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a b s t r a c t

The integrated object view of visual working memory (WM) argues that objects (rather than features) are
the building block of visual WM, so that adding an extra feature to an object does not result in any extra
cost to WM capacity. Alternative views have shown that complex objects consume additional WM storage
capacity so that it may not be represented as bound objects. Additionally, it was argued that two features
from the same dimension (i.e., color–color) do not form an integrated object in visual WM. This led some
to argue for a “weak” object view of visual WM. We used the contralateral delay activity (the CDA) as
an electrophysiological marker of WM capacity, to test those alternative hypotheses to the integrated
object account. In two experiments we presented complex stimuli and color–color conjunction stimuli,
and compared performance in displays that had one object but varying degrees of feature complexity.
The results supported the integrated object account by showing that the CDA amplitude corresponded to
the number of objects regardless of the number of features within each object, even for complex objects
or color–color conjunction stimuli.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Visual working memory (WM) is a temporary buffer that can
maintain a limited set of items in an “online” state. Although
visual WM capacity is limited to 3–4 objects, there are robust indi-
vidual differences in its capacity that correlate with attentional
control, fluid intelligence and scholastic aptitude (Cowan et al.,
2005; Vogel, McCollough, & Machizawa, 2005) indicating that WM
plays an important role in guiding behavior. Thus, understanding
how WM works and how it interacts with attentional mechanisms
reflects a fundamental and important question in cognitive neuro-
science. In the present study, we will be examining visual WM for
objects that possess a conjunction of multiple features. Such objects
require active bindings between the features of the object, and this
binding process has been proposed to be attentionally demanding
and highly capacity limited (Treisman, 1998; Wheeler & Treisman,
2002).

A common paradigm used to study visual WM is the change
detection paradigm (e.g., Luck & Vogel, 1997). This paradigm
involves a brief presentation of a memory array (consisting of a
set of objects), followed by a retention interval (often about 1 s),
and then a test array. Participants indicate whether the test array
is identical or different to the remembered memory array. Perfor-
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mance in the change detection task is typically very high when up
to 3–4 items are remembered, and then declines as more items are
added to the memory array.

Accuracy in this task is frequently transformed to an index (i.e.,
K) that reflects how many items are represented in visual WM based
on formulas developed by Pashler (1988) and Cowan (2001). The
underlying assumption is that accuracy in the change detection task
reflects WM capacity during the maintenance stage. Note, however,
that the paradigm also involves a perceptual encoding stage and
a comparison stage. Consequently, poor behavioral performance
could be the result of insufficient encoding or errors that arise at
the comparison stage, and not exclusively the maintenance stage.
Luck and Vogel (1997) argued that performance during their change
detection task was primarily determined by limitations arising dur-
ing the maintenance stage because they used perceptually simple
stimuli, limited the number decisions at test, and conducted sev-
eral control experiments aimed at ruling out limits at stages other
than maintenance.

1.1. Object-based WM

Using the change detection paradigm, Luck and Vogel (1997)
demonstrated that performance was identical for objects that had
only a single feature (e.g., a color) relative to objects that had
multiple features (e.g., color and orientation). They argued that
objects, and not features, are the building blocks of visual WM.
Subsequently, this integrated object account has also been sup-

0028-3932/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neuropsychologia.2010.11.031



Author's personal copy

R. Luria, E.K. Vogel / Neuropsychologia 49 (2011) 1632–1639 1633

ported by studies using other paradigms that have found memory
advantage for features when they are presented within an object
(Awh, Dhaliwal, Christensen, & Matsukura, 2001; Duncan, 1984;
see also Xu, 2006). For example, Gajewski and Brockmole (2006)
showed that forgetting in a WM recall task was also object based:
subjects could recall all features of an object or none. However,
the integrated object account has been challenged on the basis of
two primary grounds. First, it was argued that this view could not
explain how binding of features in visual WM could scale up to
maintain much more complex objects (Alvarez & Cavanagh, 2004).
Second, a number of studies have argued that objects that are com-
posed of features from the same dimension (e.g., two colors) are
not bound as one object in WM.

At first blush, it seems that Luck and Vogel (1997) have provided
compelling evidence confirming that visual WM is object based.
Namely, an increase in “information” load of each object did not fur-
ther deteriorate performance. However, this study used very basic
features (such as color and orientation) and it might still be the
case that conjunctions are cost-free in memory only across differ-
ent types of basic features, but not for much more complex objects
such as random polygons. By complexity we mean the amount of
visual detail that is being stored in WM for each object. That is, the
features and other details that are encoded and maintained in WM
for a particular object or set of objects.

Alvarez and Cavanagh (2004) measured WM capacity for var-
ious complex stimuli and found a monotonic decrease in change
detection performance as the object’s complexity (quantified by
visual search efficiency) increased. For example, while WM was
able to maintain four colors, its capacity was reduced to two when
representing random polygons. Similarly, using ovals with varying
aspect ratios and color mixtures, Olsson and Poom (2005) showed
that WM capacity can be reduced to just one object. Together, those
studies have suggested that the information load (the amount of
perceptual details for a given object that are stored in WM) engen-
dered by the to-be-remembered material is an important factor
that determines WM capacity. Specifically, in order to remember a
complex object, a larger proportion of capacity must be allocated
as compared to a simple object with less information content (as
indicated by a larger CDA amplitude, see below). Note that these
findings are inline with the object-based view of WM because this
view only argues that once an object is encoded, there is no addi-
tional cost at encoding multiple features from that same object.

Alvarez and Cavanagh (2004) and Olsson and Poom (2005)
assumed that poor performance in the change detection paradigm
reflects errors during the WM maintenance stage, and thus indi-
cates poor WM capacity. However, as noted above, this assumption
that seemed reasonable for simple (single featured) objects, may
not necessarily hold for more complex objects. For example, Awh,
Barton, and Vogel (2007) provided evidence that for highly complex
stimuli, accuracy in the change detection paradigm might primar-
ily reflect task-related processes other than WM storage capacity.
Specifically, they argued that the comparison process responsible
for deciding whether an item in the test array was remembered (by
comparing the contents of the memory and the test array) is prone
to errors, especially when complex stimuli are evaluated. The rea-
son is that these items are more similar to one another than simple
objects resulting in a much smaller change magnitude. Awh et al.
replicated the findings that fewer complex objects were maintained
in WM, however, when they decreased the test to memory array
similarity, WM successfully represented 3–4 complex objects.

1.2. Weak object-based representation in WM

In their final experiment, Luck and Vogel (1997) addressed
the issue of separate WM limitations for different visual features.
Specifically, the finding of no performance cost of adding another

feature (e.g., color and orientation) may simply be due to sepa-
rate WM stores for each of the to-be-remembered features rather
than due to object binding (e.g., Jiang, Makovski, & Shim, 2009;
Magnussen, Greenlee, & Thomas, 1996). To examine this, they
tested a condition with color–color conjunction stimuli, so that
each object included a small colored square and a colored “frame”.
Even in this condition, when an object was composed of two fea-
tures from the same dimension, performance still benefited from
being “object based”. Namely, when comparing the same number of
objects, accuracy for color–color conjunction stimuli was identical
to one-feature stimuli. Luck and Vogel argued that this ruled out any
independent memory representation as an explanation for their
results, however, several subsequent studies have tried and failed
to replicate this particular result (Delvenne & Bruyer, 2004; Olson
& Jiang, 2002; Parra, Abrahams, Logie, & Della Sala, 2009; Wheeler
& Treisman, 2002). This failure to replicate casts doubts regarding
visual WM as being strictly object based (Jiang et al., 2009), and
led some to argue for a “weak” object based WM representations
(Olson & Jiang, 2002). That is, although these studies have found
that representing information within an object is still superior to
representing the same amount of information in separate objects,
there is also a cost when multiple feature objects are compared
to single feature objects as long as the features are from the same
dimension.

The main problem with accepting the weak object hypothesis
is that poor performance for multiple-feature objects, especially if
the features are from the same dimension (e.g., color–color con-
junction stimuli) could also be attributed to failures at other stages
of processing of the change detection task rather than WM storage
capacity. Note that when evaluating conjunction stimuli there are
(at least) two decisions that need to be made in order to detect a
change, while for a one-feature object only one decision is made.
For example, when a tilted bar is presented, participants only need
to decide whether its orientation is the same, while for a colored
tilted bar a decision needs to be made regarding both its orienta-
tion and its color. Thus, poorer performance for conjunction stimuli
may be the result of an increased number of decisions rather than
a reduced storage capacity. Another option along the same line is
that participants simply confuse the features they need to compare
(Bays, Catalao & Husain, 2009), so that increasing the number of
features raises the possibility of confusing them.

1.3. The present study

In the present study, we will address these challenges to the
integrated object hypothesis using an electrophysiological marker
for the allocation of WM resources that is measured exclusively
during the maintenance stage: the contralateral delay activity
(CDA). The CDA is a negative slow wave found at posterior sites
contralateral to the memorized visual field, and it has been shown
to be an excellent marker for visual WM capacity allocation
(Jolicœur, Brisson, & Robitaille, 2008; Luria, Sessa, Gotler, Jolicoeur,
& Dell’Acqua, 2010; McCollough, Machizawa, & Vogel, 2007; Vogel
& Machizawa, 2004; Vogel et al., 2005). Important for the present
purpose, while the CDA amplitude is sensitive to both the number
of memorized objects and their complexity, it is not affected by the
number of spatial positions or by the perceptual difficulty of the
task (Ikkai, McCollough, & Vogel, 2010; Luria et al., 2010).

Recently, Ikkai et al. (2010) have presented different objects in
the same spatial positions (one after the other), and found that
the resultant CDA amplitude was identical to a condition in which
the two objects were presented at different locations. This result
is strong evidence that the CDA is not sensitive to the number of
locations per se. In another experiment, Ikkai et al. (2010) manip-
ulated the contrast of the remembered color stimuli. Low contrast
stimuli led to low accuracy relative to high contrast stimuli but the
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CDA was identical for both contrast conditions. In the same vein,
Luria et al. (2010) found low accuracy for arrays including similar
colors (shades between blue and green). Again, the CDA amplitude
was similar to a condition with dissimilar colors, suggesting that
WM capacity allocation was the same when comparing similar and
dissimilar colors. Importantly, those studies report that there can
be dissociations between accuracy measures and WM capacity (as
indicated by the CDA amplitude). Thus, for the purpose of mea-
suring capacity, accuracy data should often be interpreted with
caution. The advantage of using the CDA as an index of WM capac-
ity is that it is specific to the neural activity during the maintenance
stage of WM, corresponding to the amount of capacity that is allo-
cated at any given moment. Unlike behavioral performance, it is not
susceptible to the errors that arise during the comparison process
at the end of the trial (see Awh et al., 2007).

The goal of the present research was to use the CDA in order
to test challenges to the strong object based view of visual WM.
If poor accuracy for conjunction objects that was found in former
studies can be attributed to processes that are not related to visual
WM capacity, then the CDA should be sensitive only to the number
of integrated objects, and not to the number of features each object
has. Experiment 1 asked whether complex stimuli (random poly-
gons) are treated as bound objects during visual WM maintenance
stage. Experiment 2 asked the same question for objects that have
two features along the same dimension (color–color conjunction
stimuli).

2. Experiment 1

In Experiment 1, participants had to remember the orientation
of a bar or the identity of a randomly shaped polygon. Critically,
we compared performance across 3 conditions: one object with
a single feature (e.g., a tilted bar or a random polygon), one con-
junction object with two features (e.g., a blue tilted bar or a red
polygon), and two separate one-feature objects (e.g., a tilted bar
and a blue square or a random polygon and a red square). Previous
research has shown that random polygons consume more capacity
relative to simple (single-feature) objects (Gao et al., 2009; Luria
et al., 2010). This observation seems to be at odds with the discrete
slot view of WM capacity (see below), however, it does not nec-
essarily contradict the integrated object view. The reason is that
random polygons may initially consume more WM resources, but
then are still treated as bound objects.

In order to test this idea, we increased the information load by
adding a color feature to the random polygon. If polygons are repre-
sented as integrated objects, adding an extra feature should be “cost
free” in terms of WM capacity as indicated by the CDA amplitude.
Thus, the goal of Experiment 1 was to test the integrated object
account using the CDA as an unbiased measure of WM capacity.

Experiment 1 also included conjunction conditions with simple
objects (titled bars and colors). Our objective was to replicate pre-
vious results supporting the integrated objects account (Woodman
& Vogel, 2008) in a condition that included only one object – when
capacity is clearly below its maximum.

According to the weak object view capacity is not always allo-
cated to objects. This account highlights that information load is
important in determining WM capacity allocation. For example,
Alvarez and Cavanagh (2004) have argued that capacity is allo-
cated also according to the feature complexity of the represented
memoranda and is not sensitive exclusively to the number of main-
tained objects (see also Olson & Jiang, 2002). This weak object
view can naturally account for the increased capacity consump-
tion for complex stimuli, but it makes complete different prediction
in respect to the conjunction condition. Since adding a color fea-
ture to a titled bar increases the information load, the weak object

view posits that it should result in a parallel increase in capacity
allocation.

The integrated object view of visual WM assumes that it is the
object (and not its features) that consumes capacity (although not
all objects are identical in their initial capacity consumption, see
below). It predicts that more capacity should be allocated when the
number of objects is increased, even when the amount of percep-
tual information is kept constant. Accordingly, this model predicts
that capacity consumption should be equal when comparing one
object with a single feature to one object with two features (e.g., a
random polygon and a colored random polygon), and both should
consume less capacity than the two objects condition. Note that the
integrated object is inline with the complexity notion in the sense
that different objects may consume different amounts of capac-
ity (i.e., polygons and colors), and this would be evident in the
CDA amplitude. However, it strongly argues that any increase in
the object’s encoded information would not further increase WM
capacity consumption. For this reason, we were particularly inter-
ested in the color–polygon conjunction condition. Since random
polygons consume more capacity than colors, further increasing
the polygons’ complexity by adding a color feature to it, should be
a direct test for the predictions made by the weak and integrated
object views.

2.1. Method

2.1.1. Participants
All participants gave informed consent after the procedures of a protocol

approved by the Human Subjects Committee at the University of Oregon. All sub-
jects were members of the University of Oregon community and were paid $10 per
hour for participation. 19 participants took part in the experiment. Subjects with
more than 25% rejection rate due to eye-blink or eye-movement were rejected from
further analysis (1 subject).

2.1.2. Electroencephalography recording
ERPs were recorded in each experiment using our standard recording and anal-

ysis procedures (McCollough et al., 2007), including rejection of trials contaminated
by blinks or large (>1◦) eye movements (the criterions for eye movements rejection
was 30 �V and 250 �V for blinks). We recorded from 22 standard electrode sites
spanning the scalp, including international 10/20 sites F3, F4, C3, C4, P3, P4, O1, O2,
PO3, PO4, P7, P8, as well as nonstandard sites occipital left (OL) and occipital right
(OR) (midway between O1/2 and P7/8). The horizontal electrooculogram (EOG) was
recorded from electrodes placed 1 cm to the left and right of the external canthi
to measure horizontal eye movement, and the vertical EOG was recorded from an
electrode beneath the right eye referenced to the left mastoid to detect blinks and
vertical eye movements. Trials containing ocular artifacts, movement artifacts, or
amplifier saturation were excluded from the averaged ERP waveforms. The elec-
troencephalography and EOG were amplified by an SA Instrumentation amplifier
with a bandpass of 0.01–80 Hz (half-power cutoff, Butterworth filters) and were
digitized at 250 Hz by a personal computer compatible microcomputer.

2.1.3. Stimuli and procedure
Each trial started with the presentation of a fixation point (“+”) in the middle

of the screen for 500 ms. Then, two arrow-cues were presented for 200 ms above
and below fixation, indicating the to-be-attended side for the upcoming trial. After
a random interval (400, 500 or 600 ms, from the cues offset), the memory array was
presented for 200 ms, followed by a retention interval (when only the fixation cross
was presented) of 900 ms and then the test array (see Fig. 1). The test array remained
visible until a response was emitted. The memory array included 7 possible condi-
tions that were randomly intermixed within each block: a colored square, a tilted
bar, a black polygon, a colored bar, a colored polygon, 1 colored square and 1 tilted
bar, 1 colored square and one polygon (see Fig. 2A). Participants were instructed
to remember the stimuli for a change detection task. They were informed that a
black-bar or a black polygon never change their color, so they could only change
orientation or shape (respectively), while a change for a colored-bar or a colored-
polygon might occur for either the color or the orientation/shape (but never on
both). Overall, participants performed 16 trials of practice followed by 22 blocks
that included 60 trials each.

2.1.4. CDA analysis
The raw EEG wave was segmented into 1200 ms epochs starting 200 ms before

the target array onset. Only correct trials were included in the analysis. Separate
average waveforms for each condition were then generated, and difference waves
were constructed by subtracting the average activity recorded from the electrodes
ipsilateral to the memorized array from the average activity recorded from elec-
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Fig. 1. An example of a trial: the arrow cues indicate the relevant side for the up
coming trial, followed by the memory array (presented for 200 ms) and a retention
interval of 900 ms.

trodes contralateral to the memorized array. The time range for measuring the CDA
was 400–1000 ms time locked to the memory array. The analysis included at least
120 trials per condition per subject.

For the ease of description purposes, we will only present the results from
the OL/OR electrodes because that is where the CDA amplitude is most evident.
However, similar patterns of activations were observed over neighboring electrode
positions (O1/O2, P7/P8 and PO3/PO4).

2.2. Results

2.2.1. Behavioral
The accuracy for the different conditions is presented in Table 1.

We first analyzed the tilted bar-conjunction accuracy, followed by
the polygon data. Importantly, we found no cost in accuracy for
colored-bars conjunction stimuli relative to (black) tilted bars, F < 1.
In addition, accuracy for a conjunction colored-bar (one object)
was better than accuracy for the same perceptual information
presented as separate objects (i.e., a color and a black-bar), F
(1,17) = 11.99, p < .005, MSE = .0004. Similar to the bar data, random
polygon accuracy showed no sign for a conjunction cost: accuracy
for a colored polygon was actually better than a black polygon,

Fig. 2. Examples of the stimuli set used in Experiment 1 (top panel) and Experiment
2 (bottom panel).

F (1,17) = 15.80, MSE = .001, p < .005 and better than a colored-
square and a black polygon (presented separately), F (1,17) = 19.25,
MSE = .002, p < .0005.

2.2.2. Electrophysiology
The CDA waveforms for all the different conditions are pre-

sented in Fig. 3. We first compared the CDA amplitude for one color
and one polygon. Replicating previous findings, the CDA amplitude
for a single polygon was higher than one color, F (1,17) = 18.42,
MSE = .14, p < .0005. This is important in further demonstrating that
the CDA is sensitive to the object complexity (at least for polygons).

Mirroring the accuracy data, WM showed no cost for conjunc-
tion stimuli (colored-polygon or a colored-bar) relative to single
feature items (a black polygon or a black bar). As can be seen in Fig. 3,
the CDA amplitude for a black bar was identical to the CDA ampli-
tude for a colored-bar, F = 1.09. Furthermore, the CDA amplitude
for a black bar and a colored square (as separate items) was higher
than the amplitude for a conjunction colored-bar even though
they both contain the same amount of information, F (1,17) = 8.38,
MSE = .35, p < .05. Polygons showed the exact same pattern: the CDA
amplitude for a black polygon was identical to the amplitude of a
colored-polygon, F < 1, but the amplitude for a black polygon and
a colored square presented separately was larger than that for a
colored-polygon1, F (1,17) = 4.84, MSE = .09, p < .05.

2.3. Discussion

Experiment 1 provided further supporting evidence that WM
capacity is object based by demonstrating that maintaining a com-
plex conjunction stimulus is cost-free: a polygon consumed the
same amount of capacity relative to a colored polygon, indicating
that WM represented the polygon as a single bound object (even
though it consumed more capacity to begin with). Similarly, a col-
ored tilted bar showed no conjunction cost relative to a condition
in which only the orientation was relevant (see also Woodman &
Vogel, 2008). Moreover, more WM resources were needed in order
to maintain a polygon and a color presented as separate objects rel-
ative to a condition in which the same information is presented as
a single conjunction object, confirming the prediction made by the
integrated object view. These results were obtained with just one
object maintained in memory, a condition that is well below the
maximum capacity for both bars and polygons (as indicated also
by the relative high accuracy).

One objection that might be raised is that perhaps participants
cannot encode just a single feature from an object and ignore oth-
ers. This alternative explanation would argue that when we encode
a polygon, we also automatically encode its colors, even when color
is a task-irrelevant property. This could explain why performance
was similar for colored polygons (when both color and shape were
encoded) and black polygons (when only shape was encoded), by
arguing that in both cases a color was maintained in visual WM.
However, there are several convincing pieces of evidence demon-
strating that we can voluntarily store a single attribute of an object
without necessarily storing all of its remaining features. Woodman
and Vogel (2008) compared conditions in which only color was rel-
evant, only orientation was relevant and a condition in which both
color and orientations were relevant. Despite of identical physical

1 If we assume that the WM (and hence the CDA) encodes relational information
in addition of the objects’ identity, then presenting information within one object
should result in a drop in the CDA amplitude (relative to a condition in which the
same information is presented in two separate objects). However, the relational
information account cannot explain the results of Experiment 2, in which the con-
junction condition retained the relational information between the two objects and
yet the CDA amplitude was lower than the two separate object condition throughout
the retention interval.
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Table 1
Accuracy and standard deviation (in parenthesis) for Experiments 1 and 2 across the different conditions.

Experiment 1

Color Polygon Color + polygon Colored polygon Bar Bar + color Colored bar

.97 (.03) .89 (.06) .87 (.06) .90 (.06) .96 (.04) .93 (.06) .95 (.05)

Experiment 2

Color Bicolor 2 colors 2 bicolor 4 colors

.98 (.01) .97 (.03) .96 (.03) .86 (.06) .83 (.06)

stimuli between these conditions, the color relevant trials showed
a steeper consolidation slope and a less of WM capacity demand
relative to conjunction stimuli. Luria et al. (2010) have found an
identical pattern of results for colored polygons. Moreover, the cur-
rent data can also speak against an obligatory storage explanation.
Accuracy to detect a polygon change (Hit rate for polygons) was bet-
ter in a condition when color was irrelevant relative to a condition
in which both color and shape were encoded (.87 vs. .78 for only
polygon and conjunction polygon respectively, t(17) = 2.73, p < .05).

3. Experiment 2

In Experiment 2 we measured WM capacity consumption for
color–color conjunction stimuli. As in Experiment 1, we were
particularly interested in comparing the conditions in which we
increased the amount of information (by adding a color feature) but
without increasing the number of the to-be-remembered objects
(e.g., comparing a bicolored square to a display that contains just
one color, see Fig. 2b). While Luck and Vogel (1997) did not find
any cost for color–color conjunction stimuli, others have failed to
replicate this result (Delvenne & Bruyer, 2004; Olson & Jiang, 2002;
Parra et al., 2009; Wheeler & Treisman, 2002), and found lower
accuracy for color–color conjunction stimuli relative to the same
number of one-color items. This failure to replicate was taken as
evidence supporting the weak object based account, because WM
does not treat a bicolored square as one object. It was also taken
as support for the separate independent memory representations
view (Jiang et al., 2009; Magnussen et al., 1996).

However, one possible reason for the failure to replicate may
have been that color–color conjunction objects involve a more

difficult comparison process. Namely, when one colored object
is presented, participants need to make one decision regarding a
change in its color. However, when one color–color conjunction
stimulus is presented, two decisions are required regarding each
color. Thus, errors during the comparison process might account
for the low accuracy in the color–color conjunction condition (e.g.,
Awh et al., 2007). The interrelated object account makes a clear
prediction regarding color–color conjunction stimuli – they should
consume the same amount of capacity as one color. This should be
reflected in the CDA amplitude as a measure of the WM storage
demands during maintenance.

3.1. Method

Except as noted below, all details are identical to Experiment 1.

3.1.1. Participants
19 fresh subjects participated in Experiment 2. Subjects with more than 25%

rejection rate due to eye-blink or eye-movement were rejected from further analysis
(3 subjects).

3.1.2. Stimuli and procedure
There were 8 different conditions that were randomly intermixed within each

block: one small color, one “frame”, one conjunction color (that was composed of
one small color and one colored “frame”), one small color and one frame, 2 conjunc-
tion color–color stimuli, 2 small colors, 2 frames, and 4 separate colors (2 small + 2
frames). Subject performed a 16 trials practice followed by 27 blocks, 60 trials each.

3.2. Results

3.2.1. Behavioral
The accuracy for the different conditions is presented in Table 1.

Accuracy for one object single-feature stimuli (i.e., one small square

Fig. 3. The CDA wave for the different conditions in Experiment 1.
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Fig. 4. The CDA wave for the different conditions in Experiment 2.

and one frame) and two objects single-feature each stimuli (i.e., 2
small squares, 2 frames and one sqaure + one frame) did not dif-
fer between themselves, F < 1, F = 1.63 (p > .2), for one object and
two objects, respectively. Since this result was reflected in the CDA
analysis as well (see below), we averaged together all the single-
featured one object conditions and all single-featured two objects
for any further analysis.

Accuracy for one object was better in the single feature con-
dition relative to the color–color conjunction condition, F (1,
15) = 7.56, MSE = .0002, p < .05. Accuracy for one color–color con-
junction stimulus was the same as 2 objects, F < 1. Accuracy for
single feature 2 objects was better then 2 color–color conjunc-
tion stimuli, F (1,15) = 96.23, MSE = .001, p < .0001. Accuracy for
2 color–color conjunction stimuli was marginally better than 4
objects, F (1,15) = 4.24, p = .057. Overall, we found large and signifi-
cant costs for color–color conjunction stimuli, replicating previous
results (Delvenne & Bruyer, 2004; Olson & Jiang, 2002; Parra et al.,
2009; Wheeler & Treisman, 2002).

3.2.2. Electrophysiology
The CDA waveforms for all the different conditions are pre-

sented in Fig. 4. CDA amplitudes for one object single-feature
stimuli (i.e., one small square; one frame) did not significantly
differ from one another (F < 1). Similarly, CDA amplitudes for single-
feature arrays with two objects (i.e., 2 small squares, 2 frames and
one sqaure + one frame) also did not differ, F = 2.13 (p > .13). For
this reason, we averaged together the one object single-feature
conditions and the two objects single-feature conditions for all
subsequent analyses.

The CDA analysis revealed that there was a conjunction cost
for both one and two items. CDA amplitude for one single-
feature object was lower than 1 color–color conjunction object,
F (1,15) = 10.56, MSE = .01, p < .01, and the 2 single-feature objects
CDA amplitude was lower than 2 color–color conjunction objects,
F (1,15) = 6.11, MSE = .26, p < .05. An inspection of Fig. 4 revealed
that for both one and two item arrays, the CDA for color–color
conjunctions differs from the single-featured condition during the
initial portion of the maintenance period and then declines to the
level of the single-feature condition near the end of the trial. This
was supported by a separate analysis for the early vs. late mainte-
nance period. While the CDA amplitude was higher for color–color
conjunction stimuli in the initial CDA period (450–600 ms post
memory array), F (1,15) = 16.72, MSE = .15, p < .005, for one object, F

(1,15) = 9.06, MSE = 30, p < .01, for two objects, the same differences
were not significant in the late maintenance period (750–1000 ms),
F = 2.10, p = .2, for one object, and F = 1.87, p = .37, for two objects.

In addition, the CDA amplitude for one color–color conjunc-
tion object was significantly lower than 2 objects, F (1,15) = 14.43,
MSE = .20, p < .005 indicating that more WM resources are con-
sumed to maintain 2 objects relative to 1 object, even when
both conditions have the same amount of featural information.
The same trend was evident for 2 objects: the CDA amplitude
for 2 color–color conjunction stimuli was lower than 4 objects, F
(1,15) = 7.63, MSE = .13, p < .05. Finding lower CDA amplitudes for
color–color conjunction stimuli relative to single objects conditions
even though they have the exact “information” load is consistent
with the prediction made by integrated object view of WM capacity.

3.3. Discussion

Although we found large accuracy costs for color–color conjunc-
tion stimuli (comparing a bicolor object to a single color object), the
CDA revealed only a small conjunction cost, which appeared to dis-
sipate as the retention interval progresses. Overall, this pattern of
result is inline with the integrated object account of WM capacity.
The discrepancy between the large behavioral cost, and the dis-
sipating CDA cost may potentially explain why some behavioral
studies have failed to replicate the original Luck and Vogel (1997)
data that showed no color–color conjunction cost. Furthermore, the
results strongly support the integrated object view: the CDA ampli-
tude for color–color conjunction objects was lower than a condition
displaying identical perceptual information across separate objects.
Thus, WM capacity, as measured by the CDA amplitude, is primarily
sensitive to the number of objects and not simply the total amount
of the maintained information.

4. General discussion

The purpose of the current work was to test alternative explana-
tions for the integrated object account of WM capacity. To this end,
we asked participants to remember single objects (e.g., a tilted bar,
a polygon, or a color), and compared performance to displays that
contained higher perceptual information, that were still presented
in single objects (e.g., a colored tilted bar, a colored polygon, or
a bicolor stimulus). Thus, we increased the amount of information
that was remembered, without increasing the number of the to-be-
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remembered objects. For the polygon and bar conjunction stimuli,
adding an extra color feature was cost-free in terms of WM capacity
as indicated by both accuracy and the CDA data. The polygon data
is especially informative, since representing a polygon consumes
more capacity relative to simpler stimuli. Yet, once a polygon is
represented, it is maintained as a bound object and not as separate
features.

The bicolor condition of Experiment 2 showed large conjunc-
tion cost in accuracy but only a small (yet significant) conjunction
cost in the CDA amplitude that was restricted to the initial part of
the retention interval. These results are important in highlighting
several points: first, the dissipating CDA cost supports the “strong”
object account of WM capacity since WM maintenance treated a
bicolor object as a single feature object (after an initial cost). Second,
the large accuracy cost might be due to an overloaded comparison
process (Awh et al., 2007) or other processes that do not exclusively
reflect WM storage capacity. Third, because the CDA amplitude for
color–color conjunction stimuli was lower relative to the condition
in which the same amount of color information was presented as
separate objects, it challenges the predictions made by the weak
object WM account (Jiang et al., 2009; Olson & Jiang, 2002), and the
separate WM systems hypothesis (Magnussen et al., 1996).

The small color–color conjunction cost that we observed is an
intriguing result, as it may reflect an evolving WM representation
in which the features are initially only partially bound but become
fully bound over the first several hundred milliseconds of the reten-
tion period. This observation is inline with models that emphasize
the role of attention in a two-stage account of binding. At the first
stage, visual features are only weakly bound, and binding may dis-
sipate unless a second stage that acts to consolidate the bindings
reinforces the initial noisy process (Braet & Humphreys, 2009). At
this point, more data is needed in order to evaluate this idea and
other alternative accounts.

The present results shed light on the role of attention in bind-
ings. While feature integration theory argued that binding is an
attentional demanding process with an apparent behavioral cost
(Treisman, 1998; Wheeler & Treisman, 2002) others have argued
that attention is not required for feature integration to occur
(Mordkoff & Halterman, 2008). The result of Experiment 1 did not
find any behavioral or electrophysiological binding cost in WM
when binding features from dimensions. Thus, even though WM
has strictly limited its attentional capacity, it did not exhibit any
binding cost (which does not rule out the involvement of atten-
tion in earlier binding related processes). Experiment 2 did find
significant binding cost in behavior for same dimension bind-
ings, however, this evidence in not conclusive since accuracy cost
may not necessarily indicate the involvement of an attentional
demanding process during binding (Awh et al., 2007; Mordkoff &
Halterman, 2008). The CDA result (at the initial maintenance stage)
is relevant evidence that demonstrates bindings cost within WM
capacity. This is inline with previous evidence for the involvement
of early spatial attention in the binding process (Hyun, Woodman,
& Luck, 2009).

Another important aspect of the current design is that we pur-
posefully focused on adding an extra feature to only one object,
while other studies (e.g., Luck & Vogel, 1997; Olson & Jiang, 2002;
Parra et al., 2009; Xu, 2002) mostly presented arrays that exceeded
capacity. For our current goal, we consider the data from one object
(and sometimes two objects) to be the most informative, because
we can be certain they are below the maximum capacity level. Using
super-capacity arrays probably involves selection (bottom-up or
top-down) regarding which objects (or features) from the display
will be stored in memory, and this might interact with the bind-
ing mechanisms, adding a confounding factor that might obscure
differences between the predictions the two models make. Impor-
tantly, the current results indicate that complex stimuli are stored

as bound objects in the sense that increasing the information load
by adding a color feature does not increase any WM capacity con-
sumption. This pattern held for both complex stimuli and bicolor
conjunction stimuli, so that we found no support for the weak
object based view of WM capacity.

There are two presently active debates regarding visual WM:
the strong vs. weak object viewpoints (as discussed throughout
the ms), which debate the nature of the representations held
in visual WM; and the discrete vs. flexible resource viewpoints,
which debate the nature of the capacity limitations of visual WM.
While these two debates are highly similar and share overlapping
concerns, they are not identical. The discrete view proposes that
capacity limitations are defined by a maximal number of slots (or
pointers) that each can represent one object (Luck & Vogel, 1997;
Zhang & Luck, 2008). The discrete model indorses an object view
of WM, but will face difficulties explaining why polygons con-
sume more capacity than colors, if we adopt a one slot per object
assumption. Note that this assumption is not shared by the inte-
grated object view (and even not necessarily by the discrete model,
see Luck, 2008). On the other hand, the flexible resource model
suggests that capacity can be divided in a graded and continuous
fashion according to the object’s complexity (Bays & Husain, 2008;
Wilken & Ma, 2004). As more items are presented, the capacity
that is devoted to each item drops, causing performance to gradu-
ally deteriorate. Importantly, this drop in performance is associated
with an increase in the represented information load rather than
an increase in the number of items being represented. While the
integrated object viewpoint is most readily consistent with dis-
crete models of capacity, evidence for object integration could be
accommodated by flexible resource models that argue that the allo-
cation of visual WM resources is distributed in units of objects with
simply less precision dedicated to each object as more items must
be remembered. Presently, we know of no flexible resource models
that explicitly make this stipulation, yet we could imagine that this
attribute could be added to existing models.
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