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THEORETICAL NOTE

Value Certainty in Drift-Diffusion Models of Preferential Choice

Douglas G. Lee1, 2 and Marius Usher3
1 Division of the Humanities and Social Sciences, California Institute of Technology

2 National Research Council of Italy, Institute of Cognitive Sciences and Technologies
3 School of Psychological Sciences & Sagol School of Neuroscience, Tel Aviv University

The drift-diffusion model (DDM) is widely used and broadly accepted for its ability to account for binary
choices (in both the perceptual and preferential domains) and response times (RT), as a function of the
stimulus or the choice alternative (or option) values. The DDM is built on an evidence accumulation-to-
bound concept, where, in the value domain, a decision maker repeatedly samples the mental representations
of the values of the available options until satisfied that there is enough evidence (or support) in favor of one
option over the other. As the signals that drive the evidence are derived from value estimates that are not
known with certainty, repeated sequential samples are necessary to average out noise. The classic DDM
does not allow for different options to have different levels of precision in their value representations.
However, recent studies have shown that decision makers often report levels of certainty regarding value
estimates that vary across choice options. There is therefore a need to extend the DDM to include an option-
specific value certainty component. We present several such DDM extensions and validate them against
empirical data from four previous studies. The data support best a DDM version in which the drift of the
accumulation is based on a sort of signal-to-noise ratio of value for each option (rather than a mere
accumulation of samples from the corresponding value distributions). This DDM variant accounts for the
impact of value certainty on both choice consistency and RT present in the empirical data.
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The drift-diffusion model (DDM; Bogacz et al., 2006; Glickman &
Usher, 2019; Gold & Shadlen, 2007; Ratcliff, 1978; Ratcliff &
McKoon, 2008; Ratcliff & Rouder, 1998; Stine et al., 2020) is
ubiquitous in the contemporary literature on decision-making,
including research spanning the fields of psychology, neuroscience,
economics, and consumer behavior. The DDM is a parsimonious
mechanism that explains normative decisions by averaging out noise
in value comparisons (e.g., stochastic fluctuations in value signals
that may result from variability in the firing of neural populations,
from variability in attention or in memory retrieval of the values

associated with the choice alternatives, or from variability intrinsic in
the environmentwhen the alternatives are characterized byfluctuating
or stochastic values; e.g., Hertwig et al., 2004; Glickman &Usher,
2019). This DDMmechanism implements an optimal stopping rule
(optimizing response time [RT] for a specified accuracy; Bogacz
et al, 2006; Gold & Shadlen, 2007; Wald, 1945). Moreover, this
model accounts well for the dependency of the RT distribution on
the values (or stimulus strength) of the choice options (Ratcliff &
McKoon, 2008; Ratcliff & Rouder, 1998), and for the speed–
accuracy tradeoff—the often-observed phenomenon that decision
makers are able to improve their choice accuracy by taking longer
to decide (on average; Wickelgren, 1977)—which is explained by an
expansion of the DDM response boundaries.

While initially used in the domain of perceptual (Ratcliff & Rouder,
1998) or memory-based decisions (Ratcliff, 1978), the DDM core
principles of sequential sampling and integration to boundary have since
become a central component of models of preference-based decisions
(Basten et al, 2010; Busemeyer & Diederich, 2002; Busemeyer et al.,
2019; Busemeyer & Townsend, 1993; Fudenberg et al., 2018; Krajbich
et al., 2010; Milosavljevic et al, 2010; Philiastides & Ratcliff, 2013;
Polanía et al., 2015; Roe et al., 2001; Tajima et al., 2016; Turner et al.,
2018; Usher & McClelland, 2004). For example, in the Decision Field
Theory (DFT)model (Busemeyer &Diederich, 2002; Busemeyer et al.,
2019; Busemeyer & Townsend, 1993; Roe et al., 2001)—one of the
first models that applied sequential sampling principles to prefer-
ential choice—it is assumed that variability in the value integration
corresponds to fluctuations of attention between the relevant attri-
butes (or outcomes) that characterize the alternatives. In a more
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recent application of the DDM to preferential choice, the drift rate is
assumed to be modulated by visual attention across the alternatives
(accordingly, this model was labeled the attentional drift-diffusion
model or aDDM), which explains why people tend to choose more
often the alternatives that they look at longer (Krajbich et al., 2010). In
two more recent studies (Fudenberg et al., 2018; Tajima et al; 2016),
the authors carried out normative analyses of the optimal decision
policy in preferential choice. Both of these studies were based on
principles of Bayesian updating of value estimates and optimal
stopping policies, given the cost of accumulating evidence. Tajima
et al. (2016) converged on the conclusion that “similar to perceptual
decisions, drift diffusion models implement the optimal strategy for
value-based decisions.”An important assumption for the derivation of
this optimal policy is that “the value of each option is represented by a
probability distribution whose mean is the true (subjective) value of
the option, and whose variance corresponds to sampling noise or
uncertainty about the true value.” This noise could be interpreted as
imprecision in the value representations themselves. Similarly, the
model of Fudenberg et al. (2018) includes a common variance term
meant to represent the uncertainty about the option value estimates
(prior to accumulating evidence, which is reduced as more evidence is
accumulated). Thus, the momentary signal about the relative value of
the options (the so-called evidence for one option over the other)
fluctuates randomly around a fixed value (the so-called drift rate,
which corresponds to the difference in the means of the two value
distributions). In order to average out this noise, the values of the
alternatives are repeatedly sampled (possibly from memory; Bakkour
et al, 2019; Shadlen & Shohamy, 2016) and accumulated over time
until a sufficient amount of evidence has been acquired to allow for a
choice to be made. Accordingly, the DDM includes response bound-
aries for each option (typically symmetric) that trigger a choice once
reached by the evidence accumulator. Thus, the fundamental com-
ponents of the drift-diffusion process are the drift rate (proportional to
the difference in the option values), the diffusion coefficient (the
degree of stochasticity of the system), and the choice boundaries (the
threshold of minimum required evidence for a given level of caution,
which controls the speed–accuracy tradeoff; see Figure 1).1

The classic DDM implicitly assumes that processing (or sam-
pling) noise is independent of the identity of the options contained in
a particular choice set. That is to say, the sampling noise in the DDM
is not option specific; most of the DDM applications to preference-
based decisions have assumed no option-specific noise (but see
Ratcliff et al., 2018; Teodorescu et al., 2016, for DDM variants in
which the noise increases with task difficulty; and Ratcliff &
McKoon, 2018, for an application of option-specific variability
in decisions about numerosity). However, the brain is known to
encode not only the subjective value of options, but also the
subjective certainty about the value (Lebreton et al., 2015). Efficient
coding principles also suggest that the values of options will be
represented with greater precision when those options are encoun-
tered more frequently (Heng et al., 2020). It is thus reasonable to
suggest that the representations of value that the brain uses to inform
the decision process vary (Tajima et al., 2016), and that the degree
of imprecision (or uncertainty) is not the same for all choice options.
Indeed, it has been shown that decision makers hold highly variable
beliefs about the certainty of their value estimates for different
options, and that those beliefs are relatively stable within individuals
(Gwinn &Krajbich, 2020; Lee & Coricelli, 2020; Lee &Daunizeau,
2020, 2021; Polanía et al., 2019). It has further been shown that the

variability in value (un)certainty has a clear and systematic impact
on both choice and RT (Lee & Coricelli, 2020; Lee & Daunizeau,
2020, 2021). Specifically, the judged value certainty, C, correlates
positively with choice consistency (the equivalent of choice accu-
racy for preferential choice) and negatively with RT (see Figure 2).2

Furthermore, the difference in certainty (in favor of the higher-
valued alternative), dC, is also associated with higher choice
consistency and faster RT (see Figure 2). This provides a qualitative
benchmark that any DDM variant that includes option-specific
certainty should be able to account for. To summarize these previous
findings, we pooled the data from four studies (n = 191) in which
participants made choices between food items after having had rated
their subjective value of the items and their certainty about their
ratings. We then conducted mixed-model regression analyses:
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Figure 1
An Illustration of the Classic DDM

Note. Evidence accumulates across time, following a fixed drift trajectory
(black dashed arrow, whose slope corresponds to the value difference of the
choice options multiplied by a scalar coefficient), corrupted by white
processing or sampling noise. Here, the accumulated evidence reaches the
upper boundary after 3.9 s, and a choice for Option 1 is recorded.
DDM = drift-diffusion model. See the online article for the color version
of this figure.

1 According to Tajima et al. (2016) and Fudenberg et al. (2018), the
optimal policy requires a collapsing rather than fixed boundary. The collapse
of the boundary results, however, from auxiliary assumptions about the cost
of deliberation time to the decision maker. Since these assumptions can be
debated, and since there is an intensive debate on whether experimental data
best support DDM with fixed or collapsing boundaries (Evans et al., 2020;
Hawkins et al., 2015; Palestro et al., 2018), we consider both cases in this
study. We will start with the simple fixed boundary DDM, which is the most
prominent version in the literature, and we will then show that our conclu-
sions are unchanged for the collapsing boundary variant (see Figure S1 in the
Supplemental Material).

2 As shown in Figure 2, we regressed the various measures of certainty on
log(RT) rather than on RT. This is because whereas the RT variable is not
normally distributed (it has a relatively long right tail), the transformed
log(RT) variable is normally distributed and is thus better suited for statistical
testing (see Glöckner & Betsch, 2008). Our conclusions hold if we use RT
(without the log-transformation).
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Logistic for consistency, linear for log(RT). The random-effects
variables were the different studies and individual participants, and
the fixed-effects variables were dV, C, and dC (see Figure 2).
We focused here on the effects of dV, C, and dC—the former is
expected in any DDM, while the latter two are challenges that we
aim to account for. The actual data also show an effect of the overall
value (V = V1 + V2) on RT (see Figure S5 in the Supplemental
Material). Such dependence is usually not obtained in DDM-type
models, and since our focus here is on effects of value certainty, we
defer this to the Discussion section; as shown in the Supplemental
Material, the DDM extension that we propose does account for this
additional overall value effect.
A natural way in which one could introduce option-specific noise

in the preferential DDM, consistent with the assumptions of the
optimal policy model (Fudenberg et al, 2018; Tajima et al, 2016),
would be to assume that the diffusion noise parameter increases with
value uncertainty. This is because alternatives whose values are less
certain will have greater variance in their representations, from
which the evidence samples are drawn. However, on its own, this
would lead to the wrong qualitative predictions with regard to the
RT × Certainty benchmark. Specifically, under such a model,

diffusion noise would decrease as certainty increases, resulting in
longer RT. Thus, unlike what we see in experimental data, such a
model would predict that people would decide more quickly when
they were less certain of the options’ values (all else equal).
Moreover, this prediction is not specific to the classic DDM, but
applies to the broader class of evidence accumulation-to-bound
models (e.g., independent accumulators: Brown & Heathcote,
2008; Vickers, 1970; leaky competing accumulator or LCA:
Usher & McClelland, 2001), which also predict that higher noise
in the system will result in faster responses, in direct contrast to the
empirical data.3 An alternative way to include option-specific
uncertainty in the DDM could be to assume that the response
boundary increases with value uncertainty (while keeping the
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Figure 2
Impact of Value Certainty on Choice

Note. Previous experimental results (pooled across four studies, n= 191) demonstrate the relationships between value difference (dV=V1−V2),
value certainty (C = C1 + C2), and certainty difference (dC = C1 − C2) with choice consistency and log(RT). We define V1(V2) as the higher
(lower) value rating, and C1(C2) as the certainty report for the option with the higher (lower) value rating. The upper panels show the fixed-effects
coefficients frommixed-effect logistic regression on choice consistency (left) and the isolated relationships between C and Consistency (center) and
between dC and Consistency (right). The lower panels show the fixed-effects coefficients from mixed-effect linear regression on log(RT) (left) and
the isolated relationships between C and log(RT) (center) and between dC and log(RT) (right). Error bars represent standard errors. The data were
binned by within-participant quantiles of C and of dC in the center and right plots, respectively. (data from Gwinn & Krajbich, 2020; Lee &
Coricelli, 2020; Lee & Daunizeau, 2020, 2021). See the online article for the color version of this figure.
Significance stars represent *** p < .001. ** p < .01. * p < .05 (one-sided t tests).

3 In the linear ballistic accumulator (LBA) model (Brown & Heathcote,
2008)—the within-trial noise is replaced by between-trial noise in the
starting point and drift rate (in the DDM, such between-trial variability is
sometimes introduced in addition to the within-trial noise; Ratcliff &
McKoon, 2008). Increasing those components with option-uncertainty,
however, would have a similar effect as increasing the within-trial diffu-
sion noise in the DDM (i.e., faster responses and reduced accuracy; see the
Supplemental Material).

VALUE CERTAINTY IN DRIFT-DIFFUSION MODELS 3

https://doi.org/10.1037/rev0000329.supp
https://doi.org/10.1037/rev0000329.supp
https://doi.org/10.1037/rev0000329.supp
https://doi.org/10.1037/rev0000329.supp
https://doi.org/10.1037/rev0000329.supp


diffusion noise independent of value certainty). Such a model could
account for the observed negative correlation between RT and cer-
tainty sum (C), but not certainty difference (dC; see Figure 2, bottom
right panel). Furthermore, such a model would also predict that choice
consistency (i.e., choices in favor of the higher-rated options)
decreases with certainty (resulting from a decrease in the response
boundary, all else equal), which contradicts the empirical data. One
possibility, which we will consider here (inspired by the DFT
model) is that value uncertainty has a simultaneous effect on both
the diffusion noise and the response boundary (each increasing
with uncertainty; Busemeyer & Townsend, 1993; see Table 4, in
particular). In this case, the impact of value certainty on choice
accuracy would thus involve two opposing factors (noise and
boundary), which may allow a way to account for some aspects
of the data (although, note that this is not likely to provide an
account for the dependency of choice consistency and RT on dC).
Another hypothesis is that option-specific value certainty affects
the DDM process through the drift rate. We provide preliminary
support for this hypothesis in the Supplemental Material, using
median splits on certainty and comparing the fitted model drift rate
parameters.
The aim of this article is to examine a number of DDM

variants for preferential choice, to determine which can best
account for the impact of value certainty on choice consistency
and RT previously observed in experimental data (Gwinn &
Krajbich, 2020; Lee & Coricelli, 2020; Lee & Daunizeau, 2020,
2021). In particular, we first present a variety of extensions of
the classic DDM, each of which incorporates the concept of
option-specific value certainty in a unique and realistic way. We
start with the classic DDM (Model 1), which has no option-
specific noise, and progress to models that include option-
specific certainty in the sampling noise or in the response
boundary (Models 2 and 3; although we know that these models
are unlikely to succeed, we believe that it is instructive to
formally test them and to examine their specific failures). We
then examine a model (2 + 3) in which value certainty mod-
ulates both the sampling noise and response boundary, as well as
Models (4 and 5) based on signal-to-noise ratio concepts in the
formulation of the drift rate. In the next section, we introduce
formal notation for each of the models, and describe the models
from a technical perspective. We then use simulations to dem-
onstrate the theoretical predictions of each model, with respect to
the impact of value certainty on choice consistency and RT.
Finally, we fit each of the models to experimental data from four
empirical data sets, quantitatively compare the performance of
the models across the data sets, and use the results to suggest the
best-recommended approach for future studies to incorporate
option-specific value certainty in models derived from the DDM.
To anticipate our results, we find that a signal-to-noise DDM
variant provides the best fit to the data and also meets all of the
qualitative benchmarks.

Computational Models

In each of the models described below, we consider decisions
between two alternatives, with value estimates V1 and V2
(V1 > V2) and value estimate certainties C1 and C2, respectively.
Evidence of these values is integrated over deliberation time, subject
to noise. The evidence accumulator for each decision is initialized at

a neutral starting point (i.e., zero evidence or default bias in favor of
either option), and evolves until reaching one of two symmetric
boundaries (see Figure 1 above). For each decision, the output of the
model is The choice (ch = {0, 1}, where 1 indicates that the higher-
valued option was chosen), determined by which boundary is
reached; RT, determined by the number of integration time steps
elapsed before that boundary is reached.

Model 1: Classic DDM

As a baseline model for comparison (without any option-specific
certainty term), we first consider the classic DDM. In this model, the
equation that governs the evidence accumulation process is:

Et+1 = Et + Δ

Δ∼Nðdðμ1 − μ2Þ, σ2Þ,

where E represents the cumulative balance of evidence (BOE) that
one option is better than the other, t represents the time from the
start of deliberation, Δ represents the incremental evidence in
favor of one option over the other at each time step, d is a
sensitivity parameter, μi is the subjective value of option i, and
σ2 represents processing noise in the evidence accumulation
and/or comparator systems. In the classic DDM, choice probabil-
ity and expected RT can be analytically calculated using the
following equations (Alós‐Ferrer, 2018):

pðch = 1Þ = 1

1 + eð−2θdσ2
ðμ1−μ2ÞÞ

E½RT� = θð2 � pðch = 1Þ − 1Þ
dðμ1 − μ2Þ

,

where θ is the height of the evidence accumulation boundary at
which a decision is triggered (shown here as the upper boundary,
for a choice of Option 1), p(ch = 1) is the probability that the
upper boundary will be reached (rather than the lower boundary),
and RT is the expected time at which the accumulation process
will end (by reaching either of the boundaries).4 Choice proba-
bility and RT will thus be functions of the drift rate coefficient d,
the diffusion (noise) coefficient σ2, and the height of the response
boundary θ (see Figure 3).5 As expected, consistency increases
and RT decreases with the drift rate. Increasing noise reduces both
accuracy and RT, whereas increasing boundary increases both
accuracy and RT.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

4 In the standard version of the DDM, the RT distribution for correct and
incorrect responses is identical. In a more complex version, additional
variability parameters are introduced that allow it to account for asym-
metries between the RT distributions of correct and incorrect responses
(see Ratcliff & McKoon, 2008, for a review). We only consider the
standard DDM without these variability parameters, as they do not change
the impact of value certainty on consistency and RT illustrated in Figures 2
and 3.

5 Because this system of equations is overparameterized, one of the free
parameters must be fixed for a practical application of the equations. In this
work, for simplicity, we fix to a value of 1 (when fitting the models) the
boundary parameter θ.
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Model 2: Certainty-Adjusted Diffusion Noise

One simple potential solution to incorporate option-specific
uncertainty into the DDM would be to model the evidence accu-
mulation process as:

Et+1 = Et + Δ

Δ∼N
�
dðμ1 − μ2Þ, σ2 + γðσ21 + σ22Þ

�
:

This corresponds to the classic DDM equation capturing the
evolution of accumulated evidence across time, but with σ2i repre-
senting the uncertainty about the value estimate of option i, and γ
serving as a sensitivity parameter that controls the impact of this
value (un)certainty on the level of diffusion noise. The only differ-
ence between this formulation and the classic one is that here the
variance of Δ is specific to the options in the current choice set,
whereas in the classic DDM, it is fixed across all choices (for an
individual decision maker). A direct result of this reformulation is
that choices between options with greater value uncertainty (lower
C) will be more stochastic and take less time (on average), as can be
seen by examining the (revised) DDM equations for choice proba-
bility and expected RT (see also Figure 3, center panels):

pðch = 1Þ = 1

1 + e

�
−2θdðμ1−μ2Þ

σ2+γðσ21+σ2
2Þ
�

E½RT � = θð2 � pðch = 1Þ − 1Þ
dðμ1 − μ2Þ

:

While the predicted relationship between certainty and choice
consistency would match empirical observations, the relationship
between certainty and RT would conflict with the empirical data.

Model 3: Certainty-Adjusted Response Boundary

Another potential solution would be to allow the magnitude of
the response boundary to vary as a function of option-specific
(or trial-specific) value certainty. The evidence sampling process
would be identical to that of the classic DDM. Under this model,
the height of the boundary would increase as the value certainty of
the pair of options decreased, on a trial-by-trial basis. Choice
probability and mean RT would thus be calculated using the
following equations:

pðch = 1Þ = 1

1 + e

�
−2θð1+γðσ21+σ22ÞÞd

σ2
ðμ1−μ2Þ

�

E½RT� = θð1 + γðσ21 + σ22ÞÞð2 � pðch = 1Þ − 1Þ
dðμ1 − μ2Þ

,

where γ is a sensitivity parameter that controls the impact of certainty
on the magnitude of the response boundary. As can be seen in the
equations, increasing value uncertainty (all else equal) will result in
higher choice consistency and higher RT (see also Figure 3, right
panels). While the predicted relationship between certainty and RT
would match empirical observations, the relationship between cer-
tainty and choice consistency would conflict with the empirical data.

Model 2 + 3: Certainty-Adjusted Diffusion Noise and
Response Boundary

DFT (see Table 4 in Busemeyer & Townsend, 1993) suggests that
value certainty simultaneouslymodulates the diffusion noise and the
response boundary. We, therefore, considered such a formulation in
our set of models. The basic idea is that while uncertainty is
expected to increase the sampling noise (see also Tajima et al.,
2016), decision makers are likely to compensate for the reduced
certainty by increasing their caution parameter—the response
boundary. A version of DDM that adheres to this DFT principle
would define the boundary as a function of the noise, which itself
would be a function of value certainty. In this DFT-inspired model,
choice probability and mean RT would thus be calculated using the
following equations:6
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Figure 3
Dependency of Choice Consistency and RT on DDM Parameters

Note. Dependency of choice consistency (upper row) and of RT (bottom
row) on DDM parameters: drift rate (left/blue), diffusion noise (middle/red)
and response boundary (right/green). With all other parameters fixed: An
increase in drift rate leads to an increase in the probability of choosing the
best option from 0.5 (random guess) to 1 and a decrease in RT; an increase in
processing noise leads to a decrease in the probability of choosing the best
option and a parallel decrease in RT; an increase in response boundary leads
to an increase in the probability of choosing the best option and an increase in
RT. DDM = drift-diffusion model; RT = response times. See the online
article for the color version of this figure.

6 It is important to clarify that we do not see Model 2 + 3 as an actual
application of DFT to the task of deciding between food items, since DFT
includes additional processes. For example, DFT incorporates approach/
avoidance, which corresponds to a “leak” parameter in the value integration
(this transforms the diffusion from a Wiener process to an Ornstein–
Uhlenbeck process, which requires more complex fitting procedures). Addi-
tionally, under DFT, the diffusion noise also depends on the correlation
between the value fluctuation of the alternatives—a measure that we do not
know how to assess in the experimental paradigm that we examine in this
study. Model 2 + 3 is thus only an exploration of one specific DFT-inspired
principle, within the framework of simple DDM variants. We also note that
when fitting this model, we do not fix θ to 1 as we do in the other models.
Here, the response boundary is dependent on the diffusion noise, so it is
helpful to leave θ as a free parameter in order not to overconstrain the model.

VALUE CERTAINTY IN DRIFT-DIFFUSION MODELS 5



pðch = 1Þ = 1

1 + e

�
−2θdðμ1−μ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2+γðσ21+σ22Þ

p �

E½RT� =
θ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 + γðσ21 + σ22Þ
p �

ð2 � pðch = 1Þ − 1Þ
dðμ1 − μ2Þ

:

Model 4: Certainty-Adjusted Drift Rate (Value Difference)

Another possible way in which the concept of option-specific
value (un)certainty could be incorporated into the DDM would
be through a signal-to-noise type dependency in the drift rate.
The drift rate in the DDM symbolizes the momentary accumu-
lation of evidence for one option over the other, equal to the
value of one option minus the value of the other option (scaled
by a fixed term). The accumulator variable is referred to as
“evidence” because the probability distributions controlling it
(or the neural activity driving it) are thought to provide a reliable
signal that will accurately inform the decision. If the value
representations of different options can have different levels
of uncertainty, it stands to reason that the reliability of the
“evidence” that these signals provide about the correct decision
might also be different. As such, evidence drawn from a more
reliable source (i.e., one with higher certainty) should be
weighted more heavily. Under this framework, the equation
governing the DDM process would be:

Et+1 = Et + Δ

Δ∼N

 
d

 
μ1 − μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 + σ22

p
!
, σ2
!
,

where σ2 (without a subscript) is the noise in the system
unrelated to the specific choice options. The only difference
between this formulation and the classic one is that here the mean
of the option value difference is divided by its standard deviation� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ21 + σ22
p �

. A direct result of this reformulation is that choices
between options with greater value uncertainty will be less
consistent and also take more time (on average), as can be
seen by examining the (revised) DDM equations for choice
probability and expected RT:

pðch = 1Þ = 1

1 + e

�
−2θdðμ1−μ2Þ
σ2
ffiffiffiffiffiffiffiffi
σ2
1
+σ2

2

p
�

E½RT � = θð2 � pðch = 1Þ − 1Þ
dðμ1−μ2Þffiffiffiffiffiffiffiffiffi

σ21+σ
2
2

p :

Here, the impact of option-specific uncertainty on RT is more
complex. First, greater uncertainty decreases RT through its effect
on choice stochasticity (as before). Second, greater uncertainty
directly increases RT by diminishing the slope of the drift rate.
The second effect dominates. Note that Model 4 is mathematically
similar to Model 2 + 3 because adjusting the drift rate in one
direction is similar to simultaneously adjusting the response bound-
ary and the diffusion noise in the other direction (as Model 2 + 3
does as a function of value certainty).7

Model 5: Certainty-Adjusted Drift Rate (Option Values)

An alternative variant of the DDM in which the drift rate is
altered by option-specific value certainty would be one in which
the evidence in favor of each option i is scaled by its own
precision term σ2i , as is the case, for example, in multisensory
integration (Drugowitsch et al., 2014; Fetsch et al., 2012). The
drift rate would thus become the accumulation of adjusted
evidence for one option over the other, equal to the precision-
weighted value of one option minus the precision-weighted value
of the other option (scaled by a fixed term). Here, the evidence
drawn from a more reliable source (i.e., one with higher cer-
tainty) will be weighted more heavily (as in Model 4), but prior
to a comparison between the alternative options. Note that here
the certainty weighting is truly specific to each option, whereas in
Model 4 the certainty weighting is specific to the pair of options.
Under this framework, the equation governing the DDM process
would be:

Et+1 = Et + Δ

Δ∼N

�
d

�
μ1
σ1

−
μ2
σ2

�
, σ2
�

The only difference between this formulation and the classic
one is that here the mean of the option value difference is
adjusted by the standard deviations of the individual choice
options. Because the evidence in favor of each option (prior to
comparison) will be scaled by its own specific (and importantly,
potentially different) precision term, the impact on both choice
stochasticity and RT could go in either direction. This can be
seen by examining the (revised) DDM equations for choice
probability and expected RT:

pðch = 1Þ = 1

1 + e
�
−2θd
σ2

�
μ1
σ1
−μ2
σ2

��

E½RT � = θð2 � pðch = 1Þ − 1Þ
d
�
μ1
σ1
− μ2

σ2

� :

Here, the impact of option-specific uncertainty on both choice
and RT is more complex than in the previous models. If the
value signal for one option has both a larger mean and a smaller
variance, relative to the other option, the effective drift rate will
be higher than in the classic DDM (e.g., choices will be less
stochastic and faster). On the other hand, if the option with the
larger mean value also has a higher variance (due to its value
uncertainty), the effective drift rate might be lower than in the
classic DDM (e.g., choices might be more stochastic and
slower).

Summary of Model Predictions With Respect to the
Impact of Value Certainty

We have considered a number of DDM variants, which make
different predictions for how the value certainty of choice alter-
natives impacts the preference formation process, and in particular,
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7 Specifically, multiplying the drift rate by x is mathematically identical to
dividing the boundary by x while simultaneously dividing the noise by x2.
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how it affects choice consistency and RT. In Figure 4, we summa-
rize these model predictions by simulating choice and RT output
under each of the models, taking as input, value and certainty ratings
generated from uniform distributions covering the full range avail-
able in the empirical data, without any correlation between the
variables,8 and using normally distributed parameters with moments
to match those in the best fits to the empirical data (see below for a
description of the empirical data).
As we can see, Model 1 (the classical DDM), which has no

C-dependency in its evidence accumulation, shows no C-dependency

in either choice consistency or RT. Model 2 makes the counterintui-
tive prediction that RT increases with value certainty. Model 3 makes
the counterintuitive prediction that choice consistency decrease with
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Figure 4
Model Predictions for the Impact of Certainty on Choice

Note. Theoretical model predictions for the impact of C and dC on consistency and on RT (data simulated using uniformly distributed (0:1] value
estimates and certainty and normally distributed parameters with moments to match the experimental data). RT = response times. See the online
article for the color version of this figure.

8 In the actual experimental data, value and certainty ratings are correlated,
and neither are uniformly distributed (see Figure S4 in the Supplemental
Material). Thus, these predictions differ somewhat from what the models
predict based on the actual input data (see Figure 5 below). Nevertheless, we
show the theoretical predictions in Figure 4 to better illustrate the differences
between the model variants.
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certainty. Each of the other models predicts patterns more similar to
the empirical data with respect to C, although onlyModel 5 appears to
capture the effects related to dC.

Empirical Data

To test the performance of the set of models we introduced
above against actual preferential choice data, we gathered data
sets from four experiments reported in the literature that examined
choices between pairs of food items, whose ratings (value and
certainty) were measured for each participant before the pairs
were presented for binary choice.

Data Set 1

The first data set we examined was from Lee and Daunizeau
(2020). In this study, participants made choices between various
snack food options based on their personal subjective preferences.
Value estimates for each option were provided in a separate rating
task prior to the choice task. Participants used a slider scale to
respond to the question, “Does this please you?” After each rating,
participants used a separate slider scale to respond to the question,
“Are you sure?” This provided a measure of value estimate certainty
for each item. During the choice task, participants were presented
with pairs of snack food images and asked, “What do you prefer?”
After each choice, participants used a slider scale to respond to the
question, “Are you sure about your choice?” to provide a subjective
report of choice confidence. This data set contained 51 subjects,
each of whom was faced with 54 choice trials.

Data Set 2

The second data set we examined was from Lee and Daunizeau
(2021). In this study, participants made choices between various
snack food options based on their personal subjective preferences.
Value estimates for each option were provided in a separate rating

task prior to the choice task. Participants used a slider scale to
respond to the question, “How much do you like this item?” After
each rating, participants used the same slider scale to respond to the
question, “How certain are you about the item’s value?” by indicat-
ing a zone in which they believed the value of the item surely fell.
This provided a measure of value estimate certainty for each item.
During the choice task, participants were presented with pairs of
snack food images and asked, “Which do you prefer?” After each
choice, participants used a slider scale to respond to the question,
“Are you sure about your choice?” to provide a subjective report of
choice confidence. This data set contained 32 subjects, each of
whom was faced with 74 choice trials.

Data Set 3

The third data set we examined was from Lee and Coricelli
(2020). In this study, participants made choices between various
snack food options based on their personal subjective prefer-
ences. Value estimates for each option were provided in a
separate rating task prior to the choice task. Participants used
a slider scale to respond to the question, “How pleased would
you be to eat this?” After each rating, participants used a 6-point
descriptive scale to respond to the question, “How sure are you
about that?” This provided a measure of value estimate certainty
for each item. During the choice task, participants were pre-
sented with pairs of snack food images and asked, “Which
would you prefer to eat?” After each choice, participants used
a slider scale to respond to the question, “How sure are you
about your choice?” to provide a subjective report of choice
confidence. This data set contained 47 subjects, each of whom
was faced with 55 choice trials.

Data Set 4

The fourth data set we examined was from Gwinn and Krajbich
(2020). In this study, participants made choices between various
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Figure 5
Model Recovery Analysis

Note. Each cell in the “confusion matrix” summarizes the percentage of simulated participants (under each true model) for which our model-
fitting procedure attributed each of the (best-fit) models. (a) Uniformly distributed value and certainty input data. (b) actual experimental value and
certainty input data. See the online article for the color version of this figure.
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snack food options based on their personal subjective preferences.
Value estimates for each option were provided in a separate rating
task prior to the choice task. Participants used a 10-point numerical
scale to respond to the prompt, “Please indicate how much you
want to eat this item.” After each rating, participants used a 7-point
numerical scale to respond to the prompt, “Please indicate how
confident you are in your rating of this item.” This provided a
measure of value estimate certainty for each item. During the
choice task, participants were presented with pairs of snack food
images and instructed to choose the one that they preferred to eat.
Choice confidence was not measured in this study. This data set
contained 36 subjects, each of whom was faced with 200 choice
trials.

Computational Model-Fitting Procedure

We fit the experimental data to each of the models that we
described above. We then performed a Bayesian model compari-
son to determine which of the models (if any) performed better
than the others across the population of participants. For this
model fitting and comparison exercise, we relied on the Varia-
tional Bayesian Analysis toolbox (VBA, available freely at https://
mbb-team.github.io/VBA-toolbox/; Daunizeau et al., 2014) with
Matlab R2020a. Within participant and across trials, we entered
the experimental variables {left option value, right option value,
left option certainty, right option certainty} as input and
{choice = 1 for left option, 0 for right option; RT} as output.
We took the inverse of the value certainty rating as our measure of
variance for the value of each option. We also provided the model-
specific mappings from input to output as outlined in the analytical
formulas above. The parameters to be fitted included all of the d,
σ2, γ, λ, and α terms described above in the model formulations.
VBA requires prior estimates for the free parameters, for which we
set the mean equal to one and the variance equal to e (to allow an
arbitrarily large step size during the gradient descent search
algorithm, yet constrain the algorithm to a reasonable search
space) for each parameter. VBA then recovers an approximation
to both the posterior density on unknown variables and the model
evidence (which is used for model comparison). We used the
VBA_NLStateSpaceModel function to fit the data for each par-
ticipant individually, followed by the VBA_groupBMC function
to compare the results of the model fitting across models for the
full group of participants.
The benefit of using VBA to fit the data to our models spawns

from the nature of the preferential choice data itself, where the
value estimate and certainty of each option necessarily varie
from one trial to the next (i.e., no two-choice trials are ever
alike). Other DDM parameter estimation approaches that are
popular in the literature (e.g, Voss & Voss, 2008) do not
optimally handle this kind of experimental design, because
they lack the trial repetitions per condition (in this case, value
and certainty ratings) necessary to provide empirical estimates of
RT distributions (or moments) in each condition. The VBA
toolbox is computationally efficient, as it relies on Variational
Bayesian analysis under the Laplace approximation. This itera-
tive algorithm provides a free-energy approximation for the
model evidence, which represents a natural trade-off between
model accuracy (goodness of fit, or log-likelihood) and com-
plexity (degrees of freedom, or Kullback–Leibler divergence

between priors and fitted parameter estimates; see Friston
et al., 2007; Penny, 2012). Additionally, the algorithm provides
an estimate of the posterior density over the model-free parame-
ters, starting with Gaussian priors. Individual log model evi-
dence scores are then provided as input to the group-level
random-effect Bayesian model selection (BMS) procedure.
BMS provides an exceedance probability that measures how
likely it is that a given model is more frequently implemented,
relative to all other models under consideration, in the popula-
tion from which participants were drawn (Rigoux et al., 2014;
Stephan et al., 2009). This approach to fitting and comparing
variants of DDM has already been successfully demonstrated in
previous studies (Feltgen & Daunizeau, 2021; Lopez-Persem
et al., 2016).

As an initial check to verify that our model-fitting procedure is
suitable for this specific analysis, we performed a test of model
recovery. Specifically, we created synthetic data for each participant
in Studies 1–4, under two separate scenarios: (a) taking as input
uniformly distributed data (value estimate and certainty for each
option, uncorrelated) covering the same scale as the experimental
data; (b) taking as input the actual rating data provided by each
participant. We simulated choices and RT for each participant,
separately according to each of the models using the specific
best-fit parameters for each participant for each model. We then
fit the simulated data (per participant) to each of the models and
performed the same formal model comparison as with our real
experimental data. The results of this procedure can be seen below as
model confusion matrices (see Figure 5). The matrices show, for
each true generative model, the percentage of simulated participants
(under that model) that were attributed to each of the best-fit models
by our model-fitting procedure. As shown in the first confusion
matrix (Figure 5a), overall confusion was low when the input data
were theoretically ideal, as the procedure attributed the true model as
the best-fit model for the vast majority of participants. Model 4 was
the only model in our set of models that our model-fitting procedure
was unable to perfectly recognize (using ideal input data), as it
wrongly classified close to half of the participants simulated under
Model 4 as having been simulated under Model 2 + 3. This is not
surprising, since Models 2 + 3 and 4 are mathematically similar
(see above). This exercise verified that our model-fitting procedure
was theoretically capable of perfectly distinguishing data produced
by the different models, which suggests that our quantitative model
comparison based on actual empirical data (see below) should be
valid. As shown in the second confusion matrix (Figure 5b), the
models were also recovered (though less accurately) when using the
actual experimental input data. Some confusions arose for close to
half of the participants simulated under Model 2, who were wrongly
attributed to Model 1 (due to its reliance on fewer free parameters).
Also Model 2 + 3 stole a substantial amount of support from
Model 4. Nevertheless, even when the input data was less than
ideal, overall average model recovery (52.5%) was well beyond
chance level (16.7%).

Quantitative Model Comparison

The classic DDM, our Model 1, has been validated countless
times for its ability to account for two-alternative forced-choice
responses and mean RT. The other models described above are new
and have therefore never been tested with empirical data. We thus
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performed a formal model comparison of our full set of models, with
Model 1 serving as a benchmark. The results are displayed in
Figure 6, which shows the support that each model received within
participants (left panel) and across participants (right panel). We
provide a summary of the best-fitting parameters for each model in
the Supplemental Material.
Across all four studies, Models 2 and 3 were each dominated by

Model 1 (the classic DDM) as anticipated, as were Models 2 + 3
and Model 4. Model 5, by contrast, dominated Model 1 (estimated
cross-participant model frequency of 0.516 forModel 5 vs. 0.258 for
Model 1). In recognition of the possibility that the impact of certainty
on the drift rate might be nonlinear, we considered a variation of our

best-fitting model (Model 5), which we label Model 5*. Here, the
only change was the inclusion of an exponent α in computation of
the signal-to-noise ratio:

Δ∼N
�
d
�μ1
σα1

−
μ2
σα2

�
, σ2
�
:

In a formal comparison of Model 5 against Model 5*, Model 5
was the clear winner with an estimated model frequency (across
participants) of 0.670 (see Figure 7). It appears that although the
flexibility associated with Model 5* improves the fit for some
individual participants, at the group level, the added flexibility
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Figure 7
Model Comparison Results for Model 5 Versus Model 5* (Same Format as Figure 6)

Note. See the online article for the color version of this figure.

Figure 6
Model Comparison Results Across All Core Models

Note. We show here the probability that each model best accounted for the data at the participant level (left panel),
across the four studies we examined; each cell represents the probability that the model (column) best represents the
behavior of the participant (row). The dashed lines serve to indicate which participants belonged to each of the four data
sets. We also show the probability that each model best explains the data across the participant population (right panel),
across all studies. The dashed line indicates chance level if all models were equally probable a priori. See the online
article for the color version of this figure.
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offered by the exponent parameter was not great enough to offset the
complexity cost for adding an extra parameter.9

To summarize, the quantitative model comparison of the DDM
variants favors the signal-to-noise variant (Model 5). To better under-
stand whyModel 5 wins the quantitative model comparison, it is useful
to examine how the various models account for the qualitative relation-
ships between certainty and choice consistency or RT in the data
(Figure 2). Toward this aim, we used the actual ratings provided by
each participant and the best-fitting model parameters (for each partici-
pant under each model) to generate synthetic data for each combination
of participant and model. We then carried out the same procedure that
we applied to the empirical data (Figure 2) to the data simulated under
each of the models. These results are shown in Figure 8 (the first row
shows the empirical data and the following rows show the data
simulated under each of the models).
In order to simplify the comparison between the data and the

models, we have included binary indicators that correspond to the
match between the data and the model dependency shown (green
checkmark for a goodmatch, redX for a poormatch).10 Aswe can see,
Model 5 seems to be the model best able to account for the qualitative
relationships between certainty and the choice variables (see in
particular the dependency of RT on dC). As we show in the Supple-
ment this model also accounts well for the dependency of the shape of
the RT distribution on model predicted drift rate (Figure S2).

Discussion

The aim of this study was to examine a number of extensions of
the DDM for preferential choice that include option-specific value
certainty, and to probe them in their ability to account for benchmark
data on the dependency of choice consistency and RT on value
certainty. As illustrated in Figure 2, the experimental data that we
examined show that certainty has a clear and systematic impact on
both consistency and RT, thereby motivating an extension of the
classic DDM (with no option-specific uncertainty component) and
providing constraints on the way one can introduce option-specific
uncertainty into themodels. As we have shown, perhaps the simplest
DDM extension, in which (only) the evidence accumulation noise
decreases with value certainty, produces the wrong qualitative
prediction: RT increases with certainty (as certainty reduces the
stochasticity of the system, which slows down RT; see Figure 3,
center panels). Moreover, the problem with this method of intro-
ducing option-specific value certainty in modeling value-based
decisions is not particular to the DDM, but also applies to the
broader class of evidence accumulation-to-bound models (e.g.,
LCA, Usher & McClelland, 2001; independent accumulators,
Vickers, 1970), in which noise decreases RT.
An alternative way to introduce option-specific value uncertainty in

the DDM framework could be to assume that the uncertainty affects
(only) the response boundary. Accordingly, decision makers would
compensate for their uncertainty by increasing the height of the
boundary. While such a model could account for the negative correla-
tion between RT and certainty (C; see Figure 2), it would not be able to
account for the negative correlation between RT and certainty differ-
ence (dC). Moreover, such a model would predict that choices become
more stochastic as value certainty increases (due to more random
crossings of the lower boundary; see Figure 3, right panels), which is
both counterintuitive and in contrast to the experimental data (see
Figure 4). We also considered a model in which both diffusion noise

and response boundary were simultaneously modulated by value
certainty, which can make the correct predictions in terms of C.
However, this model does not predict any impact of dC on either
choice consistency or RT (see Figure 4). Thus, we believe that the way
in which value uncertainty affects the decision process is via its impact
on the drift rate. (We provided additional support for this conclu-
sion in the Supplemental Material—Figure S8—using median splits
on certainty and comparing the fitted model parameters.)

In order to understand the way in which value certainty affects the
drift rate, we examined and tested two core DDM variants built on
certainty-modulated drift rates. TheseModels (4 and 5) were based on
signal-to-noise principles. While Model 4 was able to account for
some of the qualitative relationships in the data, only Model 5
accounted for all of them.11 In this model, the drift rate of the
diffusion process is not simply the fluctuating difference in the values
of the options (Tajima et al., 2016), but rather a difference between
the ratios of the mean values and their corresponding value uncer-
tainties. This mechanism has a normative flavor, as it penalizes values
that are associated with uncertain alternatives. Some similar types of
signal-to-noise models have also been supported by data in perceptual
choice tasks. For example, de Gardelle and Summerfield (2011)
examined choices in which an array of eight visual patches of variable
color or shape are compared (in binary choice) to a reference (color or
shape). By independently varying the set mean distance (in the
relevant dimension) from the reference as well as the set variance,
they found that both independently affect choice accuracy and RT. In
particular, the set variance (which is the analog of our value uncer-
tainty) reduces choice accuracy and increases RT. As shown by de
Gardelle and Summerfield (2011), a signal-to-noise model can
account for this dependency. Furthermore, the random dot motion
task that is widely used alongside the DDM in perceptual decision-
making studies provides a signal-to-noise ratio as input for the drift
rate (e.g., Gold & Shadlen, 2007); for this task, drift rate is typically
determined by the motion coherence, which is composed of the
number of dots moving in the same direction (signal) as well as the
number of dots moving randomly (noise).

We showed via simulation that only Model 5 can account for all of
the qualitative relationships observed in the empirical data between
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9 Under Model 5*, most participants showed a concave impact of value
certainty on evidence accumulation, with 70% of participants having α < 1
(28% had α > 1). Across participants, the median recovered αwas 0.68 with
a median absolute deviation of 0.46. This suggests that the marginal impact
of value certainty is greater for options with relatively low certainty
compared to those with relatively high certainty, for most participants.
However, we note that these results should be interpreted with caution
because the parameter estimates of the α parameter were not very reliable.
The parameters for each participant were estimated using very few trials,
which presents a challenge to accurately fitting exponential parameters in
addition to the linear ones. In particular, our parameter recovery exercise
showed that the exponent parameters were often overestimated.

10 The empirical data exhibit few clear patterns: consistency increases with
both C and dC, RT decreases with both C and dC; these relationships are
mostly monotonic, although there is some noise in the lower extreme of the dC
range with respect to consistency. All models appear capable of qualitatively
matching the C-consistency relationship. Model 5 is capable of qualitatively
matching the dC-consistency relationship, while the other models predict a
flatter relationship with a dip when dC is close to 0. All models other than
Model 2 appear capable of qualitatively matching the C–RT relationship.
Model 5 is capable of qualitatively matching the dC–RT relationship, while the
other models predict flat or nonmonotonic relationships.

11 From this point forward, we will refer to the best performing model,
Model 5, as the signal-to-noise DDM, or snDDM.
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certainty sum and certainty difference, and choice consistency and
mean RT (see Figures 4 and 8). Under Model 2, increased certainty
leads to decreased diffusion noise. Although this would appropriately
lead to more accurate responses, it would paradoxically lead to slower
RT. Under Model 3, increased certainty leads to a lower response
boundary. Although this would appropriately lead to faster responses,
it would paradoxically lead to less consistent responses. UnderModel
2 + 3, inspired by DFT principles, increased certainty leads to both
decreased diffusion noise and a lower response boundary. This model
thus balances the two parameters against each other and is able to

predict that higher certainty leads to both faster and more accurate
responses. However, it is agnostic to the effects of certainty difference,
which were prominent in the data. Under Model 4, increased certainty
leads to an increased drift rate (note that this is mathematically similar
to a decrease in both diffusion noise and response boundary, as the
DDM is overspecified by these three parameters). This would appro-
priately lead to both faster and more accurate responses. However,
Model 4 cannot account for effects related to certainty difference,
because certainty only enters this model in relation to the choice pair
and not the individual options. Only Model 5 successfully predicts all
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Figure 8
Qualitative Model Alignment with Empirical Data

Note. Qualitative predictions of the effects of value difference (dV = V1 − V2), value certainty
(C = C1 + C2), and certainty difference (dC = C1 − C2) on choice consistency and log(RT) for
simulated data for each model; the top row shows the empirical data, while each subsequent row shows
data simulated under each of the models using the actual input and best-fitting parameters for each
participant; the curves represent within-bin means across participants; the data are separated by uniform
bins covering the full possible range of C(0, 2] and dC(−1, 1); error bars represent s.e.m. Green
checkmarks indicate a qualitative match between model predictions and empirical data; red Xs indicate a
lack of qualitative match. RT = response times. See the online article for the color version of this figure.
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effects related to both certainty and certainty difference. This model is
similar to Model 4, in that certainty positively impacts choice
consistency and negatively impacts RT through its modulation of
the drift rate. However, unlike the other models, certainty enters
Model 5 in relation to each option independently. It is for this reason
that Model 5 is also able to predict the effects related to certainty
difference (see the Supplemental Material, for more details).
Future work will be needed to examine the neural mechanism that

extracts the drift rate from fluctuating values (sampled frommemory or
prospective imagination; Bakkour et al., 2019; Poldrack et al., 2001;
Schacter et al., 2007) and that reduces the drift rate of more strongly
fluctuating items. One interesting possibility is that the effective drift
rate might bemodulated by the temporal congruency of the evidence in
successive samples (Glickman et al., 2020); the higher the value
certainty, the lower the variance of the value signals, thus leading
to a higher probability that successive samples will provide consistent
choice evidence. Perhaps certainty could be tuned by attentional gating
in the brain valuation pathways (Schonberg & Katz, 2020), such that
more attention to the valuation process would enable higher value
certainty. Future research is also needed to examine if the effects of
value uncertainty on choice correlate with risk or ambiguity aversion at
the level of individual participants, and to integrate this type of model
with dynamical attentional affects as in the attentional drift-diffusion
model (aDDM; Krajbich et al., 2010; Sepulveda et al., 2020). Recent
work has suggested that attention allocated toward a particular choice
optionwill serve to reduce the uncertainty about the value of that option
(Callaway et al., 2021; Jang et al., 2021). If true, this would provide a
link between the current work and the “gaze bias” effect (Krajbich
et al., 2010; Sepulveda et al., 2020).

RT Distributions

One of the strengths of DDM-type models is their ability to
account not only for accuracy and mean RT, but also for how the full
distribution of RT varies with task conditions (see Ratcliff &
McKoon, 2008, for a review). In this study, we did not fit RT
distributions for a pragmatic reason: The preference data (Studies
1–4) do not have enough repeated trials per condition (i.e., specific
combinations of value and certainty rating) needed to estimate RT
distributions. Nevertheless, we thought to examine predictions for how
RT distributions vary with the predicted drift rate (which is a function
of the value estimates, V1 and V2, and their certainties, C1 and C2) in
the signal-to-noise model. As we report in the Supplemental Material
(Figure S2), we find the typical rightward-skewed RT distributions in
data simulated under the snDDM. Moreover, we find the expected
patterns with respect to trials with low versus high predicted drift rate.
The experimental data appear to confirm the model predictions (see
Figure S2). This suggests that the snDDM can account for patterns in
the full RT distributions, in addition to all of the qualitative and
quantitative support that we reported above. However, future studies
that includemore trials per condition (i.e., each specific level of dV, C,
and dC) will be needed to fully validate this.

Impact of Overall Value on RT

In this study, we focused on the impact of value difference,
certainty sum, and certainty difference on choice behavior. Yet there
remains an additional element that we left out: Value sum (V =
V1 + V2). A number of previous studies have exposed a clear and

robust effect of overall value (of the options being considered during
a particular decision) on RT, where responses are typically faster for
higher-valued options (Hunt et al., 2012; Polanía et al., 2014;
Sepulveda et al., 2020; Smith & Krajbich, 2019; Teodorescu
et al., 2016). We also found this effect in the data sets we examined
(see the Supplemental Material). As shown in Figure S5, the value
sum (V) has a clear effect on RT (though somewhat smaller than the
effect of dV). People decide faster (all else equal) on a choice
between a pair of alternatives with ratings 0.9 and 0.8, respectively,
than on a choice between alternatives with ratings of 0.2 and 0.1,
respectively. This overall value effect is naturally explained in race
or competing accumulator models (Vickers, 1970). It is also ex-
plained in the LCA (Teodorescu et al., 2016) or DFT12 models.
However, the overall value effect is more challenging to explain
within a diffusion model, in which the preference formation is based
on relative evidence and unrelated to summed overall evidence.
Interestingly, although not predicted and therefore not discussed so
far, it turns out that the snDDM can account for the negative
relationship between value sum and RT (see Figure S5). The
snDDM account of this effect is an emergent one (i.e., there was
nothing in the model that was explicitly dependent on V). We briefly
comment on this in the Supplemental Material and leave it to future
studies to explore this effect further.

Relation to Other Models and Additional DDM Variants

The most influential model for preferential choice is the DFT
(Busemeyer & Diederich, 2002; Busemeyer & Townsend, 1993;
Busemeyer et al., 2019; Roe et al., 2001). The DFT model was the
first model that adopted the sequential sampling (integration to bound)
concept in its account of preferential choice. The model was applied to
risky choice (Busemeyer & Townsend, 1993), where it was able to
account for violations of the independence axiom (the Myers effect;
Busemeyer & Townsend, 1993, Figure 2), and to multi-attribute
decisions (Roe et al., 2001), where it accounted for contextual reversal
effects (the attraction, similarity, and compromise effects; see also
Johnson & Busemeyer, 2005, for an account of preference reversals
between choice and price elicitation in risky choice). Moreover, the
DFT proposed a mechanism for the stochastic nature of the evidence
accumulation process, which it related to fluctuations in attention
between event outcomes or decision attributes. The DFT model
predicts that the magnitude of this stochastic component (the diffusion
noise term) increases with the outcome variance associated with the
options (which in turn reflects uncertainty). While in this study we
do not focus on risky choice nor on explicit multi-attribute choices
(we focus here on holistic and potentially memory-based choices
between food items), and we only consider relatively simple DDM
variants, it is important to discuss how our results compare with DFT-
inspired uncertainty modulations.

Aswe described above, theDFT suggests that uncertainty has a dual
effect on the preference formation—it increases both the diffusion
noise and the response boundary (as a type of compensation for the
former). OurModel 2 + 3 version of the DDMwas based on this idea,

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

12 The DFTmodel can account for faster RT with higher values, as a result
of its approach-avoidance assumption that modulates the integration leak
parameter; with higher values, this is an approach situation that reduces the
diffusion leak, resulting in faster choices (Busemeyer & Townsend, 1993;
see Table 12).
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and it successfully accounted for the qualitative effect of certainty sum
(C) on choice consistency and on RT. This model could not, however,
account for the effect of certainty difference (dC; the certainty of the
high-value option minus the certainty of the low-value option) on
consistency or on RT. This DDM extension was therefore outper-
formed by the snDDM in its quantitative account of the data.
Obviously, this is not a test of the DFT model (which is more
complex, including other factors such as an information leak, and
which has not yet been applied to the type of tasks we examined here),
but merely suggests that value certainty is more likely to operate (in
our task) via a direct effect on the drift rate (rather than via modulation
of the diffusion noise and of the response boundary). Future work will
be needed to examine in detail how the DFT accounts for choice and
RT for this type of preferential choice data.
We have focused here on simple DDM variants that include fixed

(i.e., static across decision time) response boundaries. While this is
the type of DDM that has been explored most in experimental
psychology (Ratcliff, 1978; Ratcliff & Rouder, 1998), other con-
temporary versions of the DDM sometimes include response bound-
aries that collapse over time (Evans et al., 2020; Glickman &Usher,
2019; Glickman et al, 2019; Hawkins et al, 2015; Palestro et al,
2018). Such collapsing bounds were first introduced to truncate the
long tails of the RT distributions that are predicted by a fixed-
boundary DDM, especially for error trials (Milosavljevic et al.,
2010). Some researchers have since included some form of collaps-
ing bound parameter in their usage of the DDM because it tends to
provide better fits to the data (for preferential choice, see Glickman
et al., 2019). Furthermore, Tajima et al. (2016) and Fudenberg et al.
(2018) proved that the DDM was an optimal model only in the case
that the response boundary decreased across deliberation time
(although their work related to series of sequential decisions that
created an explicit opportunity cost of time, thereby mandating the
collapsing bounds). In the present study, we remained agnostic as to
the shape of the DDM response boundary (fixed vs. collapsing).
Whereas we relied on the fixed-boundary DDM in our model
comparison, we verified that the inclusion of a collapsing boundary
does not change any of our conclusions (see Figure S1A in the
Supplemental Material), showing that, like for the fixed-boundary
DDM (see Figure 3, center panel), RT in the collapsing-boundary
model also decreases with sampling noise that could be associated
with value uncertainty (contrary to the data; see Figure 2). This can
easily be understood by examining the basic relationships between
sampling noise and both response probability and RT. If there were
no noise in the sampling/accumulation process, the evidence would
simply accumulate along a straight trajectory until reaching a bound.
Adding noise perturbs the trajectory (at any point in time) and thus
increases the probability that the response boundary will be reached
sooner. This is because the probability of reaching a boundary on the
next time step is a decreasing function of the current distance from
the accumulator to the boundary, and an increasing function of both
the mean and the variance of the trajectory (which reflects the
accumulation noise). Note that this will hold for any response
boundary, regardless of the shape. Thus, models such as our
Model 2 will also fail even when including collapsing boundaries
(see Figure S1A in the Supplemental Material, for a confirmation of
this via simulations).
Some versions of the DDM (Ratcliff & Rouder, 1998) include

additional parameters, which we did not examine in this study. Such
parameters include nondecision time (time for encoding and

response, or Ter), starting point bias (and starting point variability),
and drift rate variability. While it might be mathematically possible
to account for the effects of option-specific certainty by allowing Ter
to vary as a function of certainty, we believe that this would not be a
principled approach. Because Ter corresponds to time spent on
perceptual (encoding) or motor (response) processes, we see no
reason why this should vary with value certainty (determined by
valuation processes). Similarly, we did not consider a starting point
bias in the present study, as such a bias is typically meant to capture
prior expectations about which option is more likely to be better. In
the experimental paradigms that we considered, there are no such
prior expectations—the choice pairs were randomly created, each
option was randomly assigned as either Option 1 or Option 2, and
the sequence of trials was randomized. Therefore, as participants
proceeded to make choices across trials, any potential biasing effects
from one trial should be obliterated by the effects from all other
trials, leaving the prior expectations about which option will be
better (on the next trial) centered on zero. It remains possible that
participants might have an inherent preference to pick the option
displayed on the left (or right) side of the screen, regardless of
content. However, we checked the data and found no evidence for a
response side bias (see the Supplemental Material, for details). It
would also be theoretically reasonable to consider starting point
variability (around a mean of zero). This could be due to a carry-over
effect of the previous trial, where residual neural activation might
lead the decision maker to be inclined to repeat the same choice on
the next trial. However, this implies that starting point variability is
caused by information from previous trials, and not from the current
trial (for which deliberation will have not yet begun). Hence, the
starting point variability is unlikely to be related to the option-
specific value certainty on the current trial and therefore cannot
mediate the impact of certainty on either consistency or RT.
However, see the Supplemental Material for a confirmation (via
simulations) that even if one were to imagine that starting point
variability increased as a function of value uncertainty (a type of
noisier responding), it would have no impact on the mean RT
(Figure S1C), and it could definitely not account for the slowdown
with value uncertainty shown in the data (Figure 2). Finally, we
have not considered drift rate variability in the present study. In
some versions of the DDM (see Ratcliff &McKoon, 2008), the drift
rate on a given trial is a random variable selected from a normal
distribution whose mean equals the value difference of the options
on that trial and whose variance corresponds to either attentional or
memory biases specific to that trial (meaning that if the same
decision is presented again, the drift may differ). In principle, it
is possible (but less likely, we think) that value uncertainty could
affect the drift rate variability (across trials) rather than within-trial
sampling noise. As we show in the Supplemental Material (Figure
S1B), however, such an assumption would not help because
increasing the variability in the drift rate parameter d with uncer-
tainty across trials would have a similar effect on consistency and
RT as increasing the within-trial diffusion noise (sampling variabil-
ity)—higher variability will yield lower choice consistency and
faster RT, contrary to the data (see Figure S1B in the Supplemental
Material, for a confirmation of this via simulations).

Another approach to the role of uncertainty on choice has been
suggested in a recent study by Li and Ma (2021), who proposed a
model in which the decision maker chooses based on a comparison
of the subjective utility of each option. In their model, utility is a
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linear combination of the mean of the value estimate and the
standard deviation of the value estimate (derived via Bayesian
updating with the sequential evidence samples), suggesting that
people explicitly prefer both options that are more valuable and
those whose value estimates are more certain. Note that such a
model would not modulate any of the standard DDMparameters as a
function of value certainty, but would rather include a separate
evidence accumulator variable that tracks the difference in certainty
between choice options. We tested a model of this variety against
our winning model and found that although it performed well on its
own, it did not win the competition against the snDDM (see the
Supplemental Material, for the formulation of this Model 6 and the
model comparison results). It would be interesting for future work to
explore the similarities and differences between this type of model
and the snDDM.

Choice Confidence

While we have focused here on how value certainty affects choice
consistency and RT, the empirical data also importantly show a
marked and systematic effect of value certainty on choice confi-
dence. In particular, higher certainty sum (C) and higher certainty
difference (dC) both lead to higher choice confidence. This pattern
raises a further challenge for most accumulation-to-bound style
choice models that aim to account for both RT and choice confi-
dence. For example, in the BOE type models (De Martino et al,
2013; Vickers & Packer, 1982), confidence corresponds to the
difference in the activation of two accumulators that independently
race to a response boundary. If we were to naively introduce option-
specific value uncertainty in such models as additional processing
noise, they would predict, contrary to the data, that the confidence
becomes larger for options with more uncertainty (as the additional
noise increases the average BOE). Similarly, if we were to model
confidence using a DDMwith collapsing boundaries (e.g., Fudenberg
et al, 2018; Tajima et al, 2016), with confidence corresponding to
the height of the boundary at the time the choice is made, naively
introducing option-specific uncertainty would once again provide
us with a prediction opposite from what we see in the data.
For uncertain alternatives, there would be more noise in the evidence
accumulation process, resulting in faster choices and therefore
higher boundaries, and thus higher confidence (in fact, this would
be true for any model that assumes that confidence decreases with
RT; Kiani & Shadlen, 2009).
There are very few published value-based choice studies that

simultaneously examined value certainty and choice confidence (but
see De Martino et al, 2013; Lee & Coricelli, 2020; Lee &
Daunizeau, 2020, 2021). We have not modeled choice confidence
here, as there are many potential ways to do this, with substantial
divergence among them (Calder-Travis, Bogacz, & Yeung, 2020;
De Martino et al, 2013; Kiani & Shadlen, 2009; Moran et al., 2015;
Pleskac & Busemeyer, 2010; Vickers & Packer, 1982; see Calder-
Travis, Charles, et al., 2020). Nevertheless, all of these models
strive to predict a strong negative correlation between RT and choice
confidence, as has been demonstrated in a plethora of experimental
data. We note that in the data we examined, the impact of value
certainty on choice confidence was essentially the reverse of its
effect on RT (see Supplemental Material, Figure S7). While we did
not explore this further, it suggests that a signal-to-noise DDM
should also be able to capture the dependency of choice confidence

on value certainty. Future work is needed to determine how signal
detection style DDM variants might be extended towards an optimal
unified account of choice consistency, RT, and confidence.
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