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Feature-Based Versus Object-Based Representation in VisualWorkingMemory

Ayelet Ramaty1 and Roy Luria1, 2
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2 The Sagol School of Neuroscience, Tel Aviv University

Visual working memory (WM) can hold a limited amount of information for a short interval. The current
study investigated whether the features of the objects maintained in WM are represented in a dependent
or independent manner. Across five experiments, we presented multifeature objects (color and shape) and
investigated whether remembering one feature is correlated with remembering the other feature. To answer
this question, we divided the continuous response distribution into five quintiles according to the accuracy
performance, then computed the area under the curve of the continuous response of the other feature, thus
calculating the area under the curve for a given feature for each quintile of the other feature. A dependent
object representation predicts a correlation between these measures, indicating that remembering one feature
is correlated with remembering the other feature. In all five experiments, in which we used different stimuli
(triangles or polygons), different memory exposure intervals (1,200 or 300 ms), and different response pro-
cedures (sequential or simultaneous responses), we found strong evidence for a dependency between the
object’s features. We conclude that this current analysis was able to reveal strong feature dependency in
WM. These findings support the conclusion that visual WM relies on object-based representations and
that all the objects’ features are represented in a dependent manner.

Public Significance Statement
Visual working memory can hold and manipulate online information. Corroborating its importance, individ-
ual differences in its capacity estimates strongly correlate with behavior and various aptitude measures. The
current study investigated how visual working memory maintains its online information, specifically how
objects with more than one feature (e.g., color and shape) are represented. We provide strong evidence for
a dependency between the object’s features, indicating that objects are represented as bound units inmemory.
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Visual working memory (WM) is responsible for transient storage
of task-relevant information, enabling both storage and processing
of the represented visual information (Luck & Vogel, 2013).
Previous studies have shown that visual WM has a very limited
capacity (Alvarez & Cavanagh, 2004; Awh et al., 2007; Luck &
Vogel, 1997; Vogel et al., 2001; Zhang & Luck, 2008), but that

individual differences in WM capacity are correlated with cognitive
abilities and aptitude measures such as academic achieve-
ments (Alloway & Alloway, 2010), top-down attentional control
(Bengson & Mangun, 2011; Kane et al., 2001; Vogel et al., 2005),
and fluid intelligence (Cowan et al., 2006).

The strong connections between WM capacity and behavior have
led to several lines of research investigating how items are represented
within theWMworkspace. Two major theories have been proposed to
answer this question: an object-based model and a feature-based
model. The object-based model states that we perceive an object as a
whole, and this model predicts that the objects’ features (e.g., its
shape and color) should be highly correlated with each other, such
that if we remember one feature, wewould remember the other features
as well (Awh et al., 2001; Luck &Vogel, 1997; Luria &Vogel, 2011).
The feature-based model states that each feature of an object is remem-
bered independently. Thus, this model predicts a null correlation
between remembering the various features of an object (e.g.,
Fougnie&Alvarez, 2011; Fougnie et al., 2013).Moreover, when addi-
tional features of an object need to be remembered (e.g., both color and
shape), the feature-based model predicts a decrease in WM perfor-
mance because the added features should increase WM load.

The object-based model received strong initial support from a
study by Luck and Vogel (2013). They presented objects that
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consisted of two features—color and shape, and showed that the
participants’ performance didn’t change when they were asked to
remember just one feature (color or shape) or when participants
were asked to remember both features (color and shape). The feature-
based model predicts a decrease in performance when WM main-
tains both features as compared to maintaining only one feature,
because if each feature is remembered independently, retaining
more features in WM should lead to a decrease in performance.
However, since performance did not change when increasing the
number of relevant features per object, Luck and Vogel concluded
that the objects in WM are represented in WM as integrated units
(cf. Gajewski & Brockmole, 2006; Luria & Vogel, 2011; Pratte
et al., 2017; Vogel et al., 2001).
It is important to note that the object-based theory only argues that

the encoded features of an object are maintained in a dependent man-
ner. Namely, this theory does not predict that all the object’s features are
obligatory encoded. Thus, the object-basedmodel predicts a correlation
between the features of an object only when these features are encoded
in WM. Moreover, the object-based theory doesn’t necessarily predict
that forgetting is object-based. It is possible that all the object’s features
are maintained in a dependent manner, yet forgetting is not object-
based, such that forgetting disrupts the dependency between the fea-
tures, resulting in a loss of one feature but not the other. In other
words, the processes that are involved in forgetting might be different
from the processes that are responsible for remembering.
Yet, several studies investigated object-based theories by focusing

on forgetting. As explained above, finding object-based (dependent)
forgetting certainly supports object-based remembering, while find-
ing feature-based forgetting should be treated with more caution
because the conclusion assumes a similar mechanism for forgetting
and remembering. In the sections below, we start by reviewing pre-
vious research that investigated object-based versus feature-based
forgetting, and then discuss significant factors that might have con-
tributed to observing feature-based forgetting.
Fougnie andAlvarez (2011) studied object-based and feature-based

forgetting by investigating whether forgetting one of the object’s fea-
tures led to forgetting the other objects’ features as well. In their study,
they presented five triangles for 1,200 ms, each consisting of two dis-
tinct features—color and shape. Then they asked the participants to
report both the color and shape of the triangles, using the continuous
report paradigm (Zhang&Luck, 2008). Byfirst analyzing the primary
response distribution for each feature, Fougnie et al. defined responses
that contained information about the target versus responses that did
not contain any information about the target. They treated responses
that were more than 3 SDs away from the correct value as pure
guesses, reflecting no information about the target. Analyzing only
these guesses, they extracted the histogram distribution of the other
feature. They argued that if the object-based model is correct, we
should not see memory for the other feature when the first feature
was a guess. Thus, they expected to find a uniform distribution in
these secondary graphs. However, a Gaussian distribution was
observed, and Fougnie et al. argued that these trials reflected guessing
in one feature but some knowledge in the other, violating the predic-
tion of the object-based view.
An important aspect of the Fougnie and Alvarez (2011) paradigm is

that they used a sequential response procedure (one for each feature).
This procedure might cause interference, such that the first response
might affect the second response (Fukuda et al., 2022). Another impor-
tant caveat of the Fougnie and Alvarez (2011) is that their analysis

ignores most of the data (all responses that are within 3 SD from the
correct value), thus relying only on a small subset of responses.

To avoid interference from the sequential response procedure and to
include all the responses in the analysis, Sone et al. (2021) introduced
a new method of responding to both features simultaneously. In their
first experiment, they showed that three or six triangles consisted
of two features, color and shape. They asked the participants to esti-
mate the color and shape simultaneously by clicking on a single
point on the response probe containing both color and shape informa-
tion (see Sone et al., 2021), thus minimizing serial response
interference.

In order to quantify the dependence between the different features
while including all responses, these authors divided each feature
response into four quartiles according to the magnitude of absolute
offsets, and for each quartile, they computed the conditional area
under the cumulative distribution function (area under the curve
[AUC]) for each feature as a function of the representational quality
of the other feature. Then they computed the AUC of the other fea-
ture in each quartile as a conditional AUC of the first feature. This
procedure allowed Sone et al. (2021) to check whether color and
shape are stored dependently, as the object-model predicts, or inde-
pendently. If the conditional feature is positively correlated with the
other feature (rather than randomly split between the four quartiles),
it supports the dependency between both features as the object model
predicts, because a more accurate response in one feature leads to a
more accurate response in the other. Their results indeed showed a
dependency between both features of the same object. Next, they
compared sequential and simultaneous response estimation proce-
dures and found that both procedures produced significant depend-
ency between the features. However, the dependence was more
pronounced in the simultaneous estimation procedure, indicating
that the object-based dependence can be weakened by the sequential
response procedure.

Fougnie and Alvarez (2011) and Fougnie et al. (2013) used a
sequential response procedure and analyzed only a small proportion
of the data (responses that are more than 3 SD from the mean). It is
possible that these trials represent a very small number of cases in
which only one featurewas encoded or forgotten, which doesn’t nec-
essarily contradict the object-based account. In contrast, Sone et al.
(2021) used simultaneous responses and analyzed the full data set,
providing a more comprehensive and robust measure of feature
dependency. While these differences may explain the conflicting
conclusions, note that Sone et al. only used a limited set of stimuli
and encoding intervals. There are arguments that the stimuli type
and the encoding interval might affect objecthood (e.g., Alvarez &
Cavanagh, 2004).

In our study, in contrast to Fougnie and Alvarez (2011), but sim-
ilar to Sone et al. (2021), we analyzed all the data. By including all
trials, we investigated both memory and forgetting processes. We
used a similar approach to Sone et al. and calculated the degree of
dependency between the object’s features by plotting the perfor-
mance for both features across the various quintiles (see below). If
there is no dependency between the features, we expect to see a
straight line, and as the slope becomes steeper, it indicates a stronger
dependency between the features.

Our study builds directly on these findings. First, we replicated
Fougnie and Alvarez (2011) using this novel analysis and found evi-
dence for dependency between color and shape, and then we inves-
tigated the robustness of this dependency by manipulating several

RAMATY AND LURIA2

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

A
ll
ri
gh
ts
,i
nc
lu
di
ng

fo
r
te
xt

an
d
da
ta
m
in
in
g,

A
I
tr
ai
ni
ng
,a
nd

si
m
ila
r
te
ch
no
lo
gi
es
,a
re

re
se
rv
ed
.



parameters such as the presentation time, the type of stimuli, and the
response procedure.

Experiment 1: Presenting Five Triangles for 1,200 ms

Experiment 1 was a replication of Fougnie and Alvarez (2011). We
presented five colored random triangles for 1,200 ms and used
sequential responses (see Figure 1). To investigate within-object fea-
ture dependency, we analyzed the results following Sone et al. (2021)
by dividing the response distribution into 5 quintiles (since we had
540 trials instead of 360 as in the original study, we were able to
use quintiles instead of quartiles). To reveal evidence for dependence
between the features, for each quintile, we computed the dependent
accuracy of the other feature. For each feature, we then computed
theAUC for each of the five quantiles. TheAUC represents the quality
of the memory for each quantile.
If the features are represented independently, we expect a null

relationship between the features’ performance in each quintile,
because accuracy in one feature should not be related to accuracy
in the other feature. Conversely, as the slope becomes steeper, it sup-
ports a dependent feature representation, because remembering one
feature is correlated with remembering the other feature.

Materials and Method

Participants

Sixteen naive participants participated in Experiment 1. The partic-
ipants are Tel Aviv students aged 20–35, 10 women and six men. An a
priori power analysis was conducted usingG*Power3.1.9.2 (Faul et al.,

2007) to test the difference between the different conditions using a
repeated measures analysis of variance (ANOVA). We used an effect
size of f= 0.3, based on the ANOVA for quartiles reported in Sone
et al. (2021), who found a large effect size (ηp

2= .66, F= 65).
However, we chose a more conservative estimate because our design
used quintiles instead of quartiles and included a broader range of stim-
uli and experimental conditions that were not tested in previous studies.
We used a correlation of .5 among repeated measures and an alpha of
.05. Results showed that a total sample of 15 was required to achieve a
power of 0.8. All participants gave informed consent following the pro-
cedures of a protocol approved by the Ethics Committee at Tel Aviv
University. The participants were Tel Aviv University students who
received 40 NIS (approximately $11) per hour for participation. All
participants had normal or corrected-to-normal vision and normal
color vision. The data for this experiment were collected during 2018.

Transparency and Openness

Data analysis of each experiment used the circ_r matlab functions
developed by Berens (2009). All data, analysis code, and research
materials are available at https://osf.io/u7yqg/. We report how we
determined our sample size, all data exclusions (if any), all manipu-
lations, and all measures in the study. This study’s design and its
analysis were not preregistered.

Stimuli

On each trial, the memory array consisted of five randomly
chosen triangle stimuli, each defined by a unique color and

Figure 1
Trial Timeline for Experiment 1

Note. See the online article for the color version of this figure.
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orientation. The five triangles were equally spaced along an imag-
inary circle (2.5° radius) centered on a fixation dot. Each triangle
subtended approximately 30°, 75°, and 75° of visual angle. The
orientation of each triangle was independently randomized from
a continuous set ranging from 2° to 360°, sampled in 2° increments,
with a minimum angular separation of 44° between them to ensure
perceptual distinctiveness. The colors were selected from a set of
720 equally luminant colors in the international commission on
illumination Lab* color space (centered at L= 54, a= 18, b=−8,
radius= 59), ensuring that the chosen colors were distinct from one
another. This randomization ensured that the memory array varied
on each trial.

Trial Procedure

A trial began with 1,000 ms fixation, then 1,200 ms presentation
of the memory stimulus of five triangles with randomly chosen col-
ors and shapes, followed by a 900 ms retention interval which
included only a white fixation dot in the middle of the screen,
then a filled white circle appeared at the probed triangle’s location,
and hollow circles appeared at nonprobed locations. Participants
were asked to report the color and shape (at a random order) of
the filled circle. For color reports, a wide color wheel (7° radius,
centered on fixation) made of 720 equally luminant colors was pre-
sented in the middle of the screen, and the participants were asked
to click with the mouse along the color wheel at the exact color they
think was presented earlier on that cued location. After this report,
participants were given feedback on how accurate their response
was. The color feedback was a circle which was presented for
600 ms at the cued location and consisted of an inner circle of
the true color and an outer circle of their chosen color. That way,
participants could briefly see how exact their response was. For
shape reports, a black thin response wheel was presented, centered
on the cued-location probe. Participants were asked to click with
the mouse along the response wheel where they think was the
exact shape of the earlier presented triangle at the cued location
(we can imagine the triangle is an arrow, and they were asked to
click on the color wheel location where the arrow was pointing).
The shape feedback was presented for 600 ms and showed simul-
taneously the original shape of the triangle at that cued location
(in black color), and a small white circle marked the actual response
on the wheel. Responses were unspeeded. Each participant com-
pleted 540 trials.

Data Analysis

The data from each participant consisted of a set of distances
between the original color value and the reported color value in
each trial, which reflects the degree of error for each response.
We created histograms of these error values to visualize the distri-
bution of responses. To quantify performance while avoiding pre-
assumptions on our model, we used circular statistic. To compute
circular statistic, we used a circular statistic toolbox for matlab,
called “CircStat” toolbox for Matrix Laboratory (Berens, 2009).
For more information on statistics in circular space, see Zar
(2010). In this toolbox, we used the function called “circ_r.m”

that computes the mean resultant vector length (MRVL) of the dis-
tribution. MRVL reflects the variability of the data points, scaling
from 0= no information about the item to 1= perfect information

about the item. We first computed the absolute error for one feature,
then divided each feature into five quantiles according to the abso-
lute accuracy. Subsequently, we computed the mean accuracy of
the other feature for each quantile. For example, to compute the
color feature, the first group contained 20% of the trials that were
most accurate in shape, the second group contained 20% of the tri-
als that were second most accurate in shape, and so on until the fifth
group contained 20% of the trials that were most inaccurate in
shape. This approach allowed us to assess feature dependency as
a function of representational quality.

All analyses were performed using Matrix Laboratory R2017a
(MathWorks Inc., Natick, Massachusetts, United States) and Statistica
8. Figures (e.g., timeline illustrations) were created using Adobe
Illustrator 2021, and references were managed with Zotero. The experi-
ment itself was programmed and executed using Presentation software
(Neurobehavioral Systems).

Results and Discussion

Histograms displaying the degree of accuracy distributions for
color and shape are shown in Figure 2A and 2B, respectively.
We divided each feature into five quintiles according to the accu-
racy and then computed the accuracy of the other feature in this
quantile to investigate the dependence of the memory of both fea-
tures of the item. Figure 2E shows plots of the average AUC for
each feature of the five quantiles. We performed a separate repeated
measure ANOVA for color and shape, with quintiles as the inde-
pendent variable, which yielded significant main effects of quan-
tiles for both features; color: F(4, 60)= 75.34, ηp

2= .83, MSE=
0.005, p, .001. Planned comparisons showed significant linear
trends for color: F(1, 15)= 289.70, ηp

2= .95, MSE= 0.005,
p, .001; and for shape: F(1, 15)= 179.9, ηp

2= .92, MSE= 0.01,
p, .001. The slope for color feature was−0.49, and it was statisti-
cally significant from zero, t(15)=−17.02, p, .001, and the slope
for shape was −0.49, and it was statistically significant from zero,
t(15)=−13.41, p, .001.

The results of Experiment 1 revealed thatwhen using a different anal-
ysis than Fougnie andAlvarez (2011), which included all responses, we
found evidence for dependency between the two features.

Experiment 2: Presenting Five Triangles for 300 ms

In Experiment 2, we shortened the memory array presentation
time from 1,200 to 300 ms.We reasoned that 1,200 ms is a relatively
long encoding interval that might encourage verbal encoding
(Ramaty & Luria, 2018). Note that previous research indicated
that 300 ms is ample time to encode simple objects (Alvarez &
Cavanagh, 2004; Lin & Luck, 2012; Luria et al., 2010; Vogel
et al., 2001; Zhang & Luck, 2008), but the role of the encoding
period on the feature’s dependency is still unknown. Thus, the
goal of Experiment 2 was to investigate whether shortening the
memory array interval would eliminate the dependency between
the features.

Materials and Method

The design of Experiment 2 was similar to Experiment 1, but the
memory array was presented for 300 ms instead of 1,200 ms.

RAMATY AND LURIA4

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

A
ll
ri
gh
ts
,i
nc
lu
di
ng

fo
r
te
xt

an
d
da
ta
m
in
in
g,

A
I
tr
ai
ni
ng
,a
nd

si
m
ila
r
te
ch
no
lo
gi
es
,a
re

re
se
rv
ed
.



Participants

Sixteen naive participants (nine women, seven men) aged 20–35
from Tel Aviv University participated in Experiment 2. All had nor-
mal or corrected-to-normal vision and normal color vision. Power
analysis and compensation were identical to Experiment 1.

Results and Discussion

Histograms displaying the degree of accuracy distributions for
color and shape are shown in Figure 3A and 3B, respectively.
Plots of the average area under the curve for each feature of the

five quantiles are shown in Figure 3E. A repeated measure
ANOVA with the Quintiles as the independent variable yielded
significant main effects of Quantile for both features; color:
F(4, 60)= 35.65, ηp

2= .7, MSE= 0.009, p, .001; and shape:
F(4, 60)= 51.14, ηp

2= .77, MSE= 0.005, p, .001. Planned com-
parisons showed significant linear trends for color: F(1, 15)=
208.14, ηp

2= .9328, MSE= 0.005771, p, .001; and for shape:
F(1, 15)= 153.11, ηp

2= .91, MSE= 0.01, p, .001. The slope
for color was −0.43, and it was statistically significant from zero,
t(15)=−14.42, p, .001, and the slope for shape was −0.41,
and it was statistically significant from zero, t(15)=−12.37,
p, .001.

Figure 2
Color and Orientation Accuracy and Dependency Analysis in Experiment 1

Note. (A–B) Histograms displaying error frequencies for color (A) and orientation (B). (C) Bar plot showing
the AUC for color and orientation dependency, with color dependency in red and orientation dependency in
blue. The value at the top right of each bar represents the circular AUC. (D) Cumulative response curves for
color (red [dark gray] bars) and orientation (blue [light gray] bars), depicting response accuracy over increasing
offset bins. (E) Mean dependency of the nonreported feature, separated by accuracy quantiles of the reported
feature (i.e., feature dependency as a function of response precision). Error bars represent +1 standard error
of the mean. AUC= area under the curve. See the online article for the color version of this figure.
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The results of Experiment 2 still revealed a strong dependency
between color and shape, similar to the findings of Experiment 1.
Thus, shortening the encoding time from 1200 to 300 ms did not
affect the dependency between the features.

Experiment 3: Presenting Three Random Polygons
for 1,200 ms

Previous research has shown lower behavioral performance when
using unfamiliar and complex objects such as random polygons

(e.g., Alvarez & Cavanagh, 2004; Gao et al., 2009; Luria et al.,
2010). However, it is not clear whether unfamiliar stimuli would
show a dependency with a familiar feature (color). In Experiment
3, we decided to use random polygons, which previous research
has demonstrated is above the average WM capacity (Alvarez &
Cavanagh, 2004; Luria et al., 2010). Thus, in Experiment 3, we pre-
sented colored random polygons with a continuous report method
for both features, to further investigate whether the color feature
and an unfamiliar shape will be maintained in WM as dependent
or independent features. Note that there were only 30 values for

Figure 3
Color and Orientation Accuracy and Dependency Analysis in Experiment 2

Note. (A–B) Histograms displaying error frequencies for color (A) and orientation (B). (C) Bar plot showing the
AUC for color and orientation dependency, with color dependency in red and orientation dependency in blue. The
value at the top right of each bar represents the circular AUC. (D) Cumulative response curves for color (red [dark
gray] bars) and orientation (blue [light gray] bars), depicting response accuracy over increasing offset bins. (E) Mean
dependency of the nonreported feature, separated by accuracy quantiles of the reported feature (i.e., feature depend-
ency as a function of response precision). Error bars represent+1 standard error of the mean. AUC= area under the
curve. See the online article for the color version of this figure.
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the polygon’s circular response (see Figure 4) because of space lim-
itations, we generated 30 morphologically distinct polygon shapes,
evenly spaced along a circular morph continuum.

Materials and Method

The main differences from previous experiments were the use
of unfamiliar stimuli (random polygons) and the reduction in set
size to three items. Each polygon was selected from a continuous
set of 30 unique shapes. The memory array was presented for
1,200 ms.

Participants

Sixteen naive participants (11 women, five men), aged 20–35,
from Tel Aviv University participated. Power analysis, inclusion cri-
teria, and compensation were the same as in Experiment 1. The data
for this experiment were collected in 2019.

Transparency and Openness

Data analysis of each experiment used the circ_r matlab functions
developed by Berens (2009). All data, analysis code, and research

Figure 4
Color and Orientation Accuracy and Dependency Analysis in Experiment 3

Note. (A–B) Histograms displaying error frequencies for color (A) and orientation (B). (C) Bar plot showing the
AUC for color and orientation dependency, with color dependency in red and orientation dependency in blue. The
value at the top right of each bar represents the circular AUC. (D) Cumulative response curves for color (red [dark
gray] bars) and orientation (blue [light gray] bars), depicting response accuracy over increasing offset bins. (E)
Mean dependency of the nonreported feature, separated by accuracy quantiles of the reported feature (i.e., feature
dependency as a function of response precision). Error bars represent+1 standard error of the mean. AUC= area
under the curve. See the online article for the color version of this figure.
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materials are available at https://osf.io/u7yqg/. We report how we
determined our sample size, all data exclusions (if any), all manipu-
lations, and all measures in the study. This study’s design and its
analysis were not preregistered.

Stimuli

Participants were asked to remember the color and the shape of
three random polygons that were positioned randomly on the screen
(and sufficiently away from each other, with at least 84° between the
chosen shape of the polygons). The colors were chosen from a set of
720 equally luminant colors in the international commission on illu-
mination L*a*b* color space (centered at L= 54, a= 18, b=−8,
with a radius of 59), such that they were distinct enough from one
another.
In this experiment, polygon shapes were selected from a circular

morphwheel consisting of 30 (or 20 in Experiment 5) smoothly tran-
sitioning polygons. The morphing continuum forms a circular fea-
ture space in which both shape and orientation change gradually
along the wheel. On each trial, three polygons were randomly sam-
pled with the constraint that any two shapes were separated by at
least seven steps along the wheel. Since the full wheel spans 360°,
this corresponds to a minimum angular separation of approximately
84°, ensuring that the selected shapes remained perceptually distinct.
The polygons were selected from a circular morphing continuum of

30 (or 20 in Experiment 5) smoothly transitioning polygon shapes.
This morph wheel represents a circular feature space in which both
shape and orientation gradually change along the wheel. Although
the polygons themselves were not explicitly rotated, the morphing
process included changes in both shape and orientation, and the use
of the circular wheel ensured variability in presentation.

Trial Procedure

A trial began with 1,000 ms fixation, then 1,200 ms presentation
of the memory stimulus of three random polygons with randomly
chosen colors and shape, followed by a 900 ms retention interval
which included only a white fixation dot in the middle of the screen,
then a filled white circle appeared at the probed polygon’s location,
and hollow circle appeared at nonprobed location. Participants were
asked to report the color and shape (at a random order) of the filled
circle. For color reports, a color wheel (7° radius, centered on fixa-
tion) made of 720 equally luminant colors was presented in the mid-
dle of the screen, and the participants were asked to click with the
mouse along the color wheel at the exact color they think was pre-
sented earlier on that cued location. After this report, participants
were given feedback on how accurate their response was. The
color feedback was a circle which was presented for 600 ms at the
cued location and consisted of an inner circle of the true color,
and an outer circle of their chosen color. That way, participants
could briefly see how exact their response was. For polygon reports,
a polygon wheel made of 30 continuous black polygons was pre-
sented in the middle of the screen. Participants were asked to click
with the mouse along the response wheel where they think was the
exact polygon they saw earlier. The polygon feedback was presented
for 600 ms and showed the polygon wheel, in which all of the poly-
gons were in black color, except the true polygon that was in white
color, and the chosen polygon that was shown in broken white color.
Responses were unspeeded. Each participant completed 540 trials.

Results and Discussion

Histograms displaying the degree of accuracy distributions for color
and shape are shown in Figure 4A and 4B, respectively. Plots of the
average area under the curve for each feature are shown in
Figure 4E. AnANOVAwith thewithin variable. Quintiles yielded sig-
nificant main effects for both features; color: F(4, 60)= 28.74,
ηp
2= .66, MSE= 0.005, p, .001; and shape: F(4, 60)= 22.62,
ηp
2= 0.6, MSE= 0.005, p, .001. Planned comparisons showed sig-
nificant linear trends for color: F(1, 15)= 42.30, ηp

2= .74, MSE=
0.013, p, .001; and for shape: F(1, 15)= 41.29, ηp

2= .73, MSE=
0.01, p, .001. The slope for color was−0.29, and it was statistically
significant from zero, t(15)=−6.50, p, .001, and the slope for
shape was −0.27, and it was statistically significant from zero,
t(15)=−6.43, p, .001.

The results of Experiment 3 revealed a dependency between a color
and an unfamiliar shape feature. This is particularly noteworthy since
we presented three polygons that exceeded the average WM capacity,
and the continuous response included only 30 options. Experiment 3
used a relatively long encoding interval of 1,200 ms, and it might be
the case that the results observed in this experiment depend on this
long encoding interval. Thus, the goal of Experiment 4 was to test fea-
ture dependency when using novel stimuli but when presenting the
polygons for only 300 ms (Alvarez & Cavanagh, 2004; Luria et al.,
2010).

In Experiment 4, we presented the polygons for only 300 ms (rel-
ative to 1,200 ms) to further investigate if, under these conditions,
we could still find evidence for independence between the features.

Experiment 4: Presenting Three Random Polygons
for 300 ms

In this experiment, we investigated whether reducing the encod-
ing time to 300 ms affected feature dependency for colored poly-
gons. In Experiment 4, we presented the three random colored
polygons for 300 ms instead of 1,200 ms. If encoding the stimuli
as coherent objects takes time, we might be able to find evidence
for independence when restricting the encoding interval for above-
capacity unfamiliar set of stimuli.

Materials and Method

The design of Experiment 4 was similar to Experiment 3, but the
memory array was presented for 300 ms instead of 1,200 ms.

Participants

Sixteen naive participants (10 women, six men), aged 20–35,
from Tel Aviv University participated. Power analysis, inclusion cri-
teria, and compensation were the same as in Experiment 1. The data
for this experiment were collected in 2019.

Results and Discussion

Histograms displaying the degree of accuracy distributions for color
and shape are shown in Figure 5A and 5B, respectively. Plots of the
average area under the curve for each feature of the five quantiles
are shown in Figure 5E. A repeated measure ANOVAwith the factor.
Quintiles yielded significant effect in both color: F(4, 60)= 14.46,
ηp
2= .49, MSE= 0.004, p, .001; and shape: F(4, 60)= 13.34,
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ηp
2= .47,MSE= 0.006, p, .001. Planned comparisons showed sig-
nificant linear trends for color: F(1, 15)= 34.01, ηp

2= .69, MSE=
0.01, p, .001; and for shape: F(1, 15)= 30.01, ηp

2= .67, MSE=
0.01, p, .001. The slope for color was−0.19, and it was statistically
significant from zero, t(15)=−5.83, p, .001, and the slope for
shape was −0.21, and it was statistically significant from zero,
t(15)=−5.48, p, .001.
Experiment 4 replicated the dependency between the unfamiliar

and familiar features even for above-capacity arrays were presented
for only 300 ms.

Experiment 5: Presenting Three Random Polygons With
Concurrent Response for 1,200 ms

In a recent study, Sone et al. (2021) demonstrated that the sequen-
tial response procedure used in the present study (and also by previ-
ous studies, e.g, Fougnie & Alvarez, 2011) decreased the apparent
dependency between the object’s features. Sone et al. used a simul-
taneous response procedure allowing a single response to both
features and demonstrated increased feature dependency relative to
the sequential response procedure. They argued that this novel

Figure 5
Color and Orientation Accuracy and Dependency Analysis in Experiment 4

Note. (A–B) Histograms displaying error frequencies for color (A) and orientation (B). (C) Bar plot showing the
AUC for color and orientation dependency, with color dependency in red and orientation dependency in blue. The
value at the top right of each bar represents the circular AUC. (D) Cumulative response curves for color (red [dark
gray] bars) and orientation (blue [light gray] bars), depicting response accuracy over increasing offset bins. (E)
Mean dependency of the nonreported feature, separated by accuracy quantiles of the reported feature (i.e., feature
dependency as a function of response precision). Error bars represent+1 standard error of the mean. AUC= area
under the curve. See the online article for the color version of this figure.

OBJECTS AND FEATURES IN VISUALWORKING MEMORY 9

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

A
ll
ri
gh
ts
,i
nc
lu
di
ng

fo
r
te
xt

an
d
da
ta
m
in
in
g,

A
I
tr
ai
ni
ng
,a
nd

si
m
ila
r
te
ch
no
lo
gi
es
,a
re

re
se
rv
ed
.



procedure can minimize the interference that the first response may
cause on the second response. Importantly, Sone et al. only investi-
gated simple stimuli (colored triangles), and the goal of our next
experiment was to test whether this simultaneous procedure (see
Figure 6) would affect the dependency of unfamiliar stimuli such
as random polygons.

Materials and Method

Same as Experiment 3, with the following differences: responses
were made simultaneously for both features using a single mouse
movement and click. A polygon-color wheel was shown at the
probed item’s location, allowing selection of both features in one
action. The polygon wheel contained 20 options (reduced from 30
due to layout constraints).

Participants

Sixteen naive participants (11 women, five men), aged 20–35,
from Tel Aviv University participated. Power analysis, inclusion cri-
teria, and compensation were the same as in Experiment 1. The data
for this experiment were collected during 2021.

Trial Procedure

A trial began with 1,000 ms fixation, then 1,200 ms presentation
of the memory stimulus of three random polygons with randomly
chosen colors and shape, followed by a 900 ms retention interval
which included only a white fixation dot in the middle of the screen,
then a polygon wheel and inside a filled color wheel circle appeared
at the probed polygon’s location, and dot appeared at the upper left
corner of the screen. The polygon wheel was made of 20 continuous
black polygons, and inside it was a color wheel (7° radius, centered
on fixation) made of 720 equally luminant colors. The reduction in
the number of polygons in the polygon wheel from 30 in previous
experiments to 20 in this experiment was due to a change in the
experimental setup. In this experiment, the polygon wheel was not
centered in the middle of the screen but instead moved across
the screen, as its center aligned with the selected polygon. This
adjustment was necessary due to the simultaneous response proce-
dure. This means that the polygon wheel needed to be adjusted to
fit the size of the screen. Consequently, the size of the polygon
wheel was smaller, resulting in fewer polygons being included.
Participants were asked to report both color and shape of the polygon
by adjusting a black line. Using the black line, they can point at a
single polygon and “jump” from one polygon to another. While

moving the mouse along the line’s length, they can see the color
change, and to better view the changed color a dot appeared at the
upper left corner of the screen and changed its color according to
the movement of the mouse along the line’s length. The participants
were asked to click with the mouse along the black line at the exact
color they think was presented earlier on that cued location, and
point the black line to the exact polygon they think was presented
earlier on that cued location—meaning both color and shape were
reported at a single response. After this report, participants were
given feedback on how accurate their response was. The feedback
was the original polygon with the original color, which was pre-
sented for 1,000 ms at the cued location. That way, participants
could briefly see how exact their response was. Responses were
unspeeded. Each participant completed 540 trials.

Results and Discussion

Histograms displaying the degree of accuracy distributions for color
and shape are shown in Figure 7A and 7B, respectively. Plots of the
average area under the curve for each feature of the five quantiles
are shown in Figure 7E. A repeated measure ANOVAwith the factor.
Quintiles yielded significant effect in both color: F(4, 60)= 32.42,
ηp
2= .68, MSE= 0.007, p, .001; and shape: F(4, 60)= 19.02,
ηp
2= .56, MSE= 0.008, p, .001, analyses. Linear contrast for
color: F(1, 15)= 75.55, ηp

2= .83, MSE= 0.01, p, .001; and
for shape: F(1, 15)= 36.21, ηp

2= .71, MSE= 0.02, p, .001. The
slope for color is −0.36, and it was statistically significant from
zero, t(15)=−8.70, p, .001, and the slope for shape was −0.31,
and it was statistically significant from zero, t(15)=−6.02, p, .001.

The results of Experiment 5 indicated a between-feature depend-
ency for polygons and color features using a single response, corrob-
orating the results for Sone et al. (2021) also for polygon stimuli,
which had much less circular values. Overall, we replicated the find-
ing of feature dependency across various sets of conditions and stim-
uli. The motivation for Experiment 5 was to extend the investigation
of feature dependency by presenting complex stimuli and a single
response. Previous experiments (Sone et al., 2021) only used simple
stimuli with the single response design, while the current experiment
investigated feature dependency with complex stimuli, overloading
WM capacity limit.

Response Order Analysis (Experiments 1–4)

To examine whether the order in which participants reported the two
features influencedmemory precision,we conducted a post hoc analysis
across the four sequential-report experiments (Experiments 1–4).

Figure 6
Trial Timeline for Experiment 5

Note. See the online article for the color version of this figure.
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For each feature—color and orientation/shape—we computed the circu-
lar concentration (MRVL, circ_r) separately for trials in which the fea-
ture was reported first and trials in which it was reported second. This
analysis tested the hypothesis that sequential reporting may introduce
interference, particularly degrading the memory quality of the
second-reported feature.
Across all four experiments, we observed a consistent pattern:

memory precision was generally higher when a feature was reported
first compared to when it was reported second. Paired-sample t tests
confirmed this pattern statistically. In Experiment 1 (triangles,

1,200 ms), color was significantly better remembered when reported
second, t(15)=−4.27, p= .0007, and orientation was better
remembered when reported first, t(15)=−4.74, p= .0003.
In Experiment 2 (triangles, 300 ms), color was again better remem-
bered when reported second, t(15)=−3.31, p= .0047, and orienta-
tion when reported first, t(15)=−5.12, p= .0001. In Experiment 3
(polygons, two responses, 1,200 ms), the same pattern held: color
was better remembered when reported second, t(15)=−2.47,
p= .0259, and orientation when reported first, t(15)=−2.53,
p= .0229. In Experiment 4 (polygons, two responses, 300 ms),

Figure 7
Color and Orientation Accuracy and Dependency Analysis in Experiment 5

Note. (A–B) Histograms displaying error frequencies for color (A) and orientation (B). (C) Bar plot showing the
AUC for color and orientation dependency, with color dependency in red and orientation dependency in blue. The
value at the top right of each bar represents the circular AUC. (D) Cumulative response curves for color (red [dark
gray] bars) and orientation (blue [light gray] bars), depicting response accuracy over increasing offset bins. (E)
Mean dependency of the nonreported feature, separated by accuracy quantiles of the reported feature (i.e., feature
dependency as a function of response precision). Error bars represent+1 standard error of the mean. AUC= area
under the curve. See the online article for the color version of this figure.
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the effect directions were consistent, although the differences did not
reach significance: t(15)=−2.07, p= .0559 for color, and t(15)=
−1.79, p= .0937 for orientation.
These findings suggest that sequential responding imposes mea-

surable interference on visual WM, selectively impairing the feature
that is reported second. This result complements prior evidence (e.g.,
Sone et al., 2021) and supports the rationale for using simultaneous
report procedures, such as the one implemented in Experiment 5, to
minimize such interference and more faithfully assess feature
dependency (Table 1).

General Discussion

The goal of this study was to investigate whether features are rep-
resented in memory in an “object-based” or “feature-based” model.
To address this question, we performed five different experiments,
using different stimuli (simple as triangles or complex as polygons),
manipulated the encoding duration (1,200 ms vs. 300 ms), and
manipulated the response procedure (responding to both features
sequentially vs. simultaneously). As opposed to previous studies,
we analyzed all the data and extracted a plot for each feature, divided
into five quantiles accordingly.
Across all experiments and conditions, we consistently found

strong evidence for dependency between object features. First, we rep-
licated the design used by Fougnie and Alvarez (2011), applying the
AUC slope analysis developed by Sone et al. (2021), and found evi-
dence for dependency between color and shape. We then shortened
the encoding interval from 1,200 to 300 ms but still observed evi-
dence of dependency. We then used unfamiliar stimuli (random poly-
gons) and found a dependency between the polygon’s shape and its
color, across short and long encoding intervals. This result is interest-
ing because in these experiments, we presented a memory array
that included an above-capacity number of stimuli, which should
severely limit performance. Yet, this did not disturb the feature’s
dependency.
The current investigation adds important findings to the ongoing

debate regarding whether visual working memory stores object fea-
tures as integrated units or as independent components. While Sone
et al. (2021) introduced a powerful framework to study this question,
other recent findings remained mixed (e.g., Liu et al., 2022; Markov
et al., 2021). The importance of the present findings is that we used a
powerful AUC slope analysis and tested the competing theories
using several nontrivial conditions. By extending the analysis to
unfamiliar stimuli, above-capacity set sizes, and shorter encoding
durations, our study provides converging evidence for object-based
representations and advances the current debate. For example, the
findings from Experiment 4, which presented three polygons for
only 300 ms and still found strong evidence for dependency, go

beyond our current knowledge. Note that this experiment used
novel stimuli, with a set size that exceeded WM capacity and encod-
ing interval that was not sufficient to encode all the items.

The current study corroborated the findings by Sone et al. (2021),
extending their results to other conditions and stimuli. This is in con-
trast to other research that failed to find evidence for within-object
feature dependency (Fougnie & Alvarez, 2011; Markov et al.,
2021; Utochkin & Brady, 2020). One possible reason for this dis-
crepancy lies in methodological differences. Our use of full-data
analysis, rather than relying only on a subset of “guess” trials,
may have allowed us to better capture the structure of memory rep-
resentations. Importantly, a null effect in feature dependency does
not provide affirmative evidence for independence—it may instead
reflect limitations in sensitivity or analysis.

It is also important to note that object-based models do not argue
that all of the object’s features are mandatorily encoded. For exam-
ple, when color is the task-relevant feature, it is possible to encode it
without the stimulus shape, even when presenting different shapes
(Luria et al., 2010). This is important because several previous stud-
ies evaluated feature dependency without verifying that all of the
objects’ features were indeed encoded.

While the current work revealed strong evidence for feature
dependency, the observed correlations were not perfect. There are
several possible mechanisms that might be responsible for observing
imperfect correlation between the object’s features. It is plausible
that object dependency is a continuum, rather than being all-or-none
(Ngiam, 2024). However, the exact processes responsible for finding
only partial dependency between two features are not clear. Another
possible mechanism is that feature dependency is all-or-none, but the
percentage of fully dependent and fully independent objects varies
across the experimental situations. Another possibility is that the
object’s features are independently bound to the same spatial loca-
tion, and the imperfect feature–feature dependency is mediated by
two separate feature-to-location dependencies. Note, however, that
this last possibility was directly tested and ruled out by Sone et al.
(2021, Experiment 3).

We argue that the current set of results could be explained either
by an all-or-none mechanism in which in most trials, the features
are completely dependent, and in the minority of trials, the features
are completely independent or by some weak object mechanism,
suggesting that the features are remembered as dependent but
could be forgotten independently (Ngiam, 2024). This account
could naturally explain why analyzing the results according to
Fougnie and Alvarez (2011) reveals a small proportion of trials
that demonstrate a memory trace only in one of the object’s features
(see the current online supplemental materials). Note that while
there are many alternatives as to how the features are dependent,
the independent account makes the clear prediction that the

Table 1
Mean Memory Performance (Circular Concentration) Values for Each Feature by Report
Order, Across Experiments 1–4

Experiment Color Orie Color first Orie second Color second Orie first

Five triangles, 1,200 ms 0.43 0.45 0.37 0.41 0.5 0.49
Five triangles, 300 ms 0.37 0.41 0.33 0.37 0.41 0.46
Three polygons, 1,200 ms 0.62 0.34 0.6 0.32 0.64 0.36
Three polygons, 300 ms 0.64 0.31 0.62 0.3 0.66 0.33

Note. Orie= orientation.
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memory trace for one feature should not be correlated with the
memory trace of the other feature. Thus, evidence that the features
are represented hierarchically (e.g., Utochkin & Brady, 2020) sup-
ports the dependent account, as it allows predicting memory of one
feature based on memory of the other feature.
The results from the response order analysis (Experiments 1–4)

further supported the notion that sequential reporting introduces
interference, selectively reducing precision for the second-reported
feature. This reinforces the rationale for using simultaneous report
procedures, as implemented in Experiment 5.
A related issue is the distinction between investigating memory

processes and investigating forgetting processes. Several previous
studies investigated whether forgetting is a dependent process,
but then concluded how these objects were represented in memory
(e.g., Balaban et al., 2019; Fougnie & Alvarez, 2011; Markov et al.,
2021; Utochkin & Brady, 2020). We argue that the finding that
forgetting is feature-dependent supports that the features were
also remembered in a dependent manner; however, the reverse con-
clusion is valid only if similar processes support both forgetting
and remembering, which is still an open question. One of the
advantages of the current paradigm is that we analyzed all
responses, thus relying on remembering processes and not only
forgetting.
Another potential advantage of the current paradigm is that the

slope between the quintile performance of the two features indi-
cates the dependency strength between these features, such that a
steeper slope suggests a stronger feature dependency. While the
current sample size was chosen to detect an effect, future research
can use the current methodology and investigate the factors that
affect the features’ dependency strength. For example, numerically
we observed a decrease in the dependency strength when present-
ing three colored polygons for only 300 ms, but this observation
should be verified with an adequate sample size, preferably in
the within-study design.
Evidence for object-based representations corroborates many

findings regarding object-based attention (Baldauf & Desimone,
2014; Chen, 2012; Gao et al., 2017). However, findings that support
object-based representations do not rule out that the object’s features
are also represented, perhaps at earlier processing stages (Ester et al.,
2013), as it only undermines arguments that found evidence for fea-
ture representations and then concluded that this is the only possible
representation, such that these features don’t ever integrate, even at a
later level of the processing stream.
To conclude, using a novel analysis method, the current work pro-

vides strong evidence for feature dependency under various condi-
tions, supporting object-based representations in visual WM.
These findings demonstrate that features such as color, shape, and
orientation are not stored independently but are bound together
within the same memory representation. This evidence highlights
the integral role of feature dependency in shaping how visual WM
organizes and maintains information.
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