strapped awareness scores have more variability when there 
are fewer trials ). Thus, for each participant, we randomly 
sample an awareness score from a binomial distribution 
(with p = the observed awareness score, and n = the num-
ber of trials used to assess awareness for each participant; 
Supplementary Eq. 2). Accordingly, the distribution of the 
bootstrapped awareness scores, across iterations, is still cen-
tered around the original observed awareness scores, yet are 
different from their observed scores. That is, by chance some 
unaware participants who show no effect—as it was nulli-
fied—will have awareness scores higher than the threshold. 
Yet crucially for estimating the effect of RttM, some aware 
participants who showed awareness scores above h, whose 
effect had not been nullified, will now have awareness scores 
below h. As we explain in the next step, these bootstrapped 
awareness scores can now be used to estimate the distribu-
tion of RttM-driven effects due to the misclassification of 
some of the aware participants as unaware.

Note that Steps 2A and 2B can be performed in any order. 
That is, after defining the adjusted threshold (hadj), nullify-
ing the effect of unaware participants via permutation and 
bootstrapping the awareness scores of potentially aware par-
ticipants are two independent steps.

Step 3: Calculate the effect of RttM in surrogate data 
and estimate an empirical distribution

For each surrogate dataset, we use the initial threshold (h) 
and the bootstrapped awareness scores to define the included 
and excluded participants for this surrogate dataset (Sup-
plementary Equation 3). The rationale is simple: we use the 
initial threshold to determine which participants to include 
for surrogate datasets, following the same cutoff of the origi-
nally calculated effect. Notably, in each iteration different 
participants are included, in a manner that takes measure-
ment error into account (since the bootstrapped samples are 
based on the observed data and the number of trials): some 
of the participants in the included sample belong to the truly 
unaware sample defined above (participants with aware-
ness scores below hadj), for which the permutations nulli-
fied the effect, while other participants belong to the poten-
tially aware sample, for which the effect did not change. 
This mimics the RttM threat described by Shanks, whereby 
aware participants are misclassified as unaware, potentially 
driving the observed effect even when no effect exists for 
truly unaware participants. Hence, when we then calculate 
the average of the surrogate bootstrapped effect scores in 
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the included group (Supplementary Equation 4), we obtain 
the group-level RttM-driven effect for the surrogate data in 
that iteration. By iterating this procedure many times (here, 
we perform 1,000 iterations), we estimate the null distribu-
tion of RttM-driven effects, to which the originally observed 
effect (calculated according to the observed awareness, effect 
scores, and the initial threshold; Supplementary Equa-
tions 5–6), is then compared. If the effect is greater than the 
95th percentile, we deem it non-RttM evoked, and—under 
this framework—significant (Supplementary Equation 7).

Testing the proposed solution

First, we used our solution to examine the datasets we 
acquired, using the original exclusion threshold on 
awareness measures used by the researchers in each 
experiment as the initial threshold (h). We further 

compared the results of our solution with the alternative 
solutions suggested in the literature—namely, the BACT 
(Leganes-Fonteneau et  al., 2021), the Campbell and 
Kenny solution (Campbell & Kenny, 1999; Rothkirch 
et al., 2022), the Shanks solution and the Split solu-
tion (Shanks, 2017). The results yielded a mixed pic-
ture. According to the Shanks solution, the Campbell 
and Kenny (CK) solution, and the BACT, none of the 
effects proved genuine after accounting for RttM (Fig. 6; 
see also section “Bayesian Awareness Categorization 
technique [BACT]” in the Supplementary Materials for 
an additional analysis of the performance of this solu-
tion with a more liberal prior6). Furthermore, according 
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Fig. 6  Results of applying the different solutions on the acquired 
datasets (N = 19; only datasets that used 2-AFC tasks to meas-
ure awareness and included trial-by-trial data were analyzed). The 
x-axis labels denote the name of the tested effect, with experiments 
that reported positive results on the left and null results on the right. 
The y-axis labels denote the different solutions tested here. Each cell 
reports the p-value obtained for each effect by each solution. Blue 
cells denote significant results (alpha = .05), red cells denote non-
significant results (when the solution did not find enough evidence for 
unawareness in the sample to assess the significance of effects were 
marked with “-”), and gray cells indicate that the Shanks solution 
could not be applied because no participants were excluded from the 
analysis post hoc based on awareness measures. Abbreviations: NPB 
= the proposed solution; BACT = Bayesian awareness categoriza-
tion technique (Leganes-Fonteneau et al., 2021); CK = Campbell and 
Kenny's solution (Campbell & Kenny, 1999; Rothkirch et al., 2022); 

Shanks = RttM compatibility solution (Shanks, 2017; see section 
“Compatibility With RttM” in the Supplementary Materials where 
we question the validity of this solution); Split = relying on consist-
ent BF based group-level demonstration of chance level performance 
(Shanks, 2017). As the figure shows, all solutions were conserva-
tive. Yet as opposed to the NPB solution, other solutions classified 
too few participants as unaware to even assess the significance of 
effects (BACT: 15 datasets, CK: 10 datasets, Split: six datasets, and 
Shanks: eight datasets; see also Supplementary Figure  3 where we 
show that Shanks test actually tests for deviations from linearity, and  
Supplementary Figure  5 where we examine the number of partici-
pants included in the BACT). All but the Split solution (which found 
one reliable effect) did not mark any of the reported positive effects 
as reliable, contrary to the NPB solution which found two reliable 
effects. Finally, the Shanks solution did not find any positive results 
(yet see again Supplementary Figure 3). (Color figure online)

6 There, one positive effects are found. Notably, however, later we 
show that this increase in positive results is also found when using 
this prior when no true unconscious effects exist (see Supplementary 
Figure 4 and Supplementary Figure 6).
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to the BACT, in 15 out of the 19 datasets, only one (N 
= 9) or no (N = 6) participants were considered una-
ware, not allowing us to test for an unconscious effect. 
Similarly, the CK and Split solutions excluded all par-
ticipants in ten and six of the datasets, respectively. In 
contrast, other solutions showed various positive results. 
Specifically, our solution revealed that two out of the 
five reported significant effects were reliable, and the 
“Split” solution found a single such effect, while for all 
solutions none of the experiments reporting null effects 
yielded positive results. However, the ability to draw 
conclusions from real data is limited, as we do not know 
the ground truth. This relates mainly to the existence/
absence of an effect in these datasets, as well as to the 
number of unaware participants, which was found by 
some of the solutions to be extremely low (too low to 
test for unconscious effects) in many of the datasets. For 
these datasets, we simply do not know if this means the 
tests are too harsh, misclassifying unaware participants 
as aware, or if these participants were indeed aware, and 
existing tests are not sensitive enough to detect that. To 
provide a stronger test for the different solutions, we 
used simulations (see the General Simulations Frame-
work Section).

The simulations examined the rate of significant 
unconscious effects using one-sided tests, because the 
sample size was determined according to an expected 80% 
power in a one-sided t test (except for the Shanks method 
which was examined against a 95% confidence interval 
around the expected effect, see section “Compatibility 
With RttM Solution” in the Supplementary Materials), 
in different conditions. We manipulated three factors: the 
type of relations between awareness and effect scores, the 
number of truly unaware participants, and the number of 
trials. The results show that our solution keeps the key 
requirement for statistical tests, controlling the false-pos-
itive rate (e.g., Lakens et al., 2020) for all combinations 
of these factors (Fig. 7). Given ongoing methodological 
criticisms and general skepticism towards the findings 
in the field, we suggest that high specificity (here using 
the standard alpha of 5%) is especially important when 
testing for unconscious processing effects. As a reminder, 
the entire issue of RttM is focused on the concern that a 
null effect will be interpreted as a true one. Our solution 
mitigates that concern. Relatively high specificity was 
also found for the BACT (note that although the results 
may imply specificity also of the Shanks solution, this 
is somewhat misleading since we show that this solu-
tion suffers from a more crucial issue of validity, test-
ing for deviation from linearity rather than unconscious 
effects; see Supplementary Figure 3). In contrast, the 

CK and Split solutions showed an inflated false-positive 
rate, under different conditions, which in some cases was 
higher than 28% and even 75%.

Yet specificity is not enough; if the solution is not sensi-
tive, it will not be a viable solution. Our simulations suggest 
that sensitivity was strongly modulated by the number of tri-
als, and the percentage of truly unaware participants. When 
all participants are unaware, and with 200 trials, the power 
of our solution ranges between 67.5% and 71.5% (Fig. 8). 
Similar results are obtained irrespective of the simulated 
relations between the effect and awareness scores, demon-
strating that our solution is robust under different relations 
between these variables which is important given the lack 
of knowledge about these relations, as we explain above.

Importantly, though, the more participants are aware, 
and with a lower number of trials, the power of our solu-
tion decreases—which again can be expected. This shows 
the sensitivity of the proposed solution to the latent param-
eter of the ratio of truly unaware participants, which has 
direct consequences for the potential for contamination by 
conscious processing (see section “Erroneously Inferring 
Unconscious Processing From Fully Conscious Samples” 
in the Supplementary Materials, showing an additional con-
dition where this feature is crucial to differentiate between 
conscious and unconscious processing effects). In a way, 
this is a feature and not a bug: If there are too many con-
scious participants in the sample, our solution will justly 
show reduced chances for declaring an unconscious effect 
(as the data is more heavily affected by conscious partici-
pants, and the threat for contamination by conscious pro-
cessing is greater). In contrast to the proposed solution, the 
BACT solution, the only alternative solution that seemed 
to provide good enough specificity with regard to detecting 
true unconscious effects, showed drastically lower sensitiv-
ity (ranging between 17.6% and 19.1% when all participants 
were truly unaware, and the number of trials used to assess 
awareness was 200). The lack of sensitivity in this case is 
directly related to the high bar the BACT solution sets for 
classifying participants as unaware, thereby reducing the 
effective sample size (see Supplementary Figure 5 for the 
relation between the true number of unaware participants 
and the included sample for the simulated conditions). The 
other solutions sometimes showed higher sensitivity (e.g., 
93.1% for the Split solution with square root relations and 50 
trials). This higher sensitivity was further demonstrated in an 
Area Under the Curve (AUC) analysis, which incorporates 
both specificity and sensitivity together. Yet, given the high 
false-positive rate this seems less meaningful (e.g., the Split 
solution shows the highest AUC amongst all solutions with 
Square Root relations and 50 trials due to very high sensi-
tivity, but at the cost of a highly inflated false-positive rate 
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of up to 75.6%; see Supplementary section “Comparing the 
Solutions Using an Area Under The Curve [AUC] Analysis” 
for all results). Also, for both the Split and the CK solutions 
power decreases when more participants are unaware (e.g., 
73% and 29.2% when all are unaware in this case, for the two 
solutions respectively).

Taken together, our simulations suggest that our proposed 
solution provides the best combination between sensitivity and 
specificity, by controlling the false-positive rate while allowing 
for relatively high power to detect effects, especially with more 
unaware participants in the sample. This property is main-
tained irrespective of the relations between awareness meas-
ures and effects, in contrast to other solutions that may perform 
well under some conditions (e.g., the Logistic relation; see 
Figs. 7 and 8), yet compromise specificity. The reduced speci-
ficity is especially prominent when aware participants with 
low awareness scores already show detectable effects (e.g., 
in the Square Root relation, Fig. 8, and section “Erroneously 
Inferring Unconscious Processing From Fully Conscious Sam-
ples” in the Supplementary Materials). We accordingly suggest 
that NPB is a relatively strong tool for examining whether an 
observed effect might be driven by regression to the mean or 
indeed reflects unconscious processing.

Limitations of the proposed solution

Researchers adopting our solution should take into account 
its limitations. First, our solution is nonparametric, and its 
power is accordingly lower than that of an appropriate para-
metric test. This was also evident in the sensitivity analy-
ses reported above. However, we think that the choice of a 
nonparametric test is preferable given the ambiguity around 
the relation between awareness level and the effect. Moreo-
ver, because the field currently suffers from some degree of 
uncertainty (Peters et al., 2017; Rothkirch & Hesselmann, 
2017; Shanks et al., 2021, p. 20), it seems safer to adopt a 
stricter approach and refrain from making potentially unjus-
tified assumptions, in an attempt to establish a more reliable 
and replicable science of unconscious processing. Hence, we 
argue that the cost of a somewhat lower sensitivity is worth 
the benefit of establishing firmer grounds for claims about 
unconscious processing.

Second, like other solutions, NPB relies on the aware-
ness measure scores for assessing RttM. We assert that our 
solution better accounts for reliability issues than the other 
ones because it does not expect awareness scores to show 
consistent variability. Instead, our solution assumes that if 
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lating the relations between awareness and effects (vertical panels; 
insets depict the true relations between awareness and effects, with 
the area highlighted in gray corresponding to true awareness scores of 
50–100%; see Supplementary Table 1 for the formulas used for each 
relation), percentage of truly unaware participants (x-axis) and the 
number of trials used to measure awareness (horizontal panels). Red 
colored points indicate that the proportion of false-positive effects 
exceeds α = 0.05 signalling an inflated false-positive rate (higher than 

the upper bound of a 95% confidence interval around α=5% accord-
ing to a random process with p = .05). The number of participants 
was set to 165 in all of the tested conditions. As can be seen, NPB is 
the only one not exceeding 5% under any scenario. The BACT solu-
tion also provides relatively high specificity, yet the other solutions 
do not (although the results may hint that Shanks' solution shows 
relatively high specificity, in Supplementary Figure  3 we show that 
this is not the case with powered samples and more crucially, when 
its assumptions are met, revealing that the test in fact tests for devia-
tions from linearity and not for RttM). A square root scale was used 
for the y-axis to facilitate comparing the solutions around the α = 0.05 
threshold requirement. (Color figure online)
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participants are indeed unaware, their awareness scores—
by definition—should be randomly distributed around 
chance. Indeed, our simulations show that our solution is 
more sensitive than the others when a relatively low num-
ber of trials is used to measure awareness, implying lower 
reliability (Fig. 3). However, this raises additional issues. 
Objective measures of the type we used here have been crit-
icized for being overly restrictive (or overestimating aware-
ness), since above-chance performance might index uncon-
scious processes rather than conscious ones (Cheesman & 
Merikle, 1986; Reingold & Merikle, 1988). In addition, 
there is an ongoing discussion about the appropriate level 
for the objective measure (i.e., should it pertain to having 
any information about the stimulus, or to the feature of 
interest only; Michel, 2022). Thus, if one chooses an inap-
propriate awareness measure, our solution might deem the 
effect as non-RttM driven although participants could still 
be aware. For example, if the task is too difficult, partici-
pants might be at chance even when aware. The same prob-
lem would arise when using a measure with low construct 
validity, in the sense that it does not measure awareness 
exclusively or exhaustively (Reingold & Merikle, 1988), 
see again Footnote 3. Thus, interpreting the results of our 
solution must always be done with a careful estimation of 
the appropriateness of the objective measure.

Third, as opposed to other solutions (e.g., Goldstein 
et al., 2022; Leganes-Fonteneau et al., 2021), our solu-
tion cannot be used to determine if an individual partici-
pant was aware of the stimuli. Instead, it assesses if the 
group-level effect can be explained by RttM or not. Fourth, 
there could be some extreme circumstances in which the 
NPB solution will yield a false positive rate above the 5% 
level. For example, this could happen if the true relation 
between awareness and effects is such that participants 
who are slightly above chance show a very strong effect 
and participants at chance show no effect. Notably, the per-
formance of the test in the Square Root relation suggests 
that our solution has a lower false positive rate, within the 
expected 5% bounds, compared with the others who pass 
those bounds in this condition (see again section “Errone-
ously Inferring Unconscious Processing From Fully Con-
scious Samples” in the Supplementary Materials, for an 
example of the results of the solutions on one such condi-
tion). Fifth, although our simulations were fairly extensive, 
including five different types of relations between aware-
ness and the unconscious effect, this is not an exhaustive 
examination—there could be many more other relations 
that could have been probed. Future studies might develop 
other simulations, or provide analytic solutions to test the 
proposed solution further and potentially improve it.
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Fig. 8  Using simulations to examine the power of the suggested solu-
tions, so that here, in all simulations an unconscious effect exists 
(Cohen’s d = 0.2). The horizontal line at 80% indicates the power of 
a one-sided t test for detecting an effect of truly unaware participants 
assuming an exclusion rate of 5%. As in Fig. 7, each line denotes the 
percent of significant effects found under different simulation param-
eter combinations for each solution. The blue background color rep-
resents increasing power. As can be seen, the power of our solution 
grows with more unaware participants in the sample and with more 

trials. The Bayesian solution yields very low power (see Supplemen-
tary Figure  5 for the number of included participants in each cell), 
and the Shanks solution misses true effects in the vast majority of 
the cases, across all conditions. The Split and CK solutions provide 
higher power, yet as Fig.  7 shows, their false-positive rate is also 
high. Note also the effect of increasing the number of unaware par-
ticipants on their power, and the unexpected decrease of power for the 
Split method with more trials (e.g., when comparing the results of the 
solution in the Square Root condition).



63Psychonomic Bulletin & Review (2024) 31:49–64 

1 3

Conclusions

In this paper, we tried to address a highly important criti-
cism that was raised against findings of unconscious pro-
cessing: the claim that they can be driven by RttM (Shanks, 
2017). We agree that this is a major problem, and have 
provided evidence for the underlying mechanism driving 
this threat—the low reliability of awareness measures. We 
accordingly suggest a new solution that mimics the possible 
effects of RttM, as means to determine if a given effect can 
be explained by it. Our solution goes beyond previous ones 
in being nonparametric, hence not making any assumptions 
on the relation between awareness and the effect, and in 
providing greater power to detect an effect if it exists while 
keeping a low false-positive rate across different conditions. 
Importantly, though this solution was developed with stud-
ies of unconscious processing in mind, it might prove useful 
to other fields of research that face a similar threat by RttM.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13423- 023- 02326-x.
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