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An undeniable empirical fact is that memory declines 
with the passage of time, over spans ranging from sec-
onds to years. Indeed, many theorists (e.g., Atkinson & 
Shiffrin, 1968; Cowan, 2005; Davelaar, Goshen-Gottstein, 
Ashkenazi, Haarmann, & Usher, 2005; Talmi, Grady, 
Goshen-Gottstein, & Moscovitch, 2005) argue for unique 
memory systems—working memory (WM) and long-term 
memory (LTM)—characterized, among other things, by 
their rate of information decline (but see, e.g., Brown, 
Neath, & Chater, 2007, and Howard & Kahana, 2002, for 
frameworks that reject the WM–LTM distinction).

Understanding the mechanisms mediating mne-
monic-information decline has been the subject of 
heated debates. Over the years, a multitude of time-
correlated mechanisms have been proposed for either 
or both WM and LTM, including decay (Sadeh, Ozubko, 

Winocur, & Moscovitch, 2016), interference (Oberauer 
& Lin, 2017; Underwood, 1957), distinctiveness (Brown 
et al., 2007), and inhibitory control (Anderson, 2003), 
to name but a few. All of these mechanisms are time 
correlated, in that they naturally cooccur with the pas-
sage of time in both real-life and experimental settings. 
Thus, mnemonic information typically declines as a 
function of time, but time per se is not necessarily the 
cause of this decline.

Commonly, memory is indexed by the probability of 
retrieving an event. Yet stored information comprises 
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Abstract
How detailed are long-term-memory representations compared with working memory representations? Recent research 
has found an equal fidelity bound for both memory systems, suggesting a novel general constraint on memory. Here, we 
assessed the replicability of this discovery. Participants (total N = 72) were presented with colored real-life objects and 
were asked to recall the colors using a continuous color wheel. Deviations from study colors were modeled to generate 
two estimates of color memory: the variability of remembered colors—fidelity—and the probability of forgetting the 
color. Estimating model parameters using both maximum-likelihood estimation and Bayesian hierarchical modeling, 
we found that working memory had better fidelity than long-term memory (Experiments 1 and 2). Furthermore, within 
each system, fidelity worsened as a function of time-correlated mechanisms (Experiments 2 and 3). We conclude that 
fidelity is subject to decline across and within memory systems. Thus, the justification for a general fidelity constraint 
in memory does not seem to be valid.
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not only remembering the mere occurrence of an event 
but also the fidelity by which this event is remembered 
(Brady, Konkle, & Alvarez, 2011). Because fidelity is a 
type of mnemonic information, it seems reasonable to 
predict that it, too, would be affected by time-correlated 
mechanisms. If so, fidelity should be worse for LTM, in 
which memories are tested over longer time spans, than 
for WM (e.g., Hollingworth, 2004; Schurgin & Flom-
baum, 2015). Differences in fidelity should likewise be 
observed when examined at different durations, even 
within WM and within LTM.

A novel approach to assessing fidelity is the continuous-
report paradigm (e.g., Wilken & Ma, 2004; Zhang & Luck, 
2008), wherein participants are asked to reproduce a 
particular feature (e.g., color) of previously encoded 
stimuli on a continuous response scale. A mixture model 
is then used to fit the response errors—the difference 
between study and report color—and to produce two 
estimates of color memory: (a) the probability of guess-
ing the color—referred to as a PG estimate—and (b) the 
fidelity for remembered colors—referred to as an SD 
estimate (Zhang & Luck, 2008; cf. Bays, Catalao, & 
Husain, 2009). The SD estimate is inversely related to 
memory fidelity; specifically, the higher the SD estimate, 
the lower the memory fidelity.

Several WM studies have reported a dissociation 
between the SD and PG estimates when the number of 
to-be-remembered items (set size) in the study array 
increased (e.g., Zhang & Luck, 2008; but see Bays & 
Husain, 2008). Whereas guessing rates increased gradu-
ally as a function of set size, fidelity worsened over the 
first three items to a plateau—a lower limit on fidelity 
(i.e., the fidelity of three items equaled that of six; but 
see Van den Berg & Ma, 2014). Theoretical models have 
attributed the fidelity plateau to intrinsic properties of 
WM (e.g., number of slots, Zhang & Luck, 2008, 2009; 
quantity of resources, Bays & Husain, 2008).

Critically, if the lower limit on fidelity is explained in 
terms of WM architecture, then it should not be identical 
to the lower limit in LTM, in which a different architec-
ture, operating over greater time scales, mediates per-
formance. This was recently falsified by Brady, Konkle, 
Gill, Oliva, and Alvarez (2013), who compared color 
fidelity of real-life objects in WM with that in LTM. As 
expected, the color-guessing rates (PGs) were higher in 
LTM than in WM. Yet, strikingly, for remembered colors, 
the identical fidelity plateau was found in the two mem-
ory systems—specifically, the SD estimate was at 
approximately 20°. Moreover, this identical fidelity limit 
was also observed within each system (Control Experi-
ments 1–4; Brady et al., 2013). On the basis of the equal 
WM–LTM fidelity limit, Brady and colleagues concluded 
that the lower limit on fidelity is a general property of 
memory.

Importantly, Brady et al.’s (2013) novel and unintui-
tive claim was based on confirming the null hypothesis 
using null-hypothesis significance testing, with an 
underpowered sample size (Ns = 5 and 9 in their Exper-
iments 1a and 1b, respectively). The current study was 
devised to assess whether, indeed, a single constraint 
underlies fidelity across and within memory systems. 
We compared SD estimates across WM and LTM (Exper-
iments 1 and 2) and examined whether fidelity wors-
ened as a function of time-correlated mechanisms 
separately within each system (Experiments 2 and 3).

Following Simonsohn (2015), we predetermined a 
sample size in all of our experiments (Ns = 24) that was 
substantially larger than Brady et  al.’s (2013). We 
included Bayesian hypothesis testing (Bayes factor, or 
BF) to quantify the evidence in favor of the null hypoth-
esis or of our hypotheses. Finally, to estimate SD and 
PG parameters, we used both maximum-likelihood esti-
mation (as did Brady et al.) and Bayesian hierarchical 
modeling. Experiment 3 was preregistered on the Open 
Science Framework (osf.io/ksr4d).

Experiment 1

Here, we compared the fidelity of WM and LTM using 
a design similar to that used by Brady et  al. (2013, 
Experiment 1a), with the following two main excep-
tions. First, Brady et al. included three items in the WM 
study array, all of which were sequentially probed for 
color memory (whole-report procedure). The three 
reports were then aggregated to a response-error dis-
tribution from which a single SD estimate for WM was 
assessed and compared with the SD estimate for LTM 
(in which 180 items were studied and then tested). 
Because reporting a color may induce output interfer-
ence, the fidelity of the third WM report may be worse 
than that of the first (Adam, Vogel, & Awh, 2017; Peters 
et al., 2018). Consequently, the aggregated SD estimate 
for WM may have erroneously appeared to be similar 
to the SD estimate for LTM. Furthermore, the WM fidel-
ity limit was previously determined with only a single 
test probe (partial-report procedure). To get a purer 
measure of WM fidelity and to conform to the standard 
procedure, in Experiment 1, we probed only a single 
item in each WM trial. The SD estimate for WM we 
derived from our procedure could be compared with 
the SD estimate for LTM, given that earlier findings had 
demonstrated that three encoded items with a single 
test probe were sufficient to reach the WM fidelity limit 
(Zhang & Luck, 2008, 2009).

Second, Brady et al. (2013) tested color memory for 
studied items without verifying that participants remem-
bered the items themselves. In contrast, we asked partici-
pants to first make judgments about whether stimuli were 
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old or new and to subsequently retrieve their color. Color 
memory was estimated only for hit trials, thus disregarding 
color performance for items for which item-specific mne-
monic information was weak or unavailable.

Method

Participants.  Because the finding of equal WM–LTM 
fidelity by Brady et al. (2013) was essentially a null effect, 
we could not compute an a priori sample size on the basis 
of a power analysis. Nevertheless, in all of our experiments, 
we predefined the sample size (N = 24) such that it would 
be 4.8 and 2.7 times larger (Simonsohn, 2015) than the 
sample size of Brady et al.’s Experiments 1a (N = 5) and 1b 
(N = 9), respectively. Thus, 24 Tel Aviv University students 
participated in Experiment 1 for course credit (20 women; 
23 right-handed; age: M = 22.33 years, SEM = 0.62). One 
participant was excluded from the analyses because he met 
the first predefined exclusion criterion (see the Analysis 
section). In all experiments reported here, participants had 
normal or corrected-to-normal vision and normal color 
vision (assessed using the EnChroma Color Blind Test; 
http://enchroma.com/test/instructions/).

Apparatus and stimuli.  Stimuli were presented on an 
LCD monitor (24-in. LG; 1,920 × 1,080 resolution; 60-Hz 
refresh rate) using MATLAB (The MathWorks, Natick, 
MA) and the Psychophysics Toolbox Version 3 (Brainard, 
1997). Participants sat approximately 60 cm away from 
the screen. Responses were collected via the computer 
keyboard.

In all, 540 images of categorically distinct objects 
were selected from the stimulus set used by Brady, 
Konkle, Alvarez, and Oliva (2008; downloaded from 
https://bradylab.ucsd.edu/stimuli.html). None of the 
objects had any discernable association with a unique 
color (e.g., “banana” was excluded from the object 
pool). All images subtended approximately 6° of visual 
angle.

Following the recommendation of T. Brady (personal 
communication, September 6, 2016), the start-off color 
of all images was unified to the same hue in the Com-
mission Internationale de l’Éclairage (CIE) L*a*b* color 
space (see our MATLAB scripts for hue transformation 
at osf.io/93cvs). This standardization awarded a per-
ceptually uniform color space throughout the experi-
ment, which simplified interpretation of report angles 
and comparisons across objects. Colors were then 
assigned by adding a random angle between 0° and 
360° to the original hue (see Section SM1 in the Supple-
mental Material available online).

The stimuli were divided into two experimental con-
ditions (WM, LTM), with 270 images per condition. In 
each condition, 180 images were designated to be “old” 

items (targets) and 90 to be “new” items at test (lures). 
The stimuli were counterbalanced such that across par-
ticipants, each image appeared an equal number of 
times in each experimental condition and appeared two 
thirds of the time at test as a target and one third as a 
lure. Stimuli were presented in a different random order 
for each participant.

Procedure and design.  The design included two mem-
ory conditions, manipulated within participants: WM and 
LTM. The order of conditions was counterbalanced across 
participants. Each condition was preceded by a corre-
sponding practice block.

WM.  Each trial began with a fixation cross presented 
at the center of the screen for 350 ms. Next, the study 
display appeared for 3 s; the display consisted of three 
simultaneously presented colored images in a triangular 
formation. Participants were asked to remember both the 
identity of the item and its color. Subsequently, a fixation 
cross appeared for 1 s, followed by two test displays that 
remained until response (see Fig. 1). At test, only a single 
image was presented in gray in one of the three study loca-
tions. Participants were first asked to judge whether the 
image was old (right arrow) or new (left arrow). Then, they 
were asked to retrieve the color of the studied object using 
a continuous color wheel. They were told that at times 
people mistakenly judge old objects as new. Thus, even if 
they had judged the item as new, they nevertheless were 
to choose the color that seemed “most suitable” for that 
object. These instructions were employed because we ini-
tially sought to analyze color memory for false alarms and 
for misses (yet it turned out that we did not have enough 
trials to extract reliable estimates). To-be-tested items at 
study and lure items at test appeared equally often in each 
of the possible three locations. The order of target and lure 
test trials was randomly assigned for each participant.

Because we had a limited number of images, items 
had to be repeated in the WM condition. To this end, 
the WM session was divided into four blocks, such that 
items were not repeated within a block yet were repeated 
up to four times across blocks (for further details, see 
Section SM2 in the Supplemental Material).

LTM.  During the study phase, participants viewed 180 
images presented one at a time at the center of the screen 
for 3 s each. Study trials were separated by a 1-s retention 
interval that included a fixation cross (see Fig. 1). Partici-
pants were instructed to remember both the identity and 
color of all objects. To direct participants’ attention to 
both the objects and their colors, we asked participants 
to classify how probable it was that they would encoun-
ter each object in the real world in the color in which it 
was presented. Responses were made on a 3-point scale 
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Fig. 1.  Sequence of events and experimental conditions in Experiments 1 to 3. In Experiment 1, the test phase in both the working 
memory (WM) condition (a) and long-term memory (LTM) condition (d) included a binary (old/new) item-memory test and then 
a continuous color-memory test. For the WM condition, only a single item was probed. In Experiments 2 and 3 (b and e), a color-
memory test alone was administered. In the WM condition of Experiment 2, each of the three studied items was successively probed 
(b). Experiment 3 included LTM conditions with varying memory lists (f). Each list included a study phase (c), followed by a test 
phase (e). RI = retention interval; ITI = intertrial interval.
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(1 = very improbable, 2 = pretty probable, 3 = very prob-
able) using the corresponding numerical keys on the 
keyboard.

The test phase immediately followed and included 
180 target and 90 lure trials, presented in a random 
order. The test displays were identical to those in the 
WM condition, including the positioning of the target 
item at test in the identical spatial location as at study.

Continuous-report procedure for color memory.  After 
the old/new judgment, a gray circle (radius = 4.7° of 
visual angle) appeared around the image with a mouse 
pointer situated at its center (see Fig. 1). The color of the 
image changed continuously as participants moved the 
mouse around the circle. The hue of the item was deter-
mined by the angle between 0° and an imaginary line 
between the center of the item and the mouse pointer 
position. Participants were instructed to reproduce the 
studied color of the item as accurately as possible by 
moving and clicking the mouse at their own pace. The 
deviations of report colors from studied colors (in Exper-
iment 1, the reference color was the predefined color 
of targets and lures; see Section SM1) were defined as 
response errors, ranging from −180° to 180°.

Feedback was given on hit trials, with the words 
“good,” “great,” or “perfect” appearing on the screen for 
response errors of less than 10°, 5°, or 1°, respectively 
(cf. Brady et al., 2013). To increase participants’ motiva-
tion, we gave (false) positive feedback on false-alarm 
trials, with the word “good” appearing with a probabil-
ity of .25.

Analysis.  In Experiment 1, color memory was analyzed 
only on hit trials for item memory (WM hit rate: M = 
96.62%, SEM = 0.72; LTM hit rate: M = 83.45%, SEM = 
1.73). Importantly, when adding miss trials—the only 
other type of trials in which color information was regis-
tered—to the analyses, the main findings of Experiment 
1 did not change for any of the color-memory estimates 
(all ts > 5.99, ps < .001, and BF10s > 4.1 × 103). In Experi-
ments 2 and 3, in which item memory was not tested, 
color memory was analyzed for all trials.

Color-memory estimations.  In all experiments, two 
dependent measures were used to estimate color mem-
ory in each experimental condition: (a) estimates of color 
fidelity (SD) and (b) estimates of the probability of guess-
ing the color (PG, with 1 – PG representing the prob-
ability of remembering the color). These estimates were 
computed using the two-parameter mixture model of 
Zhang and Luck (2008). The Zhang-Luck model assumes 
that participants either remember the study color with 
some degree of precision or do not remember it at all. 
Accordingly, response-error distributions (ranging from 

−180° to 180°) are assumed to be a mixture of two dis-
tributions: (a) a circular-normal (von Mises) distribution 
around the study color, with its standard deviation (SD 
estimate) inversely related to the precision of the repre-
sentation (higher SDs correspond to worse precision), 
and (b) a uniform distribution, with its mixture weight 
reflecting the guessing-probability (PG estimate).

Notably, according to more complex models (e.g., 
Bays et  al., 2009), the second component includes 
sources further to pure guessing (e.g., retrieval of dis-
tractors’ color from the study array). Here, we adopted 
the Zhang-Luck model because this was the model of 
choice adopted by Brady et al. (2013), whose findings 
are the focus of the current replication attempt. In addi-
tion, these alternate models were designed for the 
analysis of WM data that include distractors in the study 
array. Thus, their application to LTM data is nontrivial 
(but see, e.g., Richter, Cooper, Bays, & Simons, 2016).

Following the data-analysis scheme used by Brady 
et  al. (2013), we computed the Zhang-Luck model 
parameters—SD and PG estimates—that maximized the 
likelihood of the data under the model (using the MLE 
function in MATLAB MemToolbox; Suchow, Brady, 
Fougnie, & Alvarez, 2013). These parameters were cal-
culated for every participant in each experimental con-
dition. The difference between experimental conditions 
was then tested using a paired-samples t test or a 
repeated measures analysis of variance (ANOVA). In 
addition, we evaluated the trustworthiness of our effects 
using a combination of Bayesian hypothesis testing 
(BFs) and effect-size estimates with confidence intervals 
(CIs; Lakens, 2013; detailed below). We also computed 
the cumulative binomial probability (CBP) of getting 
our prediction under the null hypothesis (e.g., in Exper-
iment 1, the probability of getting better performance 
in WM than in LTM was .5).

Bayesian hypothesis testing.  Frequentist null-hypothe-
sis significance testing was complemented with Bayes-
ian hypothesis testing, which quantified the evidence for 
the presence or absence of effects. We calculated BFs 
using the BayesFactor package (Version 0.9.11-1; Morey 
& Rouder, 2015) for the R software environment (R Core 
Team, 2015). For mean comparisons, we used the t-test 
BF function with default settings (medium prior scale). 
For factorial analyses, we used the ANOVA BF function 
with default settings (medium prior for fixed effects and 
nuisance prior for random effects), with the participant 
factor considered random in within-participants designs. 
A BF10 depicts how much more likely the data are on 
the assumption of an effect (i.e., H1) compared with an 
assumption of the null hypothesis (i.e., H0). A BF01 por-
trays how much more likely the data are on the assump-
tion of the null hypothesis over the assumption of an 
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effect. We adopted the convention that a BF between 1 
and 3 depicts anecdotal evidence (or inconclusive data) 
for the hypothesis in question, a BF greater than 3 pro-
vides moderate evidence (i.e., one hypothesis is 3 times 
more likely than the other), a BF greater than 10 sug-
gests strong evidence, and a BF greater than 100 implies 
extremely strong evidence (Lee & Wagenmakers, 2013).

Effect sizes and CIs.  To assess effect sizes for both t tests 
and ANOVAs, we computed partial eta squared with 90% 
CIs (Lakens, 2013). CIs were calculated using the MBESS 
package in the R environment (Kelley, 2007), includ-
ing the correction for a within-participants design (see 
http://daniellakens.blogspot.co.il/2014/06/calculating- 
confidence-intervals-for.html).

Exclusion criteria.  In all experiments, we used two 
exclusion criteria (preregistered for Experiment 3; see 
osf.io/ksr4d) applied on the maximum-likelihood esti-
mates. The first was an inaccurate fitting of the mixture 
model. Specifically, high guessing rates may erroneously 
be estimated by a very low PG estimate combined with a 
very wide SD estimate (Suchow et al., 2013). To discover 
this pattern, we first searched for a combination of an SD 
estimate greater than 80° and a PG estimate of less than 
.05 for each participant, in each experimental condition. 
Then, to confirm the problematic pattern for participants 
who met this criterion, we graphed the histogram figures 
and model fits to verify whether, indeed, the von Mises 
distribution was wide and the uniform distribution of 
guesses was high—a pattern that does not correspond to 
a low PG estimate. The data of participants who demon-
strated this pattern, in any experimental condition, were 
excluded from the analyses. Only a single participant in 
Experiment 1 met this criterion.

The second exclusion criterion was subsequently 
applied. The data of participants with a mean perfor-
mance 3 standard deviations above their group mean 
(representing poor color memory) for any of the two 
color-memory estimates in any experimental condition 
were also excluded. Three participants met this crite-
rion in Experiment 2, and 1 participant met this crite-
rion in Experiment 3.

Notably, the exclusion of participants did not change 
the results. In all experiments, when the entire sample 
size (N = 24) was included in the analyses, the main 
findings in each experiment remained significant for all 
color-memory estimates (for paired comparisons, all  
ts > 2.74, ps < .012, and BF10s > 4.32; for three-group 
comparisons, all Fs > 7.07, ps < .0021, and BF10s > 16.64).

Results

In contrast to Brady et al.’s (2013) findings, our results 
showed that participants exhibited better color memory 

in the WM than the LTM condition. Using maximum-
likelihood estimation, as did Brady et al., we found that 
all participants, without exception, exhibited more pre-
cise memory in the WM condition, t(22) = 7.77, p < 
.001, ηp

2 = .73, 90% CI = [.53, .81], BF10 = 1.6 × 105; CBP: 
p < .001, and for 20 out of 23 participants, WM was 
associated with lower rates of guessing, t(22) = 4.70,  
p < .001, ηp

2 = .50, 90% CI = [.23, .65], BF10 = 252.15; 
CBP: p < .001. See Figures 2 and 3 and Table 1 for the 
maximum-likelihood estimates in both conditions 
(Table 1 and Fig. 3 also depict our dependent measures 
estimated using a Bayesian hierarchical model; see 
details in the Results section of Experiment 2).

Experiment 2

Experiment 2 was devised to test whether the WM fidel-
ity advantage revealed by all Experiment 1 participants 
would be manifest in a direct replication of the study 
by Brady et al. (2013, Experiment 1a; see the Procedure 
and Design section for modifications). Hence, item 
memory was no longer tested, and the WM condition 
included three consecutive continuous-color reports, 
rather than just one. Furthermore, we followed Brady 
et  al.’s analysis scheme, deriving the WM maximum-
likelihood estimates from the aggregated reports.

Unlike Brady et al. (2013), we also analyzed each 
WM report separately to explore the effects of report 
order on fidelity. If fidelity declines across WM reports 
(Adam et  al., 2017; Peters et  al., 2018), then the SD 
estimate of the first WM report would likely have been 
better than the aggregate, and the third WM report 
would likely have been worse. Because Brady et  al. 
found the aggregated SD estimate of WM to be equal 
to the SD estimate of LTM, then the estimate of LTM 
would likely have been better than that of the third WM 
report—an entirely unintuitive result that contradicts 
the hypothesis of equal WM–LTM fidelity. With regard 
to the fidelity limit within WM itself, a decline in color 
precision over reports would suggest that it is not 
immune to the effects of time-correlated mechanisms 
and, in particular, to output interference.

Method

Participants.  Twenty-four Tel Aviv University students 
participated in the experiment for course credit (19 
women; 22 right-handed; age: M = 22.96 years, SEM = 
0.63). Three participants were excluded from the analy-
ses because they met the second predefined exclusion 
criterion (see the Analysis section of Experiment 1).

Stimuli.  The stimulus set comprised the 540 experi-
mental images from Experiment 1 with an additional 26 
images for the Brady et  al. (2013) repetition-detection 

http://www.osf.io/ksr4d
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Fig. 2.  Color-memory performance (estimated via maximum-likelihood estimation) in 
Experiments 1 to 3. The top row shows mean fidelity estimates (SD), and the bottom 
row shows mean probabilities of guessing (PG). For both estimated parameters, better 
performance is reflected by lower values on the y-axis. Gray dots and the thin lines con-
necting them indicate individual data, and cyan thick dots and lines depict group means 
for each condition. Error bars denote within-participants 95% confidence intervals (Loftus 
& Masson, 1994). WM = working memory; LTM = long-term memory.

task in the LTM condition (see the Procedure and Design 
section below). For each participant, the 540 experimen-
tal images were divided into three blocks—two WM 
blocks and one LTM block—for a total of 180 images per 
block. The images were counterbalanced such that across 

participants, each image appeared an equal number of 
times in each block.

Procedure and design.  The first WM and LTM blocks 
(henceforth, the replication blocks) in Experiment 2 were 
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a direct replication of these conditions in Experiment 1a 
of the study by Brady et al. (2013). To improve perfor-
mance in the WM and LTM conditions, we made the fol-
lowing modifications from the original study. First, to 
spotlight the WM–LTM comparison, we did not include 

the perception condition (in which participants matched 
the color of a visible object). Second, to avoid variations 
in perceived color space between trials, we used our 
Experiment 1 unified-hue stimuli. Third, neighboring 
study items were different by at least 40° (see Section 

Table 1.  Estimated Fidelity (SD) and Probability of Guessing (PG) in Experiments 1 to 3

Experiment and 
condition

Maximum-likelihood 
estimation

Bayesian hierarchical  
modeling

SD PG SD PG

Experiment 1a  
LTM 28.66 (1.52) .42 (.03) 26.18 [23.47, 28.90] .42 [.35, .49]
WM 19.34 (0.74) .17 (.04) 18.27 [16.85, 19.65] .18 [.12, .25]

Experiment 2b  
LTM 29.07 (2.51) .48 (.04) 24.78 [21.01, 28.62] .48 [.41, .56]
WM 18.84 (0.68) .11 (.01) 18.28 [16.92, 19.66] .12 [.09, .14]

    First reportc 17.65 (0.65) .04 (.01) 17.02 [15.70, 18.27] .05 [.03, .07]
    Second report 19.38 (0.67) .11 (.01) 18.85 [17.35, 20.34] .11 [.08, .14]
    Third report 20.61 (0.92) .14 (.02) 19.55 [17.72, 21.36] .15 [.11, .18]
Experiment 3  

Long list 24.62 (1.40) .36 (.04) 22.03 [19.36, 24.62] .36 [.28, .44]
Short list 20.93 (1.08) .12 (.02) 19.14 [17.04, 21.10] .13 [.09, .17]

Note: Mean estimates are presented for maximum-likelihood-estimation fitting (with standard errors 
in parentheses). Group-level mean estimates are presented for the Bayesian hierarchical model 
(with 95% highest-density intervals in brackets). Higher SD estimates indicate lower fidelity. WM = 
working memory; LTM = long-term memory.
aIn Experiment 1, the analysis was conducted only on hit trials. bIn Experiment 2, the WM–LTM 
comparison was conducted on the replication blocks. cThe WM-report comparisons were conducted 
on data across the two WM blocks.
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Fig. 3.  Fidelity estimates (SDs) for working memory (WM) and long-term memory (LTM) in Experiments 1 and 2. Each shape in (a) repre-
sents the SD estimate for an individual participant in Experiment 1 (N = 23) and Experiment 2 (N = 21), as derived from maximum-likelihood 
estimation. The diagonal reflects no difference between SD estimates for WM and LTM, shapes above the diagonal reflect better fidelity in 
WM, and shapes below the diagonal reflect better fidelity in LTM. Darker shapes represent group means, with error bars indicating within-
participants 95% confidence intervals (Loftus & Masson, 1994) for SD estimates of both WM (horizontal bars) and LTM (vertical bars). The 
line graphs depict posterior densities for group-level SD estimates in the LTM and WM conditions in Experiment 1 (b) and Experiment 
2 (c). Circles above the x-axes indicate means of the posterior distribution, separately for each condition, with error bars indicating 95% 
highest-density intervals.
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SM1) to prevent confusion between adjacent items with 
similar colors.

Block order was counterbalanced across participants. 
Each block included 180 unique images, for a total of 
60 trials in the WM block (from which 180 reports 
would be obtained) and 180 study and test items in the 
LTM block.

Because we sought to analyze performance of each 
WM report separately, we were concerned that 60 WM 
trials would render the mixture-model parameter esti-
mates less reliable (Lawrence, 2010). Therefore, follow-
ing the completion of the replication blocks, participants 
were asked to perform a second, extra WM block. It 
comprised 180 unique images divided into 60 trials, for 
a total of 120 observations per WM report across the 
two WM blocks. For most participants (n = 15), this 
extra block was administered in a separate session. No 
significant difference was found between the two 
groups of participants in any of the color-memory esti-
mates—SD: t(19) < 1, BF01 = 2.38; PG: t(19) = 1.19, p = 
.249, ηp

2 = .07, 90% CI = [.00, .28], BF01 = 1.49. Impor-
tantly, data from the extra block were not included in 
the direct-replication analysis.

The WM and LTM conditions were similar to those 
in Experiment 1, with the following four exceptions 
aimed to conform to the original study by Brady et al. 
(2013). First, studied items alone were tested for color 
memory. Second, the WM condition included a whole-
report procedure in which each of the three studied 
items was tested sequentially. Test order within a trial 
was randomized. Third, the assigned color of the study 
items was not identical for all participants but was 
rather randomly chosen from a uniform distribution of 
angles (between 0° and 360° added to the original uni-
fied hue) for each participant (see Section SM1). Fourth, 
the study phase in the LTM condition included Brady 
et al.’s encoding task. Participants were thus asked to 
detect a repetition of items, and they were given feed-
back only when they made a response. The fixation 
cross turned green for hits (correct press) and red for 
false alarms (incorrect press). For misses and correct 
rejections, the fixation cross remained black. The 26 
repeated pairs were not included in the analyses. To 
ensure that participants were alert throughout the entire 
study phase, we programmed the repeated images to 
appear in intervals of at least four items.

Analysis.  Two main analyses were conducted in the 
current experiment. First, a comparison between WM and 
LTM—the replication analysis—was made using a paired-
samples t test for each of our dependent measures. Only 
the first WM block was included in this analysis. For this 
WM block, responses from the three reports were aggre-
gated into a single response-errors distribution, from which 

color estimates were obtained. Second, a comparison between 
the three WM reports was run using a repeated measures 
ANOVA with WM report as a within-participants variable for 
each of the two dependent measures. For this analysis, data 
from the two WM blocks were collapsed for each partici-
pant, as no significant difference between these blocks was 
found in any of the color-memory estimates—SD: t(20) < 1, 
BF01 = 3.08; PG: t(20) = 1.54, p = .139, ηp

2 = .11, 90% CI = 
[.00, .32], BF01 = 1.58.

Results

A comparison of LTM and WM: the replication 
analysis.  Participants were better in the WM compared 
with the LTM condition in both color-memory estimates 
(see Figs. 2 and 3 and Table 1). Specifically, for WM, 
color memory was more precise, t(20) = 4.50, p < .001, 
ηp

2 = .50, 90% CI = [.21, .66], BF10 = 139.11, and was less 
likely to be forgotten, t(20) = 8.89, p < .001, ηp

2 = .80, 90% 
CI = [.62, .86], BF10 = 6.1 × 105. Indeed, the WM condition 
induced lower SD estimates for 20 out of 21 participants 
(see Fig. 3) and lower PG estimates for all participants 
(CBPs; all ps < .001).

Interestingly, the fidelity advantage of WM over LTM 
remained significant even when we compared SD estimates 
in the LTM condition with SD estimates in the third (last) 
WM report, which was presumably subject to the maximum 
potential effects of output interference, t(20) = 3.54, p = 
.002, ηp

2 = .39, 90% CI = [.11, .57], BF10 = 19.48. Because 
Brady et al. (2013) did not adopt any exclusion criteria in 
their analyses, we reanalyzed our data, this time excluding 
no participants. This did not change any aspect of our 
results. Most importantly, the SD estimate for LTM (M = 
30.77°, SEM = 2.88) was still worse than the aggregated SD 
estimate for WM (M = 20.12°, SEM = 1.06), t(23) = 3.97,  
p < .001, ηp

2 = .41, 90% CI = [.14, .58], BF10 = 54.75; CBP: 
p < .001, and for the third WM report (M = 21.23°, SEM = 
0.94), t(23) = 3.61, p = .001, ηp

2 = .36, 90% CI = [.11, .54], 
BF10 = 25.17; CBP: p < .001.

Together, Experiments 1 and 2 failed to replicate the 
equal WM–LTM fidelity reported by Brady et al. (2013), 
even in a direct replication of the original design. We next 
assessed two possible criticisms of our failure to replicate 
Brady et al.’s hypothesis of equal WM–LTM fidelity.

A trade-off strategy in the LTM condition.  The dif-
ference between our findings and those of Brady et al. 
(2013) is centered on LTM performance. Our partici-
pants were less precise in LTM than were Brady et al.’s 
(SD estimates were 30.2° and 29.1° in our Experiments 
1 and 2, respectively,1 compared with 19.3° and 20.3° 
in Brady et  al.’s Experiments 1a and 1b, respectively). 
Yet our participants also remembered more colors (PG 
estimates were .49 and .48 in our Experiments 1 and 2, 
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respectively, compared with .58 and .63 in Brady et al.’s 
Experiments 1a and 1b, respectively). Therefore, one 
could interpret our failure to replicate the equal WM–
LTM fidelity as mediated by a trade-off strategy used by 
our participants in the LTM condition. Namely, they may 
have invested greater resources in remembering the col-
ors (low PG estimates) at the cost of color precision (high 
SD estimates).

To test this interpretation, we divided our participants 
into two groups on the basis of their PG estimates, gen-
erating a low- and a high-PG group for each experiment. 
In Experiment 1, the mean PG estimate in the low-PG 
group (n = 12) was .38 (SEM = .03), whereas for the 
high-PG group (n = 11), the mean was .60 (SEM = .02). 
In Experiment 2, the mean PG estimate in the low-PG 
group (n = 10), was .34 (SEM = .02), whereas in the 
high-PG group (n = 11), it was .60 (SEM = .04). If a trade-
off strategy mediated our failure to replicate the equal 
WM–LTM fidelity, we would expect to observe a signifi-
cant difference in SD estimates between the two groups. 
Specifically, the high-PG group should include lower SD 
estimates (better precision) compared with the low-PG 
group. This is because high-PG participants would have 
presumably directed more resources toward color preci-
sion at the cost of remembering the color. On examina-
tion of the SD estimates, we found that this was the case 
for neither Experiment 1 nor Experiment 2. SD estimates 
of both groups remained high (at ~29°) and differed 
significantly in neither experiment. Specifically, for Exper-
iment 1, the mean SD estimates were 28.90° (SEM = 1.89) 
and 31.55° (SEM = 3.66) for the low- and high-PG groups, 
respectively, t(21) < 1; BF01 = 2.25. For Experiment 2, the 
mean SD estimates were 28.13° (SEM = 3.31) and 29.92° 
(SEM = 3.87) for the low- and high-PG groups, respec-
tively, t(19) < 1; BF01 = 2.45. Importantly, in both experi-
ments, the high-PG groups had similar PG estimates to 
those observed in Brady et al.’s study, yet their SD esti-
mates were nevertheless considerably higher—signifying 
worse precision.

Inflation of SD estimates in LTM.  Recent studies have 
shown that SD estimates are artificially inflated when 
memory performance is poor (Oberauer, Stoneking, 
Wabersich, & Lin, 2017; Sutterer & Awh, 2016). When 
guessing rates are high, the von Mises distribution around 
the study color includes fewer observations, so it is more 
difficult to obtain accurate SD estimation. Because LTM 
conditions usually involve higher guessing rates than WM 
conditions, it is possible that our WM–LTM fidelity effect 
simply reflects inflated SD estimates in the LTM condition 
rather than a true difference in fidelity between WM and 
LTM. Notably, this possibility also applies to the experi-
ments performed by Brady et  al. (2013), in which the 
LTM conditions involved even higher guessing rates (58% 

and 63% in Experiments 1a and 1b, respectively).
In a recent article, Oberauer et al. (2017) suggested 

that estimating mixture-model parameters in a Bayesian 
hierarchical framework (rather than a maximum-
likelihood framework) minimizes the SD-estimation bias 
in conditions of low performance. Indeed, for high 
guessing rates (PG estimates of .2 or higher), Oberauer 
and colleagues found the recovery of SD estimates to be 
very accurate. The advantage of using hierarchical mod-
eling over fitting maximum-likelihood estimates for 
individual participants is that the former method 
enables one to compute group-level parameter estima-
tions while still accounting for individual differences. 
Participants are treated as belonging to a single popula-
tion (i.e., partial pooling), and individuals’ parameter 
estimates are informed by all other participants’ param-
eter estimates (Gelman et al., 2014). This is especially 
important when guessing rates are high, and thus the 
data provide sparse information for SD estimation.

In an auxiliary analysis, we also computed group-
level SD and PG estimates using Oberauer et al.’s Bayes-
ian implementation of the Zhang-Luck model. 
Group-level SD and PG parameters were estimated for 
each condition separately by computing a posterior 
distribution of credible parameter values given the data, 
using the Markov chain Monte Carlo method (see Sec-
tion SM3 in the Supplemental Material for implementa-
tion details and osf.io/93cvs for our modeling scripts). 
To interpret the results, we computed the mean and 
the 95% highest-density interval (HDI) of the posterior 
distribution (each step of the Markov chain) of each 
group-level parameter. Given our priors and data, the 
HDIs provide an intuitive probabilistic assessment of 
one’s confidence that the estimated parameter falls 
within a specific range. To assess the difference between 
two conditions (e.g., between WM and LTM), we sub-
tracted the group-level parameter of one condition from 
the other in every step of the Markov chain and then 
computed the mean and 95% HDI of this difference. If 
the 95% HDI of the difference excludes zero, it is rea-
sonable to conclude that zero is not considered a cred-
ible value and, hence, that the two conditions reliably 
differ.

In both Experiments 1 and 2, the group-level SD 
estimates for the LTM condition were indeed lower than 
the mean of individual estimates obtained using 
maximum-likelihood model fitting (see Table 1). Nev-
ertheless, group-level SD estimates in the LTM condition 
remained higher than those in the WM condition (see 
Table 1 and Fig. 3). We found that in both experiments, 
the 95% HDIs of the WM–LTM SD difference excluded 
zero (Experiment 1: M = 7.91°, 95% HDI = [4.87, 10.96]; 
Experiment 2: M = 6.50°, 95% HDI = [2.51, 10.56]). In 
Experiment 2, this SD difference remained intact when 

http://www.osf.io/93cvs
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we compared the LTM condition with the third WM 
report, which was subject to the maximum potential 
effects of output interference (M = 5.23°, 95% HDI = 
[1.09, 9.51]). Overall, our findings suggest that the limit 
on fidelity in WM is higher than—not equal to—that of 
LTM.

A comparison of WM reports within a trial.  Next, 
we examined whether the fidelity of WM declines with 
WM reports. We first estimated our dependent measures 
using maximum-likelihood estimation. As predicted, both 
SD and PG estimates increased (signifying worse perfor-
mance) as a function of WM report order (see Fig. 2 and 
Table 1). The main effect of WM reports was significant 
for SD estimate, F(2, 40) = 12.43, p < .001, ηp

2 = .38, 90% 
CI = [.17, .52], BF10 = 337.38, and for PG estimate, F(2, 40) = 
28.79, p < .001, ηp

2 = .59, 90% CI = [.40, .68], BF10 = 1.0 × 
106. Of 21 participants, 9 showed a monotonic increase in 
SD estimate and 13 in PG estimate (CBPs: p = .004 and  
p < .001, respectively).

We also confirmed the decline in report performance 
with a Bayesian hierarchical model. The difference 
between the third and the first WM reports had 95% 
HDI, which excluded 0 in both the group-level SD 
estimate (M = 2.53°, 95% HDI = [0.40, 4.82]) and PG 
estimate (M = 0.10, 95% HDI = [0.06, 0.14]; see Table 1 
for group-level parameter estimates).

The decline of color memory over reports suggests 
that performance on the whole-report procedure does 
not accurately reflect that of a partial-report procedure, 
wherein only a single item from each study array is 
probed. To test this suggestion, we compared perfor-
mance of the first WM report (which corresponds to a 
partial-report procedure) with the aggregated measure 
of WM (for which data from all reports in both WM 
blocks were aggregated). For both SD and PG estimates, 
the first report was significantly better than the aggregated 
measure—SD estimate: t(20) = 4.92, p < .001, ηp

2 = .55, 
90% CI = [.26, .69], BF10 = 328.91; PG estimate: t(20) = 
6.96, p < .001, ηp

2 = .71, 90% CI = [.46, .80], BF10 =  
1.9 × 104. When this analysis was performed in a Bayes-
ian hierarchical model, the difference between the 
aggregated measure and the first report was found at 
the group-level PG estimate (M = 0.05, 95% HDI = [0.02, 
0.08]) but showed only a tendency toward a reliable 
difference for the group-level SD estimate (M = 1.33°, 
95% HDI = [−0.57, 3.22]).

Experiment 3

Here, we turned to assess the constraint on fidelity 
within LTM. Brady et  al. (2013) observed equal SD 
estimates for LTM in lists of 20 to 360 items (Control 
Experiments 2–4; Brady et  al., 2013). However, 

statistical power for these results may have not been 
sufficient. In Experiment 3, we compared color memory 
across short lists (18 items) and long lists (180 items). 
If all mnemonic information is subject to the effects of 
time-correlated mechanisms, then the short lists—less 
affected by interference from studied and retrieved 
items and, perhaps, decay—should result in better color 
memory than long lists. Experiment 3 was preregistered 
(osf.io/ksr4d).

Method

Participants.  Twenty-four Tel Aviv University students 
participated in the experiment for course credit or pay-
ment (~$10 per hour; 14 women; 24 right-handed; age:  
M = 25.46 years, SEM = 0.59). One participant was 
excluded from the analyses because she met the second 
predefined exclusion criterion (see the Analysis section 
of Experiment 1 and osf.io/ksr4d).

To maximize the effect size of the current experi-
ment, we followed Benjamini and Hochberg’s (1995) 
procedure. Our sampling plan allowed only one itera-
tion of observing the data. Accordingly, if the results 
were not significant after the first 24 participants, we 
planned to run an additional 18 participants, while cor-
recting for false-discovery rate for our particular sam-
pling plan (see the preregistered Method section at osf.
io/ksr4d). Our results did not necessitate running an 
additional 18 participants, yet the p value for which we 
compared our results was corrected to .04.

Stimuli.  The stimuli set consisted of 360 images from the 
540 images used in Experiments 1 and 2. The 360 images 
were assigned to the two experimental conditions (180 
items each) and counterbalanced such that across partici-
pants, each image appeared an equal number of times in 
the two experimental conditions. Within each condition, 
the order of images was random and divided into lists 
according to the experimental condition (e.g., ten 18-word 
lists for the short-list condition). In both conditions, the 
color of the studied items was randomly chosen from a 
uniform distribution of angles (see Section SM1).

Design and procedure.  Our design included a single 
within-participants variable: list length (short vs. long), 
with the two dependent measures for color memory. The 
short-list condition included ten 18-item lists, and the 
long-list condition included a single 180-item list. Each of 
the two conditions was blocked, such that all lists of the 
same condition were presented one after the other. The 
order of the two experimental conditions was counter-
balanced across participants. Because the experiment 
included only LTM conditions, we added monetary incen-
tive to improve performance. Participants were told that 

http://www.osf.io/ksr4d
http://www.osf.io/ksr4d
http://www.osf.io/ksr4d
http://www.osf.io/ksr4d
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one individual with the best results would be awarded a 
monetary prize comparable to $100. The award was 
granted to the individual with the best fidelity estimate 
across all experimental conditions.

Before beginning the experimental session, partici-
pants underwent a short practice block. At the begin-
ning of each condition, participants were notified of 
the length of the upcoming lists. Each list contained a 
study phase followed by an immediate test phase (see 
Fig. 1), both identical to the LTM condition of Experi-
ment 2 with the exception that the LTM encoding task 
in Experiment 3 was the real-life color-judgment task 
used in Experiment 1. At the end of each study-test 
sequence, participants were asked to continue to the 
next list when ready by pressing the space bar.

Results

Color memory was better in the short-list condition 
compared with the long-list condition for both SD and 
PG estimates (see Fig. 2 and Table 1). The short list 
induced better precision of color for 18 of 23 partici-
pants, t(22) = 3.29, p = .003, ηp

2 = .33, 90% CI = [.08, 
.52], BF10 = 12.45; CBP: p = .005, and lower probability 
of guessing the color, t(22) = 8.50, p < .001, ηp

2 = .77, 
90% CI = [.58, .84], BF10 = 6.4 × 105, for all participants 
(CBPs: p < .001). Thus, we applied the same maximum-
likelihood-estimation analysis scheme as did Brady 
et al. (2013), and our findings failed to replicate their 
results (Control Experiments 2–4), wherein the same 
SD estimate was observed for short and long LTM lists.

When estimated in a Bayesian hierarchical model, 
the difference between the two lists was evident in the 
group-level PG estimate (M = .23, 95% HDI = [.14, .32]) 
but only showed a tendency toward a reliable differ-
ence for the group-level SD estimate (M = 2.89°, 95% 
HDI = [−.53, 6.13]; see Table 1).

Although only a mild fidelity effect was observed in 
the LTM analysis when applying the Bayesian hierarchi-
cal model, we remind readers that our motivation in 
running this model was only to control for a concern 
in the maximum-likelihood-estimation procedure. That 
concern centered on a potential upward bias in SD 
estimates when guessing rates are high, which is usu-
ally the case in LTM conditions. Importantly, keeping 
to the maximum-likelihood analysis, we applied an 
additional control procedure to deal with the concern 
of an upward bias in SD estimation (Oberauer et al., 
2017; Sutterer & Awh, 2016). Specifically, we simulated 
data by varying the true guessing rates and used 
maximum-likelihood-estimation fitting to locate the 
maximum guessing probability (i.e., PG cutoff), after 
which a systematic bias in SD estimation occurred. Par-
ticipants with PG estimates above this cutoff were then 

excluded from the analyses (for details, see Section SM4 
in the Supplemental Material and our simulation script 
at osf.io/93cvs). Using this procedure, we replicated the 
upward SD-estimation bias from a PG estimate of .65. 
Importantly, we found a significant fidelity effect for 
list length, even when excluding the additional 2 par-
ticipants who met the PG cutoff (SD estimates in the 
short-list condition: M = 20.34°, SEM = 1.06; and in the 
long-list condition: M = 24.76°, SEM = 1.51), t(20) = 
4.03, p < .001, ηp

2 = .45, 90% CI = [.16, .62], BF10 = 52.29. 
An even stronger pattern was observed when the PG 
cutoff was set to .6, as observed by Sutterer and Awh 
(2016), and resulted in the removal of 4 participants, 
t(18) = 4.98, p < .001, ηp

2 = .58, 90% CI = [.28, .71], BF10 = 
285.59. Parenthetically, using this alternate procedure did 
not change any of the effects reported in this article 
(all ps < .0015, and all BF10s > 29.55). On balance, 
therefore, we interpret our results to suggest better 
fidelity for the short list compared with the long list.

General Discussion

Brady et al. (2013) proposed that the fidelity plateau is 
a general property of memory. This notion arose from 
the finding of equal limits on fidelity in WM and LTM. 
Here, we showed that color fidelity was stable neither 
across nor within memory systems. We used both 
maximum-likelihood estimation and Bayesian hierarchi-
cal modeling and found that the estimated fidelity was 
better in WM than in LTM. In WM, fidelity worsened 
across reports in the whole-report procedure. In LTM, 
long lists had poorer fidelity than short ones. Our find-
ings suggest that fidelity is not immune to the effects 
of time-correlated mechanisms (e.g., output interfer-
ence and, perhaps, decay) and is no different from 
other types of mnemonic information. Thus, the justi-
fication for a general fidelity constraint in memory 
seems to no longer be valid.

If they do not share the same fidelity limit, what is 
the relation between WM and LTM precisions? We 
assume that information moves downstream from WM 
to LTM. This idea can be conceptualized in terms of 
WM as a separate memory store (Atkinson & Shiffrin, 1968) 
and as a distinct state of LTM representations (Cowan, 
2005; Oberauer, 2002). In either case, representations in 
WM enjoy more accessibility and can be easily read out 
with higher accuracy because, compared with LTM, 
time-correlated mechanisms have less opportunity to 
affect them. Consequently, when moving from WM to 
LTM, information either can remain intact—yielding 
equal fidelity—or may be weakened—yielding worse 
fidelity. What is not possible is to find an improvement 
in fidelity when moving from WM to LTM. Accordingly, 
we suggest that the worst fidelity in WM dictates the 

http://www.osf.io/93cvs
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best potential fidelity in LTM. This notion is supported 
by the similar fidelity estimates observed in our LTM 
condition, which was least subject to time-correlated 
effects (short list, Experiment 3), and our WM condi-
tion, which was most subject to time-correlated effects 
(third report, Experiment 2), t(42) < 1, BF01 = 3.29; 
group-level SD-estimate difference: M = −0.42°, 95% 
HDI = [−3.12, 2.32]. Thus, WM and LTM can potentially 
yield identical SD estimates. Yet it does not follow that 
they are limited by the same bound.

Notably, when concluding that the fidelity of WM is 
better than LTM, fidelity was estimated using the Zhang-
Luck mixture model, as was used by Brady et al. (2013). 
We acknowledge that had we used other mixture models, 
we could have observed different results. For example, 
several studies have pointed out the role of categorical 
representations in continuous-report paradigms in WM 
(Bae, Olkkonen, Allred, & Flombaum, 2015; Donkin, 
Nosofsky, Gold, & Shiffrin, 2015; Hardman, Vergauwe, & 
Ricker, 2017) and in LTM (Persaud & Hemmer, 2016). 
Accordingly, it is possible that when the active mainte-
nance of mnemonic representations is interrupted, par-
ticipants rely more on categorical representations than 
on continuous ones (Hardman et al., 2017). Because cat-
egorical responses are not taken into consideration when 
response errors are computed (from which SD and PG 
parameters are estimated), our findings may reflect more 
reliance on categorical representations as a function of 
time-correlated mechanisms, rather than decline in fidel-
ity per se. Note that we did not ask participants to provide 
verbal labels of color categories (e.g., Donkin et  al., 
2015), fearing that this would amplify categorization 
encoding strategies. Future studies, using controlled color 
experiments and mathematical modeling, can test whether 
categorical representations underlie the fidelity disadvan-
tage in LTM. Critically, however, even if we were to find 
a categorical component in our data, it would still need 
to be established that this component did not likewise 
mediate performance in the work by Brady et al.

To conclude, our study provides substantial evidence 
that the precision of memory follows the dynamics of 
memory for the event itself. It declines as a function of 
time-correlated mechanisms both across and within 
memory systems.
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tion scripts have been made publicly available on the Open 
Science Framework (OSF) and can be accessed at osf.io/93cvs. 
Experiment 1 was exploratory and thus was not preregistered. 
Experiment 2 was not formally preregistered, yet because it 
was a direct replication of Experiment 1a by Brady, Konkle, 
Gill, Oliva, and Alvarez (2013), it followed the same procedure. 
Experiment 3 was preregistered on the OSF and can be accessed 
at osf.io/ksr4d. The complete Open Practices Disclosure for 
this article can be found at http://journals.sagepub.com/doi/
suppl/10.1177/0956797618813538. This article has received the 
badges for Open Data and Preregistration. More information 
about the Open Practices badges can be found at http://www 
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Note

1. To allow a direct comparison of our Experiment 1 with 
Experiment 1a of Brady et al. (2013), in which item memory 
was not tested, we combined hits and misses and then com-
puted SD and PG estimates.
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