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Decisions often require the integration of multiple, poten-
tially contradictory, pieces of evidence. Consider, for exam-
ple, a judge deliberating over whether a defendant is guilty 

or not, or a medical doctor diagnosing a patient’s disease. Extensive 
research has converged on the proposition that integration of evi-
dence to a decision boundary is a normative mechanism for such 
evidence-based decisions. This mechanism provides the fastest mean 
response time (RT) for a target accuracy rate1–4 and accounts for an 
impressive amount of behavioural and neural choice data (see ref. 5 
for a review). For instance, integration-to-boundary models1,6–11 pro-
vide a parsimonious account for the shape of choice–RT distributions 
of correct and incorrect responses as a function of stimulus difficulty, 
as well as for the well-known speed–accuracy trade-off12 stating that 
people can improve their decision accuracy by sampling more infor-
mation, and vice versa. Moreover, integration-to-boundary models 
are supported by the monitoring of neural activation in brain deci-
sion areas during choice tasks13,14 (but see ref. 15).



















Despite this strong support, the evidence integration framework 
has been challenged by alternative non-integration mechanisms, 
such as heuristics based on the detection of a single high-value sam-
ple, which can account for many of these choice patterns as well16 
(see also the discussion in ref. 17). Moreover, research within the 
evidence-integration framework has suggested that, in many deci-
sion environments, the reward rate is optimized when the choice 
threshold varies (for example, collapses) as a function of time18,19. 
Evidence for such time-varying boundaries have been found in both 
humans and non-human primates20,21 (but see ref. 22). These studies, 
however, have estimated the boundary whilst assuming arbitrary 
functional assumptions (for example, that the boundary decays 
according to a Weibull function). Thus, it is important to validate 
the integration assumption, and to monitor the decision boundary 
without imposing such assumptions.

A second aspect of the normative model is that the evi-
dence (construed as the increase in the log likelihood of the two  
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hypotheses) is integrated without biases or distortions. However, 
recent findings indicate a variety of biases in the sampling and 
weighting of evidence. Attentional biases, for example, affect the 
relative weighting assigned to simultaneous pieces of evidence23–26. 
Another type of decision biases are history biases, such as the con-
firmation bias27–31, according to which committing to a categori-
cal choice distorts the interpretation of subsequent information. 
Potential biases of this kind must be taken into account when 
assessing whether evidence is accumulated and when estimating 
decision boundaries. In turn, the decision bound can interact with 
the estimation of the bias itself.

Here, we addressed these issues by using a novel behavioural 
method that is agnostic to the (temporally) functional shape of 
the boundary and which we term decision classification bound-
ary (DCB). The DCB extracts the decision boundary (at each time 
frame) by optimizing the classification of the agent’s behaviour (that 
is, terminating the trial by choosing alternative A, terminating the 
trial by choosing alternative B or sampling more evidence), based 
on the evidence accumulated up to this time point. When evidence 
integration is perfect (that is, free of distortions and biases), the 
DCB recovers the decision boundary. More broadly, however, DCBs 
provide a novel behavioural signature—a benchmark for evaluat-
ing biases in evidence integration—and also allow us to derive a 
simplified behaviourally approximate bias-free model, which com-
pensates for integration biases, via a change in the classification 
curve only (see Results 


section for further details and an example). 

Applying this method to data from experiments across choice 
domains (numerical cognition and perception), we find strong sup-
port for evidence integration over heuristic non-integration models. 
Furthermore, we demonstrate an important new factor modulating 
evidence accumulation, viz. stimulus consistency, corresponding 
to an increased relative weighting of pieces of evidence preceded 
by information supporting the same choice alternative, resulting  
in a type of momentary confirmation bias28,30,31, which operates 

Q6

Evidence integration and decision confidence are 
modulated by stimulus consistency
Moshe Glickman   1,2 ✉, Rani Moran   2,3,6 and Marius Usher   4,5,6 ✉

Evidence integration is a normative algorithm for choosing between alternatives with noisy evidence. It has been successful in 
accounting for vast amounts of behavioural and neural data. However, this mechanism has been challenged by non-integration 
heuristics, and tracking decision boundaries has proven elusive. Here we first show that the decision boundary can be moni-
tored using a model-free behavioural method termed decision classification boundary, which extracts decision boundaries by 
optimizing choice classification based on the accumulated evidence. Using this method, we provide direct support for evidence 
integration over non-integration heuristics, show that the decision boundaries collapse across time and identify an integra-
tion bias whereby incoming evidence is modulated based on its consistency with preceding information. This consistency bias, 
which is a form of pre-decision confirmation bias, was supported in four cross-domain experiments, showing that choice accu-
racy and decision confidence are modulated by stimulus consistency. Strikingly, despite its seeming sub-optimality, the consis-
tency bias fosters performance by enhancing robustness to integration noise.

NatURE HUMaN BEHavioUR | www.nature.com/nathumbehav

mailto:mosheglickman345@gmail.com
mailto:marius@tauex.tau.ac.il
http://orcid.org/0000-0002-3792-1992
http://orcid.org/0000-0002-7641-2402
http://orcid.org/0000-0001-8041-9060
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-022-01318-6&domain=pdf
http://www.nature.com/nathumbehav


A B

DispatchDate:  24.02.2022  · ProofNo: 1318, p.2

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Articles Nature HumaN BeHaviour

during (rather than after) a decision. Importantly, this mechanism 
contributes to decision quality, by increasing the robustness to late 
(non-encoding) noise32,33.

We start with a description of our experimental design (showing it 
is possible to extract behavioural signatures of integration to bound-
ary), followed by a computational section that presents the DCB 
method. We then apply this method to the data from two cross-domain 
experiments, focusing on the dependence of the DCB on stimulus 
consistency, and resort to computational modelling to specify the 
stimulus-consistency mechanism. We then present the results of two 
additional experiments designed to validate the predictions of this 
mechanism. Finally, we examine whether and under which conditions 
the stimulus-consistency mechanism can foster performance.

Results
Experimental design and signature of integration to boundary. 
In two experiments (experiment 1, reported in ref. 34, and experi-
ment 2, novel data), participants were presented with sequences of 

pairs of stimuli (two-digit numbers or bars, respectively; Fig. 1a,b) 
sampled from two overlapping Normal distributions (Experimental 
methods). The sequences were presented at a rate of 2 pairs per sec-
ond (numbers) and 5 pairs per second (bars), and were terminated 
by the participant’s response. The task was to select the sequence 
that corresponded to the distribution generating the higher mean 
(red Gaussian in Fig.  1a,b). In experiment 2, participants were 
also asked to reported their degree of confidence for each choice. 
Between trials, we manipulated stimulus difficulty by varying the 
separation between the Normal distributions (see Experimental 
methods section for further details). In total, 27 participants per-
formed 500 trials in experiment 1 and 30 participants performed 
480 trials in experiment 2.

In previous work, we showed that the choices in experiment 
1 (numerical evidence) support integration of evidence to a col-
lapsing boundary and excluded a set of non-integration models34. 
Here, we extend this analysis to the data in the perceptual domain 
(experiment 2). The thick blue lines (group data) and thin grey 
lines (individual subjects) in Fig. 1c,d are obtained by integrating 
the trial-by-trial stimulus evidence (that is, computing the cumu-
lative sum of differences between the sequence pairs of samples) 
until the decision moment, and averaging across trials for each RT. 
These lines show a mildly decreasing pattern (Fig.  1c: b = −2.86, 
tagainst 0 = −7.08, P < 0.001, 95% CI −3.65 to −2.07; Fig. 1d: b = −0.86, 
tagainst 0 = −3.18, P = 0.001, 95% CI −1.40 to −0.33), which is the 
behavioural signature of integration to a collapsing boundary (for 
further details, see ref. 34 and Supplementary Fig. 1). These results 
are consistent with previous findings that accumulated evidence 
decreases with RT35–37, as well as with model fitting results using 
a Weibull parametrization of the boundary38, which also indicates 
a collapsing boundary (Fig. 1e,f). Critically, the descending slopes 
of integrated evidence rule out non-integration strategies such as 
(1) random timer, in which the RT is determined by a process that 
is exogenous to the integration of evidence (dashed black line), (2) 
value cut-off, in which observers choose the sequence in which a 
number exceeding some predetermined threshold first appears 
(dashed green line) and (3) difference cut-off, in which observers 
choose based on the first frame in which the difference between the 
numbers exceeds a predetermined threshold (dashed magenta line). 
All of these non-integration models predict that the integrated evi-
dence increases (rather than decreases) with the number of samples 
(see Computational methods section for further details about these 
strategies). This is because, if the stopping rule is independent of the 
integrated evidence, longer decision trials necessarily accumulate 
more evidence. Whilst these results provide support for integration 
to boundary, the actual shape of the boundary trajectory (Fig. 1e,f) 
is only extracted via model fitting (note that the actual boundary is 
not linearly decreasing with time), as the evidence-integration lines 
(Fig. 1c,d, blue and thin grey lines) are systematically biased by the 
accumulation of noise during the trial34. In the following, we present 
a model-free method to estimate the decision boundary via a clas-
sification boundary curve. It is more robust to accumulation noise 
and reconstructs the actual shape of the decision boundary.

Model-free extraction of decision boundaries. We simulated syn-
thetic data based on the experimental task we used in our experi-
ments (Fig. 1a,b and Computational methods), in which sequences 
of values are sampled from two overlapping Normal distributions. It 
is assumed that the subjects integrate a noisy version of the evidence 
at each frame, according to the following difference equation:

X (t) = X (t− 1) + μ (t) + ε (t) , ε ∼ N
(

0, σ2) , (1)

where X(t) is the accumulated differences between the sequences 
at time t, μ (t) is the difference between the samples at time t and 
ε (t) is a temporally independent random internal Gaussian noise 
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Fig. 1 | Experimental paradigms and behavioural signature of integration 
to boundary. a,b, Experimental paradigms. Participants are presented 
with pairs of numerical values (a, experiment 1) or bars (b, experiment 2) 
sampled from two overlapping Normal distributions and are asked to choose 
which sequence was drawn from a distribution with a higher mean value 
(experiment 1) or greater mean length (experiment 2). The presentation 
is terminated by the decision of the participant (that is, a free response 
protocol). c, The accumulated evidence of all participants (thick blue line) 
as a function of decision time. Thin blue lines correspond to accumulated 
evidence of individual participants. Dashed black, green and magenta lines 
correspond to the random time model, and to the value and difference 
heuristics, respectively. d, As in c but for experiment 2. e,f, The collapsing 
boundaries obtained in experiment 1 (e) and 2 (f). Thick purple lines 
correspond to the boundaries generated using the group mean parameters. 
Grey lines correspond to the boundaries of individual participants.
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generated, which is independent from the evidence-sampling 
noise (Fig.  1a,b). Note that, unlike ε (t) , μ (t) is directly available 
to the experimenter. We also assumed that a response is triggered 
when the integrated noisy evidence reaches one of two symmetric 
decision boundaries. Two types of boundaries were used in these 
simulations: fixed and collapsing38. For the collapsing boundary, we 
follow ref. 38 and parametrize the boundary using Weibull functions 
(Computational methods). In each simulation, we ran 10,000 tri-
als in which values sampled from the two distributions were inte-
grated with additional internal noise. For each trial, we recorded the 
choice, as well as the input sequences (without the internal noise) 
sampled until a decision was made.

Based on these data, we reconstruct the boundary at each time 
frame using a method based on linear discriminant analysis39,40 
(LDA), which generates boundary classification curves. These 
curves are obtained by applying LDA to the integrated evidence 
excluding the random internal noise, defined as

Y (t) = Y (t− 1) + μ (t) . (2)

The LDA was applied to the integrated evidence (Y(t)) of the 
observer at each time frame, so as to classify the action at each time 
frame to one of three categories: choose alternative A (Fig. 2a,b, blue 
distributions), choose alternative B (Fig. 2a,b, green distributions) 
or continue sampling (Fig. 2a,b, pink distributions). The classifica-
tion boundary curve (Fig. 2a,b, red line) best separates the different 
classes (Computational methods section and Table  1). Note 


that,  

for each time frame (t), the LDA was applied to all trials in the 
experiment that were not terminated before the t-th frame. In addi-
tion, note that in the absence of internal noise, the true decision 
boundary would separate these categories perfectly. However, in the 
presence of internal noise, which may increase the values of inte-
grated evidence that lie below the boundary (blue areas), or vice 
versa (pink areas above the boundary), there is some unavoidable 
overlap.

The results are illustrated in Fig.  2a,b, which shows that the 
DCBs (solid red lines) recover quite accurately the generating 
boundaries (dashed black lines). In particular, the extracted bound-
ary is temporally constant or decreases as a function of time, when 
the generating boundary is flat or collapsing, respectively. Notably, 
the quantitative agreement between the generating and recovered 
boundaries is high. Note that the model-free boundary extraction 
method makes no a priori parametric assumptions about the shape 
of the model boundary. As shown in Fig.  2c,d, for synthetic data 
generated using the non-integration-to-boundary, that is, value (or 
difference) cut/off heuristics, the three distributions of evidence 
(trials in which the model continues sampling (pink) and trials in 
which response has been made (blue and green)) show substan-
tial overlap. Consequently, the decision classification curve algo-
rithm fails to correctly classify the three classes of trials based on 
the integrated evidence. Thus, the presence of an accurate bound-
ary classification curves (Fig. 2a,b) provides strong support against 
(non-integration) cut-off models.

In both our datasets, we find stable classification curves (see 
Fig. 2e,f, red lines, for representative example subjects) that imply 
a collapsing boundary, which are consistent with model fitting 
(Fig. 2e,f, dotted black line), but make no parametric assumption 
on the form of this boundary (see Supplementary Figs.  2 and 3 
for the DCB of all participants). Finally, we linked the DCB to the 
basic behavioural measures of RT and accuracy. We found a high 
correlation between the area under the DCB and mean RT across 
participants, in both experiment 1 (r = 0.96, P < .001; Fig. 2g) and 
experiment 2 (r = 0.8, P < 0.001; Fig. 2h). Correlations between the 
area under the DCB and accuracy were also found. However, they 
were weaker and less consistent (experiment 1: r = 0.41, P = 0.03; 
experiment 2: r = 0.29, P = 0.1) (Supplementary Fig. 4). Note that, 
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although the correlation between RT and DCB is high, they are 
not interchangeable. An increased RT could also be caused by a 
reduction of the drift rate or by an increase in boundary without a 
time-collapsing shape.
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Fig. 2 | Model-free extraction of the decision boundaries. a,b, Illustration 
of the boundary extraction for a decision simulated using a diffusion 
model with fixed (a) or collapsing boundary (b). The dashed black line 
corresponds to the original boundary with which the model was simulated, 
and the red lines correspond to the model-free best-fitted DCB. The 
pink distributions correspond to data points within each trial in which 
the simulated participant continued sampling, whilst the blue and green 
distributions correspond to frames in which trials were terminated. The 
total area under the pink, blue and green distribution was normalized for 
each frame. c,d, Same as a and b, only for data that were simulated using 
the value cut-off (c) and difference cut-off heuristics (d). e,f, Experimental 
data of a representative subject who participated in the numerical (e) 
and perceptual experiments (f). Dashed black line corresponds to the 
model-based best-fitted boundaries, and the red lines correspond to the 
model-free best-fitted boundaries of the experiments. g,h, Correlations 
between the area under the DCB and the mean RTs across participants 
in experiment 1 (g, r = 0.96, P < 0.001) and experiment 2 (h, r = 0.8, 
P < 0.001).
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So far, we have illustrated that the DCB can accurately recon-
struct the decision boundary in the case of perfect evidence integra-
tion. In the next section, we extend these results to the case in which 
the integration process is biased. We will show that, even then, the 
DCB can achieve three targets: (1) to indicate the presence of a bias, 
(2) to determine the simplest bias-free behaviourally equivalent 
model (see Supplementary Fig. 5 for an illustration for the case of 
leaky integration, in which the DCB compensates for the evidence 
loss by a change only in the decision classification line) and (3) to 
obtain the actual boundary in the case of a biased integration pro-
cess, by selecting between a family of DCBs based on maximizing 
their classification performance metrics (see Supplementary Fig. 6 
for further details).

Evidence integration is modulated by stimulus consistency. A 
more detailed examination of the choice data in both experiments 
shows that stimulus consistency, operationalized as the absolute 
value of the difference between the number of frames with evidence 
favouring each alternative divided by the total number of frames in 
the trial (denoted as the difference in evidence directions (DED)), 
has a critical impact on choices and RT, above and beyond the effect 
of total evidence. To illustrate this, consider two trials with the 
same total evidence: trial 1 (2, 3, 1, 4, total evidence 10) and trial 2  
(6, −1, 8, −3, total evidence 10). Whilst both trials have a total evi-
dence of 10 in favour of one of the alternatives, the evidence stream 
is more consistent in trial 1 (with a consistency measure of 4−0

4 = 1) 
compared with trial 2, where half of the evidence favours one alter-
native whereas the other half favours the other (with a consistency 
measure of 2−2

4 = 0). Previous research has shown that stimulus 
consistency modulates decision confidence41. Here, we examine its 
impact also on accuracy and RT. To this end, we conducted several 
mixed-model regression analyses (logistic for accuracy and linear 
for RT and confidence), in which we predicted trial-by-trial choice 
accuracy, RT and confidence, using accumulated evidence and 
stimulus consistency (defined based on the evidence stream up to 
subject-initiated trial completion) as fixed factors and participants 
as random intercepts. The results (Table 2) indicate that stimulus 
consistency improves accuracy and confidence and reduces RT, 
independent of the accumulated evidence.

Note that the DED is only one measure of stimulus consistency. 
More complex forms that include temporal factors can also be con-
structed. For example, the consistency bias may correspond to the 
size of the larger temporal cluster (LTC) with evidence in the same 
direction (that is, the largest cluster of evidence; see Supplementary 

Table 1 for analysis showing that such an LTC measure also predicts 
differences in accuracy, RT and confidence, independent from total 
evidence).

DCB modulation by stimulus consistency and model comparison.  
Motivated by the results above, we examined whether stimulus con-
sistency (DED) modulates the DCB. To this end, we extracted the 
DCB of each frame whilst including the consistency measure (DED) 
as a predictor in the LDA model. Additionally, similar to the regres-
sion models above, we also included the mean evidence as a pre-
dictor in the model. We predicted that, if participants overweight 
consistent pieces of evidence, then less evidence will be required  
to reach a decision as consistency increases. Figure 3a,b shows that 
this was indeed the case in experiments 1 and 2: as the consistency 
of the evidence increased, the DCB decreased (blue line), compen-
sating for the bias in the evidence-integration process by setting 
a classification curve which is lower than the original boundary 
(orange line).

Note that this analysis does not provide a causal explanation for 
how consistency affects the evidence-integration process, but rather 
shows that it was biased by stimulus consistency (see Discussion 
for details). This is because the DCB, as we showed so far, provides 
us with a behaviourally approximate (simpler, that is, without bias) 
model (Supplementary Fig.  5). To provide a more mechanistic 
account, we will use two complementary methods and show that 
they converge to the same result. We will first rely on conventional 
model comparisons techniques to select a model that provides 
the best fit for the data. Second, we will use a method developed 
to extract the decision boundary using the DCB in case of biased 
integration process (Supplementary Fig. 6). Using this method, we 
compare between a model assuming consistency bias and a model 
which does not.

First, to specify the evidence-integration mechanism, we car-
ried out a quantitative model comparison for each participant, 
using AIC


 as a measure of fit to include a model-complexity cost. 

We started with the perfect integration model (which assumes no 
systematic distortion of the evidence a subject integrates in each 
frame, that is, integration is only corrupted by additive noise). 
Next, we examined a selective-integration (SI) mechanism that 
amplifies or diminishes, respectively, the stronger or weaker evi-
dence within each frame across the two evidence streams33,42 
(Computational methods). Critically, we also examined several 
variants of a stimulus-consistency model. In the simplest variant, 
the evidence is modulated solely based on whether evidence from 
the preceding frame is consistent (that is, it points in the same direc-
tion) with the current frame. In a slightly more complex variant, 
the modulation magnitude increases linearly with the number of 
consistent frames and resets to baseline (no modulation) with every 
swap (here, we report only the results of the more complex version, 
which provided a better fit for the data). Finally, we also examined 
a preference-consistency model wherein incoming evidence is 
modulated based on consistency with the total integrated evidence 
(thus reflecting momentary preference) up to that time point (see 
Computational methods section for details).

In each model, we allowed for collapsing boundaries, which 
as illustrated in Fig.  2c,d, capture well the shape of the decision 
boundary (and provide much better fits to the data compared 
with fixed boundaries34). Figure  3c,d shows the group and indi-
vidual participant fit measures for four models: full integration,  
SI, preference consistency and stimulus consistency in experi-
ments 1 and 2. As illustrated, the most successful of the models was  
the stimulus-consistency version in which evidence increased  
at each consecutive frame in the same direction, followed by the  
SI model.

Finally, we developed a method to extracted the bound-
ary using the DCB in the case of a biased integration process 

Q8

Table 1 | illustration of the data used by the LDa algorithm

Y(t) t Response classification

Ytrial 1(t = n) n Choose B

Ytrial 3(t = n) n Continue sampling

… … …

Ytrial 1(t = n − 1) n − 1 Continue sampling

Ytrial 2(t = n − 1) n − 1 Choose A

Ytrial 3(t = n − 1) n − 1 Continue sampling

… … …

Ytrial 1(t = 1) 1 Continue sampling

Ytrial 2(t = 1) 1 Continue sampling

Ytrial 3(t = 1) 1 Continue sampling

… … …

The LDA classifies each frame to one of three classes: terminating the trial by choosing alternative 
A, terminating the trial by choosing alternative B or continue sampling more evidence, based on the 
time point (t) and the evidence accumulated up to this time point (Y(t)).
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(Supplementary Fig.  6). This method uses a mixture of paramet-
ric and non-parametric methods. The former is used to character-
ize the biased integration process (but not the decision boundary), 
whilst the latter is used to extract the boundary using the DCB. 
To apply this method, a candidate biased integration model (for 
example, stimulus-consistency bias) is first selected. Then, instead 
of using the actual (unbiased) evidence to estimate the DCB, it is 
extracted based on the biased evidence (generated by simulat-
ing the biased integration model with different values of the bias 
parameter). For each level of the bias parameter, the DCB as well as 
a classification performance metric (for example, the F1 score) are 
computed. This results in a family of DCB curves, one for each value 
of the bias parameter. The bias parameter and corresponding DCB 
which maximizes accuracy (or any other performance metrics) 
comprise the estimate (see Supplementary Fig. 6 for further details 
and simulations). A bias parameter that equals 0 indicates that there 
was no bias in the evidence integration process (that is, full integra-
tion model), whereas a parameter higher than 0 indicates that the 
integration process was biased. Using this method, we found that 
the bias parameter was higher than 0 for 81% of the participants in 
experiment 1 (mean bias parameter 2.26, 95% CI 1.70–2.86) and for 
90% of the participants in experiment 2 (mean bias parameter 4.23, 
95% CI 2.76–5.90), suggesting that, in both experiment 1 and 2, the 
integration process was biased by the consistency of the evidence.

Experiments 3 and 4: testing the stimulus-consistency effects. 
Because in our first two experiments participants’ choices terminated 
the information stream, trial consistency depended, at least par-
tially, on participants’ responses and was not completely orthogonal  

to the integrated evidence. To address this limitation, and to directly 
test the impact of stimulus consistency on evidence-based choice 
and on decision confidence, two additional experiments were 
designed. In both, the number of samples was fixed and the stimu-
lus consistency was manipulated completely independently from 
the total evidence. In experiment 3, sequences of eight number 
pairs were presented at a rate of 2 Hz (as in experiment 1) and par-
ticipants were instructed to choose at the end of the presentation 
the sequence with higher average (Fig. 4a). For each set of samples, 
we generated two paired trials, which consisted of the very same 
evidence content (across the eight time frames) for each sequence 
and differed only in the temporal order of the values (that is, the 
paired trials varied in how the values on each side were shuffled). 
In the consistent trial condition (Fig.  4c, bottom panel), one evi-
dence stream provided stronger evidence in seven out of the eight 
frames, whereas in the inconsistent trial condition (Fig. 4c, upper 
panel), each stream provided stronger evidence in four frames. In 
addition to consistency, the difficulty of the trials was also manipu-
lated by sampling values from X ~ N(52, 102) and Y ~ N(48, 102)


 for 

the difficult condition and from X ~ N(52, 102) and Y ~ N(44, 102) 
for the easy condition. In experiment 4, the stimulus-consistency 
effect was generalized to a much faster presentation rate of 12.5 Hz 
and to a single stream of evidence. Participants were presented 
with a sequence of eight arrays of red and blue dots (Fig. 4b) and  
were instructed to determine whether more of the blue or the  
red dots were presented in total (see ref. 43 for a similar paradigm). 
The number of dots presented in each frame was sampled from a 
Normal distribution (corresponding to the differences between  
the left and right distributions in experiment 3): X ~ N(2, 202) for  
the difficult trials and X ~ N(5, 202) for the easy trials. As in experi-
ment 3, in the consistent condition, seven out of the eight frames 
provided support for one of the alternatives and in the inconsistent 
condition each alternative was supported by four of the frames. 
Critically, consistency and difficulty were manipulated completely 
orthogonally.

As shown in Fig.  5a,d, the participants were both more accu-
rate and more confident in consistent trials than in inconsistent 
trials, for both the easy and the difficult conditions, in experiment 
3 (accuracy/easy: permutation test P < 0.001, Cohen’s d = 1.26, 
95% CI 0.06–0.13; accuracy/difficult, permutation test P < 0.001, 
Cohen’s d = 1.40, 95% CI 0.11–0.20; confidence/easy: permutation 
test P < 0.001, Cohen’s d = 1.11, 95% CI 0.07–0.14; confidence/dif-
ficult: permutation test P < 0.001, Cohen’s d = 0.94, 95% CI 0.04–
0.10) and experiment 4 (accuracy/easy: permutation test P < 0.001, 
Cohen’s d = 1.69, 95% CI 0.12–0.18; accuracy/difficult: permutation 
test P < 0.001, Cohen’s d = 2.19, 95% CI 0.22–0.31; confidence/easy: 
permutation test P < 0.001, Cohen’s d = 1.56, 95% CI 0.11–0.19; con-
fidence/difficult: permutation test P < 0.001, Cohen’s d = 1.49, 95% 
CI 0.11–0.19). Interestingly, in both experiments, the modulation 
of the confidence responses was different for correct and incorrect 
responses. Whereas for correct responses, confidence increases 
with stimulus consistency in experiment 3 (correct/easy: permu-
tation test P < 0.001, Cohen’s d = 0.94, 95% CI 0.05–0.13; correct/
difficult: permutation test P < 0.001, Cohen’s d = 0.80, 95% CI 0.03–
0.10) and experiment 4 (correct/easy: permutation test P < 0.001, 
Cohen’s d = 1.58, 95% CI 0.11–0.18; correct/difficult: permutation 
test P < 0.001, Cohen’s d = 1.41, 95% CI 0.11–0. 18), this pattern was 
not obtained for incorrect trials in experiment 3 (incorrect/easy: 
permutation test P = 0.53, Cohen’s d = −0.14, 95% CI −0.05 to 0.02; 
incorrect/difficult: permutation test P = 0.96, Cohen’s d = 0.01, 95% 
CI −0.03 to 0.03) or experiment 4 (incorrect/easy: permutation test 
P = 0.19, Cohen’s d = −0.29, 95% CI −0.14 to 0.01; incorrect/diffi-
cult: permutation test P = 0.37, Cohen’s d = −0.20, 95% CI −0.11 to 
0.03). These findings indicate that meta-cognitive accuracy (confi-
dence resolution = confidencecorrects – confidenceerrors) increases with 
stimulus consistency in experiment 3 (resolution/easy: permutation  

Q9

Table 2 | Beta coefficients for predicting accuracy, Rt and 
confidence in experiments 1 and 2

β (s.e.) t P 95% Ci

Experiment 1

 Accuracy

 Evidence 1.72 (0.06) 28.03 <0.001 1.60 to 1.84

 Stimulus 
consistency

0.26 (0.05) 5.69 <0.001 0.17 to 0.35

 RT

 Evidence −0.26 (0.01) −28.23 <0.001 −0.28 to −0.24

 Stimulus 
consistency

−0.14 (0.01) −14.90 <0.001 −0.16 to −0.12

Experiment 2

 Accuracy

 Evidence 0.56 (0.03) 16.91 <0.001 0.49 to 0.62

 Stimulus 
consistency

0.27 (0.03) 9.40 <0.001 0.21 to 0.33

 RT

 Evidence −0.16 (0.008) −20.42 <0.001 −0.18 to −0.15

 Stimulus 
consistency

−0.14 (0.008) −16.78 <0.001 −0.15 to −0.12

 Confidence

 Evidence 0.13 (0.01) 12.14 <0.001 0.11 to 0.15

 Stimulus 
consistency

0.15 (0.01) 13.96 <0.001 0.12 to 0.17

Results of mixed-model logistic regression for predicting accuracy (experiments 1 and 2) 
and mixed-model linear regressions for predicting RT (experiments 1 and 2) and confidence 
(experiment 2) using accumulated evidence and stimulus consistency as fixed factors and 
participants as random intercepts.
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test P < 0.001, Cohen’s d = 0.82, 95% CI 0.05–0.16; resolution/ 
difficult: permutation test P = 0.01, Cohen’s d = 0.59, 95% CI = 
0.02–0.11) and experiment 4 (resolution/easy: permutation test 
P < 0.001, Cohen’s d = 0.82, 95% CI 0.10–0.29; resolution /difficult: 
permutation test P = 0.001, Cohen’s d = 0.73, 95% CI 0.09–0.27). 
As shown in Fig. 5c,d (see also Supplementary Fig. 11), this effect  
can also be accounted for by the stimulus-consistency model by 
applying a signal-detection confidence approach.

We conducted quantitative model comparison for the several 
types of integration models using the data from experiments 3 
and 4. Since the data of experiment 3 showed a recency pattern, 
we used leaky10,44,45 instead of full integration as our default model 
for that experiment (Computational methods). Overall, we com-
pared the following models: (1) leaky/full-integration models, in 
which there is no distortion of the integrated evidence other than 
the decaying temporal weights, (2) SI model, which, additional to 
integration leak, gives higher weight to high values compared with 
low values, within each frame (note that, as only one stream of evi-
dence was presented in experiment 4, the SI model (which assumes 
weighting based on the comparison between pairs of samples) was 
excluded from the model comparison of that experiment) and (3) 
stimulus-consistency model (from experiments 1 and 2; Fig. 3c,d). 
The results show that the stimulus-consistency model outperformed 
the other models, in both experiment 3 and 4, and provides the best 
account for the data at group levels as well as for the majority of 
participants (Fig. 5e,f).

Interestingly, whereas both of the bias models are able to  
account for the modulation of accuracy by stimulus consistency in 

experiment 3 (Fig. 4c), the stimulus-consistency model accounts for 
subtler temporal clustering effects in the data. For example, unlike 
the SI model, the stimulus-consistency model predicts that accuracy 
is modulated by the size of the largest cluster of evidence consis-
tent with the correct choice (LTC; see Supplementary Table 1 for the 
impact of this measure in experiments 1 and 2 and Supplementary 
Fig. 10 for data showing an association between the LTC enhance-
ment and the advantage of stimulus consistency over the SI model 
in experiment 3).

Stimulus consistency and normativity. Why do participants 
increase the relative weighting of pieces of evidence that are con-
sistent with previous ones? At face value, this distortion introduces 
a gap between the accumulated and ‘real’ evidence and should 
reduce task performance. Indeed, this is the case in the absence of 
(or for low) integration noise. As illustrated in Fig. 6a,b, however, 
in the presence of high integration noise, the consistency modula-
tion makes the mechanism more robust to the corrupting impact 
of this noise (see the cross-over between the red and light blue 
lines in Fig.  6a, so that, for each level of noise, there is a consis-
tency modulation that optimizes performance; Fig. 6B, black dots; 
Fig. 6A, dark-blue line). A similar robustness effect due to SI was 
reported for the SI model33,42 (see also ref. 42). In both cases, the 
integration mechanism distorts the actual evidence by shifting the 
distribution of accumulated evidence towards the correct side (see 
the centre of the blue/red Gaussians in Fig. 6c,d, whilst also making 
this distribution broader). Whilst for low noise this is detrimental 
to performance, for high noise it is beneficial, as the shift helps to 
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Fig. 3 | Results of experiments 1 and 2. a,b, Modulation of the DCB as a function of consistency in experiment 1 with numerical stimuli (a) and experiment 
2 with perceptual stimuli (b). In the case of a stimulus-consistency bias, the weight of consistent evidence is increased, thus less evidence is required 
to reach a decision. The DCB (dashed blue line) compensates for that by decreasing the classification curve with consistency, and having lower values 
compared with the original boundary (in orange). Note that, here, we used an arbitrary boundary value for illustration purposes and that the modulation 
of the DCB is averaged across participants. c, Upper panel: the AIC group scores of the full-integration (orange), preference-consistency (yellow), SI (light 
blue) and stimulus-consistency (dark blue) models in experiment 1 with numerical stimuli. Lower panel: model probabilities for the individual participants. 
Colour coding is the same as in the upper panel. d, As in c, only for experiment 2 with perceptual stimuli.
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make the effect of additional noise less pronounced. Note that, since 
we are looking at normative considerations, the current simulations 
exclude integration leak. Adding it to all models does not change 
any of the results.

Discussion
In the present study, we examined the mechanism that human 
observers deploy when making decisions on rapid streams of 
(perceptual and numerical) stochastic evidence. Using a behav-
ioural model-agnostic method (the DCB curve), we showed that 
decision-making is well characterized by integration to boundary 
rather than by non-integration heuristics, and that the bound-
ary collapses with the passage of time (Fig.  2e,f; see also ref. 46). 
Furthermore, we found that DCB curves constitute an informa-
tive behavioural benchmark for evaluating biases in evidence inte-
gration. In particular, they provide a simplest bias-free evidence 
integration model that approximates a biased integration model 
(Supplementary Fig. 5). The covariation of the DCB with stimulus 
consistency (Fig. 3a,b) indicates a consistency bias in the evidence 
integration.

The DCB receives as input the integrated evidence excluding 
internal noise (equation (2)). As a result, its success in recover-
ing the decision boundary is limited to experimental designs in 
which stimulus variability is high enough compared with internal 

noise. Consequently, the DCB method becomes less reliable when 
the presentation rate becomes closer to the integration time con-
stant (which we assume to correspond to about 30 ms (refs. 47,48)). 
Supplementary Fig. 7 shows the results of a simulation examining 
the accuracy of the DCB method as a function of presentation time. 
As shown, the boundary reconstruction error increases as the pre-
sentation time decreases. This occurs because, when the evidence 
samples are presented close to the visual integration time scale, the 
neural responses to the consequent sample become fused and there-
fore the stimulus variability is decreased. Whilst this could make 
the method difficult to apply to some prominent tasks such as ran-
domly moving dots49,50, we believe that a rate of 5–12.5 Hz (as used 
here) is reasonable for most ecological tasks in which subjects make 
decisions based on stochastic sequences of evidence43,51 and which 
sets the evidence integration at the cognitive rather than the per-
ceptual level.

Motivated by previous studies, we examined here two types of 
evidence-integration biases. The first is an attention bias, which 
affects the relative weight of evidence given to temporally simulta-
neous sources of evidence26. In the SI model, for example, the higher 
of the two values presented on each frame receives a higher weight 
than the lower one23,52,53. The second bias involves the sequential 
impact of a frame on subsequent frames, whereby evidence that is 
consistent with previous frames receives higher weight than incon-
sistent evidence. Model comparisons supported the consistency 
bias in accounting for our data. Notably, consistency affected not 
only decision accuracy but also decision confidence41, such that 
consistent evidence facilitated high decision confidence even after 
controlling for the total amount of evidence. Critically, consistency 
did not merely exert a biasing influence on confidence but also 
improved participant’s meta-cognitive performance as measured 
by the resolution of confidence (that is, the correlation between 
confidence and choice correctness). Indeed, confidence as a func-
tion of consistency increased for correct choices but remained con-
stant for incorrect choices. An open question for future studies is 
whether the effects that consistency exerts on choice accuracy and 
meta-cognition are dissociable.

Previous research has reported sequential effects operating at the 
trial level. For example, a choice biases the interpretation of evidence 
in subsequent trials54–56. Similarly, a preliminary decision biases pro-
cessing of additional post-choice evidence towards confirming the 
initial decision28,31,57, and decisions bias the strength evaluation of 
pro-choice evidence that led to it58–60. Common to these studies is 
the assumption that these biases are triggered by the formation of 
a decision. Our findings, however, extend this notion by suggesting 
that a similar micro-level evidence integration bias operates during  
decision formation, before committing to a choice (see also refs. 61,62).  
In particular, we found that the best-fitting model was one in which 
the evidence is boosted for consistent evidence frames (this boost 
increases with the number of consecutive consistent frames) and 
is reset to baseline when the first inconsistent piece of evidence is 
encountered. Despite its evidence distortion, we have shown that 
this mechanism has an adaptive function in the presence of inte-
gration noise. Since evidence samples that are consistent with their 
predecessors are more likely to carry stronger evidence in favour of 
the correct alternative, inflating their weight provides extra protec-
tion from the corrupting effect of accumulation noise, resulting in 
increased decision accuracy (Fig. 6). This ‘normativity hypothesis’ 
predicts that, to the extent that consistency-based evidence integra-
tion is a controlled and adjustable strategy, consistency-sensitivity 
effects will increase as a function of integration noise, for example, 
when one is performing a dual task or when working memory  
is loaded. We leave this interesting question for future studies (see 
ref. 32 for a parallel investigation in relation to SI).

Our findings raise the intriguing hypothesis that confirmation 
biases are a form of consistency bias, whereby post-choice evidence  
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Fig. 4 | Experimental paradigms in experiments 3 and 4. a, Participants in 
experiment 3 were presented with pairs of numerical values sampled from 
two overlapping Normal distributions (as in experiment 1) and were asked 
to choose which sequence was drawn from a distribution with a higher 
mean. The presentation was terminated after eight pair values (that is, an 
interrogation protocol). b, Participants in experiment 4 were presented 
with a single stream of eight arrays of blue and red dots and were asked 
to indicate whether more blue or red dots were presented in total. The 
dashed black line indicates a value of 0. c, Illustration of consistent and 
inconsistent trials in experiment 3. Note that both trials have exactly the 
same amount of evidence. ‘L’ and ‘R’ symbols correspond to momentary 
advantages of the left or right sequences, respectively. d, Illustration of 
consistent and inconsistent trials in experiment 4. ‘R’ and ‘B’ symbols 
correspond to red and blue samples, respectively. As in experiment 3, both 
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inconsistent with pre-choice evidence is integrated less effectively 
than post-choice consistent evidence. Future studies should inves-
tigate whether, to what extent and how consistency and confirma-
tion biases are related, by measuring both biases within participants 
and using a unified paradigm. Another interesting possibility is  
that the consistency of evidence supporting a decision might affect 
the extent of a confirmation bias. For example, choices that are 
based on more consistent evidence may probably be more prone to  

confirmation bias, for example, due to the mediating effect of deci-
sion confidence30. Future studies could also beneficially examine 
whether and how consistency bias is related to a broad range of 
individual traits such as the need for cognitive closure63, political 
radicalism57 and dogmatism64, or to psychiatric conditions such as 



obsessive compulsive disorder65. Consistency bias may be also related 
to higher-level judgements such as legal decisions, in which over-
weighting of consistent evidence may lead to erroneous decisions. 
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Fig. 5 | Results of experiments 3 and 4. a, Choice accuracy in experiment 3 as a function of difficulty (separation between the sampling distributions: easy 
versus difficult) and consistency (difference in the directions of the evidence: consistent versus inconsistent). The red, green and blue lines correspond 
to the predictions of the full/leaky-integration, SI and stimulus-consistency models, respectively. The thin grey lines correspond to individual participants 
(n = 22). b, Same as a for 




experiment 4. Note that, here, the predictions of the SI model were not included as only one stream of evidence was presented 

(n = 25 participants). c, Confidence as a function of difficulty and consistency for correct (blue lines) and incorrect (red lines) responses. Data are  
shown with solid lines and circle symbols. Model predictions are shown with dashed lines and diamond symbols (n = 22 participants). d, Same as c for 
experiment 4 (n = 25 participants). e, Model comparison for experiment 3. The stimulus-consistency model outperformed the leaky and SI models.  
f, Model comparison results for experiment 4. As in experiment 3, the stimulus-consistency model outperformed the integration model. Data are 
presented as mean ± s.e.m.
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We believe that our paradigm provides an important advantage over 
current confirmation bias paradigms by addressing these questions. 
In current confirmation bias paradigms, which probe one’s ability 
to revise initially wrong decisions, validity might be jeopardized 
by demand characteristics (for example, presenting oneself in a 
self-consistent manner). In contrast, the current approach eschews 
these concerns, since participants are not required to contradict or 
confirm their previous decisions.

In conclusion, our methods allowed us to validate critical aspects 
of the evidence accumulation process and to unravel the biases that 
affect it. Our findings contribute to a growing literature speaking to 
the notion that self-inflicted distortions of evidence are ironically 
adaptive in that they act to increase choice veracity by making it 
robust to noise. A critical next step is to study how these strategies 
are acquired and how they relate to puzzling behaviours such as 
confirmation bias, and to better characterize the environmental and 
psychological variables that affect strategy selection.

Methods
Experimental methods. Participants. The participants were undergraduates from 
Tel Aviv University: 27 (22 female, age 21–28 years) in experiment 1 (data taken 
from ref. 34), 30 (22 female, age 18–35 years) in experiment 2, 23 (17 female, age 
21–30 years) in experiment 3 and 25 (12 female, age 18–32 years) in experiment 
4, all of whom reported having normal or corrected-to-normal vision. The 
participants in experiment 1, 2 and 3 received course credit in exchange for taking 
part in the experiments, as well as a bonus fee ranging from 15 to 25 ILS, which 
was determined by their task performance. The participants in experiment 4 

were recruited via Prolific (https://prolific.ac/) and received £4 in exchange for 
participation. All experiments were approved by the ethics committee of Tel Aviv 
University.

Stimuli. The stimuli consisted of pairs of numerical values (experiments 1 and 3)  
or bars (experiment 2) which were presented simultaneously (Fig. 1a,b) at a 
rate of 2 Hz (500 ms per frame, experiments 1 and 3) or 5 Hz (200 ms per frame, 
experiment 2). In experiment 4, the stimuli consisted of a single stream of red 
and blue arrays of dots (Fig. 4b) presented at a rate of 12.5 Hz (80 ms per frame). 
Displays in experiments 1 and 3 were generated by an Intel I7 personal computer 
attached to an Asus 24” 248qe monitor with a refresh rate of 144 Hz using the 
1,920 × 1,080 resolution graphics mode. Displays in experiment 2 were generated 
by an Intel I3 personal computer attached to a ViewSonic Graphics Series 19” 
G90fB CRT monitor with a refresh rate of 60 Hz using the 1,024 × 768 resolution 
graphics mode. Experiment 4 was designed in PsychoPy366 and hosted online using 
Pavlovia (http://www.pavlovia.org/). Responses were collected via the computer 
keyboard. The viewing distance was approximately 60 cm from the monitor.

Task and design. Each trial in the experiments began with a fixation display 
consisting of a black 0.2° × 0.2° fixation cross (+) that remained on the screen for 
1 s. Then, pairs of numerical values (experiments 1 and 3), bars (experiment 2) 
or arrays of dots (experiment 4) were presented sequentially to the participants, 
who were asked to decide which sequence was drawn from a distribution with a 
higher mean value (experiment 1) or greater mean length (experiment 2), which 
of the sequences had a higher mean (experiment 3) or whether more blue or red 
dots were presented in total (experiment 4). The presentation in experiments 
1 and 2 was terminated by the participants’ response (free response protocol), 
whilst the presentation in experiments 3 and 4 was terminated after eight samples 
(interrogation protocol). In experiment 1, trials in which the response was faster 
than 250 ms or was performed after more than 11 samples were presented were 
excluded from further analysis (less than 2% of the data). In experiment 2, trials 
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Fig. 6 | Stimulus consistency and normativity. a, Consistency-based modulation and normativity accuracy (that is, robustness to noise) as a function 
of noise, separately for the full-integration (red line) and stimulus-consistency models (blue lines). The accuracy of the stimulus-consistency model is 
presented for the model simulated using a fixed consistency parameter value of 10 (light blue) and for the model simulated using the optimal consistency 
parameter for each noise level (dark blue; see also b). b, Accuracy of the stimulus-consistency model as a function of the consistency-modulation 
strength, for different levels of noise (σ curves). Black circles indicate consistency values that maximize the accuracy for a given level of accumulation 
noise. One can see that, as the level of the noise increases (red to blue lines), so does the level of consistency modulation needed to achieve the optimal 
performance (black circles). c,d, The distributions of the total accumulated evidence at the moment of response for the full-integration model (blue) 
and the stimulus-consistency model (red). The accuracy of the full integration model is higher than that of the stimulus-consistency model for low-noise 
simulations (c), but the stimulus-consistency model is more accurate for high-noise simulations (d).
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in which the response was faster than 200 ms or performed after more than 20 
samples were presented, or in which choice or decision confidence were not 
recorded were excluded from further analysis (less than 5% of the data). Responses 
were given by pressing the arrow keys (experiments 1 and 2; left/right arrow 
key for the left/right sequence, respectively) or by using the computer mouse 
(experiments 3 and 4). In experiments 2, 3 and 4, 




after indicating the sequence with 

the higher mean, participants were also asked to indicate their choice confidence. 
In experiment 2, we used a continuous scale with end points labelled ‘50%’ and 
‘100%’. In experiment 3, we used a six-button radio scale with end points (that is, 
1 and 6) labelled ‘Not confident at all’ and ‘Very confident’. In experiment 4, we 
used a continuous scale with end points labelled ‘Not confident at all’ and ‘Very 
confident’. Confidence scores were normalized using min–max normalization:

Normalized confidence =
confidence − min(confidence)

max(confidence) − min(confidence) .

Experimental conditions. In all the experiments, the samples were drawn from 
Gaussians distributions. Experiment 1 included two difficulty levels, which were 
manipulated by varying the separation between the Gaussians: in the easy trials the 
means of the Gaussians were μ1 = 52 versus μ2 = 44, σ = 10, whilst in the difficult 
trials the means were μ1 = 52 versus μ2 = 48, σ = 10. Experiment 2 also consisted of 
two difficulty levels with μ1 = 52.5 versus μ2 = 47.5 and μ1 = 51.5 versus μ2 = 48.5, 
as well as an orthogonal manipulation of the sequences variance with σ1 = 0.1167 
versus σ2 = 0.07. In experiment 3, we orthogonally manipulated the difficulty and 
the consistency of the evidence. Difficulty was manipulated by increasing the 
separation between the Gaussians from μ1 = 52 versus μ2 = 48, σ = 10 (difficult 
trials) to μ1 = 52 versus μ2 = 44, σ = 10 (easy trials). Consistency was manipulated by 
sampling eight values from the high- as well as from the low-mean distributions. 
Then, to generate consistent trials, we paired these values such that, in seven out of 
the eight pairs, the stronger evidence was in favour of the higher-mean distribution 
(Fig. 4c, lower panel). To generate inconsistent trials, we shuffled the temporal 
order of the same values and repaired them such that in only four out of the eight 
pairs was the stronger evidence in favour of the higher-mean distribution (Fig. 4c, 
upper panel). In experiment 4, difficulty and consistency were also orthogonally 
manipulated. Difficulty was manipulated by decreasing the mean of the Gaussian 
from μ = 5 to μ = 2 (σ = 20 in both conditions). Consistency was manipulated by 
generating two types of trials: consistent trials, in which seven out of the eight 
frames provided support for one of the alternatives (Fig. 4d, lower panel), and 
inconsistent trials, in which each alternative was supported by four of the frames 
(Fig. 4d, upper panel).

Statistical analysis. Correlations and mean comparisons. Correlations were 
examined using the Pearson correlation coefficient. Means were compared using 
permutation tests with105 random shuffles. All tests were two sided.

Mixed effects models. The effects of accumulated evidence and stimulus consistency 
on accuracy and RT confidence in experiments 1 and 2 (Table 1) were estimated on 
a trial-by-trial basis using mixed model regression analyses. The regressions were 
implemented using the MATLAB ‘fitlme’ and ‘fitglme’ functions with participants 
serving as random effects and with a free covariance matrix. The fixed effects 
variables were: (1) accumulated evidence, calculated as the sum of differences 
between the two streams of evidence at the moment of response, and (2) stimulus 
consistency, calculated as the absolute value of the difference between the number 
of frames with evidence favouring the two alternatives, normalized by the length of 
trial. Both variables were normalized using z score transformations.

Choices in experiments 1 and 2 (coded as 1 for correct and 0 for error) were 
predicted using logistic regressions, which in Wilkinson notation was

logit (PChoices) ∼ (accumulated evidence) + (stimulus consistency) + (1|subject).

RTs (experiments 1 and 2) and confidence (experiment 2) were predicted using 
linear regressions, which in Wilkinson notation were

RT ∼ (accumulated evidence) + (stimulus consistency) + (1|subject)

Confidence ∼ (accumulated evidence) + (stimulus consistency) + (1|subject)

The exact same pattern of results reported in Table 1 was obtained if the 
accumulated evidence and stimulus consistency were also included as random 
effects.

Computational methods. The validity of the model-free method was tested by 
simulating 10,000 synthetic decisions using known (fixed or collapsing) boundaries 
and examining the ability of the model-free method to accurately recover them. 
The values in all simulations (Fig. 2a–d) were sampled from X ~ N(52, 152) and 
Y ~ N(46, 152). The decision process in Fig. 2a,b was based on equation (1) with 
either a fixed (Fig. 2a) or collapsing boundary (Fig. 2b). The fixed boundary 
was characterized by a single boundary parameter (c = 50), and the collapsing 
boundary was characterized by four parameters describing the intercept, shape, 
scale and asymptote (a = 100, k = 3, λ = 4 and a′ = 10; Computational methods




 

Q12

Q13

and ref. 38). The decision process in Fig. 2c,d was based on the value and difference 
cut-off heuristics with cut-offs of 70 and 20, respectively34.

The decision boundaries in Fig. 2a–d were extracted by applying the LDA 
algorithm39,40 to the integrated evidence excluding internal noise (that is, Y(t), see 
equation (3)). For each frame (t), each trial that was not terminated before t was 
classified as one of the following categories: choose alternative A, choose alternative 
B or continue sampling. Then, using the LDA, we extracted the planes that 
optimized the separation between different classes for each frame. We assumed that 
the upper and lower boundaries were symmetrical and therefore averaged both.

As mentioned in the main text, the internal noise causes an unavoidable 
overlap between the different classes. This overlap impairs the ability of the LDA 
to correctly extract the decision boundary and is particularly evident in slow 
trials due to the accumulation of internal noise across time67. Thus, to increase 
the robustness of the model-free method to internal noise, we constrained the 
boundary extraction of each frame by previous ones. To this end, we extracted the 
boundary based on two predictors: t and Y(t), as illustrated in the table 




below:

The LDA algorithm provides linear functions that separate the different 
classes from each other. To obtain the value of the boundary for the nth frame, we 
computed the value of the separating linear functions for this frame.

Modelling details. Integration-to-boundary models. We examined several 
integration-to-boundary models, all of them assuming integration of evidence 
based on the formula

X (t) = X (t − 1) + μ (t) + ε (t) , ε ∼ N
(

0, σ2
)

,

where X(t) is the accumulated differences at time t and ε (t) is a random Gaussian 
noise, which is independent from the evidence-sampling noise. The term μ (t) 
varied between the different models




 as follows:

Full integration. 

μ (t) = VL (t) − VR (t) , (3)

where VL (t) and VR (t) are the samples drawn from the left and right distributions 
at time t, respectively (note that VL(t) and VR(t) include the sampling noise).

Stimulus consistency. 

μ (t) = VL (t) − VR (t) + sign (VL (t) − VR (t)) × θ × i, (4)

where θ is a free parameter representing the enhancement given to pieces of 
evidence that are consistent with previous ones and i counts the run of consistent 
values (starting at 0). For example, if the differences between the values are 15, 20, 
8, −15 and −25, then it=1 = 0, it=2 = 1, it=3 = 2, it=4 = 0 and it=5 = 1.

Preference consistency. 

μ (t) =







(VL (t) − VR (t)) · θ, if sign(VL(t)−VR(t))
sign(X(t−1)) = 1

VL (t) − VR (t) , otherwise
(5)

where θ is a free parameter representing the enhancement given to pieces of 
evidence consistent with the total accumulated evidence at time t − 1.

Selective integration. 

μ (t) = VL (t) ·
1

1 + e−θ(VL(t)−VR(t))
− VR (t) · 1

1 + e−θ(VR(t)−VL(t))
, (6)

where θ is a free parameter affecting the magnitude of the selective gating23.
All the integration models in experiments 1 and 2 assume integration to a 

collapsing boundary34, modelled using a Weibull cumulative distribution function:38

u (t) = a −

[

1 − exp
(

−

(

t
λ

)k
)]

·
(

a − a′
)

, (7)

where ±u(t) are the upper/lower thresholds at time t, a/a′ are the initial (intercept) 
and asymptotic values of the boundary, respectively, and λ and k are the scale and 
shape parameters of the Weibull function, respectively.

In experiments 3 and 4, we used an interrogation paradigm, in which the 
probability of choosing each alternative was calculated using an exponential 
version of Luce’s choice rule:68

P (left) = 1
1+e−(β0+β1(

∑n
t=1 μ(t)))

P (right) = 1 − P(left)
, (8)

where β1 indicates the sensitivity of the model to the accumulated evidence, with 
an intercept of β0.

Q14
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In addition, we examined whether the participants in experiments 3 and B



 

showed a recency bias, as reported in several previous studies which used an 
interrogation paradigm33,53. To this end, for each participant, we performed a 
temporal logistic regression analysis, in which we predicted the response of each 
trial based on the differences between VL and VR at each frame, ranked by their 
temporal order. In experiment 3, the mean weight of samples 5–8 was significantly 
higher than that of samples 1–4 (permutation test, P < 0.001, Cohen’s d = 2.09, 95% 
CI 0.30–0.45), indicating a recency bias. No such effect was found in experiment 4 
(P = 0.09, Cohen’s d = 0.35, 95% CI −0.01 to 0.10). This motivated us to include a 
leak term in experiment 3 (ref. 10), which controls the extent to which earlier values 
are given less weight. Thus, equation (8) was extended to the following form in 
experiment 3:

P (left) = 1
1+e−(β0+β1((1−λ)n−t

·

∑n
t=1 μ(t)))

P (right) = 1 − P(left)
, (9)

where λ is the leak term.

Non-integration-to-boundary models. We examine three models that did not 
assume integration of evidence-decision boundary (Figs. 1c,d and 2c,d). The first 
model is the value cut-off heuristic, which assumes that observers choose based 
on the detection of a single high-value sample. For example, if a participant uses 
a cut-off value of 70, then they will choose the sequences in which a value higher 
than 70 first appears. The second heuristic is the difference cut-off heuristic, which 
assumes that observers choose based on the first frame in which the difference 
between the numbers exceeds a predetermined threshold34. In addition to these 
two heuristics, we examined a third model which we labelled a random-timer 
model. This model assumes integration of evidence based on equation (1), but 
the RT is determined by an exogenous process. The value cut-off heuristic was 
simulated using a threshold of 70 (experiment 1, Fig. 1c), 80 (experiment 2, 
Fig. 1d) and 70 (model free, Fig. 2c). The difference cut-off heuristic was simulated 
using a threshold of 20 (experiment 1, Fig. 1c), 25 (experiment 2, Fig. 1d) and 20 
(model free, Fig. 2d). The RTs of the random timer model were sampled from an 
ex-Gaussian distribution with μ = 3, σ = 0.5 and λ = 2/3 (experiment 1, Fig. 1c) and 
μ = 6, σ = 1 and λ = 3 (experiment 2, Fig. 2c). These values were chosen because 
they provided accuracy and RTs similar to the ones observed in the data of 
experiments 1 and 2.

Optimization procedure. The free parameters of the computational models were 
fitted to the data (choices and decision times) of each participant in experiments 1  
and 2 separately, using maximum likelihood estimation. For each trial, we 
simulated the different models 1,000 times for a given set of proposal parameters 
and calculated the proportion of trials in which the model choice and decision 
time matched the empirical data. Denoting the proportion of match between the 
simulated and empirical data by pi, we maximized the likelihood function L(D|θ) 
of the data (D) given a set of proposal parameters (θ), by

L(D|θ) =

N
∏

i=1
pi.

To find the best set of proposal parameters, we first used an adaptive grid 
search algorithm (see ref. 69 for details) and then used the three best sets of 
proposal parameters as starting points to a simplex minimization routine70. 
This data fitting procedure showed good to excellent ability71 to recover the free 
parameters of the models (Supplementary Figs. 8 and 9).

Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.
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