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Abstract 

The question of the richness (or sparseness) of conscious experience has evoked ongoing debate and discussion. Claims for both rich-
ness and sparseness are supported by empirical data, yet they are often indirect, and alternative explanations have been put forward. 
Recently, it has been suggested that current experimental methods limit participants’ responses, thereby preventing researchers from 
assessing the actual richness of perception. Instead, free verbal reports were presented as a possible way to overcome this limitation. As 
part of this approach, a novel paradigm of freely reported words was developed using a new metric, intersubjective agreement (IA), with 
experimental results interpreted as capturing aspects of conscious perception. Here, we challenge the validity of freely reported words 
as a tool for studying the richness of conscious experience. We base our claims on two studies (each composed of three experiments), 
where we manipulated the richness of percepts and tested whether IA changed accordingly. Five additional control experiments were 
conducted to validate the experimental logic and examine alternative explanations. Our results suggest otherwise, presenting four 
challenges to the free verbal report paradigm: first, impoverished stimuli did not evoke lower IA scores. Second, the IA score was cor-
related with word frequency in English. Third, the original positive relationship between IA scores and rated confidence was not found 
in any of the six experiments. Fourth, a high rate of nonexisting words was found, some of which described items that matched the 
gist of the scene but did not appear in the image. We conclude that a metric based on freely reported words might be better explained 
by vocabulary conventions and gist-based reports than by capturing the richness of perception.
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Introduction
Is subjective experience rich or sparse? Although this question 
has puzzled researchers for centuries (Michel 2019), conscious-
ness science has yet to agree on an answer. The topic remains 
highly debated, with several competing hypotheses about the 
richness of conscious perception (e.g. Prinz 2009, Kouider et al. 
2010, Cohen and Dennett 2011, Block 2023). According to the 
sparseness hypothesis, cognitive functions limit what can be 
consciously experienced; therefore, experience is narrower than 
believed (Cohen et al. 2016). Conversely, the richness hypothesis 
suggests that experience is rich and detailed (Haun et al. 2017). In 
recent years, empirical evidence in support of both the sparseness 
hypothesis (e.g. Cohen et al. 2016, 2020) and the richness hypoth-
esis (e.g. Vandenbroucke et al. 2012, Bronfman et al. 2014, 2019, 
Haun 2021, Zeleznikow-Johnston et al. 2023) has been reported. 
However, the evidence for both hypotheses has also been criti-
cized, with alternative explanations for both types of results (e.g. 
McClelland and Bayne 2016, Phillips 2016).

Support for the richness hypothesis has been mostly based on 
variants of the partial report paradigm (Sperling 1960). In this 
method, arrays of different items are presented for brief dura-
tions. After the array disappears, participants are asked to report 

all the items they have seen and can typically do so only for a 

few of them. However, when a cue prompts participants to report 

only the contents of a specific row in the stimulus array (“partial 

report”), they can retrieve almost all items in that row (“par-

tial report superiority”). These findings were taken by proponents 
of the richness hypothesis as supportive evidence, with working 

memory limiting access to the full, arguably rich, experience (e.g. 

Block 2007). According to this interpretation, the retrograde cue 
simply facilitates cognitive access to that rich experience. How-
ever, others challenged this view, claiming that participants may 
have had a conscious ambiguous experience of some of the let-
ters, and the cue helped participants disambiguate them and 
report their identity (Stazicker 2011). Another alternative expla-
nation holds that performance can be driven by nonconscious, 
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as opposed to conscious, processing (Dehaene et al. 2006, Phillips 
2016). In the Amsterdam variants of this paradigm (e.g. Landman 
et al. 2003, Sligte et al. 2008, Vandenbroucke et al. 2012), two arrays 
of shapes were presented, with the second sometimes including 
a changed item (e.g. presented at a different orientation). A cue 
marking the location of the changed item appeared at different 
times. Participants were better at detecting the change when the 
cue appeared during the interval between the displays than after 
the second one, which was again interpreted as evidence for the 
richness of subjective experience (Block 2008). Yet, this finding was 
also challenged; for example, Phillips (2011) claimed that partic-
ipants might arguably be aware of a change without consciously 
perceiving each element in the two presentations. In a color diver-
sity variant of the partial report paradigm (Bronfman et al. 2014), 
observers were asked to report the color diversity of letters in one 
of four rows, which was either cued or uncued. Reports displayed 
sensitivity to the color diversity of the uncued rows, at no cost to 
their performance at a letter recall task. The similar accuracy in 
the color diversity task between cued and uncued rows was inter-
preted as evidence for richness; this relied on the assumption that 
to report the diversity of colored items, participants must have 
retained the colors of the individual items (Block 2014). Akin to 
the aforementioned cases, the counterclaim again denied that the 
relevant contents were indeed consciously experienced: accord-
ingly to this view, one might be able to perceive the overall color 
diversity of the group, without consciously experiencing each indi-
vidual color (Cohen et al. 2016, Phillips 2016, Ward et al. 2016; 
see also Hawkins et al. 2022, reporting that color diversity is not 
cost-free in peripheral vision).

A similar controversy surrounds the evidence for the sparse-
ness hypothesis. Such evidence mainly stems from attentional 
manipulations, like change blindness (Rensink et al. 1997, Simons 
et al. 2000) and inattentional blindness (IB: Simons and Chabris 
1999), where participants fail to notice a salient object or a change 
made to a visual scene or an array. However, others claim that 
IB might reflect a memory failure (“inattentional amnesia”: Wolfe 
1999) rather than a perceptual one: observers might have expe-
rienced the stimulus, but inattention prevented it from being 
encoded into memory. Another line of criticism is rooted in the 
controversy regarding the relationship between consciousness 
and attention: some researchers claim that attention and con-
sciousness are doubly dissociated (Maier and Tsuchiya 2021), so 
manipulating attention does not necessarily manipulate aware-
ness (e.g. Li et al. 2002). Under that interpretation, IB might reflect 
a failure to notice, rather than to consciously perceive (but see 
Jackson-Nielsen et al. 2017, Noah and Mangun 2020).

It is of interest that both lines of research share a common 
feature: they only indirectly tackle the richness debate, and they 
restrict responses to simple classifications (e.g. high/low: Bronf-
man et al. 2014; noticed/did not notice: Cohen et al. 2020; 
same/different: Vandenbroucke et al. 2012). These reports were 
claimed to be too narrow to capture the content of consciousness, 
creating a need for novel paradigms using free reports (Haun et al. 
2017).

Recently, such a paradigm has been proposed (Chuyin et al. 
2022). In that online study, participants viewed briefly presented 
images from a diverse stimulus set. Following each image, the 
observers were asked to provide five unique words describing their 
impressions of the image and rate their confidence in each word. 
Then, a novel metric called “intersubjective agreement” (IA) was 
introduced, quantifying the uniqueness of the reported words 
with respect to the image they described. The authors focused on 
the “word IA” metric, which depicts the relationship between the 

frequency of a word describing a particular image, as opposed to 
its frequency describing all the other images in the dataset. This 
metric was reported to be high, even for briefly presented stim-
uli (67 ms). The authors claimed that such high IA demonstrates 
that even a brief glance at an image allows a highly detailed and 
specific conscious experience, such that participants perceive not 
only the gist of the scene, or its general theme (Oliva 2005), but 
also many of its details (e.g. small objects). This led to the conclu-
sion that the IA measure can be used to capture the content of 
conscious perception (Chuyin et al. 2022).

Here, we revisit this conclusion and ask whether free verbal 
reports can indeed be used to capture the richness of percep-
tion. We replicated the original experiment and then degraded the 
stimuli in two ways, in order to uniquely test disconfirmatory pre-
dictions (Firestone and Scholl 2016). Specifically, we asked if the 
measure would yield differential results, under the assumption 
that these changes affect the content of perception. This series 
of three experiments was first conducted in an exploratory study 
and then replicated in a preregistered study.

In these studies, stimuli were presented for the shortest stim-
ulus duration used in the original work (67 ms; Chuyin et al. 2022, 
see Fig. 1), on which the critical claims were made. The first exper-
iment (“intact”) was identical to the original paradigm. In the 
second experiment (“blurred”), we repeated the first experiment 
but with blurred versions of the images. We expected blurred stim-
uli to evoke less rich and detailed percepts (e.g. Prinz 2009, French 
2015) as they diminish the fine details of the scene, thereby reduc-
ing the ability to bind contours and detect objects (Oliva 2005). 
This assumption was tested and supported in two control exper-
iments (manipulation check; see the “Materials and methods” 
section). In the third experiment (“black and white”), all images 
appeared in grayscale, thereby removing one aspect of the orig-
inal experience (color), making it less rich. We reasoned that if 
the word IA measure indeed captures perceptual experience, it 
should decrease in both the blurred and black and white experi-
ments, compared to the intact experiment. This reasoning allowed 
us to test the construct validity of the IA metric (i.e. whether it 
captures the phenomenon it is meant to measure; Cronbach and
Meehl 1955).

In addition to the main studies, we conducted five control 
experiments, to better substantiate our conclusions. Two control 
experiments tested the underlying rationale of the main experi-
ments, according to which our experimental manipulation indeed 
degraded the experienced content. As this seems evident for the 
color manipulation, we focused on the blurriness manipulation 
and asked whether blurred stimuli were less rich than intact ones 
(manipulation check). Three post hoc control experiments were 
conducted to rule out alternative explanations to the results we 
found in the main study (a direct replication of the original work 
(Chuyin et al. 2022) and two long-exposure experiments).

Materials and methods
Main studies
Both the exploratory study and the preregistered one included 
three online experiments: the first one presenting the stimuli used 
in the original work (Chuyin et al. 2022; “intact”), the second pre-
senting a blurred version of the stimuli (“blurred”), and the third 
presenting a desaturated version of the stimuli (“black and white”). 
We first detail the shared attributes of all six experiments (three 
for each study). Then, in each section, we specify the unique 
characteristics of each study. Additional control experiments are 
described in a separate section further.

D
ow

nloaded from
 https://academ

ic.oup.com
/nc/article/2024/1/niae035/7833336 by tel aviv university-sourasky central library user on 28 O

ctober 2024



More than words  3

Figure 1 (a) Procedure for all three experiments in the exploratory and preregistered studies. Each trial began with a fixation, followed by a 67-ms 
presentation of the target stimulus. Then, the stimulus was backward-masked with five successive masks, each lasting for 60 ms. Finally, a response 
screen appeared, prompting participants to provide five words describing their experience of the image and rate their confidence in each word. The 
response screen had no time limit. The panel was adapted from the original work (Chuyin et al. 2022). (b) An example for the three stimulus versions: 
intact (left), blurred (middle), and black and white (right).

Participants
Participants in all six experiments were recruited using the Pro-
lific platform, based on the following requirements: age 18–35 
years, with English as their first language (as verified by Prolific), a 
95% approval rate or higher (in the exploratory study experiments: 
90%), and participating via a desktop computer (rather than an 
iPad or phone). Participants read the instructions and provided 
their informed consent in Prolific. Then, they were automatically 
transferred into the experimental platform (see the “Apparatus” 
section).

Exploratory study
Intact

A total of 209 participants completed the online experiment 
(106 females, 102 males, and 1 unreported, aged 19–35 years: 
M = 27.17, SD = 4.58). Participants were paid a rate of 7.52£/h (dura-
tion M = 24.56 minutes, SD = 13.91). One additional participant did 
not complete the experiment and was removed from further
analysis.

Blurred

A total of 218 participants completed the online experiment 
(109 females, 108 males, and one unreported, aged 19–35 years: 
M = 26.88, SD = 4.76). Participants were paid a rate of 7.52£/h (dura-
tion M = 17.64 minutes, SD = 10.82). Following the exclusion cri-
teria in the original study, four participants were removed from 
the analysis due to the stimulus balancing method (requiring 
ten respondents per image; see “IA calculation” section). There-
fore, the final sample included 214 participants. Three additional 
participants were not analyzed as they did not complete the 
experiment.

Black and white

A total of 203 participants completed the online experiment (102 
females and 101 males, aged 18–35 years: M = 27.10, SD = 4.76). 
Here and in later experiments, participants were paid a rate of 
9£/h (duration M = 20.24 min, SD = 10.02). Ten additional partici-
pants did not complete the experiment and were removed from 
further analysis.

Preregistered study
Intact

A total of 206 participants completed the online experiment (103 
females and 103 males, aged 18–35 years: M = 27.73, SD = 4.72). 
The average duration was 22.50 min (SD = 12.10). Four additional 
participants were excluded since they did not complete the exper-
iment.

Blurred

A total of 212 participants completed the online experiment (107 
females and 105 males, aged 18–35 years: M = 27.36, SD = 4.39). The 
average duration was 19.73 min (SD = 17.24). Four additional par-
ticipants did not complete the experiment and were removed from 
further analysis.

Black and white

A total of 211 participants completed the online experiment (104 
females and 107 males, aged 18–35 years: M = 27.57, SD = 4.71). 
The average duration was 19.12 min (SD = 10.36). Eight additional 
participants did not complete the experiment.
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Apparatus
The experiments were programmed in Python and Javascript using 
Psychopy (Peirce et al. 2019) and were executed online via Pavlovia 
(an online platform for Psychopy-based experiments). As the origi-
nal paradigm and analyses required ten respondents per stimulus 
(Chuyin et al. 2022), stimulus presentation sequences were gener-
ated in advance for each experiment to ensure that each image 
would be presented to ten different participants.

Because online experiments are more prone to timing inac-
curacies due to differences between participant setups (Bridges 
et al. 2020), special care has been taken to mitigate these dis-
crepancies and minimize the potential variance of timings: all the 
stimulus image files and their order (i.e. the stimulus presenta-
tion sequences) were loaded in advance once participants entered 
the platform. The experiments accordingly began only once all the 
experimental software materials were loaded. The experiments 
were limited to running on desktop computers and were run in 
full-screen mode.

Stimuli
The stimulus set was taken from the original work (Chuyin et al. 
2022). The same three images were used as practice images. Out of 
the 412 experimental images, and following Supplementary Fig. 2 
in the original work, we removed duplicate images such that in the 
exploratory study, 393 stimuli were used. Prior to the preregistered 
study, we identified five additional pairs of images as duplicates 
and removed them from the preregistered stimulus set, yielding 
388 unique images. The five masking images were taken from the 
original work.

In both studies, the practice, masking, and experimental stim-
uli have been modified in the blurred and black and white exper-
iments: in the blurred version, all images were blurred using 
Photoshop’s Gaussian blur with a 10-pixel radius, and in the black 
and white version, all images were grayscaled (Adobe Inc 2019).

Procedure
After providing their informed consent in Prolific, participants 
were rerouted to the Pavlovia platform on which the experiments 
were run. Then, participants saw a series of self-paced instruction 
screens (presented for at least 5 s each) explaining that during the 
experiment, they would see briefly presented images and would be 
asked to write and rate five unique English words (nouns, verbs, 
and adjectives) describing their impression of each image. Next, 
participants continued to three practice trials.

All experiments consisted of 21 trials; each participant’s trial 
sequence was loaded from predefined lists based on the order 
in which they entered the experiment platform. Figure 1(a) out-
lines the structure of a single trial. During each trial, a stimulus 
image was presented for 67 ms, followed by five successive mask-
ing images, each presented for 60 ms. Then, a response screen 
appeared. Akin to the original work, the screen included instruc-
tions about how participants are asked to respond and five text 
boxes with five corresponding confidence scores (1: “Don’t Know,” 
2: “Guess,” 3: “Maybe,” 4: “Confident,” and 5: “Very Confident”). 
Observers were encouraged to write five words. If they could 
not come up with five words, they were instructed to leave the 
text box empty and rate their response as “Don’t Know” (differ-
ing from the original work, where participants were instructed 
to insert arbitrary words in such a case and rate them as “Don’t 
Know”: Chuyin et al. 2022; see the “Direct replication” section for 
a control experiment, replicating the original work with its exact 
instructions). After 21 trials, participants were thanked for their 

participation and automatically redirected out of the experiment
platform.

Data preprocessing
Our data preprocessing mimics the original work’s pipeline. As 
per the original work, in cases where more than ten participants 
responded to the same image, only the first ten responses were 
taken for subsequent analyses. Words were processed similarly to 
the original work (e.g. response words were converted to lower-
case, and spaces were converted to hyphens). We also converted 
digits to verbal descriptions of numbers (e.g. “2” was converted to 
“two”).

After parsing the response words, we followed the origi-
nal procedure using Python. A Python spellchecking package 
(pyspellchecker; version 0.7.2) was run on all parsed response 
words. Then, the results were exported to a file containing words 
found to be misspelled by the spell-checker, with their correspond-
ing suggested corrections. A manual check was then performed to 
determine whether to accept each correction (e.g. “holiaday” to 
“holiday” was deemed an acceptable correction, while “red-dot” to 
“reddit” was not), and the dataset was updated accordingly. Then, 
word lemmatization was performed using an industrial-strength 
natural language processing Python package (spaCy: Honnibal 
and Montani 2017, version 3.6.0). Once again, the lemmatization 
results were exported to a file containing the original and lemma-
tized versions, and a manual inspection was performed to approve 
the lemmatization outputs (e.g. “loving” to “love” was approved, 
while “t-shirt” to “t” was not). Finally, we verified that within a 
given trial, all response words of a single person were unique 
(repetitions, if found, were removed). Other than the two manual 
steps that followed the original work (spelling and lemmatiza-
tion approvals), the rest were all automatically performed using 
Python software.

IA calculation
The IA metric calculation was also identical to the original work. In 
each experiment, the IA analysis was performed per image (“target 
image”), per word (“target word”). Therefore, within each exper-
iment, the word IA is a number associated with a word–image 
pair (e.g. the word “rainbow” can potentially have 388 different IA 
scores, one per image in the experiment database).

The first step was to create a response matrix for each 
image in the dataset. Preprocessed responses for the image 
from all ten observers were aggregated into a matrix con-
taining ten rows (one per participant) and five columns (one 
per word). Because multiple participants can provide the same 
word, each word can appear between one and ten times in the 
matrix. Crucially, akin to the original work, a word reported only 
once per image was considered a “rarely reported word” (as it 
was reported by one observer only) and removed from the IA
analysis.

The word IA calculation was then done iteratively within the 
image: for each row (participant), we analyzed each target word. 
Notably, following the original work, the analysis was performed 
for each unique combination of word and row. Thus, as the tar-
get word appeared in at least one other row, the IA analysis was 
conducted again (as the index of the target word’s row plays a role 
in the calculation; see Chuyin et al. 2022 and the “IA calculation” 
section below). We calculated the “within-image” ratio by count-
ing the number of additional occurrences of the target word in the 
target image matrix and dividing it by nine (the maximal possible 
number of repetitions).
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The next step was to calculate the “between-image” ratios for 
the target word in this specific row, in order to generate a dis-
tribution of these ratios for that combination. This was done by 
counting, for all the other images, the number of times the target 
word appeared in their matrix. To that end, the corresponding row 
where the target word appeared in the target image was removed, 
and the number of occurrences of that word in all other rows was 
divided by nine.

To generate the distribution, we defined ten bins, each repre-
senting one possible between-image ratio (0/9 to 9/9), and counted 
the number of images in each bin. Then, we turned the image 
counts into cumulative counts (see Fig. 2 in Chuyin et al. 2022), 
for both the within- and the between-image ratios.

These ratios were used to construct a receiver operating char-
acteristic curve, where the cumulative within-image ratio is con-
sidered the “true-positive rate,” as it represents the frequency of 
the target word in the target image. The between-image cumula-
tive ratio is considered the “false-positive rate,” as it represents the 
frequency of the target word in nontarget images.

Finally, the area under the curve (AUC) was calculated. This 
process was repeated for all rows in which the target word 
appeared in that image, and the final word IA score was the 
average of all AUCs across rows.

Statistical analysis
Statistical analyses were all performed using JASP software (JASP 
Team 2022; version 0.17.2.1), first on the results of the exploratory 
study and then on the preregistered study.

To test whether word IA differs across stimulus versions, we 
performed a between-participant Bayesian one-way analysis of 
variance (ANOVA) with experiment as the fixed effect (intact, 
blurred, black and white) and word IA as the dependent variable.

To test the correlation between words’ IA score and their fre-
quency in the English vocabulary, we performed a Bayesian Pear-
son correlation between these variables separately for each exper-
iment. Word frequency was extracted using Python’s wordfreq 
package (version: 3.0.3), and the frequency score used was Zipf 
frequency: The Zipf frequency of a word is the base-10 logarithm 
of the number of times it appears per billion words (Brysbaert and 
New 2009; see more at pypi.org/project/wordfreq/).

To test the correlation between words’ IA and their mean confi-
dence level, we performed a Bayesian Pearson correlation between 
these variables, separately for each experiment.

Finally, we examined how many of the words described items 
that did not appear in the image (i.e. nonexisting words), using 
only nonrare words (i.e. only words with IA scores), and character-
ized them. Notably, the purpose of this exploratory analysis was 
not to find an alternative to the word IA metric. Rather, we exam-
ined the content of those words to better understand what the 
word IA measure actually captures. We accordingly identified four 
types of nonexisting words (see Figs 3 and 7 in the “Results” section 
for example): (i) “conceptual”: words that convey a sentiment or 
some abstract description of the image, rather than a concrete 
item/attribute that appears in it (e.g. “cute,” “intricate,” “boring,” 
and “romantic”); (ii) “insertion”: words describing concrete items 
that are congruent with the scene’s gist, but do not appear in the 
image (e.g. “horse” and “book” when these are not present in the 
image); (iii) “confusion”: words that do not match the scene or its 
gist, but seem to describe an “alternative” gist that is congruent 
with the features of the scene, such that participants most likely 
perceived this alternative gist, although it does not appear in the 
image (e.g. “whale” in response to an image of the sky, suggesting 
that observers mistook the sky as an ocean; see Fig. 3); and (iv) 

“unrelated”: a word that does not describe something that exists 
in the image and does not belong to any of the abovementioned 
categories, having no connection whatsoever to the image, to our 
best judgment.

This classification process was done manually and separately 
for each experiment (while “red” can be an existing word in an 
image in the intact experiment, it does not exist for the same 
image in the black and white experiment). To minimize subjective 
judgment, the process was done by both authors, and disagree-
ments were resolved by discussion. We took a lenient approach 
when classifying the words, such that even words that did not 
clearly appear in the image, but could be ascribed to it (e.g. the 
word “sunny” when no sun or rays of light were depicted), were 
considered to be existing in the image and were not counted as 
“nonexisting.”

For each image, we counted the total number of words with 
word IA scores. We calculated the proportion of existing and 
nonexisting words (of all types) by dividing the number of words 
in each category by the number of words with IA scores in that 
image. Then, we examined the relationship between words’ cate-
gories and their mean confidence levels using a Bayesian ANOVA 
with confidence as the dependent variable and category as a fixed 
effect.

Control experiments
Manipulation check
The results of our studies hinge upon the assumption that blurring 
the images or changing them to grayscale reduces the richness of 
experiencing them. While this seems almost self-evident for the 
grayscale images, as colors influence the vividness of one’s percep-
tion (Cornoldi et al. 1991), one might claim that this is not the case 
for blurring or that our specific blurring protocol was not strong 
enough to reduce the perceived richness. Two control experiments 
were performed to test this claim.

Participants

Participants in both experiments were recruited using Prolific in 
an identical manner to the exploratory study and paid at a rate of 
9£/h. Twenty participants (10 females) completed the first control 
experiment (aged 21–34 years: M = 27.5, SD = 4.37), which lasted 
8.92 min on average (SD = 6.97), and the other 20 (11 females) com-
pleted the second control experiment (aged 21–34 years: M = 26.90, 
SD = 3.57), which lasted 15.44 min (SD = 13.01).

Procedure, stimuli, and apparatus

The apparatus and stimuli were identical to those used in both 
studies, with only one practice pair. The first control experiment 
(“Control Experiment A”) included 20 trials, in which pairs of 
intact and blurred versions of the same image were presented. 
Participants were asked to report which was richer. The location 
(left, right) of the intact and blurred versions was counterbal-
anced, and the order was random, with every pair presented
only once.

Akin to the main studies, in each trial, the stimulus pair was 
presented for 67 ms, followed by five successive pairs of masks, 
presented for 60 ms—covering each image separately. A response 
screen then prompted participants to indicate which version was 
richer, and they responded using their keyboard arrow keys (left 
and right).

Notably, in the first control experiment, participants’ richness 
judgments might have been biased given that the images were 
presented simultaneously, potentially hinting that intact images 
should be rated as richer. Also, this experiment did not allow us 
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to quantify the difference in perceived richness. To mitigate both 
concerns, in the second experiment (“Control Experiment B”), each 
image was presented in isolation, and participants were asked to 
rate how rich was their experience of a single image on a contin-
uous scale ranging between “Very poor experience” (coded 0) and 
“Very rich and detailed experience” (coded 1), by moving the com-
puter mouse to set a location of a marker on the scale (the marker 
was invisible until participants chose the desired location on the 
scale, to not bias their response in any direction).

The experiment consisted of 60 test trials, 30 depicting blurred 
images and 30 depicting intact images, which were not paired (i.e. 
no participant saw both the intact and blurred versions of the 
same image).

Direct replication
One of the key results of the original study is the correlation 
between word IA and confidence rating (Chuyin et al. 2022). As 
we did not find it in any of the six main experiments (exploratory 
and preregistered), it is important to rule out that this failure to 
replicate stems from the slight change in instructions concern-
ing the lowest confidence score (1: “Don’t Know”). Thus, in this 
control experiment, we used the original instructions, such that 
observers were asked to insert an arbitrary word if they could not 
come up with five words (and rate it as “Don’t Know”). The proce-
dure, stimuli, and apparatus were otherwise identical to those in 
the preregistered intact experiment.

Participants

Participant recruitment was identical to the preregistered intact 
experiment. A total of 232 participants completed the online 
experiment (116 females, aged 18–35 years: M = 28.38, SD = 4.63). 
The average duration was 20.03 min (SD = 10.39). No additional 
participants were removed for not completing the experiment.

Long exposure
The original work has emphasized the importance of finding high 
word IAs in briefly presented images (67 ms). In our main study, we 
did not find the metric to be sensitive to stimulus manipulations. 
However, this insensitivity might stem from the short presentation 
duration, and one might still argue that the IA measure can bet-
ter capture experience when the stimuli are presented for longer. 
To test this hypothesis, we repeated the preregistered intact and 
black and white experiments, with images presented for 267 ms 
(the longest duration in the original work). The procedure, stimuli, 
apparatus, and participant recruitment were otherwise identical 
to the preregistered experiments.

Participants
Intact

A total of 201 participants completed the online experiment (100 
females and 101 males, aged 18–35 years: M = 27.89, SD = 4.56). 
The average duration was 19.99 min (SD = 9.73). No additional 
participants were excluded for not completing the experiment.

Black and White

A total of 205 participants completed the online experiment (102 

females and 103 males, aged 18–35 years: M = 27.75, SD = 4.47). 

The average duration was 19.82 min (SD = 10.34). Three additional 
participants were excluded since they did not complete the exper-
iment.

Results
Exploratory study
Overall, the experiment (i.e. the manipulation of richness) was 
found to significantly affect word IA [F(2, 6833) = 9.720, P < .001, 
BF10 = 27.50; Fig. 2, top]. Post hoc analyses revealed that the black 
and white word IAs (M = 0.964, SD = 0.05) were actually slightly 
higher than both the blurred condition [M = 0.957, SD = 0.05; 
t(6833) = 4.227, P < .001, 95% confidence interval (CI) = (0.003, 
0.011), BF10 = 360.61] and the intact one [M = 0.959, SD = 0.06; 
t(6833) = 3.204, P = .004, 95% CI = (0.001, 0.009), BF10 = 5.14]. Notably, 
no difference was found between the intact and blurred versions 
[t(6833) = −1.249, P = .635, 95% CI = (−0.006, 0.002), BF10 = 0.07].

This might suggest that IA captures things other than con-
scious perception. For example, this measure might reflect lexical 
regularities, independent of the experienced contents. In this case, 
IA scores should correlate with other vocabulary-based metrics 
of words. To test that, we examined the relationship between 
words’ IA scores and their frequency in the English vocabulary. 
Indeed, across all three experiments, a negative correlation was 
found between word IA and frequency [intact: r(2569) = −0.374, 
P < .001, 95% CI = (−0.407, −0.341), BF10 = 2.86 × 1082; blurred:
r(2013) = −0.369, P < 0.001, 95% CI = (−0.406, −0.330), 
BF10 = 1.36 × 1062; black and white: r(2254) = −0.471, P < 0.001, 95% 
CI = (−0.502, −0.438), BF10 = 6.49 × 10120; Fig. 2, bottom]. That is, the 
more specific a word was found to be for a particular image, the 
more unique the word was in English in general, in line with the 
hypothesis that the measure possibly reflects lexical regularities.

Furthermore, the positive correlation between word IA and 
confidence found in the original study (Chuyin et al. 2022) and held 
by the authors to validate the measure as indicative of conscious 
perception, was not replicated in any of the three experiments. 
In two out of the three experiments, no significant correlation 
was found: the intact [r(2569) = −0.021, P = .280, 95% CI = (−0.060, 
0.017), BF10 = 0.04] and the blurred [r(2013) = −0.041, P = 0.067, 95% 
CI = (−0.084, 0.003), BF10 = 0.15]. In the black and white experiment, 
the correlation was in the opposite direction of what was orig-
inally found [r(2254) = −0.066, P = .002, 95% CI = (−0.107, −0.025), 
BF10 = 3.81].

Another possible nonperceptual explanation for the IA results 
is that participants were not able to extract enough informa-
tion from the images, relying on gist perception to provide words 
describing items that are compatible with the presented images 
(even if they did not actually see them). If this is true, some of the 
words provided for each image are expected to be of the “inser-
tion” nonexistent type (i.e. words that describe items that do not 
appear in the scene, but are compatible with its gist; Fig. 3, left). 
Indeed, across all three experiments, such insertion words were 
found (Fig. 4).

To further examine if our classifications captured different 
types of responses, we compared the confidence ratings of words 
in each category. If our existence judgments were not aligned with 
the reported words (i.e. if the words did not fall into the categories 
we identified), we would expect no relationship between the rated 
confidence and the existence tagging of those words.

Contrary to those expectations, in the exploratory study (all 
three experiments together), word categories did differ in their 
confidence ratings [F(4, 6855) = 139.53, P < .001, BF10 = 3.83 × 10111] 
such that existing words (M = 4.15, SD = 0.58) had higher confi-
dence compared to each of the nonexisting word types (con-
ceptual: M = 4.01, SD = 0.65; confusion: M = 3.51, SD = 0.73; inser-
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More than words  7

Figure 2 Exploratory study results. Notably, both Zipf frequency (word ranks) and word IA (specificity scores) are described in arbitrary units. (Top) A 
raincloud plot showing the distribution of word IA scores across experiments. The dots illustrate individual words, while the density curves denote 
their distribution. Horizontal lines mark the means. (Bottom) Scatter plots showing the correlation between words’ IA (x-axis) and their frequency in 
English (y-axis). The scatter plots are separated by experiments, with colors matching the top plot (left: intact, middle: blurred, right: black and white).

tion: M = 3.69, SD = 0.70; unrelated: M = 3.48, SD = 0.93; Fig. 5 and 
Table 1). Thus, participants were less confident in their reports 
when providing nonexisting words. 

Preregistered study
Once again, the experiment (i.e. richness manipulation) was 
found to significantly affect IA [F(2, 6785) = 62.180, P < 0.001, 
BF10 = 7.58 × 1023; Fig. 6, top). However, the patterns of results were 
somewhat different from those in the exploratory study: word 
IA in the black and white experiment (M = 0.967, SD = 0.05) was 
again higher than in the blurred experiment [M = 0.950, SD = 0.06; 
t(6785) = 10.514, P < .001, 95% CI = (0.013, 0.021), BF10 = 5.93 × 1021], 
but not significantly higher than in the intact experiment 

[M = 0.964, SD = 0.05, t(6785) = 2.147, P = .096, 95% CI = (−3.02 × 10−4, 
0.007), BF10 = 0.42]. Thus, in both studies, color degradation did 
not lead to the decrease in word IA scores that would have been 
expected if this measure had indeed captured the richness of 
perception. However, unlike in the exploratory study, word IA in 
the blurred experiment was found to be lower than in the intact 
experiment [t(6785) = −8.792, P < .001, 95% CI = (−0.017, −0.010), 
BF10 = 6.03 × 1013].

All other results were fully replicated in this study: first, 
the negative correlation between words’ IA scores and fre-
quency in English was found across all three experiments 
[Fig. 6 (bottom): intact: r(2561) = −0.368, P < .001, 95% CI = (−0.401, 
−0.334), BF10 = 2.20 × 1079; blurred: r(2031) = −0.325, P < .001, 95%
CI = (−0.364, −0.286), BF10 = 5.14 × 1047; black and white:
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8 Hirschhorn and Mudrik

Figure 3 Examples of nonexisting words of the insertion (left) and confusion (right) types in the exploratory study. Each row is an experiment (top: 
intact stimuli, middle: blurred stimuli, bottom: black and white). Above each image is the word provided for it and its respective word IA score.

Figure 4 Average proportion of words of each category type per image (standard deviations: intact experiment: exist = 18.77, conceptual = 15.76, 
insertion = 9.21, confusion = 9.98, unrelated = 1.82; blurred experiment: exist = 21.34, conceptual = 14.33, insertion = 13.12, confusion = 14.39, 
unrelated = 5.25; black and white experiment: exist = 21.85, conceptual = 15.53, insertion = 13.92, confusion = 14.34, unrelated = 2.53). Each pie depicts 
the results of a separate experiment in the exploratory study (left: intact stimuli, middle: blurred stimuli, right: black and white). “Exist” words 
describe things that existed in the image; “Conceptual” words convey sentiment, adjectives, or any nonconcrete, abstract words related to the image; 
“Insertion” words describe items that do not appear in the image, but are compatible with its gist; “Confusion” words do not exist in the image nor 
compatible with its true gist, yet are compatible with an alternative (wrong) gist of the image; “Unrelated” words are entirely unrelated to the image, 
not falling under any of the previous categories. Here and in Figs 5–9s, all words included in this classification have an IA score.

D
ow

nloaded from
 https://academ

ic.oup.com
/nc/article/2024/1/niae035/7833336 by tel aviv university-sourasky central library user on 28 O

ctober 2024



More than words  9

Figure 5 A raincloud plot showing the distribution of confidence ratings (y-axis) across word category types (x-axis) in the exploratory study. The dots 
illustrate individual words, while the colored density curves denote their distribution. Horizontal lines mark the means.

Table 1. Results of post hoc comparisons of the Bayesian ANOVA of words’ mean confidence per category (exist, conceptual, insertion, 
confusion, and unrelated) in the exploratory study.

Mean difference
 95% CI for mean difference

Mean difference Lower Upper SE t  Pbonf BF10,U

Exist Confusion 0.64 0.55 0.73 0.03 19.248 <.001*** 2.15 × 10+80

Unrelated 0.67 0.25 1.08 0.15 4.359 <.001*** 2630.34
Insertion 0.45 0.37 0.54 0.03 14.140 <.001*** 5.55 × 10+43

Conceptual 0.13 0.08 0.19 0.02 6.473 <.001*** 1.14 × 10+8

Conceptual Confusion 0.50 0.40 0.60 0.04 13.698 <.001*** 4.25 × 10+30

Unrelated 0.54 0.12 0.95 0.15 3.479 .005** 24.25
Insertion 0.32 0.22 0.42 0.04 8.942 <.001*** 1.16 × 10+13

Confusion Unrelated 0.03 −0.40 0.46 0.16 0.197 1 0.26
Insertion −0.18 −0.30 −0.06 0.04 −4.135 <.001*** 37.38

Unrelated Insertion −0.21 −0.64 0.21 0.16 −1.375 1 0.47

All words included in this classification have an IA score. Abbreviations: Pbonf, Bonferroni-corrected P-value (** P ≤ .01, *** P ≤ .001); SE, standard error.

r(2196) = −0.443, P < 0.001, 95% CI = (−0.476, −0.409), BF10

= 2.89 × 10102]. Second, the positive relationship originally reported 
between word IA and the confidence level was again not found 
in any of the experiments [intact: r(2561) = −0.015, P = .434, 
95% CI = (−0.054, 0.023), BF10 = 0.03; blurred: r(2031) = 0.013, 
P = .550, 95% CI = (−0.030, 0.057), BF10 = 0.03; black and white: 
r(2196) = −0.027, P = .198, 95% CI = (−0.069, 0.014), BF10 = 0.06].

Third, the proportions of existing and nonexisting words per 
image were similar to those of the exploratory study. Specifi-

cally, the percentage of nonexisting “insertion” words per image 

was again consistent across all three experiments and of the 

same magnitude found in the exploratory studies (see Fig. 7 for 
examples and Fig. 8 for the proportions).

Fourth, the relationship between these classifications and con-
fidence ratings was replicated as well [F(4, 6783) = 120.586, P < .001, 
BF10 = 4.78 × 1095], with existing words (M = 4.15, SD = 0.61) hav-
ing higher confidence ratings compared to all types of nonex-
isting ones (conceptual: M = 4.00, SD = 0.65; confusion: M = 3.56, 
SD = 0.73; insertion: M = 3.70, SD = 0.72; unrelated: M = 3.05, 
SD = 0.85; Fig. 9 and Table 2).
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10 Hirschhorn and Mudrik

Figure 6 Preregistered study results. (Top) A raincloud plot showing the distribution of word IA scores across experiments. The dots illustrate 
individual words, while the density curves denote their distribution. Horizontal lines mark the means. (Bottom) Scatter plots showing the correlation 
between words’ IA (x-axis) and their frequency in English (y-axis). The scatter plots are separated by experiments, with colors matching the top plot 
(left: intact, middle: blurred, right: black and white).

Control experiments
Manipulation check
Control experiment A

For each participant, we calculated the percentage of trials where 
they selected the intact version as richer than the blurred one. 
A Bayesian one-sample t-test was performed to test whether 
the percentage differed from chance level (50%). An additional 
Bayesian paired samples t-test was used to test whether partici-
pants preferred a side when selecting which image was richer (left, 
right).

As expected, participants selected the intact version of the 
image as richer than the blurred one on average 74.5% of the 
time [SD = 13.66; t(19) = 8.021, P < .001, 95% CI = (18.11, 30.89), 
BF10 = 95 836.62]. In addition, there was no effect of presentation 
side on richness preference [t(19) = 0.474, P = 0.64, 95% CI = (−10.25, 
16.25), BF10 = 0.26, BF01 = 3.89].

Control experiment B

Participants’ richness judgments were compared in three ways. 

First, we conducted a participant-based analysis and used a 

Bayesian paired samples t-test to compare the average ratings par-

ticipants gave to intact vs. blurred images. Second, we focused 

only on the first trial to minimize the effect of participants asso-

ciating “rich” with “nonblurred” throughout the experiment. An 

independent samples t-test was accordingly performed to test 

whether on the first trial, intact images were rated differently than 

blurred ones. Third, we conducted an image-based analysis and 

compared richness judgments between two versions of the same 

image (intact, blurred) using a Bayesian paired samples t-test.
Overall, participants gave higher richness ratings to the 

intact images (M = 0.50, SD = 0.20) compared to blurred ones 

[M = 0.25, SD = 0.15; t(19) = 9.322, P < .001, 95% CI = (0.20, 0.31), 
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More than words  11

Figure 7 Examples of nonexisting words of the insertion (left) and confusion (right) types in the preregistered study. Each row is an experiment (top: 
intact stimuli, middle: blurred stimuli, bottom: black and white). Above each image is the word provided for it and its respective word IA score.

Figure 8 Average proportion of words of each category type per image (standard deviations: intact experiment: exist = 17.99, conceptual = 15.18, 
insertion = 9.90, confusion = 9.39, unrelated = 1.09; blurred experiment: exist = 21.99, conceptual = 14.34, insertion = 13.48, confusion = 14.51, 
unrelated = 6.12; black and white experiment: exist = 22.33, conceptual = 17.71, insertion = 13.10, confusion = 12.11, unrelated = 1.64). Each pie depicts 
the results of a separate experiment in the preregistered study. The same conventions as in Fig. 4 are used here.

BF10 = 805 258.13; Fig. 10, left]. Importantly, during the first exper-
imental trial, where participants were less prone to be biased 
by understanding the manipulation, intact images (M = 0.59, 
SD = 0.21) were still rated much higher than blurred ones (M = 0.17, 
SD = 0.13) on the richness of experience scale [t(18) = 5.414, P < .001, 
95% CI = (0.25, 0.58), BF10 = 443.93]. Furthermore, the image-based 
analysis revealed that the intact versions were given higher rich-
ness ratings (M = 0.52, SD = 0.27) compared to their blurred coun-
terparts [M = 0.25, SD = 0.21; t(299) = 14.42, P < .001, 95% CI = (0.24, 
0.31), BF10 = 6.54 × 1032].

Taken together, the results of the manipulation check validated 
our manipulation of richness, demonstrating clear differences 
between the perceived richness of the intact and the blurred 
images, as expected. One might argue that these results are some-
what biased by task demands (i.e. participants equating richness 
with sharpness not because they perceive intact images as rich, 
but since they understand the logic behind the experiment). This 
concern is mitigated by two factors. First, the results of the first 
trial analysis demonstrate that this difference is found even before 
participants are familiarized with the stimuli. Second, the results 
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12 Hirschhorn and Mudrik

Figure 9 A raincloud plot showing the distribution of confidence ratings (y-axis) across word category types (x-axis) in the preregistered study. The dots 
illustrate individual words, while the colored density curves denote their distribution. Horizontal lines mark the means.

Table 2. Results of post hoc comparisons of the Bayesian ANOVA of words’ mean confidence per category in the preregistered study.

Mean difference
 95% CI for mean difference

Mean difference Lower Upper SE t  Pbonf BF10,U

Exist Confusion 0.59 0.49 0.70 0.04 15.662 <.001*** 5.65 × 10+52

Unrelated 1.10 0.70 1.51 0.15 7.438 <.001*** 2.14 × 10+11

Insertion 0.45 0.36 0.53 0.03 14.124 <.001*** 3.78 × 10+42

Conceptual 0.15 0.10 0.21 0.02 7.471 <.001*** 1.24 × 10+11

Conceptual Confusion 0.44 0.33 0.55 0.04 10.780 <.001*** 2.31 × 10+20

Unrelated 0.95 0.55 1.36 0.15 6.383 <.001*** 6.83 × 10+6

Insertion 0.29 0.20 0.39 0.04 8.350 <.001*** 6.69 × 10+11

Confusion Unrelated 0.51 0.09 0.93 0.15 3.346 .008** 8.12
Insertion −0.15 −0.28 −0.02 0.05 −3.107 .019* 2.94

Unrelated Insertion −0.66 −1.07 −0.25 0.15 −4.356 <.001*** 125.11

The same conventions as in Table 1 are used here. * P ≤ .05, ** P ≤. 01, *** P ≤ .001

of the image-based analysis show that intact versions of images 
were rated higher than their blurred counterparts. Furthermore, 
as seen in Fig. 10 (right), richness ratings were spread over a wide 
range even within the intact and the blurred conditions, with 
some overlap between them; if responses would solely reflect task 
demands, we would expect to see two clear clusters with all intact 
images rated high and all blurred images rated low. This is further 
reinforced by the fact that for some images, participants actually 
rated the blurred version as richer. Although this is only a minor-
ity group, it still demonstrates that participants did not simply 
equate “rich” with “intact.” Taken together, the data supports the 
assumption that the blur manipulation indeed degraded richness, 
in line with the previous literature (e.g. Prinz 2009, French 2015). 
This allowed us to test if the word IA measure would reflect these 
changes in perceived richness.

Direct replication
To test the correlation between word IA and mean confidence 

level, we performed a Bayesian Pearson correlation. Akin to 

the exploratory and preregistered studies, no correlation was 

found between words’ IA scores and their mean confidence rating 

[r(2702) = −0.019, P = .329, 95% CI = (−0.06, 0.02), BF10 = 0.039]. This 

lack of positive correlation is therefore consistent with the find-

ings in the six main experiments, mitigating the concern that the 
lack of correlation stemmed from differences in instructions.

Long exposure
To test if the results in the main experiments changed when the 
images were presented for longer, we repeated the IA analysis. 
Even when the images were presented for 267 ms, word IAs of the 
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More than words  13

Figure 10 Results of control experiment B (across all trials). (Left) Results per participant. Each dot represents the average slider rating of a single 
participant across all trials of the same image type (intact, blurred). Violins are the distributions across participants. Gray lines connect between two 
trial groups of the same participant. As seen by these lines, each participant consistently rated blurred images (on the right) lower than intact images 
(on the left). (Right) Results per image. Each dot represents the average slider rating of a single image across all participants who viewed it. Violins are 
the distributions across images. Gray lines connect between two versions of the same image.

intact images (M = 0.97, SD = 0.04) did not differ from those evoked 
by the black and white ones [M = 0.97, SD = 0.05; t(5781) = −0.485, 
P = 0.628, 95% CI = (−0.003, 0.002), BF10 = 0.03]. Thus, these experi-
ments refuted the claim that the insensitivity of the IA measure 
to the richness manipulation hinged upon the short presentation 
durations.

Discussion
Overall, our results suggest that the IA metric, derived from freely 
reported words, does not capture the richness of conscious per-
ception (or lack thereof). This conclusion is supported by four 
types of evidence: first, the lack of correspondence between IA 
and perceptual richness, as found in the color manipulation, and 
to some degree in the blur manipulation; second, the consis-
tent relationship between IA and vocabulary metrics; third, the 
failure to replicate the positive correlation between IA and con-
fidence, originally claimed to demonstrate that IA captures an 
aspect of conscious perception; and fourth, the high rate of nonex-
isting words, out of which a non-negligible and consistent rate of 
insertion and confusion words was found.

The insensitivity of the IA metric to our manipulation of the 
richness of experience was found in two studies. Most consistent 
was the finding that colorless images elicited higher IA scores. 
This is perplexing if the measure indeed captures perception. 
Blurred images yielded mixed results: in the first study, IA scores 
did not differ between the blurred and the intact experiments. 
Notably, this result cannot be attributed to a lack of difference 
in the perceived richness of the intact and blurred experiences; 
in two control studies, we confirmed that the blur manipulation 
degraded the experienced stimulus. However, in the second, con-
firmatory, study, descriptions of blurred images had slightly lower 
IAs than intact ones. Thus, to the very least, one could claim that 
the IA measure yields inconsistent values with respect to the blur-
ring manipulation. Conversely, one might disagree that blurring 
or grayscaling indeed reduces the richness of the image. We do 

not think that this is a very plausible concern: colorless images 

are clearly less rich than their colored counterparts, and blurred 

images were demonstrated to be less rich in two control experi-

ments, in line with the literature (see Prinz 2009, French 2015, who 
deemed blurred and sharp experiences subjectively different).

The correlation between IA scores and frequency in English, 

found across all experiments, further questions the perceptual 

nature of the IA measure. This suggests that the IA scores might be 

at least partially driven by the uniqueness of the reported words. 

Similar effects of word frequency have typically been found in lin-

guistic tasks (e.g. Oldfield and Wingfield 1965, Bonin et al. 2012). 
Thus, this finding suggests that the IA metric is more likely to 

reflect linguistic, rather than perceptual, information.

Our results also failed to replicate the original findings with 

respect to confidence ratings. In the original work, participants’ 

rated confidence positively correlated with the IA metric. The 
authors suggested that this serves as evidence for the measure 

being a proxy of conscious perception. This is because the correla-
tion seemed to imply that participants had metacognitive access 
to their phenomenal experiences (Chuyin et al. 2022). However, 
in our case, across all six experiments, word IA did not positively 
correlate with confidence ratings. Notably, this failure to replicate 
was also found in a follow-up experiment that directly replicated 
the original work, with the very same instructions.

Finally, the more in-depth examination of the words revealed 
that across all experiments, many of the analyzed words did not 
describe items that appeared in the image (between 24% and 
30% in the six experiments, meaning that 70%–76% of the words 
described items that did appear). Of the nonexisting words, many 
were conceptual, conveying observers’ affect or evaluation of the 
image (e.g. “cute”). This makes it harder to evaluate the extent 
to which these words reflect the actual perceived content, and 
they surely do not convey information about specific details in the 
image. Another important class of nonexisting words is the one 
describing items that did not appear in the image yet were com-
patible with its gist (insertion words, between 4% and 7%). This 
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14 Hirschhorn and Mudrik

result suggests that participants might have relied on gist percep-
tion (Oliva 2005) when performing the task in one of two possible 
ways: first, at the cognitive level, the short presentation allowed 
them to grasp the meaning of the scene and then possibly guess 
which objects should appear in it, even if they had not seen them. 
Such reliance on unexpected strategies is a known phenomenon 
that has been reported in other tasks, leading to erroneous conclu-
sions; for example, in the field of unconscious processing, a highly 
influential work by Kouider and Dupoux (2004) has shown that 
participants can be at chance at recognizing masked words while 
still having partial awareness of some of the letters. This aware-
ness can then drive performance to evoke behavior that mimics 
semantic priming effects, even for meaningless words that share 
some letters with semantically congruent ones.

In the IA case, participants could have relied on some crude 
perception of the gist to generate behavior that is compatible with 
a much richer experience. This interpretation aligns with similar 
claims about reports of specific details that were actually driven by 
gist in the context of the richness of conscious perception (Irvine 
2011). Presumably, some words that participants gave reflected the 
expected objects that should have appeared in the scene. When 
this was actually the case (which is likely as these expectations 
are based on these objects typically appearing in these contexts), 
there was a match between the responses and the contents of the 
scene. Yet, in some cases, there was no such match, leading to 
insertion words. Thus, the fact that such words were consistently 
given across all experiments provides substantial support to this 
alternative interpretation.

One could still argue, however, that these insertion words 
reflect false perceptions rather than a cognitive strategy. Accord-
ing to this interpretation, participants truly reported the con-
tent of their perception, yet that perception was not veridical 
(Ramachandran 1993, Seth 2021, Levinson and Baillet 2022). 
Indeed, gist processing affects object recognition (Bar 2004, Tal 
and Bar 2014, Truman and Mudrik 2018), especially when the 
object itself is ambiguous (Oliva and Torralba 2007, Brandman 
and Peelen 2017). Further support to this claim can be found in 
a recent study where participants failed to notice incongruent 
objects when scenes were presented for short durations, arguably 
“replacing” them with scene-congruent objects (Biderman and 
Mudrik 2018; see also Qianchen et al. 2022). Therefore, under 
the perceptual interpretation, the IA measure indeed captures the 
content of perception, which is not always veridical. Our data does 
not allow us to arbitrate between these two interpretations. How-
ever, the finding of higher confidence ratings for existing words 
compared to nonexisting ones seems to go against this interpre-
tation. If observers were simply reporting what they perceptually 
experienced in all cases, there should not have been any effect of 
confidence when analyzing the words based on their compatibil-
ity with the scene—for the participants, it should not have made a 
difference. Yet, we found that words describing items that did exist 
in the scenes evoked higher confidence ratings. This finding aligns 
with the hypothesis that at least some of these nonexisting words 
were not based on what participants actually perceived, but rather 
generated using other strategies. Thus, both the existence of the 
insertion words and the difference in confidence between exist-
ing words and all types of nonexisting words cast doubt on the 
claim that the IA measure indeed captures the content of percep-
tion. Further research is accordingly needed to exclude the task 
demands, strategy-based, account.

An additional, more conceptual, claim can also be raised with 
respect to the IA measure. As the measure focuses on the unique-
ness of the provided words, given a highly diverse stimulus set, 

it heavily depends on the similarity of the images in the set. For 
example, suppose we used an alternative stimulus set, where all 
images are pictures of the Eiffel Tower, but from very different 
angles, distances, and so on, such that these images lead to qual-
itatively different conscious experiences. In this case, we would 
expect relatively low word IAs because the provided words would 
likely be similar across images (e.g. Eiffel Tower, Paris, and park) 
despite the qualitatively different phenomenal experiences they 
evoke. Crucially, however, the low word IAs of these words would 
not necessarily imply that the reported items were not experi-
enced in full, including fine details. Each individual experience 
could have been immensely rich, but the measure would prob-
ably imply otherwise, given the similarity of the stimuli. The main 
point of this example is that the specificity and detail of the con-
tents of one’s experience of a specific image is not more or less 
rich depending on the rest of the stimulus set—while this is not 
true for the word IA metric. This again demonstrates how the 
word IA measure can be dissociated from the content of conscious 
perception.

Taken together, these findings raise a more general concern 
about the suitability of language-based measures for probing the 
richness of conscious perception. Many supporters of the richness 
hypothesis tend to contrast experience with cognition, claiming 
that perception overflows other cognitive processes (Block 2011) 
or that the two should be clearly delineated (Block 2023). Yet, ver-
bal report–based measures use language, and in a way thinking, 
to capture the content of experience. In some sense, this seems 
to be contradictory: if perception overflows language, how can we 
use language to measure the richness of conscious perception? We 
suggest here that doing so inevitably introduces the characteris-
tics (and limitations) of language (e.g. its sequential nature, which 
poses memory limitations: Kouider et al. 2010), getting us farther 
away from the object of interest.

This does not mean that the attempt to quantify the richness of 
perception is necessarily moot. Alternative reporting techniques 
might provide insight into observers’ experiences: For example, 
using drawing as a measure (for a review, see Fan et al. 2023) can 
be instrumental for tracking experience, as previously suggested 
by Haun et al. (2017). This approach relies primarily on metrics 
derived from scoring line drawings to compare the content of per-
ception and memory under different viewing conditions (e.g. free 
viewing vs. recall: Bainbridge et al. 2019; foveal vs. peripheral 
viewing: Coates et al. 2017). However, these studies might suffer 
from similar limitations, as even in drawings, participants might 
rely on abstraction and conceptual knowledge (Fan et al. 2023), 
potentially moving away from the actual content of conscious 
experience. Alternatively, multimodal methods combining reports 
with physiological and neural data might be better equipped to 
provide more direct information about the perceived content, sim-
ilar to no-report paradigms (Tsuchiya et al. 2015). Thus, more 
efforts are needed to get us closer to developing a good enough 
measure of conscious perception and its richness.

Whichever measure is suggested as a new means to study the 
content and richness of perception, it would have to be convinc-
ingly validated, like is typically done when psychological mea-
sures are developed (e.g. for emotion: Beck et al. 1988 or working 
memory: Pomplun and Custer 2005). However, validation seems 
to be more challenging in the current case because we do not 
have access to the “ground truth,” that is, to the actual content 
of one’s experience (Nagel 1980, 1974; but see Dennett 1988). In a 
way, this is one of the greatest challenges the field of conscious-
ness has been struggling with since its inception (Reingold and 
Merikle 1988, Sandberg et al. 2010). Here, we suggest a possible 
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way to meet this challenge or at least mitigate it. Clearly, we can-
not directly test the suggested measure against the actual content 
of perception in its entirety. Instead, we have tried here to take a 
simpler approach and crudely manipulate certain aspects of the 
content of perception, which should be captured by the suggested 
measure. Therefore, if a measure is held to index the content (and, 
potentially, richness) of experience, it should reflect changes in 
content and richness. This logic has historically guided scientists 
when designing metrics for constructs such as the hardness of 
metals (Tabor 1951) or conservation of mass (in the experiments of 
Antoine Lavoisier and as described in Holmes 1987). Going back to 
the work on partial awareness (Kouider and Dupoux 2004), there 
too, the authors manipulated the semantic content of the masked 
words and showed that the measure of the so-called “seman-
tic” priming is not sensitive to that change. Such disconfirmatory 
experiments (Firestone and Scholl 2016) are very instrumental in 
testing and validating possible measures. We accordingly suggest 
adopting this approach when developing measures of experienced 
content, as we have done here.

Conclusion
In this work, we tested a recently suggested measure of con-
scious perception—word IA (Chuyin et al. 2022). This measure 
was originally suggested to solve a timely and important chal-
lenge, given the limitations of previous paradigms to fully capture 
the contents of perception (Haun et al. 2017). It incorporates an 
innovative approach by trying to quantify, for the first time, the 
level of agreement between participants around the content of 
conscious perception, in a way that emphasizes the specificity of 
that content. However, our experiments revealed that this agree-
ment might not index perception itself, but rather stem from 
cognitive-based strategies or linguistic regularities. The results 
further demonstrated that the measure is not sensitive to large 
differences in perceived richness, questioning the construct valid-
ity of this measure. This calls for developing new measures, which 
could be tested and validated using a similar rationale as the one 
taken here.
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