
Disentangling Decision Models: From Independence to Competition

Andrei R. Teodorescu and Marius Usher
Tel-Aviv University

A multitude of models have been proposed to account for the neural mechanism of value integration and
decision making in speeded decision tasks. While most of these models account for existing data, they
largely disagree on a fundamental characteristic of the choice mechanism: independent versus different
types of competitive processing. Five models, an independent race model, 2 types of input competition
models (normalized race and feed-forward inhibition [FFI]) and 2 types of response competition models
(max-minus-next [MMN] diffusion and leaky competing accumulators [LCA]) were compared in 3
combined computational and experimental studies. In each study, difficulty was manipulated in a way
that produced qualitatively distinct predictions from the different classes of models. When parameters
were constrained by the experimental conditions to avoid mimicking, simulations demonstrated that
independent models predict speedups in response time with increased difficulty, while response com-
petition models predict the opposite. Predictions of input-competition models vary between specific
models and experimental conditions. Taken together, the combined computational and empirical findings
provide support for the notion that decisional processes are intrinsically competitive and that this
competition is likely to kick in at a late (response), rather than early (input), processing stage.
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Decision making is paramount in daily life, ranging from fast
perceptual choices critical to survival, such as deciding whether
the signal on a radar screen indicates an enemy missile or a
friendly plane, to multidimensional, goal driven and effort-
consuming decisions, such as deciding on the guilt of a defendant
in a legal case. In such situations, the decision maker is presented
with samples of information and is required to decide which
alternative to choose. Samples may correspond to perceptual in-
formation in the form of physical intensity values (as in a sequence
from a noisy visual stream; Glimcher, 2003; Gold & Shadlen,
2007), to values associated with qualities of different alternatives
(such as consumer products, risky gambles, career choices, or
flat-mates; Dijksterhuis, Bos, Nordgren, & van Baaren, 2006;
Hertwig, Barron, Weber, & Erev, 2004; Tsetsos, Usher, & Chater,
2010), or to pieces of evidence in a legal case. The problem facing
the decision maker is how to combine and weigh these samples
toward a decision while at the same time limiting the amount of

sampled information to determine when to terminate the process
and execute a response (for further discussion, see Gold &
Shadlen, 2007; Ratcliff & Smith, 2004).

The mechanism that enables humans to make such decisions has
been studied extensively over the last few decades both in psy-
chology (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Bo-
gacz, Usher, Zhang, & McClelland, 2007; Brown & Heathcote,
2008; Krajbich & Rangel (2011); Laming, 1968; Link & Heath,
1975; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff
& Smith, 2004; Stone, 1960; Usher & McClelland, 2001; Van
Ravenzwaaij, Mulder, Tuerlinckx, & Wagenmakers, 2012; Vick-
ers, 1970) and in neuroscience (Albantakis, & Deco, 2009; Don-
ner, Siegel, Fries, & Engel, 2009; Gold & Shadlen, 2007; Hanes &
Schall, 1996; Mulder, Wagenmakers, Ratcliff, Boekel, & Forst-
mann, in press; Purcell et al., 2010; Rorie, Gao, McClelland, &
Newsome, 2010; Rorie & Newsome, 2005; Wang, 2008). This
research converged on the idea that multiple samples of informa-
tion are translated to a value-scale (see Luce, 1959, and N. H.
Anderson, 1971, for earlier precursors to the important role of
value integration in decision making, and Glimcher, 2003, for a
more recent discussion) and are accumulated, over time, toward a
decision criterion. This sequential sampling principle allows the
decision-making mechanism to average external and internal noise
over time while accounting for both response time (RT; e.g.,
Ratcliff & McKoon, 2008) and accuracy.

The sequential sampling principle is now considered a general
decision mechanism that deals with the integration of values that
fluctuate over time (Gold & Shadlen, 2000, 2001; Kiani, Hanks,
& Shadlen, 2008; Roe, Busemeyer, & Townsend, 2001; Rorie &
Newsome, 2005; Sugrue, Corrado, & Newsome, 2005; Usher &
McClelland, 2004). In this spirit, a number of paradigms have been
developed that use noisy perceptual stimuli (such as randomly
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moving dots, among which a small fraction moves coherently;
Shadlen & Newsome, 1996) as a proxy to more general informa-
tion. While certain perceptual decisions have quite a limited tem-
poral range of integration (200–300 ms) that is subject to stimulus
specific properties, indicating a more idiosyncratic mechanism
(Uchida, Kepecs, & Mainen, 2006), other tasks implementing
noisy evidence (e.g., the random-dots) show much longer integra-
tion times of up to a few seconds (Burr & Santoro, 2001; see also
review in, Uchida, Kepecs, & Mainen, 2006). The focus of our
article is to scrutinize the general decision mechanism responsible
for such value integration and evaluation tasks by contrasting a
variety of decision-making models.

Indeed, a number of different mathematical models, most of
which implement sequential sampling as their underlying princi-
ple, have been proposed to account for general decision behavior.
Such models range from race or accumulator models (Brown
& Heathcote, 2008; Smith & Vickers, 1988; Van Zandt, Colonius,
& Proctor, 2000; Vickers, 1970), to drift-diffusion models (Link &
Heath, 1975; Ratcliff, 1978; Ratcliff & Rouder, 1998; Stone,
1960), and more recent neurocomputational models introduced in
an attempt to bridge the gap between previous mathematical mod-
els and the growing understanding of brain functions. A few such
examples are the neural implementation of the drift diffusion
model (Mazurek, Roitman, Ditterich, & Shadlen, 2003; Niwa &
Ditterich, 2008; Ratcliff, Hasegawa, Hasegawa, Smith, & Seg-
raves, 2006), the Leaky Competing Accumulator model (LCA;
Usher & McClelland, 2001), and the attractor model (Albantakis,
& Deco, 2009; Wang, 2002, 2008).

The large corpus of currently available choice models can be
classified according to a number of important principles that
reflect distinct underlying mechanisms such as competitive versus
independent processing, relative versus absolute decision criteria,
and perfect versus leaky integration of evidence. Despite these
clear processing differences, models of each type exist that are able
to fit reasonably well most empirical data to date. Consequently, so
far only small quantitative differences in the goodness of fit have
been found between models (Brown & Heathcote, 2008; Ratcliff &

Smith, 2004; Usher & McClelland, 2001; Van Zandt et al., 2000),
and the various models can mimic each other to a considerable
degree (Donkin, Brown, Heathcote, & Wagenmakers, 2011;
Townsend, 1990; Van Zandt & Ratcliff, 1995). Such model mim-
icry is a serious problem, since it hinders the use of models as
instruments for testing theories. Therefore, disentangling them
from one another requires a more comprehensive theoretical and
methodological approach to the problems of model testing, model
comparison and model classification. We start with a general
taxonomy of decision models followed by an outline of our model
testing approach before presenting a set of experimental and com-
putational studies set up to distinguish between classes of decision
models.

Model Taxonomy

Our main goal in this article is to make clear distinctions
between different types of independent and competitive models.
The first step in doing so is outlining a detailed theoretical clas-
sification of perceptual choice models, which divides them into
classes based on the locus of competition (or lack of it). We begin
by drawing a clear line between purely independent and compet-
itive models. We then proceed to distinguish four different types of
competitive interactions according to their locus of action: (a)
stimulus competition, (b) local input competition, (c) global input
competition, (d) response competition (see Figure 1). Finally we
point out how each type of competition manifests in existing
models.

The Independent Race Model

Race models have been proposed over the years to describe a
variety of different processes and regularities (Brown & Heath-
cote, 2008; Eidels, Townsend, & Algom, 2010; Kyllingsbæk,
Marcussen, & Bundesen, 2011; La berge, 1962; Logan, Cowan, &
Davis, 1984; Mordkoff & Yantis, 1991; Morton, 1964; Pike, 1973;
Smith & Van Zandt, 2000; Townsend, 1976; Townsend & Ashby,

Figure 1. The flow of visual information from the physical stimulus up to the execution of a decision. The
figure illustrates the different loci where competition can take place. Information begins its journey in the
stimulus as physical energy. If the energy matching one alternative is inversely dependent upon energy matching
the other then it can be said that stimulus competition is present. Next, before entering the decision mechanism,
that energy is encoded, by early processing stages, into values representing different features of the stimulus.
Here, interactions can take place between values originating from spatially and temporally adjacent stimuli
resulting in local input competition. If a decision regarding the stimulus is required, the task relevant values then
enter the decision mechanism. Decision competition can take place at two loci: global input and response. Global
input competition corresponds to interactions between early, momentary values which do not, anymore, depend
on stimulus properties such as spatial vicinity. Last, interactions whose strength is proportional to the amount of
accumulated, rather than momentary, values can occur resulting in response competition.
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1983; Usher, Olami, & McClelland, 2002; Van Zandt et al., 2000;
Vickers, 1970). Due to their simplicity, race models can often
provide analytical solutions for RT distributions and accuracies,
thus making them appealing for both theoretical and practical
reasons (Brown & Heathcote, 2008; Van Zandt et al., 2000).

A distinguishing feature of race models is that they allocate a
separate accumulator for each alternative and that these accumu-
lators integrate inputs (samples of values) monotonically. While
this is often associated with independent accumulation of infor-
mation, not all race models are purely independent, and they vary
with respect to the manner in which the accumulators are corre-
lated. For example, in Vickers’s accumulator model (Vickers,
1970) the accumulators are indeed separate but at each time step
only one accumulator, the one most supported by the momentary
sample, receives an increment. This selective input structure in-
troduces a correlation between the accumulators so that the stron-
ger the input for one alternative the slower the accumulation rate
of the other alternative will be.

Other race models, however, do assume the principle of inde-
pendent accumulation of information, which is characterized by
the lack of interaction between separate channels at any level of
processing. This approach is particularly attractive when the num-
ber of alternatives is large, since accumulating on the basis of
pairwise comparisons (as in the binary accumulator model) is
unparsimonious (see the “Input Competition” section under “Com-
petitive Models”). Indeed, independent race models have been
proposed in a variety of tasks that require selecting one out of
n-alternatives, including multiple-alternative perceptual choice
(Brown & Heathcote, 2008; Pike, 1973; Usher et al., 2002; Van
Zandt et al., 2000), word identification (Morton, 1969, 1970),
Stroop (Eidels, 2012; Eidels et al., 2010), stop signal and action
control (Logan & Cowan, 1984; Logan et al., 1984), and saccade
generation (Ludwig, Gilchrist, McSorley, & Baddeley, 2005). Fig-
ure 2a depicts a skeletal architecture for a purely independent
model where no line (representing a connection) crosses the gap
between channels that integrate information about different alter-

natives. This independent race model is described by the following
equation:

�Xi � Ii � �, (1)

where �Xi represents the change in the total amount of accumu-
lated input supporting alternative i, Ii is the momentary value of the
input to alternative i, and � � N�0,�� is a Gaussian random
variable corresponding to external and internal noise with mean
zero and standard deviation �.

Competitive Models

Competition is believed to be important in many psychological
processes. For example, inhibitory interactions in the visual system
have been found as early as V1 and even at the level of retinal
ganglion cells in the eye itself (Cook & McReynolds, 1998;
Grossberg, Mingolla, & Ross, 1997). At higher processing levels,
competitive mechanisms have been suggested to underlie a variety
of processes, including decision making (Bogacz et al., 2007; Roe
et al., 2001; Usher & McClelland, 2001; Wang, 2002) and atten-
tional selection (Lee, Itti, Koch, & Braun, 1999; Mordkoff &
Yantis, 1991).

Competition can be introduced into a model in many different
forms yet it is sometimes unclear exactly how they differ from one
another. To elucidate this matter, we map the competition space in
a functional manner according to its locus and examine its effect
on model behavior. The first type of competition we discuss,
stimulus competition, is often overlooked, since it is not even
functionally present in the brain. However, it has great influence
over model assumptions and behavior as well as over the specific
choice of experimental design and stimuli used to test the models.
Therefore, accounting for this type of competition is instrumental
in distinguishing different model architectures from one another.

Stimulus Competition

Traditionally, most stimuli used to test perceptual choice theo-
ries have been one-dimensional (1D). By 1D we mean that infor-
mation about the different alternatives moves along a 1D contin-
uum from an extreme of total support for one alternative to a
contrasting extreme of total support for the other. A few examples
are tasks that require participants to make vertical/horizontal de-
cisions when presented with a diagonal line at various orientations,
to make left versus right motion decisions when presented with
coherently rightward/leftward moving dots embedded in a back-
ground of randomly moving dots (Shadlen & Newsome, 1998), or
to make “predominant black/white” decisions when presented with
black and white pixel matrices (Ratcliff & Smith, 2010).

One important property of such stimuli is that they are intrinsi-
cally competitive in the sense that increasing support for alterna-
tive A necessarily reduces support for alternative B. To illustrate,
think of a “more vertical” (V) vesus “more horizontal” (H) orien-
tation decision involving a line of variable orientation. The
more the line’s orientation is close to vertical (supporting V) the
further away it is from horizontal (supporting H). From a neural
perspective one can imagine an observer that decides on the basis
of two orientation sensitive neural detectors (V= and H=), which
respond optimally to either vertical or horizontal lines, respec-
tively. If the stimulus corresponds to a diagonal 45°, line, both

Figure 2. Schematic representations of four choice models. (a) Indepen-
dent race model: Information is transferred (in the form of neural activa-
tion) from input units (bottom) to accumulator units (top) without any
interactions. (b) Race with global input normalization: Similar to (a), but in
addition, information is also transferred to a global normalization unit that
consequently normalizes all inputs before they enter the respective accu-
mulators. (c) Feed-forward input competition: Input units simultaneously
transmit “positive” input to their corresponding accumulator and
“negative” input (inhibition) to the opposing accumulators such that accu-
mulators accumulate only the difference between them. (d) Response
competition: Information reaches the accumulator without interacting but
each accumulator applies inhibition (proportional to its activation) to the
other accumulator while also losing information via decay. LCA � leaky
competing accumulator.
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detectors fire equally fast. However, as we begin to tilt the line
toward vertical, detector V= will begin to fire more vigorously,
while the firing rate of H= will gradually decrease. This will occur
even if the two detectors are completely independent. Therefore,
for such stimuli the evidence coming into the decision mechanism
is, in a sense, competitively dependent. However, this occurs not
because information was processed competitively but because it
entered the system that way.

Competitive stimuli of this sort are not ideal to test competition
in the decision mechanism as they introduce competition even
before the physical energy of the stimuli impinges on the senses.
Thus, any attempt to distinguish models on the basis of differences
in competitive interactions while using 1D stimuli is likely to fail,
since observed behavior would reflect both the competitiveness of
the stimulus and any competitive processing that might be present
in the decision mechanism, rendering them effectively indistin-
guishable. To illustrate how this problem could be circumvented
imagine a similar “orientation discrimination” task involving two,
instead of one, spatially separated lines of variable orientation. In
contrast to the 1D example, instead of making a “more vertical”
versus “more horizontal” decision, the task is now to determine
which of the two lines, right (R) or left (L), is more horizontal. As
before, we can think of an observer deciding on the basis of two
orientation sensitive neural detectors (R= and L=), both responding
optimally to horizontal stimuli but at different retinotopic locations
(R= and L= have nonoverlapping receptive fields). Unlike in the 1D
version, we can now increase the decision relevant, perceptual
quality of the R choice by making the line on the right more
horizontal while keeping the orientation of the line on the left
constant. Importantly, this will lead to stronger activation of R=
without any change in the activation of L= thus allowing for the
independent manipulation of the two alternatives.1

Furthermore, the use of competitive stimuli in experimental
paradigms also imposes certain limitations on model assumptions.
For example, in order to accommodate such stimuli, some models
have used an input normalization assumption (Brown & Heath-
cote, 2008; Usher & McClelland, 2001), which states that the sum
of the inputs to the different accumulators is kept constant (typi-
cally �i�1

n Ii � 1; but see Donkin, Brown, & Heathcote, 2009). In
this case, the normalization assumption reflects the nature of the
stimulus and can correspond to any model (independent or com-
petitive) that faces 1D stimuli of the type discussed above. How-
ever, such an assumption becomes unnecessary for stimuli that
allow for the independent manipulation of value for each different
alternative.

The main aim of this article is to distinguish between indepen-
dent and competitive models of value integration (see the runner
metaphor in the “Qualitative predictions to probe choice-
competition” section). Consequently, it was imperative for us to
eliminate any external factors, such as intrinsically competitive
stimuli, that might mimic or mask the effects of internal compet-
itive interactions. For this distinction to be made, it is crucial for
the experimenter to be able to manipulate the value of the task
relevant, perceptual quality of each alternative independently of
the others. This constraint will play a principal role in our choice
of stimuli, which will, among other things, avoid 1D type stimuli
that do not allow for such independent manipulations.

Input Competition

Input competition is the first level at which competition can act
within the brain. By input competition we refer to any competition
that occurs from the moment the physical energy of the stimulus
has been transformed into neural code and up to, but not including,
the information accumulation stage of the decision mechanism
(see Figure 1). A segregation of the flow of information into a
sensory stage and a later decision stage has been proposed by
Smith and Ratcliff (2009) as part of an integrated theory of
attention and decision making. In their theory, a sensory response
function that is dependent “on stimulus contrast and on the prop-
erties of the early spatiotemporal filters that encode the stimulus”
(p. 287), provides input to a visual short term memory (VSTM)
module, which, in turn, feeds evidence to the decision module. In
their study, the VSTM component was necessary due to the use of
briefly presented masked stimuli. However, the equivalent of a
sensory response function can be thought of as an intermediate
stage, mediating between the physical stimulus and the higher
level, distinct decision mechanism. Building on this framework,
we suggest a distinction between two different types of input
competition, one occurring during the early sensory encoding stage
and another during the entry into the decision stage.

In support of this perceptual/decision distinction, Philiastides,
Ratcliff, and Sajda (2006; see also Philiastides & Sajda, 2006)
found evidence for a late post-sensory decision component and a
separate, early perceptual component in electroencephalogram
(EEG) neural activity of observers performing either a face/car
categorization or a red/green discrimination, according to a pre-
stimulus cue. Stimuli for both conditions were the same and
constituted face or car pictures that could be either green or red.
Philiastides et al. (2006), first reported an early component (N170)
that discriminated between faces and cars (higher for faces) but
was equally strong in both the face/car categorization task and in
the red/green discrimination task; note that in the latter task, the
content of the picture (a face or a car) was irrelevant to the decision
task. Therefore, the authors concluded that “this component rep-
resents an early perceptual event and is not directly linked to the
actual decision” (p. 8972). Such a component could be mediated
by an early perceptual area sensitive to local features.

In the same study, Philiastides et al. (2006) also found a later
component (300 to 450 ms after stimulus) that discriminated
between faces and cars (stronger for faces). Unlike its faster
counterpart, this component was much stronger in the face/car task
than in the green/red task indicating a link to the decision mech-
anism itself. Furthermore, (a) the late component was also highly
predictive of behavioral accuracy, and (b) its strength strongly
correlated with drift rates as computed from fits of the diffusion
model to the behavioral data. These observations led the authors to
conclude that “the late component represents the post-sensory
evidence that is fed into the diffusion process which ultimately
determines the decision” (p. 8973). Philiastides et al. (2006) also
showed that “because the late component is stimulus locked and

1 The decision can still, of course, be made on the basis of a 1D variable
(for example the difference in firing rate between R= and L=). However, this
would now be part of the properties of the decision mechanism rather than
the properties of the stimulus and as such would need to be accounted for
within the framework of the model.
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does not persist until the response, it does not predict the trial-by-
trial RT distribution within a coherence level” (p. 8973). There-
fore, this component is compatible with the inputs to the decision
process but is unlikely to reflect the accumulation stage itself.

Using this conceptualization, we propose that input-competition
can occur at two possible hierarchical loci according to the level
and extent of processing. The first level where input competition
can manifest is a lower sensory encoding level which can be
thought of as corresponding to the sensory response function or the
early N170 component mentioned above. Due to the dependency
of early perceptual encoding on stimulus properties we assume
competition at this level to be stimulus-specific in the sense that
different stimuli evoke different amounts of competitive interac-
tions. In the visual domain, for example, interactions at low levels
of visual processing have been shown to occur only among neigh-
boring cells or within the same receptive fields (Luck, Chelazzi,
Hillyard, & Desimone, 1997; Moran & Desimone, 1985). We thus
address this type of interaction as local input competition.

The second level where input competition can manifest is at a
higher processing level that might correspond to the VSTM mod-
ule of Smith and Ratcliff (2009) or the late component found in
Philiastides et al. (2006). We assume competition at this level is
not directly contingent on specific stimulus properties but rather
depends on the structure of the decision mechanism where all
available evidence is incorporated. Thus, any interactions occur-
ring after the initial sensory encoding stage but prior to the evi-
dence accumulation stage and are not contingent on particular
properties of the sensory modality or of the stimulus itself are,
henceforth, referred to as global input competition.2

Global input competition is therefore directly relevant to the
theoretical distinction between decision theories since it is part of
the decision process. On the other hand, local input competition
and stimulus competition are only mediators between the object of
interest (the stimulus) and the decision process, which are not
directly addressed by decision theories. In this study, we are
interested in properties of the general decision making mechanism,
which can incorporate both global input competition and response
competition (see “Response competition” section). Thus, in our
experimental manipulations we aimed at minimizing both stimulus
competition as well as any local, momentary interactions in order
to avoid confounding them with higher competitive processes of
the kind discussed below.

One noteworthy example of a global input competition model is
Vickers’s accumulator model (Vickers, 1970). Here, at each time
step, inputs (samples that match a perceptual hypothesis) are
compared either to each other or to a common criterion (depending
on the task). This comparison outputs a pre-accumulation (post-
perception) decision indicating which accumulator is best sup-
ported by the momentary evidence. As a result, for that sample,
only the winning accumulator receives any input (in this case a
normally distributed random variable with a fixed mean). Alter-
natively, the comparison unit in Vickers’s accumulator model
could be replaced by a normalization unit so that all inputs are
normalized before entering their respective accumulators (see Fig-
ure 3, right). This can also be considered a variant of a global input
competition model as long as the normalization process does not
depend on specific stimulus attributes. Other examples for global
input competition models include the recruitment model (La
Berge, 1962) and the Feed Forward Inhibition (FFI; Figure 2c)

variant of the diffusion model (Mazurek et al., 2003; Niwa &
Ditterich, 2008).

As competition is introduced at increasingly higher processing
levels, another issue arises. Competitive models, unlike the inde-
pendent ones, are not as straightforward to extend from binary to
multiple alternatives. Again Vickers’s accumulator model is a
good example. Comparing two inputs in the accumulator model is
straightforward and requires only one comparison, comparing
three inputs requires three comparisons, and this scales up com-
binatorically.

Since we intend to use both two-alternative and multialternative
choice in our experiments, it was important to use only models that
can be extended to any number of alternatives. For this reason, and
in addition to the normalized race model, we consider a close
relative of the classical drift diffusion model (DDM; Ratcliff &
McKoon, 2008; Ratcliff & Rouder, 1998), the feed forward inhi-
bition model (FFI; Figure 2c; see Mazurek et al., 2003, for two
alternatives; Niwa & Ditterich, 2008, for three alternatives; Roe et
al. 2001, for multialternative, multiattribute decisions), as a repre-
sentative of the input-competition model category. This model
allocates separate accumulators for the different alternatives,
which then race each other toward a common decision boundary.
Each accumulator Xi receives positive activation from the input to
its corresponding alternative (Ii) and negative activation equal to

the average input to the other alternatives � 1

�n � 1��j�iIj�. Note

that for n � 2, the FFI is equivalent to the DDM, even though it
employs two parallel diffusion processes (I1 � I2 & I2 � I1) racing
toward a common threshold rather than one diffusion process with
two (upper and lower) thresholds, as in the classic model.

The equation describing the FFI’s accumulation for the ith
accumulator Xi in an n-alternative choice task is

2 It is not clear that this distinction between local and global input
competition is, de facto, present in the brain. While there is ample evidence
for the presence of local competition in the visual system, the concept of
global input competition is still unsupported by empirical studies (but see
Philiastides et al., 2006). However, we find this distinction useful from a
theoretical point of view since prior attempts at modeling perceptual choice
have implemented competitive mechanisms that can be interpreted as
either local or global input competition.

Figure 3. Global versus local input competition. Local input competition
(left) occurs at early processing stages and is only effective between
spatially adjacent visual stimuli. Global input competition (right) occurs at
higher “decision” stages and takes into account all decision relevant stimuli
regardless of their spatial arrangement.
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�Xi � Ii �
1

�n � 1��j�i
Ij � �. (2)

As in Equation 1 before, � � N�0, �� is a Gaussian noise parameter
with mean zero and standard deviation �. As we can see, in the FFI
model inputs compete by inhibiting each other directly.

Response Competition

Response competition refers to any competitive interactions
that occur at the accumulator level (i.e., the integrated values)
and whose strength is proportional to the activation level of the
accumulators themselves. Thus, unlike input competition mod-
els, here the competition does not involve momentary values
but rather depends on the total amount of integrated value. The
accumulators’ activations, in sequential sampling models, can
be conceptualized as representing the degree of belief in each
hypothesis or the current tendency toward executing a certain
response (hence the name “response competition”). Examples
of response competition models are the classical DDM (Rat-
cliff, 1978; Ratcliff & McKoon, 2008), the Max-Minus-Next
variant of the diffusion model (MMN; Krajbich & Rangel,
2011; McMillen & Holmes, 2006), the leaky competing accu-
mulator model (LCA; Figure 2d Bogacz et al., 2007; Usher &
McClelland, 2001), the attractor model (Albantakis, & Deco,
2009; Wang, 2002; Wong & Wang, 2006), the ballistic accu-
mulator (BA; Brown & Heathcote, 2005), and a variety of
Bayesian decision models (Bogacz, 2009; Ditterich, 2010). In
the LCA model, for example, lateral inhibition and neural leak
(i.e., decay of integrated values or activations) is applied to
separate accumulators thus interpolating between the benefits
of both race and diffusion models.

In the following computational studies, this category is repre-
sented by both the LCA and the MMN models. In the LCA each
alternative is assigned a separate accumulator. Lateral inhibition
between the accumulators results in response competition, which is
then balanced by leakage of accumulated activation from each
accumulator. The activation level of accumulator i (Xi) in a choice
involving n alternatives is updated with each time step according
to the formula:

��Xi � ��Xi � Ii � 	�
j�i

Xj � �

Xi(t � 1) � max(Xi(t) � �Xi, 0)
, (3)

where Ii are the inputs, 0 
 � 
 1 is the leak, 0 
 	 
 1
corresponds to the inhibition, and � � N�0, �� reflects the noise in
the integration process assumed to be Gaussian with zero mean
and a standard deviation of �. The max function in the bottom
equation reflects a nonlinearity imposed on the activations (a
reflecting boundary), which is motivated by the fact that neural
activity is bounded from below (for a more detailed discussion see
Usher & McClelland, 2001, p. 14 and Appendix A; as well as
Bogacz et al., 2007). This neural property is approximated by
maintaining Xi � 0 so that when activation becomes negative it is
immediately truncated to zero. Note that for the special case where
� � 	 � 0, the model is reduced to the purely independent model
described in Equation 1. Furthermore, when 0 
 � � 	 
 1, the
model is said to be balanced and the two-alternative version of this

model (minus the nonlinearity) can be thought of as equivalent to
the classical drift diffusion model (Bogacz et al., 2006).

The MMN, on the other hand, can be regarded as an indepen-
dent race model with a competitive stopping rule. While the
independent race model stops integrating evidence and executes a
decision when one of the accumulators reaches a predetermined
decision criteria, the MMN stops only when the difference between
the largest and the second largest accumulators reaches a prede-
termined decision criteria (hence the name “max minus next”).
Therefore, the accumulation process for the MMN can be de-
scribed by Equation 1, supplemented by a competitive termination
rule:

Decide in favor of alternative m if:

�max�Xi�1
n � � Xm

[Xm � max�Xj�m�] � 
.

(4)

Note that for n � 2, the MMN is practically equivalent to the
standard DDM and the FFI. The only difference between them
lies in the order of accumulation and subtraction. While the FFI
first subtracts the momentary inputs and only then accumulates
them, the MMN first accumulates and then subtracts (see Study
2 for an illustration of where this difference becomes substan-
tial).

Auxiliary model assumptions. To account for empirical data,
all the models discussed above require additional assumptions
about external sources of between trial variability. These could
manifest as starting point variability, drift-rate variability, variabil-
ity in decision criteria, variability in the nondecision component of
RT as well as the specific choice of distributions from which these
random variables are sampled (Dyrholm, Kyllingsbæk, Espeseth,
Bundesen, 2011; Ratcliff & Smith, 2004). While essential for
dealing with certain aspects of the data like fast and slow errors,
the skewness of RT distributions and bounded asymptotic accu-
racy, such assumptions affect neither the underlying mechanism of
the models nor their affiliation with one class of competition or
another. Discussion of these assumptions is therefore deferred to
the section on data fitting below.

To conclude, we examined three distinct classes of decision
models: independent, input competition, and response competi-
tion. These classes of models represent different mechanistic the-
ories of value integration and decision (see Table 1 for a more
exhaustive classification of popular models according to the tax-
onomy outlined above). In order to discriminate between these
classes we must draw clear predictions from each one and test
them against empirical data. How to do this best, however, is not
always straightforward when dealing with stochastic, computa-
tional models due to the complexities of using data fits for model
comparison and the limitations of conclusions derived from such
methods (for more detailed discussions on this topic, see Jacobs &
Grainger, 1994; Pitt & Myung, 2002; Pitt, Myung, & Zhang, 2002;
Roberts & Pashler, 2000).

To deal with this complexity, we undertake a comprehensive
approach to theory testing, also inspired by Roberts and Pashler
(2000), which is based on strong inference experiments (Jewett,
2005; Platt, 1964) where stimulus manipulations are specifically
chosen to probe narrow, nonoverlapping predictions about specific
measures of behavior. To this effect, and in addition to model fits,
we also employ a specialized graphical display that is explicit
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about a wide range of possible, as well as impossible, model
predictions. This is realized by randomly varying model parame-
ters and plotting predictions on a two dimensional plot3 with the
axes representing the relevant behavioral measures. To allow for
the simultaneous evaluation of both the quality of the data and the
amount of support it provides for the theory, we also plot, in the
same figure, the individual empirical observations with error bars
representing the variability on the relevant measurement dimen-
sion (for illustrations, see Figure 26.5 in Roberts & Sternberg,
1993; Figure 9 in Tsetsos, Usher, & McClelland, 2011; and Fig-
ures 10 and 16 in this article). Finally, running a statistical analysis
to test if the predicted effect is significant provides an additional,
more precise estimation of the quality of the data.

Qualitative predictions to probe choice-competition. We
begin with an informal description of the rationale behind the
predictions that distinguish between the classes of models before
we continue to the experimental and computational studies that test
them.

1. Independent versus competitive models. The mathematical
properties of independent processes have been studied extensively
and have been shown to be distinct from those of interactive or
coactivation models (Townsend, 1972), resulting in unique predic-
tions for certain stimulus manipulations. Independent models are
characterized by the absence of interactions between parallel pro-
cessing channels. For such processes, a reduction in the amount of
input (i.e., lower drift rate) to at least one of the channels is a

necessary condition for an increase in the termination time of the
decision process (assuming, of course, that stimuli are intermixed
such that stopping criteria do not change between conditions;
Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004; Van Zandt et
al., 2000). This leads to the unique prediction that an increase in
the value of the incorrect alternative will not slow down, and might
even speed up, the termination time of the process. To see this,
consider the following metaphoric illustration of the difference
between an independent and a negatively interactive (i.e., compet-
itive) model.

The runner metaphor: Imagine a race between two runners that
cannot assist or hinder each other in any way and, for that matter,
are not even aware of each other’s position at any given time.
Now, consider two such races—race-1: a race between a fast
runner (F) and a slow runner (S); race-2: a race between the same
fast runner (F) and a medium runner (M). On average, finishing
times for race-2 would be faster than for race-1. This happens
since runner (F) is just as fast in both races but runner (M) is faster
than runner (S). So, runner (F) loses more of his slower runs to
runner (M) in race- 2 than to runner (S) in race-1, resulting in a
speedup of overall finishing times. This phenomenon is aptly
named statistical facilitation (Luce, 1986; Raab, 1962; Townsend
& Nozawa, 1995) and is most easily observed in independent
processes. Let us now introduce competitive interactions into this
situation. Assume that, as the runner who is behind gets closer to
the leader, her ability to slow the first runner down (say, by pulling
on her shirt), improves. In contrast to the independent race, now
(with competition on) race-2 will result in slower finishing times
since the medium runner (M) in race-2 has more opportunity
(compared with the slow runner [S]) in race-1) to hinder the fast
runner (F).

Following from this simplified analogy, one can see that ma-
nipulating task difficulty by increasing the momentary, task rele-
vant value of the weak alternative (i.e., replacing the slow runner
with a medium runner) offers a way to distinguish purely inde-
pendent models from competitive ones. This metaphor is the
guiding principle in the computational and experimental investi-
gations we present here, which allowed us to distinguish indepen-
dent from competitive models.

2. Input versus response competition models. The key char-
acteristic of response competition models is that competitive in-
teractions are proportional to the amount of accumulated evidence.
This leads to the unique prediction that an increase in the starting
point of one of the nontarget accumulators would also increase the
total amount of competition in the system and therefore slow down
overall RTs. To illustrate how this can be used to distinguish
choice models let’s consider a second metaphor, which involves
two hypothetical academic contests (1 and 2) between two com-
peting scientists.

Competing scientists’ metaphor: In both contests the first sci-
entist to reach N publications on a given topic wins a substantial

3 Note that, due to the 2D restriction, the use of this graphical display is
critically dependent on first making narrow predictions relating to the
interactions of no more than two observable measures of behavior at a time.
That is because, when making simultaneous predictions about complex
interactions between multiple behavioral measures as is common in studies
that fit models to data, a display that captures predictions for entire
parameter spaces is difficult to manufacture.

Table 1
Model Taxonomy of Various Models in the Literature With
Regards to Type of Competition

Model Independent
Input

competition
Response

competition

Independent race �
Poisson counter �
LBA �
Leaky accumulator (LA) �
Normalized race �
Recruitment �
Accumulator �

Diffusion–FFI �
Diffusion–Wiener � �
Diffusion–OU � �
Diffusion–MMN �

LA–Relative criteria � �
BA �
LCA �
Attractor �
Basal ganglia �

Note. Independent race (Logan et al., 1984), Poisson counter (Van Zandt
et al., 2000), LBA (linear ballistic accumulator; Brown & Heathcote,
2008), normalized race (LBA with input normalization; Brown & Heath-
cote, 2008), recruitment (LaBerge, 1962), accumulator (Vickers, 1970),
diffusion–Wiener (Ratcliff 1978, 1988), Diffusion–OU (Ornstein–
Uhlenbeck; Ratclif & Smith, 2004; Usher & McClelland, 2001),
Diffusion–FFI (feed-forward inhibition; Niwa & Ditterich, 2008),
Diffusion–MMN (max-minus-next; McMillen & Holmes, 2006), BA (bal-
listic accumulator; Brown & Heathcote, 2005), LCA (leaky competing
accumulator; Usher & McClelland, 2001), leaky accumulator (Ratclif &
Smith, 2004), LA–Relative criteria (Ratcliff & Smith, 2004), attractor
(Wang, 2002), basal ganglia (Bogacz & Gurney, 2007).
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prize. Now, imagine that the rivaling scientists are a fast publisher
(F) and a slow publisher (S), both keen on winning the prize. For
the sake of the example let us assume that both scientists have no
previous publications in the field, they always review each other’s
articles, and they always give each other negative reviews.4 Let us
also assume that in contest-1 the (negative) opinion of a reviewer
is weighted proportionally to the number of articles she has pub-
lished on the relevant subject (a form of response competition).
Under these circumstances, it is clear that in contest-1, the more
publications a researcher has accumulated the more power she has
to thwart the other’s publication efforts and hence to slow down
her opponent’s publication rate.

Now, instead of replacing (S) with a medium publisher (M; like
we did in the previous “runner” metaphor), let us observe what
happens when at the beginning of the contest (S) has a head start
of several published articles in the field (we denote the slow
publisher with a head start by (S�)). Thanks to the head start, the
(negative) opinion of (S�) is now more valued in the reviewing
comity than that of (S) and she can thus slow down (F) more than
(S) could have. Therefore, when (F) goes up against (S�) overall
finishing times would be slower than when she faces (S).

The critical comparison here is between the former contest-1
and a similar contest-2 where everything is the same except that a
reviewer’s opinion is weighted not by her accumulated publica-
tions in the field but rather by the time that has passed since her
last publication (sort of a momentary “publication drift rate”). This
is a form of input competition because the faster a publisher is the
more she would be able to slow down her opponent. However, this
ability now does not take into account the total amount of publi-
cations accumulated by the scientist in the field of interest. Con-
sequently, in contest-2 the ability of (S�) to slow down (F) does
not differ from that of (S) despite the fact (S�) has had a starting
advantage of several published articles to begin with. Thus, no
slowdown in finishing times should be observed for the closer
competition ((S�) vs. (F)). Moreover (S�) will, on average, reach
the goal of N publications faster than (S) would have, thanks to the
head start. As a result, and in contrast to contest-1 where replacing
(S) with (S�) resulted in increased finishing times, here overall
finishing times would decrease due to statistical facilitation. This
example encapsulates the underlying rational behind Study 2.

To formally test these predictions, we now present three com-
bined computational and experimental studies. In the first one, we
manipulate the task relevant values of the nontarget alternatives in
a multialternative choice task in such a way that it results in
qualitatively different predictions for competitive and independent
models. In the second study, we probe the level at which the
competition is implemented by the use of pre-cues that affect
the priors of the various alternatives. In the third, we control the
momentary values of the nontarget alternative, either at the begin-
ning or throughout the duration of a trial, while also directly
probing for normalization of input strength.

To summarize, our approach can be segmented into several core
components: (a) theoretical taxonomy—which model belongs to
which category with regard to the central assumption we are going
to scrutinize; (b) generation of diverging predictions—how can
specific manipulations of inputs (independent variables) discrim-
inate between the models with regards to particular measures of
behavior (dependent variables); (c) design of strong inference
experiments—how can the theoretical manipulations be translated

into an experimental design; (d) choosing appropriate stimuli—
what type of stimuli have quantifiable informational contents that
are both compatible with the experimental design and allow us to
use the physical magnitudes of the stimulus alternatives to con-
strain model inputs and the momentary, task relevant, perceptual
values that underlie them (for similar constraints, see Niwa &
Ditterich, 2008; Palmer, Huk, & Shadlen, 2005); (e) data collec-
tion, model fits, analysis of predicted main effects and comparison
of prediction spaces. In doing so we hope to provide narrow but
conclusive results relating to the central theoretical assumptions of
independent versus competitive processing. Our goal, however, is
not to support or reject any particular model. Rather, we focus on
entire categories (i.e., mechanisms or theories) as per the taxon-
omy presented above. The models we test here are merely exem-
plars of each category and are used for illustrative proposes. This
should help us begin to disentangle the tight cluster of flexible and
resilient choice models.

Study 1: Independent Manipulation of the Evidence

To examine competition in value integration, we use a paradigm
in which at each time frame the stimuli provide independent values
for four alternatives. Since we are interested in the general decision
mechanism, we also aimed to minimize local interactions that are
stimulus-specific. For this reason we choose our stimuli according
to three guiding principles: (a) large spatial separation—visual
stimuli that are well separated in space are unlikely to interact
during low level processing (Luck et al., 1997; Moran & Desi-
mone, 1985); (b) temporal separation—stimuli that do not overlap
in time are less likely to be processed together and therefore less likely
to interact at the perceptual level; (c) processing simplicity—
receptive field size is known to increase with stimulus complexity
and local interactions are likely to be present in neurons that share
receptive fields (Desimone & Ungerleider, 1989; Kastner & Un-
gerleider, 2000). Therefore, in addition to keeping the stimuli
spatially separated (and in Experiment 1b also temporally sepa-
rated), we chose our task relevant perceptual dimension with the
goal of minimizing receptive field size in mind. To this end, we
use a brightness discrimination task for Experiment 1a and a
flicker rate discrimination task for Experiment 1b that are assumed
to tap into only the most basic and least processed perceptual
information for which interactions were found to be very localized
(Burr, Ross, & Morrone, 1985).

Importantly, for brightness stimuli, there is a simple monotonic
correspondence between the spatially distinct, momentary, physi-
cal intensities of the stimuli and their representations as neural
activations in separate retinotopic areas of the primary visual
cortex. The activation representing the brightness value of a given
stimulus alternative is thus considered as the momentary, task
relevant, value of (or input to) that alternative which can then be
processed and accumulated toward a decision.5 The task in Exper-

4 Fortunately, this story is imaginary and does not correspond to real
situations in our field.

5 Note that these simple correspondences between the physical intensity,
its momentary representation as a perceptual value and the input that is
accumulated toward the decision are, to a large extent, task dependent and
may change with task demands. For example, if the task is to choose the
brightest alternative, then physical intensity, perceptual value and input can
be mapped to each other through monotonic, positively correlated
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iment 1a, then, is to detect which of four round gray patches of
fluctuating brightness, is the brightest overall (Caspi, Beutter, &
Eckstein, 2004; Ludwig et al., 2005; for illustration, see Figures 4
and 7).

Assume, for example, that participants are presented with a
stimulus that corresponds to four patches of fluctuating brightness,
whose mean brightness are b1 � b2 � b3 �b4. We can now carry
out a manipulation in which the mean brightness of b2 increases
toward b1 while b3 and b4 are kept constant (i.e., we make the task
more difficult; see Figure 5, top panel, for illustration). This is
equivalent to replacing runner (S) with runner (M) in the runner
metaphor. We can then measure whether this manipulation results
in a speed-up of mean response times (RTs), as predicted by
independent models or in a slow-down, as predicted by competi-
tive models. This procedure, however, does not discriminate be-
tween the various types of choice competition, such as response
(e.g., MMN or LCA) versus input (e.g., normalized race models or
FFI).

We can illustrate this lack of discrimination by considering the
normalized race model—a case of global-input competition (Fig-
ure 3, right panel). As shown in Figure 5 (top panel, right bar), a
normalization of input strengths has the effect of reduced input for
the target (I1) as a result of increased input for the strongest
nontarget (I2). This could then account for a slow-down of RT with
increased nontarget input. A similar slow-down is also predicted
by the FFI model, where the momentary activation for any accu-
mulator is computed as the momentary input of that respective
alternative minus the average momentary input of the other alter-
natives. Since the increased nontarget value is subtracted from the
total input to the target decision-unit, the result is a general
slow-down of RTs.

We can, however, distinguish between response-competition
and some input competition models, by covarying the brightness of
the remaining two spots (b3 and b4). To do this, we can make the
task more difficult by increasing b2 toward b1 while at the same
time maintain the normalization by lowering the brightness of the
other two spots (see Figure 4 and Figure 5, bottom panel, for
illustration). With this additional manipulation, the normalized
race model will also predict a speed up with increased input for
strongest nontarget since target input is not affected by this change
(this is because the sum of the inputs is kept constant, and there is
no re-normalization; see Figure 5, bottom panel); we thus effec-
tively equate the predictions of the normalized race model with
those of the purely independent race model (shown together in the

simulations). As we show below (Figure 6), this manipulation not
only discriminates between response-competition, independent
and normalized race models but also discriminates the former from
the FFI model. In addition, these predictions are also robust to
nonlinear, concave, psychophysical transformations of physical
intensities into input strengths such as logarithmic and power law
functions (see Appendix A for simulations demonstrating this).

Computer simulations were run to formally evaluate the effect
of increasing task difficulty via the augmentation of the brightness
value of the strongest nontarget (I2) on mean-RT. Five models
were used: a purely independent (race) model (red line; Figure 6)
and four competitive models: a normalized race model (red line6),
MMN (green line), FFI diffusion (black line) and LCA (blue line).
As one can see in Figure 6 (top), as the input for the main nontarget
(I2 � x axis in Figure 6) increases, the independent race and FFI
diffusion models predict a speedup of RT, while the response
competition models (LCA and MMN) predict a slowdown in RT
with increasing task difficulty.

The observed speedup effect for the race (red line), either with
or without normalization, is due to statistical facilitation in the
absence of competition, as discussed above. The speedup observed
in the FFI diffusion (black line), however, is the result of both
statistical facilitation and competition. To understand why the FFI
diffusion behaves like the race model under our manipulation, one
can note two things: (a) the activation of the target accumulator

(�Xtarget � Itarget �
1

�n�1��i�target Ii) is not affected by the ma-

nipulation since I1 (the target input) as well as the average of
{I2, I3, I4} are maintained constant by the manipulation; (b) the
activation of the strongest nontarget accumulator increases (Equa-
tion 2) in our difficult condition, not only because the value of I2

goes up, which is in itself enough to produce statistical facilitation
but also because the mean of {I1, I3, I4} (the inhibition felt by X2)
goes down. Thus, we have an even stronger statistical facilitation
effect than in the race model: As the strongest distractor finishes
faster, it steals more of the slower runs from the target, speeding up
both total and the correct RT. Unlike the race and FFI diffusion,
the two response-competition models (MMN and LCA) show a
slowdown of RT with difficulty (green and blue lines), which is the
direct result of increased competition between the target and the
largest nontarget. This competition works against the statistical

6 Note that, due to our specific choice of a normalized input structure,
the independent race model and the normalized race model make equiva-
lent predictions for this manipulation. Therefore both are represented by
the same color in the figure.

Figure 4. Illustration of stimuli for the two conditions in Experiment 1.
Numbers in gray patches represent brightness levels (0 � black to 10 �
white); assume a dark background (unlike in this illustration). As can be
seen, the sum of total brightness level was kept constant throughout the
different conditions.

mappings such that the brighter a stimulus is the higher its perceptual value
is and the stronger the input to its corresponding accumulator. In fact, in
this simple setting the perceptual value and the input are identical. If the
task, however, is to choose the dimmest alternative then the perceptual
value might have to be mapped to the input through a monotonic, nega-
tively correlated mapping such that the higher the perceptual value is, the
weaker the input to the corresponding accumulator. Alternatively, the
positively correlated mapping may be maintained and an eliminatory
strategy used instead. Similarly, more complex stimuli such as orientations,
letters, and words do not convey information through physical intensity
but, rather, through more complex features and therefore would necessitate
more complex mappings between stimulus and perceptual representation.
This observation further stresses the importance of choosing appropriate
stimuli that are simple and easily mapped to task demands. We thank an
anonymous reviewer for drawing our attention to this.
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facilitation effect. Experiment 1 was designed to test these diverg-
ing predictions.

Experiment 1a: Brightness Task

Participants were asked to choose, as rapidly and accurately as
possible, which of four round gray patches of fluctuating bright-
ness was the brightest overall (Caspi, Beutter, & Eckstein, 2004;

Ludwig et al., 2005). Since the brightness of each patch was
independently resampled on each frame (with noise drawn from a
normal distribution), either one of the four circular patches could
be the brightest on a particular frame, requiring the participants to
integrate the patch-brightness values across time (Figure 7, left).
The experiment included two conditions (easy and difficult),
which differed in the brightness value of the brightest nontarget,
effectively mimicking low and high I2 values in the simulation.
The critical dependent variable is the mean-RT for the two (easy/
difficult) conditions. While all models predict a drop in accuracy in
the difficult condition compared to the easy condition, they differ
on their predictions regarding mean-RT. Independent and input-
competition models predict a speedup, while models with response
competition predict a slow-down.

Method.
Participants. Eight Tel-Aviv University undergraduate stu-

dents (six female) participated in the experiment in exchange for

Figure 5. Illustration of the effects of normalization on a hypothetical,
brightness discrimination task similar to the one depicted in Figure 4. The
left bar represents the perceived brightness (the height of each distinct
gray-shade corresponds to the brightness of one spot) of the stimuli for
baseline input strengths as in the easy condition of Experiments 1a and 1b
(for clarity, inputs strengths have been altered from the ones used in the
experiment). Middle and right bars represent the perceived brightness of
the stimuli in the difficult condition for two alternative model types
(normalized and absolute accordingly). The top panel illustrates these
effects when input strength for one nontarget alternative is increased while
all others inputs remain the same—easy condition: I1(target) � 8,
I2 � I3 � I4 � 3, sum(Ii) � 17; difficult condition: I1 (target) � 8, I2 � 7,
I3 � I4 � 3, sum(Ii) � 21. The bottom panel illustrates these effects for an
input manipulation where one nontarget input is increased (as in the top
panel) but the two remaining nontarget inputs are reduced to compensate
for the former increase and keep the total input normalized—easy condi-
tion: I1 (target) � 8, I2 � I3 � I4 � 3, sum(Ii) � 17; difficult condition: I1

(target) � 8, I2 � 7, I3 � I4 � 1, sum(Ii) � 17.

Figure 6. Top (simulation): Mean-RT for three choice models, as a
function of the input strength of the brightest nontarget (I2). Decision
criteria were set so that models predicted approximately the same accura-
cies for all the various input alternatives (Race: 50; leaky competing
accumulator [LCA]: 12; max minus next [MMN]: 5.5; feed-forward inhi-
bition [FFI]: 21). Input strengths in the simulations were varied in the
following manner: I1 was kept constant (I1 � 2); I2 increased in increments
of 0.1 from 1.1 to 1.9; I3 � I4 were decreased in increments of 0.05 from
1.1 to 0.7, in accordance with increases in I2, such as to maintain overall
normalization. The sum of all inputs was kept constant (�i�1

4 Ii � 5.3). All
models were simulated according to the equations described in the intro-
duction (� � 1; � � 	 � 0.1). Bottom: Experimental results; Mean RT for
Experiment 1a. Error bars correspond to within participant standard errors
calculated according to Cousineau (2005), which discounts irrelevant
between-participants variance. RT � response time.
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course credit. Each participant was tested in two, 60-min-long
sessions (no more than 4 days apart). All participants had normal
or corrected to normal vision. The projects were approved by the
department’s ethical committee.

Materials. All stimuli in this experiment were presented on a
ViewSonic Graphics Series G90fB 19-in. (48.26-cm) CRT moni-
tor. The monitor was gamma corrected using a TES-1332A photo
meter. The stimuli were composed of four homogenous, round,
gray patches on a black background (width 1.1 cm) positioned at
the four corners of an imaginary square relative to a fixation-cross
(total width from left edge of left patch to right edge of right patch:
3.7 cm). Each patch’s gray level fluctuated randomly and inde-
pendently of the other patches over the course of each trial. For the
easy condition the gray levels of the target and nontargets were
normally distributed around means of 0.4 and 0.2 (on a 0 [black]
to 1 [white] scale), respectively. For the difficult condition the gray
levels of the target, principal nontarget and secondary nontargets
were normally distributed around means of 0.4, 0.3, and 0.15,
respectively. On each frame the gray level for each individual
patch was separately recalculated as the sum of its designated
mean plus a Gaussian random variable x � N(0, 0.1) that was
cutoff below –0.1 and above 0.1 to prevent obvious flickering of
the stimuli that might attract attention to it in a bottom-up fashion.
Refresh rate was set at 60 Hz (16.6 ms per frame), and tests were
run to evaluate the probability of dropped frames. No frames were

dropped after a full hour of continuous presentation. The location
of the target was randomly drawn on each trial.

Procedure. Easy and difficult trials were randomized within
each block. Responses were given on the 1, 3, 9, and 7 keys of the
keyboard number keypad for the bottom left, bottom right, top
right, and top left responses, respectively. Participants were in-
structed to use the right index finger and thumb for the 3 and 9
keys, respectively, and the same fingers on the left hand for the 1
and 7 keys. The stimuli stayed on until the response was entered,
after which a short 1-s interstimulus interval (ISI) preceded the
next trial. The task was divided into blocks of 60 trials. Each block
consisted of an equal number of trials from each condition for a
total of 1,000 trials per participant. After each block there was a
self-timed intermission to allow the participant to rest. During each
of these breaks, the average accuracy and RT for the last block
were presented on the screen. The participants were instructed to
try and maximize both accuracy and RT such that if they reached
100% accuracy they should try to respond faster and were given a
30-trial practice block. Participants were also told to keep their
eyes focused on the fixation cross throughout the trial though in
the absence of an eye tracker there was no way to verify that they
actually complied with this request. The experiment was held in a
partially darkened room.

Results. Participants were less accurate in the difficult condi-
tion (M � 0.83, SD � 0.07) compared with the easy condition
(M � 0.96, SD � 0.02; z � 2.2, p � .05; Wilcoxon matched pairs
test). More important, however, the manipulation also had an
effect on RTs. As shown in Figure 6 (bottom), participants were
slower to respond in the difficult condition (M � 1.21 s, SD �
0.27) than in the easy condition (M � 1.11 s, SD � 0.21; z � 1.99,
p � .05; Wilcoxon matched pairs test). This pattern of RT is in
accordance with the predictions of the response competition mod-
els (LCA or MMN). Independent models are inherently unable to
account for such results due to the lack of interaction between
channels. Independent architecture inevitably leads to statistical
facilitation and can, thus, only predict a speedup in RTs under
these circumstances.

The input competition models tested in this study (normalized
race and FFI diffusion) also failed to account for the data presented
here. However, each one failed for a different reason. The input
normalization race model (Figure 3) is unable to account for the
results, precisely because the inputs were designed to make nor-
malization completely invariant to our manipulation. On the other
hand, the FFI diffusion is subject to an even stronger statistical
facilitation than the independent race model, and it predicts that
increasing difficulty in this way involves speeding up the evidence
accumulation of the strongest nontarget, even more than for an
independent race model.

Fitting the models to data. We fit five models to the data
from Experiment 1, one independent model (independent race),
two input competition models (normalized race and FFI), and two
response competition models (MMN and LCA). Since the predic-
tions and fits of the independent race model and the normalized
race model converge for this input manipulation, we use the term
race model interchangeably to refer to both of them. For a detailed
discussion on fitting methods, see Appendix B.

We chose to fit the model to quantile RT data that was averaged
over participants (Forstmann, Brown, Dutilh, Neumann, & Wagen-
makers, 2010; Ratcliff, 1979; Ratcliff & Smith, 2004; Thomas &

Figure 7. Illustrations of experimental timelines for Experiments 1a (left)
and 1b (right). For the brightness stimuli (left), the brightness levels of each
patch varied randomly on each frame (16.6 ms). For the flicker stimuli,
each patch had a certain probability to be white; otherwise it was black.
Note that in the flicker condition there was also a high probability of all
black frames between frames containing white patches (not displayed in
figure for reasons of compactness).
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Ross, 1980; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008).
There were several reasons for this. Since the models made nar-
row, qualitatively different prediction, we wanted to emphasize the
qualitative aspects of the data. Using averaged, instead of individ-
ual, quantile RTs helps bring out the qualitative differences by
reducing between-participants variability (Ratcliff & Smith, 2004).
This makes particular sense since all the participants displayed the
same qualitative effects (Ratcliff & Tuerlinckx, 2002). Further-
more, in large studies with multiple participants per group, it has
been demonstrated that parameter values obtained from fitting the
model to data averaged over participants were in good agreement
with averaged parameter values from individual participants (Rat-
cliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, &
McKoon, 2001, 2003, 2004; Thapar, Ratcliff, & McKoon, 2003).

To facilitate the visual evaluation of the quality of fits, fitting
results are presented as quantile probability functions (QPF; Rat-
cliff, 2001; Ratcliff & Smith, 2004). This presentation mode al-
lows for the simultaneous observation of both RT distributions and
accuracies and therefore is most suitable for our purpose. QPFs are
created by plotting the 0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles on
the Y axis and the response probabilities for each condition on the
X axis. The result is 10 data points for each condition (five for
correct and five for errors). Equivalent RT quantiles of the simu-
lated data are then connected across all response types and condi-
tions by a line to represent the trends of changes in the form of the
distribution across conditions (all 0.1 quantiles are connected by
one line, all 0.3 quantiles by another line, etc.). The empirical RT
quantiles are represented by black Xs.

Since the models we examine here have all been previously
tested in accounting for choice-RT data, all of them should be able
to account for RT distributions and accuracies. We expect the
differences between the models to be most evident in their ability
to fit the dependency of mean RT on difficulty. Furthermore, to
compensate for the asymmetric significance of conclusions based
on successful fits versus those based on failed fits,7 we test
whether the models that fail (qualitatively) to fit complex data also
fail to fit the main RT effect even under simplified, favorable
conditions (i.e., fit only two data points: main RT effect and
accuracy).

Fitting results. Best fitting parameters for the models are
presented in Table 2. Figure 8 (top) shows QPFs of the model fits
with the Xs representing the empirical data and the circles,
squares, diamonds, and triangles connected with lines representing
the RT quantiles of simulated data for models with the best fitting
parameters.

On the whole, all models were able to capture the general RT
distribution in terms of spread and skewness (see Figure 8). In
accordance with the qualitative predictions from the simulations
presented in Figure 6, the race models and the FFI model were not
able to capture the slow-down in the transition from the easy to the
hard condition as was observed in the empirical data. An indication
for this can be observed in the opposite slopes of gray (data) and
colored (model) lines in Figure 8 (top panel). Note that, in terms of
number of free parameters, these models had either just as many
(FFI) or more parameters (race) than the response competition
models. Although the MMN model achieved the best fit, both the
LCA and MMN models were able to fit the data well despite small
quantitative misses. For example, the LCA underestimated the
amount of slow-down in the difficult condition while the MMN

overestimated the accuracy in the difficult condition. While both
input competition models we tested here (normalized race and FFI)
failed to capture the qualitative pattern of the data, they did so not
because they belong to the input competition class of models but
rather because of the specific manner in which this competition is
implemented (see discussion below).

Several ways to improve model fits can be proposed, such as
additional sources of between trial variability, different distribu-
tions of parameter values, and psychophysical transformations of
inputs. Except for the race model that benefitted from variability in
Cr, additional sources of variability such as variability in Tnd and
variability in Cr did not improve the models chi scores signifi-
cantly. For the race model, the specific choice of Cr distribution
was important. The exponential distribution provided the best
results with regards to the skewness of RT distribution. Different
parameter distributions could also have similar effects on other
models (but see Ratcliff, in press). However, such manipulations
affect only the form of the distribution for all conditions simulta-
neously and cannot affect the pattern between conditions.

Another potentially beneficial manipulation, inspired by psy-
chophysical research, is to transform the physical magnitudes into
model-inputs via logarithmic or power law formulas before the
accumulation stage. For example, with linear inputs the LCA
underestimated the difference in accuracy between the easy and
difficult conditions. This problem was mostly resolved when the
inputs were transformed via a simple logarithmic formula.8 Such a
transformation (and, in fact, any monotonic, concave function)
affects the larger inputs more than the smaller ones. Consequently,
this reduces the relative difference between the target and strongest
nontarget (I1 and I2, respectively), thus reducing accuracy in the
difficult condition.9 However, as we demonstrate in Appendix A,
for our purpose, such nonlinear psychophysical transformations
can affect predictions quantitatively but do not alter the qualitative
predictions of the models. For this reason and in the interest of
clarity, we do not include all possible Model � Transformation
combinations.

Each experiment in this study was designed with the purpose of
bringing out the differences between model predictions. In the
process of designing the experimental conditions, we used simu-
lations to aid us in choosing the specific input manipulations that
would produce the desired effects. To do so we had to first choose
parameter values that would allow for a meaningful comparison

7 Since a good fit to complex data is difficult to achieve, a success is
considered as strong support for the model. For the same reason, however,
a poor fit cannot be considered as strong support against a model. This is
because, when dealing with the optimization of stochastic models to
complex data, a poor fit can result from either a failure of the model, a
failure of the optimization process or a failure of the modeler. To illustrate,
consider the following hypothetical example: Finding a needle in a random
haystack is considered strong evidence for the a priori hypothesis that
needles exist in haystacks. Failing to find one, however, is not strong
evidence against the existence of needles in haystacks because of the high
probability of accidentally missing it (type 2 error).

8 The fits of the LCA model in Figure A1 are of the model with log
transformed inputs.

9 The MMN model has a similar miss in the fit presented in Figure A1.
A logarithmic or power-law transformation could have also improved the
fit of the MMN model. However, since the MMN model already achieved
the best chi-square score with the least amount of free parameters there was
no need for the added complexity.
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between model predictions. Parameter values for a priori simula-
tions were chosen to produce a close match between the different
models’ accuracy predictions for all I2 values simultaneously.
Figure 9 demonstrates how model predictions based on best fitting
parameters (top panel) relate to predictions based on a priori
simulations based on accuracy matching (middle panel). The bot-
tom panel in Figure 9 shows the accuracy predictions on which the

choice of parameters for the a priori simulations was based. While
not perfectly identical quantitatively due to constant vertical shifts,
the two graphs are nearly identical qualitatively with regard to the
form or trend of the graphs for each model.

Contrasting qualitative predictions. So far, we derived dis-
tinguishable, qualitative, a priori predictions and compared the
predictions against empirical data generated with the relevant
constraints in mind. By fitting the models to the data we both
corroborate the validity of our, simulation based, a priori predic-
tions and put the models to the test to see how well they can
accommodate the results. The last stage in this approach to model
testing is to outline the boundaries of possible (and impossible)
predictions for each model while comparing them to the data and
its variability. This should enable us to see what other results can
or cannot be accommodated by each of the models and, possibly,
to derive additional predictions for future testing.

The main qualitative prediction of interest in this study concerns
the difference in mean RT between various types of difficult and
easy conditions where the target input is kept constant and the
difficult condition is created by increased support to one of the
nontarget alternatives. To explore the boundaries of this effect we
generate multiple predictions, for each of the models, by randomly
sampling the parameter space from a uniform distribution around
the best fitting set of parameters. This simplified method was
chosen because a brute force, exhaustive grid search or a com-
pletely random sampling of the entire parameter space (which is
not always well defined) would be too computationally intensive
and would include many unreasonable parameter sets resulting in
predictions that are pure noise. Presentation of model predictions
in this way is reminiscent of two statistical methods used to
evaluate relative complexities, pior predictive distributions (PPD)
and response surface analysis (RSA). PPD is a Bayesian method
that gauges complexity by comparing the universal interval (UI),
which is the range of outcomes that could potentially be observed,
irrespective of any model, to the predicted interval (PI), which
contains all possible predictions for a specific model (Vanpaemel,
2009). RSA is a statistical method used to study relations among
areas covered by responses generated from competing mathemat-
ical models (Bates & Watts, 1988; Pitt et al., 2002).

For each parameter set we calculated mean RTs and probability
correct for both the easy and difficult conditions. Then for each
model we generated two delta probability scatter plots (DPSP). In
a DPSP each set of parameter values is represented by a point with
� � [RT(easy) � RT(difficult)] as the x-value and probability
correct as the y-value. The y-value can stand for probability correct
in either the easy or difficult conditions, hence, the two DPSPs for

Table 2
Best Fitting Parameters

Variable Dv Cr � s Tnd Ts Cv � 	 Chi

Race 0.042 19.047 0.364 5.215 417 12.05 7.023 0.103
FFI 0.001 6.73 0.52 0.865 585 18.336 0.135
MMN 0.013 3.313 0.422 0.915 726 14.64 0.035
LCA 0.844 0.189 0.154 749 28.593 0.391 0.391 0.066

Note. Dv � drift rate; Cr � criterion; � � internal noise; s � starting point variation; Tnd � nondecision time; TS � step size; Cv � criterion variability;
	 � inhibition; � � leak � 	; FFI � feed-forward inhibition; MMN � max minus next; LCA � leaky competing accumulator.

Figure 8. Quantile probability functions (upper panel) and distribution
fits (lower panel) for the race, feed-forward inhibition (FFI), max minus
next (MMN), and leaky competing accumulator (LCA). RT � response
time.
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each model (DPSPdiff and DPSPeasy). Figure 10 shows DPSPdiff
and DPSPeasy pairs for each model.

As can be seen in Figure 10 response competition models
predict increasing slowdowns with higher accuracies. A more
specific prediction is made by the LCA model, which predicts
positive �s with low accuracies and negative �s with higher
accuracies, a prediction that can be empirically tested. On the other
hand, the independent race and FFI models are intrinsically inca-
pable of slowing down under such input manipulations in direct
contradiction to the data.

It is possible, however, that, due to the random parameter
sampling method we used to generate the DPSPs in Figure 10, we

may have missed some particular parameter combination that
would have allowed the race and FFI models to reproduce the
observed slowdown. Furthermore, it may be argued that due to
the poorly behaved nature of the error space and the complexity of
the target data, the poor fits presented in Figure 8 could be due to
a failure of the modeler (or the optimization algorithm), rather than
a failure of the model. To circumvent these issues, we also fit the
race and FFI to only two data points: the main effect RT difference
between the easy and difficult conditions and accuracy in the
difficult condition. If these models can somehow produce a slow
down, then they should be able to fit two data points with seven
(race) and six (FFI) free parameters. Fitting results demonstrate
that even under these highly favorable conditions, the independent
race and the FFI models fail to reproduce the observed slowdown
(see Appendix C, Figure C1). This provides strong evidence that
the failure of the race and FFI models is indeed due to attributes of
the models and not to randomness or to the limitations of optimi-
zation algorithms.

Discussion. This study demonstrated that both the indepen-
dent and normalized race as well as the FFI model speedup in the
difficult condition for all parameter values, while response com-
petition models are able to account well for the observed slow-
down in the data. However, it might be possible to adjust some of

Figure 9. Head-to-head comparison of post hoc model predictions gen-
erated with best fitting parameters and a priori predictions (middle panel)
for models matched on accuracy (bottom panel). RT � response time;
LCA � leaky competing accumulator; FFI � feed-forward inhibition.

Figure 10. Delta probability scatter plots (DPSPs) for the race, feed-
forward inhibition (FFI), max minus next (MMN), and leaky competing
accumulator (LCA) models. Left column displays combined model pre-
dictions for deltas � RT(easy) � RT(difficult) on the x axis and accuracy
in the difficult condition on the y axis. Right column does the same for
accuracy in the easy condition. Circles with error bars represent individual
participants. Solid dots represent model predictions for randomly generated
parameter sets.
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the peripheral assumptions of the two input competition models to
accommodate this pattern. For example, changing the calculation

of inhibition in the FFI from Inhi �
1

�n � 1��j�i Ij to Inhi �

maxj�i�Ij� or Inhi � 	�j�i Ij
2 would cause the target input to be

weaker in the difficult condition, consequently slowing the whole
process down in accordance with the empirical findings. In the
case of the normalized race, a more complex normalization func-
tion could possibly be found that would be able to produce neg-
ative �s for this type of manipulation. For that to happen, the
normalization would have to weigh the increase in I2 as more
influential than the cumulative decreases in I3 and I4. Such a
weighting scheme, however, goes against the well-established and
empirically supported concept of diminishing sensitivities in most
perceptual domains. Therefore, if applied it would probably have
difficulties accounting for other behavioral effects. Although we
did not test every possible independent model, our simulation
results should generalize to all independent models. This assertion
is based on the mathematical fact that the minimum of two inde-
pendent random variables will always be lower than (or equal to)
the minimum of each random variable separately. Therefore, faster
independent racers will always finish faster than slower indepen-
dent racers (see racer metaphor above).

In fitting the models to the data we tried to keep the models as
constrained as possible in order to bring out their qualitative
differences. This was achieved by keeping the input parameters
locked directly to the physical stimuli. By not letting the input
parameters vary freely either within a condition or between con-
ditions we limit, to a considerable degree, the ability of the models
to mimic each other. Despite the strong constraints on input
parameters, response competition models perform surprisingly
well with very few free parameters.

These results, demonstrate that such constrained, information
based approach to model fitting is not beyond the capabilities of
the models (see also Gao, Tortell, & McCleland, 2011; Niwa &
Ditterich, 2008; Palmer et al., 2005; Rorie, Gao, McClelland, &
Newsome, 2010; Tsetsos, Gao, McClelland, & Usher, 2012). Fur-
thermore, this approach holds important benefits with regards
to the issue of model mimicry and can provide valuable insights
into the mechanisms that underlie cognitive processes, such as, but
not restricted to, decision making.

The reminder of the article focuses on experimental replications
of the same type of manipulation: making the task more difficult
by increasing the value of the nontarget alternative while keeping
the target constant. Except for Experiment 2, which does not
involve a manipulation of input strengths, the basic manipulation
remains the same throughout the remaining experiments and the
predictions of the models also do not qualitatively change from
those outlined in Figure 6 (top). Since Experiments 1b, 3a, and 3b
are meant to serve as replications and converging evidence for the
ones obtained in Experiment 1a, we do not endeavor to fit the
models to the data in these experiments. Except for some pecu-
liarities of each experimental manipulation that will be discussed
separately in the corresponding sections, model predictions are
directly constrained by the architecture of the model and the design
of the experimental manipulation. For illustration purposes and
clarity, where necessary, model predictions are presented as sim-
ulation results for models matched on accuracy as in Figures 6 and

9. Experiment 2, however, involves a different type of manipula-
tion, so data fits are carried out.

Experiment 1b: Flicker Task

This experiment was designed as a replication of Experiment
1a with discreet flickering lights instead of continuously vary-
ing brightness patches. There are two basic motivations for
doing so. First, a replication with a different type of stimuli
provides converging evidence and demonstrated the robustness
of the results. Second, we wished to eliminate alternative ex-
planations to our findings from Experiment 1a that hinge on the
concept that normalization can be applied to evidence coming
from partial sets of stimuli. One such account is that partici-
pants first rule out the two weak alternatives and only then
proceeds to normalize the two remaining ones before accumu-
lation. Under this assumption, a normalized (although not a
completely independent) race model can capture the slowdown
observed in Experiment 1a without difficulty. This is true, since
once the two weak alternatives are eliminated the two remain-
ing stimuli are no longer intrinsically normalized. Therefore, in
order to maintain normalization, an increase in evidence for the
nontarget alternative (as in the difficult condition) will lead to a
decrease of evidence for the target alternative (see Figure 5
top). This will then result in an overall slowdown of mean RTs
(as observed in the data).

Flickering light stimuli have several properties that make them
especially attractive for testing decision processes (Vickers, Cau-
drey, & Wilson, 1971; Vickers, 1995) while at the same time
excluding normalization as a plausible assumption. Perceptual
normalization of stimuli intensities requires not only spatial prox-
imity (Luck et al., 1997; Moran & Desimone, 1985) but also
temporal overlap. Stimuli that do not appear together on the screen
are unlikely to be processed together and therefore are also un-
likely to be normalized with respect to each other. In addition,
flickering lights do not have different physical “intensities” per se,
since all discreet flickers share the same brightness and duration.
From an information theory perspective, each flicker provides the
same amount of information as any other flicker. In fact, in a
flickering lights paradigm information is carried mainly by the
flicker’s arrival times and not by its brightness or duration, which
does not vary.

Still, one can think of flickers in terms of temporal “rates,”
which could theoretically be normalized. However, we used rela-
tively slow flicker rates of 5.4 fps (frames per second) to 1.2 fps
(i.e., 185 to 833 ms mean intervals between consecutive flickers).
Unlike brightness, which is instantaneously transformed into some
amount of neural activation, rate magnitudes are encoded by
averaging over time. To correctly evaluate the rate of discreet
events arriving at stochastic time intervals, one needs at least two
or three samples. In our case, for the fastest stimuli this would
result in an absolute minimum rate evaluation time of 185 � 2 �
370 ms. Therefore, in order to evaluate the flicker rate of each
alternative, one must first integrate it over some considerable
period of time. Importantly, if two rates are to be normalized with
respect to each other, then the minimum time step for normaliza-
tion would have to be determined by the slower of the two
alternatives (in our case 333 � 2 � 666 ms minimum). This makes
the mechanism of normalization difficult to apply at both the local
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and global input competition levels since both are exclusively
dependent on momentary evidence. Taken together, these argu-
ments support the notion that using flickering lights as perceptual
inputs further reduces the plausibility and justifiability of assump-
tions relating to evidence normalization.

Method.
Participants. Six Tel-Aviv University students, all female,

participated in the study as part of their introduction to psy-
chology course requirements. Each participant was tested in
three to four sessions no more than 4 days apart. Each session
was about 45 min long. All participants had normal or corrected
to normal vision.

Materials. All stimuli in this experiment were presented on a
Samsung SyncMaster 943b LCD monitor. The stimuli were com-
posed of four homogenous, round, white patches on a black
background. The alternatives were positioned at the four corners of
an imaginary square relative to a central plus sign fixation point
(same as Experiment 1a). Each patch flickered randomly and
independently of the other patches over the course of each trial. A
flicker is defined as an abrupt transition from a gray level of 0
(black) to 1(white) for one monitor refresh cycle (one frame) and
back to 0. For the easy condition, the mean interval between
consecutive “on” frames was set to Int(1) � 11.11, Int(2–4) �
33.33 frames for the target and three nontargets, respectively. For
the difficult condition, mean intervals were set to Int(1) � 11.11,
Int(2) � 20 and Int(3–4) � 50 frames for the target and three
nontargets, respectively. Mean flicker intervals were varied uni-
formly in a (–2, �2) range.

For the easy condition average rates were R(1) � 5.4fps and
R(2– 4) � 1.82fps and for the difficult condition average rates
were R(1) � 5.4fps, R(2) � 3fps and R(3– 4) � 1.2fps. The first
“on” frame of each alternative was determined randomly on
each trial (uniform distribution between 1 and 10) to prevent
repetitive circular (periodic) patterns and to discourage heuris-
tics based on first onset. Refresh rate was set at 60 Hz (16.6 ms
per frame), and tests were run to evaluate the probability of
dropped frames. No frames were dropped after a full hour of
continuous presentation. The location of the target was ran-
domly drawn on each trial.

Procedure. All trials were randomly assigned to one of two
possible conditions: easy or difficult. Each trial began with a large
fixation cross at the center of the screen which stayed on for 1 s,
then turned into a smaller one just as the target and nontarget
stimuli appeared. Stimuli stayed on until the participant made his
response. After the participants’ response came a short 1-s ISI
followed by the next trial. The fixation cross remained on the
screen throughout the experiment, but it briefly increased in size
during each of the ISIs and came back to its original size at its end
in order to draw attention back to the center of the screen before
the beginning of the next trial.

Answers were given via the right number pad of a standard
keyboard. The 1, 3, 7, and 9 keys represented the lower left, lower
right, upper left, and upper right patches, respectively. Participants
were asked to place two fingers from the right hand on the 3 and
9 keys and two fingers from the left hand on the 1 and 7 keys.
Participants were presented with blocks of 20 trials and each
participant performed on average 1,300 trials. Each block con-
sisted of an equal number of trials from each condition. After each
block there was a self-timed intermission to allow the participant

to rest his eyes and prepare for the next block. During each of these
breaks the participants were presented on the screen with their
average accuracy and RT for the last block. Breaks were ended by
pressing any key on the keyboard.

Participants were instructed to respond to the alternative that, on
average, flickers the most or, in other words, that has the fastest
over all flickering rate. They were also instructed to try and
maximize both accuracy and response time such that if they
reached 100% accuracy they should try to respond faster and were
given a 30-trial practice block. Error feedback was given by an
auditory tone. Participants were also instructed to keep their eyes
focused on the fixation cross throughout the trial, although in the
absence of an eye tracker there was no way to verify that they
actually complied with this request. The experiment was held in a
partially darkened room.

Results and discussion. Participants performed less accu-
rately in the difficult condition (M � 0.87, SD � 0.05) compared
with the easy condition (M � 0.95, SD � 0.02; z � 2.2, p � .05;
Wilcoxon matched pairs test). As predicted by competitive models
an analysis of overall RTs revealed that participants responded
more slowly in the difficult condition (M � 1.31 s, SD � 0.17)
than in the easy condition (M � 1.22 s, SD � 0.16; z � 2.2, p �
.05; Wilcoxon matched pairs test; see Figure 11). A separate
analysis of correct and error responses revealed that correct RTs in
the easy condition were faster (M � 1.21 s, SD � 0.16) than in the
difficult condition (M � 1.29 s, SD � 0.16; Z � 2.2, p � .05). No
significant effect was found between error RTs in the easy condi-
tion (M � 1.55 s, SD � 0.27) and error RTs in the difficult
condition (M � 1.5 s, SD � 0.27; z � 0.3, p � .75). However,
errors were very few due to the high accuracy. The results for
overall and correct RT are consonant with Experiment 1a and
provide a replication of the same effects with a different type of
stimulus.

This replication demonstrates the robustness of the effect and
provides converging evidence for our conclusions. Nevertheless, it
is still possible that participants do adopt a two stage strategy
whereby the two slowest alternatives are eliminated first and then
only the two remaining alternatives continue to compete for the
determination of the response. However, as discussed before, the
use of discreet, temporally separated flicker stimuli with relatively

Figure 11. Latency probability plots of results from Experiment 1b. Xs
represent mean correct (right) and error (left) response times for the two
experimental conditions: easy and difficult. Error bars stand for two within-
participant standard errors. Lateral position on the x axis indicates the
probability a specific type of response (correct 
 0.5; error � 0.5) within
that condition.
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slow presentation rates renders the application of online input
normalization impractical. As a result, even if a two stage strategy
is utilized, the data are still difficult to account for within the
framework of a normalized race model and impossible with a
completely independent race model. In Experiment 3b, we further
examine this issue by replicating these results with a two alterna-
tive choice task where the alternative “two stage” account does not
apply.

Our second study was intended to further distinguish the pre-
dictions of independent and competitive models while also laying
the ground for a paradigm that could begin to distinguish between
input competition and response competition models in two alter-
native choice tasks and to provide certain constraints for input
competition models. Here, priors, rather than input strengths, were
manipulated by controlling observers’ prior knowledge regarding
the likelihood for the target’s spatial location. As discussed above,
response competition is a function of the total accumulated input
and, as such, is affected not only by the momentary information
but also by the priors in favor of each alternative (assumed to
affect the starting point of the accumulation process; Bogacz et al.,
2006; Gao, Tortell, & McCleland, 2011; Gold & Shadlen, 2000,
2001; but see discussion below for alternative interpretations). On
the other hand, input competition is sensitive only to the momen-
tary input which excludes the staring points. The next study thus
enables us to further focus our attention on a narrower distinction
between the different levels of competition: independent, input,
and response.

Study 2: A Manipulation of Priors

Consider a two alternative choice task with the same type of
stimuli as in experiment one, only now we introduce variation
of the prior belief for each alternative via a 75% valid pre-cue
(Posner, Snyder, & Davidson, 1980), which can be congruent,
incongruent, or neutral (Figure 12, left). Such manipulations of
prior knowledge have been studied in the context of decision
making (Edwards, 1965; Summerfield & Koechlin, 2008) and
found to have distinct effects on the decision process. Congru-
ent cues tend to improve accuracy and reduce response times
while incongruent cues sometimes do the opposite and some-
times selectively reduce accuracy without significantly affect-
ing RTs (Forstmann et al., 2010). Prior information in favor of
one alternative is operationalized here as an increase in the
starting point of that alternative’s respective accumulator (Bo-
gacz et al., 2006; Gold & Shadlen, 2000, 2001). As was illus-
trated in the scientists’ competition metaphor, a head start to the
slow competitor slows down RTs for models with response
competition (see also Figure 12, right). Contrary to this, models
with input competition and independent models predict the
opposite effect. For the independent race model, a head-start for
the incorrect accumulator speeds up its finishing times (see
Figure 12, middle). Consequently, this results in a speedup of
correct RT’s due to statistical facilitation. The same takes place
in the FFI diffusion model since the head-start does not alter the
momentary value of the nontarget alternative which could

Figure 12. Middle and right: Noiseless illustration of the effects of prior knowledge (congruent/neutral/
incongruent pre-cues) on the accumulation process. Prior knowledge was implemented in the simulations as �5
to target accumulator/no change/�5 to nontarget accumulator. Accordingly, dashed and solid lines trace
activation trajectories (solid: Target; dashed: Nontarget) for the race (middle) and leaky competing accumulator
(LCA; right) models as a function of time and the type of pre-cue. Dotted lines indicate decision thresholds. In
the incongruent condition, the race model clearly does not slow down. The race model also does not seem to
speed up compared with the neutral condition, as our predictions dictate. However, this is just an artifact of the
lack of noise in a single trial accumulation. Given some noise in the accumulation process, fast incorrect
responses would cause mean correct RT to accelerate (statistical facilitation), giving us the predicted speedup
effect. Left: Schematic illustration of stimuli (numbers indicate brightness values on a 1–10 scale) with the three
possible pre-cues.
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otherwise slow down the target accumulator via subtraction. Note
that in the FFI model, unlike the MMN, the starting point of one
accumulator does not affect the finishing time for the other accu-
mulator.

The effect of prior information on the starting conditions of
the decision process can be operationalized in several ways.
While this issue is still under debate and may be sensitive to the
specific choice of experimental manipulation and stimuli, we
chose to represent prior knowledge as an increase to the starting
point of the cued alternative without a simultaneous change to
the starting point of the uncued alternative (uncorrelated start-
ing points assumption). This choice is supported by observed
RT distributions and data fits (see Experiment 2 discussion
below). A second reason for using this assumption is its parsi-
mony and natural mapping to neural activity.10 Some alterna-
tive accounts of prior knowledge, such as changes in drift rate
and anti-correlated starting points, can invalidate part (or all) of
the qualitative predictions outlined above. For example,
changes in drift rate would allow input competition (but not
independent) models to slow down following an incongruent
cue while anti-correlated starting points would also allow in-
dependent models to slowdown. Fortunately, the drift rate ac-
count makes clearly distinguishable predictions regarding RT
distributions and is therefore evaluated directly from the data.
Other accounts, such as anti-correlated changes in starting
points, however, are difficult to tell apart from uncorrelated
changes in starting points just by looking at the data. Therefore,
such accounts are explored quantitatively via data fits and
qualitatively by mapping prediction spaces to derive constraints
for the various models.

Simulations were run to evaluate the effect of a manipulation of
priors on the mean RT of correct and incorrect responses. The same
five models were used: a purely independent (race) model (red line),
and four competitive models: a normalized race model (red line11),
MMN (green line), FFI diffusion (black line) and LCA (blue line; see
Figure 13). As can be seen in Figure 13 (top), for both the correct and
incorrect responses the race and the FFI diffusion models predict
faster response times for all conditions relative to the neutral condi-
tion. For the correct responses, the LCA, as well as the MMN predict
a speedup in the congruent (easy) condition relative to neutral and a
slowdown for the incongruent (hard) condition (Figure 13, top left).
For these two models exactly the opposite pattern is observed for the
incorrect responses (Figure 13, top right). Thus, the critical compar-
isons for this simulation are neutral versus incongruent for the correct
responses and neutral versus congruent for the incorrect responses,
where input-competition and response-competition models make con-
tradicting predictions (see Figure 13, top). Experiment 2 was designed
to test these predictions.

Experiment 2

In this experiment the participants were asked to decide, as fast and
as accurately as they can, which of two fluctuating gray patches is the
brightest. This time, however, each trial was preceded either by an
arrow indicating where the brightest patch is most likely to appear
(75% validity) or by a two headed arrow that provided no predictive
information (see Figure 12, left; Figure 14). Importantly, brightness

levels remained constant throughout the experiment and the only
difference between the conditions was in the priors.

Method.
Participants. Ten Tel-Aviv University students (seven fe-

male) participated in the study in exchange for course credits.
Participants were tested in two, 45-min-long sessions (no more
than 4 days apart). One participant (female) was excluded from the
final analysis due to chance-level performance. All participants
had normal or corrected to normal vision.

Materials. The stimuli were composed of two homogenous,
round, gray patches on a black background (width: 1.2 cm) that
were positioned to the right and to the left of the fixation point
(total width from right edge of right patch to left edge of left patch:
5 cm). On all trials gray levels of the target and nontarget were
normally distributed around means of 0.8 and 0.6 (on a 0 [black]
to 1 [white] scale), respectively, with a standard deviation of 0.2.
To avoid obvious flickering, gray levels were cut off below 0.1.
All trials were preceded by a white arrow that replaced the fixation

10 Accordingly, the cue acts as a brief input that increases the activation
of the cued-alternative unit.

11 Note that, due to the specific choice of constant inputs, the indepen-
dent race model and the normalized race model make equivalent predic-
tions for this manipulation. Therefore both are represented by the same line
color (red) in the figure.

Figure 13. Mean-RT for correct responses (left) and incorrect responses
(right), in the three conditions (congruent/neutral/incongruent) of Experi-
ment 2. Top: Simulations for the various models with starting points
differing according to condition. Decision criteria were set so that all
models predicted approximately the same accuracies for the neutral con-
dition (Race: 40; leaky competing accumulator [LCA]: 14; max minus next
[MMN]: 9; feed-forward inhibition [FFI]: 13). Input strengths remained
constant throughout the simulations (I1 � 2, I2 � 1.5). For the neutral trials
the two accumulators started from the same starting point (SPi � 1). Before
the initiation of simulated congruent/incongruent trials, the starting point
of the target/nontarget accumulator, respectively, was increased by 5
(SPi � 6). All models were modeled according to the equations described
in the introduction (� � 2; � � 	 � 0.1). Bottom: RT data (in seconds)
from Experiment 2. Error bars correspond to within-participant variance
(Cousineau, 2005). RT � response time.
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cross for 500 ms before stimulus onset. The arrow pointed either
toward the right, left or in both directions. Except for the above
mentioned details and the fact that there were only two patches
instead of four, Experiment 2 was identical to Experiment 1.

Procedure. All trials were randomly assigned to one of three
possible conditions: congruent, incongruent, and neutral. Partici-
pants were presented with blocks of 50 trials for a total of 1,600
trials per participant. Each block consisted of 60%, 20%, and 20%
of congruent, incongruent, and neutral trials, respectively, making
the arrow 75% valid (60 out of 80 non-neutral trials). Participants
were informed that the arrow preceding each trial was a good,
although not perfect, predictor of the targets’ location. All other
procedures were identical to Experiment 1.

Results. Participants were less accurate when the arrow
pointed in the wrong direction (incongruent condition; M � 0.84,
SD � 0.07) than when it pointed in both directions (neutral
condition; M � 0.91, SD � 0.02, z � 2.55, p � .05; Wilcoxon
matched pairs test) and were more accurate when the arrow did
point in the right direction (congruent condition; M � 0.95, SD �
0.02, z � 2.55, p � .05; Wilcoxon matched pairs test). More
important, participants responded more slowly in the incongruent
condition (M � 0.57 s, SD � 0.09) than in the neutral condition
(M � 0.55 s, SD � 0.08; z � 2.66, p � .01) and faster in the
congruent condition (M � 0.52 s, SD � 0.08; z � 2.07, p � .05).
Furthermore, a separate analysis of correct and error responses
revealed that participants were slower to correctly respond in the
incongruent condition (M � 0.58 s, SD � 0.09) than in the neutral
condition (M � 0.55 s, SD � 0.08, z � 2.66, p � .01; Wilcoxon
matched pairs test) and faster in the congruent condition (M �
0.52 s, SD � 0.08; z � 2.19, p � .05). Furthermore, for error trials,
participants were slower to respond in the congruent condition
(M � 0.58 s, SD � 0.09) than in the neutral condition (M � 0.53
s, SD � 0.1, z � 2.66, p � .01; Wilcoxon matched pairs test) while
also marginally faster in the incongruent condition (M � 0.5 s,
SD � 0.1; z � 1.84, p � .07).

We also tested for differences between leading edge (LE) and
tail effects of the congruent and incongruent conditions. The

leading edge effect for a specific condition is defined as the
difference between the RT of the 0.1 quantile in the neutral
condition and the 0.1 quantile in the test condition. The tail effect
is defined in a similar manner for the 0.9 quantile. No significant
differences were found between either the LE (M � 0.061 s, SD �
0.084) and tail (M � 0.051 s, SD � 0.028; z � 0.65, p � .5;
Wilcoxon matched pairs test) of correct congruent trials, LE (M �
0.101 s, SD � 0.110) and tail (M � 0.1 s, SD � 0.056; z � 0.77,
p � .44; Wilcoxon matched pairs test) of correct incongruent
trials, LE (M � –0.061 s, SD � 0.059) and tail (M � –0.055 s,
SD � 0.096; z � 0.18, p � .86; Wilcoxon matched pairs test) of
incorrect congruent trials and LE (M � –0.105, SD � 0.109) and
tail (M � –0.113 s, SD � 0.171; z � 0.18, p � .86; Wilcoxon
matched pairs test) of incorrect incongruent trials.

Fitting the models to the data. To test the capabilities of the
models to account for additional aspects of the data we fit the
models to the data from Experiment 2. Fitting methods were
similar to Experiment 1a. The effect of the cue in the congruent,
neutral and incongruent conditions was modeled as an increase in
starting point for the cued accumulator. The increase parameter
(s0) was assumed to remain constant between conditions. It was
always set to zero in the neutral condition and was equal in the
congruent and incongruent conditions with the difference between
them manifesting only in the type of cued alternative (i.e., the
target or nontarget accumulator accordingly). Inputs were held
constant across conditions with their mean and variance identical
to the ones used in the experiment. Thus, there were no free
parameters that varied between conditions. Finally, to test the
assumption of anti-correlated bias in starting points we also fit the
race and FFI models with starting points calculated as X0 �
s0 ⁄ 2 & X0 � s0 ⁄ 2 for the cued and uncued alternatives, respec-
tively (see Appendix C for illustrations).

Fitting results. Fitting results are presented in Figure 15 and
best fitting parameters are presented in Table 3 together with
chi-square scores. All models accounted well for the correct RT
distributions. However, all models somewhat underestimated the
spread of the distribution of error RTs. While this underestimation
is small for the MMN and LCA models, it is more pronounced for
the FFI model and largest for the race model. More important, both
independent and input competition models (independent race, nor-
malized race, and FFI) with uncorrelated starting points failed to
produce slower than neutral correct RTs for incongruent trials and
slower than neutral error RTs for congruent trials.

Changing the prior to starting point assumption from uncorrelated
to anti-correlated, enabled the independent race and FFI to predict
slower correct RTs in the incongruent condition. However, for the
race model the RT-slowdown was still smaller than the one observed
in the data and also came at the expense of underestimating the RT
speedup in the congruent condition (shallower slopes), without any
improvement in the chi-square goodness of fit. For the FFI model the
chi-square scores improved slightly (see Figure 15) but were not as
good as those of response competition models (although the number
of parameters is larger than MMN and equal to LCA).

Contrasting qualitative predictions. We start with the qual-
itative predictions for the four models under the uncorrelated
starting point assumption. The distinctive qualitative prediction
involves the difference in overall RTs between the neutral and
incongruent conditions. To test the models’ ability to account for
this main effect (as observed in the data) while also exploring the

Figure 14. Illustration of the time course of Experiment 2. The cue
appeared 1,500 ms before stimulus onset and remained on for 1,000 ms.
Then the fixation cross returned for another 500 ms, after which the
brightness patches appeared and remained on until response.
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predictions of the models for a wide range of parameter combina-
tions, we generated random parameter combinations for each
model and produced DPSPs. Figure 16 shows the range of possible
predictions for each model with regards to the relation between
accuracy and delta � RT(neutral) � RT(incongruent).

As one can see, independent and input competition models
predict positive deltas for all parameter combinations and thus fail

to capture the (negative) main effect observed for nine out of the
10 participants. As before, to verify that this effect, as well as the
poor fits presented in Figure 15, is not due to randomness or
limitations of optimization procedures, we also fit the race and FFI
models to only two data points: main effect of RT difference
between neutral and incongruent conditions and accuracy in the
incongruent condition. Results show that even under these favor-

Figure 15. Quantile probability functions for race, feed-forward inhibition (FFI), race with anti-correlated
(Race-AC) starting points, FFI with anti-correlated starting points (FFI-AC), max minus next (MMN), and leaky
competing accumulator (LCA) models. X’s linked by gray lines represent the data. Color lines represent model
predictions for best fitting parameters.

Table 3
Best Fitting Parameters for Experiment 2

Variable Dv Cr � s Tnd Ts Cv � 	 S0 TndVar Chi

Race 0.02 35.58 0.511 10.072 109 8.221 11.759 2.221 0.3553
FFI 0.06 7.139 0.919 4.746 409 4.06 3.424 1.704 176 0.3453
MMN 0.02 10.49 0.828 8.36 375 3.332 2.05 145 0.261
LCA 6.635 0.79 4.625 318 2.762 0.149 0.173 1.727 153 0.26

Note. Dv � drift rate; Cr � criterion; � � internal noise; s � starting point variation; Tnd � nondecision time; TS � step size; Cv � criterion variability;
� � leak; 	 � inhibition; S0 � change to starting point of cued alternative; TndVar � nondecision time variance; FFI � feed-forward inhibition;
MMN � max minus next; LCA � leaky competing accumulator.
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able conditions, the race and FFI models still cannot account for
the observed slowdown in RT (see Appendix C). On the other
hand, response competition models predict a combination of neg-
ative effects for high accuracies and positive effects for low
accuracies, thus accounting for all 10 participants, including the
outlier that performed at chance level in the incongruent condition.

Although response competition models show greater flexibility
than other types of models they still cannot predict any pattern of
results. For example, positive deltas with high accuracy are well
within the predictions of input competition and independent mod-
els while clearly beyond the capabilities of response competition
models. A combination of positive effects for high accuracies and
negative effects for low accuracies cannot be captured either by
response competition, input competition, or independent models.

We turn now to the qualitative predictions for the race and
FFI-models with anti-correlated starting points. As shown in Fig-
ure 16b, with this additional assumption, both models are able to
predict RT slowdowns in the incongruent condition. These predic-
tions, however, are still distinct from the ones made by response
competition models with uncorrelated starting points. The assump-
tion of anti-correlation seems to restrict the models’ predictions
exclusively to slowdowns. This is in contrast to response compe-
tition models that predict slowdowns for high accuracies but
speedups for low accuracies. In our study there was only one
participant that had low accuracy (close to chance in the incon-
gruent condition but around 80% in the neutral condition), and this
participant conformed to the prediction of response competition
models and was outside the reach of the independent race and FFI
models with anti-correlated starting points.

Discussion. The results of Experiment 2 demonstrate that
participants slow down in response to an incongruent cue. Under
the assumptions that priors selectively affect the starting point of
the cued alternative this effect is incompatible with both indepen-
dent and input competition models. The race model (either inde-
pendent or normalized) and the FFI diffusion model predict oppo-
site patterns to the ones observed in the data since they are only
affected by the head start of the incorrect accumulators without
any corresponding slowdown in the correct-RT accumulator and
are thus subject to statistical facilitation. On the other hand, the
results are consistent with the predictions of response competition
models represented by the LCA and the MMN. These response
competition models are able to account for the observed patterns
precisely because the competition they utilize is introduced only at
the level of the integrated input. This type of competition corre-
sponds to the total amount of accumulated information and in-
cludes the priors. Therefore, response competition leads to a slow-
ing down of correct responses to incorrectly cued displays and also
of incorrect responses to correctly cued displays. Since accuracy
was fairly high, this sums up to an overall RT slowdown in the
incongruent condition. Consequently, by taking longer to respond
the response competition models allow for more information to be
integrated thus preventing accuracy from suffering too much.

Under the alternative assumption that priors generate anti-
correlated shifts in the starting points of the two accumulators (Forst-
mann et al., 2010), qualitative distinctions between the independent,
the input, and the response-competition models are less clear. How-
ever, our quantitative evaluation of the race model fits to data indi-
cates that this assumption still does not improve the quality of fit for
this model, which remains lower than for the competitive models. For
the FFI-model, the fits with anti-correlated starting points are better
able to account for the effect of prior manipulation, resulting in a
slight improvement in the quality of fit over the noncorrelated version.

One distinctive prediction that can be derived from the DPSP
figures (Figures 16a and 16b) relates to the interaction of accuracy
with the main RT effect (the RT difference between neutral and

Figure 16. a. Delta probability scatter plots (DPSPs) for the race, feed-
forward inhibition (FFI), max minus next (MMN), and leaky competing
accumulator (LCA) models. Left column displays combined model pre-
dictions for deltas � RT(neutral) � RT(incongruent) on the x axis and
accuracy in the incongruent condition on the y axis. Right column does the
same for accuracy in the neutral condition. Circles with error bars represent
individual participants. Solid dots represent model predictions for ran-
domly generated parameter sets. b. DPSPs for the race and FFI models with
anti-correlated (AC) starting points. All other details are the same as Figure
16a.
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incongruent conditions). Independent and input competition mod-
els predict either only speedups (with uncorrelated starting points)
or only slowdowns (with anti-correlated starting points), while
response competition models predict slowdowns for high accura-
cies and speedups for low accuracies. In this regard, the results of
Experiment 2 provide some evidence in favor of response compe-
tition models. This is because one of our participants who had low
accuracies also displayed a speedup in RT, supporting the hypoth-
esis predicting a reversal in the main RT effect as a function of
accuracy. Further testing with various accuracy instructions, how-
ever, is needed to fully establish this result.

A second alternative assumption about how priors affect the
parameters of the choice process is that prior knowledge affects the
gain (drift rate) rather than the starting point of the accumulation
process (Diederich & Busemeyer, 2006; Ratcliff, Van Zandt, &
McKoon, 1999; Van Ravenzwaaij et al., 2012). So far, fits to
empirical data tend to support the hypothesis that starting points
rather than drift rates are affected by such manipulations of prior
knowledge (Mulder et al., in press; Simen et al., 2009; but see
Ratcliff et al., 1999; Van Ravenzwaaij et al., 2012). The two
hypotheses can be further distinguished by their qualitatively dif-
ferent predictions regarding RT distributions. The effect of a
manipulation of starting points on RT distributions is characterized
by equal shifts in both the leading edge and tail and has an opposite
effect on error RT than on correct RT. The effect of a manipulation
of drift rates, on the other hand is characterized by small shifts in
the leading edge and large shifts in the tail of the RT distribution
and affects correct and error RT in the same manner (Mulder et al.,
in press). The results of Experiment 2 also shed light on this issue.
Since no significant differences were found between leading edge
and tail effects, and since the manipulation had an opposite effect
on error versus correct RT, we can consider the data as supporting
the account of biased starting points over biased drift rates (see
also Figure 15 for graphical illustration).

The results we presented so far provide some support for re-
sponse competition choice models over independent and input-
competition models. In our next study we examine in more detail
the difference between independent, response competition and one
type of input competition (the normalized race model; Figure 3,
right) by using both a more direct manipulation of the starting
point, which is free of the correspondence assumptions between
priors and starting points (Experiment 3a), and a replication of the
difficulty manipulation from Experiment 1 for two alternative
choice (Experiment 3b). These manipulations do not distinguish
between response competition and some input competition models,
such as the FFI diffusion, and we defer further comparisons
between these models to the General Discussion.

Study 3: Probing for Normalization

The state of each accumulator at the beginning of a trial can be
manipulated, without resorting to assumptions about the represen-
tation of priors, by independently controlling the initial values of
each alternative. Let us consider, for example, the incongruent
condition form Experiment 2, where the starting point of the
incorrect accumulator was higher than that of the correct accumu-
lator (see Figure 12). Instead of using priors to produce these
starting activations, we can use a temporal manipulation of bright-
ness that briefly favors the nontarget alternative before returning to

its baseline values (Figure 17, third row, left; see also Brown &
Heathcote, 2005, for an experiment using a similar manipulation).
Thus, in Experiment 3a, the nontarget stimulus will have a higher
mean brightness than the target stimulus (I2= � I1 � (I1�I2)) for
the first n frames (2n �� mean RT) of the trial (we name this the
100-ms incongruent input condition, since n � 100 ms in our
experiment). After 2n frames the accumulated input for the target
will overcome that of the nontarget, rendering it the correct re-
sponse and returning the balance of evidence to its correct state
(see Figure 17, third row, middle column, for an illustration).
However, from the point of view of an independent model, after
the first n frames we are effectively at a state in the accumulation
process that is equivalent to the beginning of an incongruent trial
in Experiment 2 (at the time of stimulus onset and just after the
presentation of the pre-cue arrow). At this point the integrated
value will slightly favor the wrong alternative, as in the incongru-
ent prior condition in Experiment 2. Importantly, when compared
to a baseline condition with exactly the same input for the target
alternative but with a constant lower nontarget input (lacking the

Figure 17. Noiseless illustrations of input strengths and simulations of
the accumulation process (activations) in both a standard race model and a
normalized race model, as a function of time for the four different condi-
tions of Experiments 3a and 3b (rows represent conditions). Left column:
Temporal evolution of input strengths. Middle column: Accumulation of
input up to decision criteria, as would be expected from a non-normalized,
independent race model. Speedups in response time (RT) compared to the
baseline condition are expected in the two bottom boxes of the middle
column. Since statistical facilitation, which is responsible for the faster
overall RTs, is a stochastic phenomenon, it can’t be directly seen in these
“noiseless” illustrations. However, some statistical facilitation should be
expected anytime the amount of accumulated input in the nontarget (red)
accumulator at response is higher than in the baseline condition. Right
column: Accumulation of input up to decision criteria as would be ex-
pected from an input normalization race model. Solid lines represent target
stimuli, dashed lines are nontargets, and dotted lines are the decision
criteria.
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first few frames of high input; Figure 17, second row), this ma-
nipulation will produce a speedup in RT under an independent race
framework (Figure 17, middle column12) and a slowdown for the
other competitive models, such as the normalized race model
(Figure 17, right column; other competitive models not shown in
Figure 17, but see Figure 12 (right) for similar illustration of
LCA).

Another way to distinguish between independent and competi-
tive models we implement in Experiment 3b, is to compare the RT
in the baseline condition to a more difficult condition where the
target brightness is the same as in the baseline condition but the
nontarget brightness level is higher (see bottom row of Figure 17).
This is in fact a replication of Experiment 1a for a two-alternative
task and produces the same qualitative predictions. Here indepen-
dent models predict faster RTs in the difficult condition, while
competitive models (including the normalized race model) predict
slower RTs (see “Qualitative Predictions” section for the rationale
behind this). While the procedures described above can distinguish
between independent and competitive models, they do not distin-
guish between normalized input competition models, such as the
race with normalized input (Figure 17, right column), and other
types of competitive models. In such models any increase in
nontarget input also negatively influences the activation of the
target accumulator itself.

It is possible, however, to distinguish between normalized mod-
els and other competitive models, by adding another condition to
the design that would directly probe the process of normalization.
Note that applying normalization to inputs by maintaining their
sum constant is equivalent to using their ratio, rather than their
absolute values. As a result, a process that accumulates normalized
inputs would be invariant to a multiplication of both inputs by a
constant (see Figure 17, top row: double boost condition). Conse-
quently, if inputs are manipulated so that they are multiplied by a
constant sometime after the trial has begun we would expect no
change in RT under a normalized model13 (Figure 17, first row,
right panel). On the other hand, a nonnormalized model, whether
independent or competitive, would predict a speedup of RTs due to
the increase in absolute input strength (Figure 17, first row, middle
panel).

This manipulation, in conjunction with a manipulation of diffi-
culty via the increase of nontarget input, produces two different
sets of predicted outcomes. If no effect is observed in the double
boost condition then it is possible that inputs are normalized and
thus the difficulty manipulation has no discriminating power. That
is, as long as inputs are normalized, the prediction will always be
the same: a slowdown in the 100-ms incongruent input (Experi-
ment 3a) or difficult (Experiment 3b) condition, no matter which
type of competition takes place. If, however, faster than baseline
response times are observed in the double boost condition then
independent and competitive models diverge with regard to their
predicted outcome for the 100-ms incongruent input (difficult)
condition. Here, independent models foretell a speedup relative to
baseline and competitive models, the opposite (see Table 1). Thus,
in the absence of an assumption of normalization, any observed
slowdown in the 100-ms incongruent input (difficult) condition
must be the result of competitive mechanisms and cannot be
accounted for with an entirely independent, nonnormalized model.
As before, these predictions are also robust to, and even accentu-
ated by, nonlinear, concave, psychophysical transformations of

physical input strengths such as logarithmic and power law func-
tions (see Appendix A for simulations demonstrating this).

Simulations were run to formally evaluate both the effect of
increasing task difficulty via a transient augmentation of the input
to the nontarget (I2) and the multiplication of all inputs by a
constant, on the mean-RT of several models (the effect of the
difficult condition of Experiment 3b are virtually identical to the
100-ms incongruent input and therefore are not shown). Four
models were used: a purely independent (race) model (red line), a
normalized race model (black line), a diffusion model (green line),
and an LCA model (blue line; see Figure 18). As one can see in
Figure 18 (top), simulation results reveal that the double boost
condition resulted in the fastest mean RTs for all but the normal-
ized race model (black vs. other lines). RTs in the 100-ms incon-
gruent input were slowest for all but the independent race (red vs.
other lines). Critically, while the independent race (red line) pre-
dicts a speedup in the double boost condition it also predicts a
small speedup in the 100-ms incongruent input condition due to
statistical facilitation. The normalized race (black line), on the
other hand, does predict a slowdown in the 100-ms incongruent
input condition but fails to predict a speedup in the double boost
condition. It is important to note here that any model in which
inputs are normalized will predict a null effect for the double boost
manipulation. Both diffusion and LCA predict a slowdown in RT
for the difficult 100-ms incongruent input condition and a speedup
for the double boost condition (see Table 4).

Experiment 3a: Temporal Manipulation of Inputs

As in Experiment 2, the participants were asked to decide which
of two fluctuating gray patches is the brightest. This time, how-
ever, participants were presented with three types of trials that
differed in the way mean stimulus brightness evolved during the
time course of the trial. The first condition was the neutral con-
dition, where both the target and nontarget stimuli remained con-
stant until a response was entered. The second was the double
boost condition which began exactly the same as the neutral
condition but after 100 ms the mean brightness values of both the
target and nontarget stimuli grew by a factor of 1.5 and remained
so until response. The third and last condition was the 100-ms
incongruent input in which the target stimulus behaved just like in
the neutral condition but the nontarget’s mean brightness level was
initially set to a higher value than the target’s mean brightness for
a duration of 100 ms after which mean brightness returned to its
baseline level and remained at that level until the participant
responded.

Method.
Participants. Ten Tel-Aviv University students (seven fe-

male) participated in the study in exchange for course credits.
Participants were tested in two, 45-min-long sessions (no more

12 Although there is no visible speedups in the figure due to the noiseless
nature of the simulations, speedups due to statistical facilitation occur
every time the manipulation causes the finishing times of the nontarget
accumulator to approach those of the target accumulator.

13 Note that input normalization can be introduced into all types of
models and not just independent (race) models (for an application of input
normalization to response-competition models [LCA], see Usher & Mc-
Clelland, 2001).

23DISENTANGLING DECISION MODELS



than 4 days apart). All participants had normal or corrected to
normal vision.

Materials. For neutral trials mean gray levels of the target and
nontarget were 0.4 and 0.3 (on a 0 [black] to 1 [white] scale),
respectively. Gray levels were perturbed by a random noise vari-
able that was drawn from a normal distribution with a standard
deviation of 0.2 that was truncated above 0.1 and below �0.1 to
avoid obvious flickering of the stimuli. For the 100-ms incongru-
ent input condition nontarget mean gray level was 0.5 for the first
100 ms and 0.3 thereafter. Target mean gray levels remained
unchanged throughout the trial. Last, the double boost condition

began the same as a neutral trial, but 100 ms into the trial both
target and nontarget mean gray levels increased from 0.4 and 0.3
to 0.6 and 0.45, respectively. Except for these details, Experiment
3 was identical to Experiment 2.

Procedure. All trials were randomly assigned to one of three
possible conditions: neutral, 100-ms incongruent input, and double
boost. Participants were presented with blocks of 60 trials for a
total of 1,200 trials per participant. Each block consisted of 40%,
30%, and 30% of neutral, 100-ms incongruent input, and double
boost trials, respectively. All other procedures were identical to
Experiment 2.

Results. In comparison to the neutral condition (M � 0.94,
SD � 0.03) participants were less accurate in their responses in
both the double boost condition (M � 0.91, SD � 0.04, z � 2.1,
p � .05; Wilcoxon matched pairs test) and the 100-ms incongruent
input condition (M � 0.86, SD � 0.06, z � 2.5, p � .05; Wilcoxon
matched pairs test). Importantly, participants responded signifi-
cantly faster in the double boost condition (M � 0.71 s, SD �
0.14) when compared to the neutral condition (M � 0.76 s, SD �
0.16, z � 2.5, p � .05; Wilcoxon matched pairs test), thus
supporting the hypothesis that inputs were not normalized prior to
accumulation. Next, we turn to how the participants performed in
the 100-ms incongruent input condition. As can be seen in Figure
18 (bottom), compared to the neutral condition, participants re-
sponded more slowly to 100-ms incongruent input trials (M � 0.81
s, SD � 0.18, z � 2.5, p � .05; Wilcoxon matched pairs test). In
tandem, these results validate the interpretation that the slowdown
in RT observed in the 100-ms incongruent input condition is the
result of some sort of competition that does not originate from a
standard, pre-integration normalization of input strengths but,
rather, involves some sort of either input or response competition
acting on non-normalized inputs.

Although the results of this experiment do not rule out all input
competition models (e.g., the FFI model is equivalent to the MMN
model for this manipulation and both account well for the results;
see Figure 18 top panel “Diffusion” model), it does create strong
constraints for choice models in general. Thus, we can see that not
only independent models are unable to account for these findings
but also some input competition models such as race with normal-
ized inputs.

One may argue, however, that there is a certain amount of
ambiguity in the 100-ms incongruent input condition due to the
switch in the designation of the target stimulus 100 ms after
stimulus onset, which may induce some confusion in the par-
ticipant regarding task demands (but see Experiment 3b for a
design that avoids this). This could provide an alternative
account of the observed slowdown. Note, however, that in order
for the participant to be confused by the “switch” she must first
perceive or be aware of it at some level. On the one hand, if the
participant does not perceive the “switch,” then this type of
confusion can be directly translated into additional conflict
during the accumulation process. This additional conflict is then
naturally accounted for in competitive models as increased
competition. If, on the other hand, the participant does perceive
the “switch” or is somehow aware of it, then this information
can (and optimally should) be used advantageously. Note that,
only one of the alternatives, the nontarget, changes in a
“switch” trial (100-ms incongruent input) while the other alter-
native, the target, remains constant. Therefore, the alternative

Figure 18. Top: Simulation results depicting average response times
(RTs) as a function of experimental condition (Double Boost/Neutral/
100-ms incongruent input) for four models: independent race (Race[ind]),
normalized race (Race[norm]), diffusion, and leaky competing accumula-
tor (LCA). Decision criteria were set so that models predicted approxi-
mately the same accuracies for all the various input alternatives (race: 35;
normalized race: 38; LCA: 11; diffusion: 5). Input strengths in the simu-
lations were varied in the following manner: (a) in the double boost
condition, seven time steps after the onset of the stimuli, both I1 and I2 were
multiplied by a factor of 1.5 and remained so until a response was given.
(b) In the 100-ms incongruent input condition, I1 was kept constant (I1 �
2) while I2 was set to I2 � 2�(I1 � I2) for the first seven time steps after
which it returned to its standard value of I2 � 1.5. All models were
simulated according to the equations described in the introduction (� �

1; � � 	 � 0.1). Bottom: Response time results as a function of the
different conditions in Experiment 3a.
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that switches is in fact perfectly correlated with the nontarget
alternative and provides a 100% valid cue for the incorrect
response. Considering the fact that participants are provided
with trial by trial feedback (beep on error), then if the “switch”
is indeed detectable participants should learn to use this infor-
mation to improve their accuracy and possibly, though not
necessarily, reduce their RTs (see e.g., Bauer, Cheadle, Parton,
Mueller, & Usher, 2009; Figure 2A). This, however, is not
compatible with our results which show that participants are
both slower and less accurate in the 100-ms incongruent input
condition.

Experiment 3b was designed to replicate the results from
Experiment 3a with a manipulation that did not involve poten-
tially confusing, nonstationary stimuli as in the 100-ms incon-
gruent input condition. As discussed above, one possible inter-
pretation of the results in Experiment 3a is that the slowdown
observed in the 100-ms incongruent input condition was the
result of participants being confused by the temporal inconsis-
tency of the stimuli. In addition, the experiment was designed to
replicate the results of Experiments 1a and 1b with two instead
of four response alternatives. The purpose of doing so was to
eliminate alternative accounts of these results. One possible
interpretation of the results of Experiments 1a and 1b is that
participants first rule the two weakest alternatives and only then
proceed to accumulate the values of the two remaining alterna-
tives. If this is correct then it should be possible to account for
the data with a normalized (though not an independent) race
model. This is true since once the two weak alternatives are
eliminated the two remaining stimuli are no longer normalized
and therefore the increase in the input for the nontarget alter-
native (as in the difficult condition) will result in a decrease of
the input for the target alternative in order to maintain normal-
ization. This will then lead to an overall slowdown of mean RTs
as observed in the data.

Experiment 3b: Nontemporal Manipulation of Inputs

The design of the Experiment 3b closely resembles that of
Experiment 3a, with the bottom row, replacing the third row in
Figure 17. Thus, like in Experiment 3a, three types of trials are
randomly presented: (a) neutral (easy), (b) difficult, and (c)
double boost. The difficult condition is created by taking the
neutral condition and increasing the brightness level of the
nontarget alternative, while the neutral and double boost con-
ditions are identical to the ones from Experiment 3a. Due to the
profound similarities, model predictions for this experiment are

also practically identical to the ones from Experiment 3a (see
Figure 18 top panel).

Method.
Participants. Nine Tel-Aviv University students participated

in the study in exchange for course credits. Participants were tested
in two, 45-min-long sessions (no more than 4 days apart). All
participants had normal or corrected to normal vision.

Materials. For neutral trials mean gray levels of the target and
nontarget were 0.4 and 0.3 (on a 0 [black] to 1 [white] scale),
respectively. Gray levels were perturbed by a random noise vari-
able that was drawn from a normal distribution with a standard
deviation of 0.2 that was truncated above 0.1 and below –0.1 to
avoid obvious flickering of the stimuli. The double boost condition
began the same as a neutral trial, but 100 ms into the trial both
target and nontarget mean gray levels increased from 0.4 and 0.3
to 0.6 and 0.45, respectively (a factor of 1.5). In the difficult
condition, mean gray levels were 0.4 and 0.34 for the target and
nontarget stimuli, respectively.

Procedure. All trials were randomly assigned to one of three
possible conditions: difficult, neutral, and double boost. Partici-
pants were presented with blocks of 60 trials for a total of 1,200
trials per participant. Each block consisted of 40%, 30%, and 30%
of neutral, difficult, and double boost trials, respectively. All other
procedures were identical to Experiment 3a.

Results and discussion. In comparison to the accuracy of the
neutral condition (M � 0.88, SD � 0.02) participants were less
accurate in their responses in the difficult condition (M � 0.77,
SD � 0.03, z � 2.7, p � .01; Wilcoxon matched pairs test).
However, participants were just as accurate in their responses in
the double boost condition (M � 0.89, SD � 0.02, z � 0.3, p �
.77; Wilcoxon matched pairs test) as in the neutral condition.
Therefore, we did not replicate the decrease in accuracy observed
in Experiment 3a. Importantly, participants responded signifi-
cantly faster in the double boost condition (M � 0.82 s, SD �
0.26) compared to the neutral condition (M � 0.87 s, SD � 0.26,
z � 2.7, p � .01; Wilcoxon matched pairs test), thus replicating the
finding form Experiment 3a and supporting the hypothesis that
inputs were not normalized prior to accumulation. In addition,
compared to the neutral condition, participants responded more
slowly in difficult trials (M � 0.95 s, SD � 0.35, z � 2.7, p � .01;
Wilcoxon matched pairs test). This result replicated the finding
from Experiment 1 supporting the hypothesis that participants
slow down when nontarget input is increased. Error RTs for the
double boost condition (M � 0.86 s, SD � 0.29) were only
marginally faster than baseline (M � 0.92 s, SD � 0.3, z � 1.8,
p � .07; Wilcoxon matched pairs test), while RTs were not

Table 4
Possible Experimental Outcome Combinations and Corresponding Model Predictions for Study 3

Double boost Incongruent initial input/difficult Models consistent with result

No effect Speed up —
Slow down Independent with normalization, competitive with normalization

Speed up Speed up Independent with no normalization
Slow down Competitive with no normalization

Note. Left and middle columns present possible experimental effects when comparing the baseline condition to the double boost and 100-ms incongruent
input conditions, respectively. The right column shows which competition types predict each possible outcome combination.
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significantly slower in the difficult condition (M � 0.95 s, SD �
0.34, z � 0.77, p � .44; Wilcoxon matched pairs test) compared
to baseline. Mean RTs for correct and error responses are pre-
sented in Figure 19.

When taken together, the results of Experiment 3b provide con-
verging evidence supporting the hypothesis that the observed slow-
downs in both Experiments 1a and 1b as well as Experiment 3b are a
result of some sort of competition that can be captured with neither
independent models or normalized models. These findings also rule
out the possibility that the results of Experiment 1 were solely due to
a dual stage process where participants first rule out the two weakest
alternatives and then continue with a normalized race between the
remaining two alternatives. Finally, the results of Experiment 3b also
rule out the alternative account of Experiment 3a where the observed
slowdown in the 100-ms incongruent input condition is explained by
the added confusion in task demands due to the temporal inconsis-
tency of the target alternative.

General Discussion

Sequential sampling models have been highly successful in
accounting for complex choice RT data in a variety of tasks.
However, the great resilience of these models has also marked an
equally great challenge—how to tell them apart. The task of
distinguishing sequential sampling models remains complex and
has so far produced mixed, inconclusive results. We addressed this
problem by comparing qualitative model predictions and quanti-
tative model fits to results from a set of experiments specifically
designed to discriminate between several classes of models by
manipulating the values of the nontarget alternatives.

To this end we combine theoretical, experimental, and computa-
tional approaches. First a functional mapping of possible competition
loci was proposed: stimulus versus input versus response competition.
We argue that some properties of the 1D stimuli used to produce the
data to which models are compared can lead to phenomena such as
stimulus competition and low-level, local input competition. The
danger in competitive 1D stimuli is that they introduce strong corre-
lations between physical attributes of the choice alternatives. Simi-

larly, stimuli that induce local input competition can introduce strong
correlations between the neural representations of the stimuli. Inter-
actions at the local input level can be considered automatic in the
sense that they occur whether a decision is required. Thus, we treat
them as belonging to a perceptual encoding, rather than a decision,
stage. Importantly, if not controlled or eliminated, these types of
pre-decision competition could be confounded with higher level de-
cision competition and thus might disguise important functional dif-
ferences between perceptual choice models. In addition, such stimuli
also limit the discriminability of the models by restricting the freedom
the experimenter has to independently manipulate the values of the
various alternatives. Without such independent manipulation it is
difficult to separately quantify the amount of input available to each
channel in the decision process and one can only approximate them by
ad hoc fits to data at the added cost of increasing the number of free
parameters. More free parameters inevitably lead to higher model
complexity making it harder to discriminate between models.

The perceptual stage where input competition takes place is
complex and stimulus specific. Fortunately, however, one can
study the more general decision mechanism without a detailed
perceptual model since perceptual interactions are highly depen-
dent on physical stimulus properties and can be minimized by
carefully controlling certain attributes, such as spatial or temporal
separation and stimulus complexity. Stimuli that are simple and
well separated in space (e.g., brightness at distinct nonoverlapping
locations) avoid problems, such as physical correlations (stimulus
competition) and correlations in early processing (local input com-
petition), since the value of each alternative is represented at a
separate, nonoverlapping, retinotopic location in the primary vi-
sual cortex. Consequently, by using brightness stimuli for which
the neural response is (up to a monotonic, psychophysical trans-
formation) proportional to the physical magnitudes, we were able
to constrain model inputs to a degree sufficient for the production
of qualitatively diverging predictions.

We further specify our theoretical taxonomy of competition loci
by proposing a distinction according to which “input” and “re-
sponse” are two distinct competition loci within the decision
mechanism itself that operate on the basis of different available
information. Input competition is proportional to the momentary
value of each alternative and does not include the total, accumu-
lated values. Response competition, on the other hand, is a func-
tion of the total accumulated values, rather than the momentary
value of each response alternative.

Building on these distinctions, we developed three experimental
paradigms that were aimed at contrasting independent models with
models employing different types of decision competition. To
illustrate the differences between these model classes we used
several computational models, which encompass the various types
of decision competition. Our experimental manipulations were
designed in such a way as to produce diverging predictions for the
different models classes. The first study carried out a manipulation
of the value of the strongest nontarget alternative while maintain-
ing the total sum of all values constant. In the second study we
manipulated the priors for each alternative. In the third, we ma-
nipulated the amount (Experiment 3b) and temporal distribution
(Experiment 3a) of the value of the nontarget alternative while
simultaneously probing for normalization. All these manipulations
are based on the principle of increasing nontarget value while
maintaining target value constant. In the absence of interactions

Figure 19. Results of Experiment 3b. X’s represent mean correct (left)
and error (right) response time for the three experimental conditions:
double boost, neutral, and difficult. Error bars stand for two within partic-
ipant standard errors. Lateral position on the x axis indicates the probability
a specific type of response (correct 
 0.5; error � 0.5) within that
condition. LPF � latency probability function.
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between processing channels, independent models can predict
slower overall RTs only if the input for at least one of the
alternatives is reduced. Otherwise, independent models predict
faster RTs due either to stronger target activation (faster target
accumulator finishing times) or to stronger nontarget activation
(faster nontarget finishing times leading to statistical facilitation).
Competitive models, on the other hand, vary with regard to their
predictions for such manipulations and can show complex behav-
ior. In all three studies we found that participants respond more
slowly when the nontarget value is stronger even when the exper-
imental design (randomized within a block) makes it unlikely that
participants change the decision criteria to accommodate different
levels of difficulty for each trial (Ratcliff & McKoon, 2008;
Ratcliff & Smith, 2004; Van Zandt et al., 2000).

To further test these predictions, models were fit to data from
Experiment 1a and Experiment 2. All of the models tested here
have been successfully fit in the past to many variations of stan-
dard RT data, such as RT distributions and accuracies. Indeed, all
the models captured these aspects of the data well. We therefore
assumed that the models possess the necessary flexibility to also
do so for the rest of the experiments in this article. The real
challenge for the different categories of models, however, was to
fit the main effect of RT difference between conditions. In accor-
dance with a priori simulations and theoretical model predictions,
when model inputs were constrained to the physical stimulus
values, the independent race model was unable to fit the slowdown
in overall RT between easy/baseline and difficult/incongruent con-
ditions in Experiments 1a and 2 and, in fact, predicted the opposite
pattern (but see discussion below regarding starting point assump-
tions in Experiment 2). The remaining experiments (1b, 3a, and
3b) are variations and replications of the same basic underlying
manipulation (i.e., increased nontarget value). Therefore, indepen-
dent models would make qualitatively equivalent predictions (i.e.,
speedup instead of slowdown) for these experiments as well as for
any experiment with similar manipulations.

Some input competition models also find our main effect results
hard to account for, due to a variety of reasons both idiosyncratic
and general. More specifically, the two input competition models
we tested here (normalized race and FFI) failed, to various de-
grees, to account for the observed effects. The normalized race
could not account for the overall RT slowdown main effect ob-
served in Studies 1 and 2 and for the RT speedup in the double
boost condition in Studies 3a and 3b. The FFI model had difficul-
ties only with the RT slowdown effects observed in Studies 1 and
2. Some of these failures are idiosyncratic to a specific model
assumption. For example, the normalized race could not account
for results of Studies 1 and 3 because of the normalization of input
strengths. Although normalization is a type of input competition,
this problem is not intrinsic to a particular class of models since in
fact any model, either independent or competitive, employing such
an input normalization would produce the same results. Similarly,
the failure of the FFI model in Study 1 is a result of the specific
assumption that inhibition on each accumulator is calculated as the
mean of the inputs to the other alternatives. Future investigations
are needed to examine in more detail differences in predictions
between input and response-competition models, as well as differ-
ences between different input competition models.

It is interesting that some input-competition models not tested
here, such as a multiple choice version of Vickers’s accumulator

(Vickers, 1970), could be consistent with the data from Studies 1
and 3. Vickers’s accumulator model has a competitive mechanism
that, for each momentary information sample, increases only one
accumulator—the one with the strongest momentary support.
Therefore, in Experiment 1a, this n-choice accumulator model
predicts that the accumulator pertaining to the strongest nontarget
“steals” winning samples from the target accumulator, and thus
slows down RT (simulations not reported). Such a model, how-
ever, would find it difficult to account for the data obtained in
Experiment 1b where (except for rare occasions) at any given
moment the display provides input for only one alternative and
therefore the nontarget accumulator can no longer steal winning
samples from the target accumulator. This, however, depends on
the definition of the duration of a sample. In Experiment 1b the
fastest average flicker arrival rate was 10 per second. Thus, for
longer sample intervals, this probability increases gradually allow-
ing the nontarget accumulator to steal more and more wins from
the target, leading to increasing RT slowdowns. On the other hand,
longer samples mean fewer samples per decision, making choice
RT more discreet and therefore more dependent on variability in
nondecision processes to account for RT.

Unlike the accumulator model, models that assume an indepen-
dent race acting on normalized input (for example the normalized
race model; see Figure 3, right, and Figure 18, top), do not account
for data from either of our experiments. While the assumption of
input normalization is quite frequent in perceptual choice models
(Brown & Heathcote, 2008; Leite & Ratcliff, 2010; Usher &
McClelland, 2001), we argue that such normalization procedures
are appropriate only when stimulus properties mandate it. For
example, input normalization could be valid for 1D stimuli, re-
flecting the constraint that such stimuli impose on the balance of
evidence in the display. In practice, input normalization is often
also used with other types of stimuli for several possible reasons.
One reason is that normalization is a mathematical, simplifying
assumption that reduces one model parameter for fitting purposes;
see also discussion in Donkin, Brown, and Heathcote (2009), who
provided data that argues against this procedure. Another reason
for using input normalization is that it can help establish an
equivalence between structurally different models, such as the
LCA and the drift diffusion (see Bogacz et al., 2006, p. 712).

Despite the mathematical convenience, one has to be alert to the
problematic nature of assuming input-normalization without a
mechanistic interpretation. This is especially the case when trying
to distinguish rather than equate models. We suggest that if a
model with input normalization does provide a good account for
experimental data, which was obtained with stimuli that are not on
a 1D continuum, it is important then to carefully interpret the
process that this normalization corresponds to. Such a mechanistic
interpretation can be provided within the framework of input
competition (see models described in Ditterich, 2010, which pro-
vide explicit formulations of processes that mediate input normal-
ization).14

14 A normalization constraint in the linear ballistic model (Brown &
Heatcote, 2008) could be interpreted to correspond, either to stimulus-
competition (1D stimuli) or to shunting inhibition (A. Heathcote, personal
communication, January 8, 2011).
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Experiment 2 provides insights into possible ways of discrimi-
nating between input and response competition models. Affecting
the initial conditions of the accumulation process can, under cer-
tain assumptions, have differential effects on the two classes of
models. The interactions between processing channels in input
competition models are a function of the momentary inputs and
therefore are not intrinsically sensitive to manipulations of initial
conditions. On the other hand, interactions between processing
channels in response competition models are a function of the total
accumulated information which includes both momentary inputs
and initial conditions, making them intrinsically sensitive to ma-
nipulations of the latter. The distinctiveness of these predictions is,
however, muddled by the unresolved issue of how exactly prior
knowledge is implemented in the decision process.

Prior knowledge is often conceptualized as affecting either drift
rates, starting points or both. If priors affect drift rates then input
competition, though not independent, models could account for the
RT slowdown effect observed in Experiment 2. The lack of sig-
nificant differences between leading edge and tail effects in Ex-
periment 2, and the opposite effects observed for error and correct
RT (see also Mulder et al., in press), however, provide evidence
against the drift rate interpretation. In addition, it has been shown
that, biasing only starting points is optimal and that drift rates are
not strategically adapted to produce response bias (Simen et al.,
2009; but see Van Ravenzwaaij et al., in press).15

In addition, the effect of priors on starting points could be either
correlated or uncorrelated. The uncorrelated starting points as-
sumption postulates that prior knowledge in favor of one alterna-
tive affects only the starting point of its corresponding accumula-
tor. Alternatively, the anti-correlated starting points assumption
postulates that an increase in the starting point of one accumulator
is accompanied by a decrease in the starting point of the other
accumulators. This is important because under the uncorrelated
assumption, both independent and input competition models fail to
qualitatively account for the observed main RT-slowdown effect
of Experiment 2, while under the anti-correlated assumption both
succeed (although not as well as response competition models).

Computational explorations of model predictions for Experiment 2,
however, provide a possible avenue to discriminate between these
alternative hypotheses and therefore also between input and response
competition. As can be seen in Figures 16a and 16b, the uncorrelated
assumption allows both independent and input competition models to
predict only RT speedups while the anti-correlated assumption allows
for only RT slowdowns. Response competition models with uncorre-
lated starting points, on the other hand, predict RT slowdowns for
high accuracies and RT speedups for low accuracies. While exploring
these predictions empirically would require a more detailed, dedicated
study where difficulty and accuracy instructions are also manipulated
to produce a wide range of accuracies, the results of Experiment 2
provide some preliminary evidence for the uncorrelated response
competition alternative. While most participants in Experiment 2
exhibited RT-slowdowns with high accuracy, one individual partici-
pant exhibited the opposite pattern, RT speedup with low accuracy, a
pattern which is in accordance with the predictions of uncorrelated
response competition models. In addition, the MMN and LCA models
with uncorrelated starting points provided better fits to the data than
the FFI and race models with anti-correlated starting points.

Finally, response competition models accounted well for all of the
results reported in this article. When difficulty is increased by increas-

ing the value or the prior favoring a weak (nontarget) alternative,
decision-time of response competition models such as the LCA (Bo-
gacz et al., 2007; Usher & McClelland, 2001) and the MMN diffusion
(McMillen & Holmes, 2006; Ratcliff & Rouder, 1998), slows down
due to stronger inhibition of the target by the, now more strongly
activated, nontarget accumulator (see Hanks, Ditterich, & Shadlen,
2006, for additional converging evidence supporting this finding and
Ridderinkhof, Wildenberg, Wijnen, & Burle, 2004, for evidence sup-
porting response competition in attentional tasks). This precise pattern
was obtained in all our experiments, revealing evidence for a com-
pensatory mechanism which naturally accounts for RTs, while also
allowing the model to improve accuracy by integrating more infor-
mation without any top-down executive control (i.e., threshold
changes). Note that our finding that people slow down to compensate
for higher stimulus difficulty may seem trivial at first glance. Contrary
to this, however, a number of studies in the domain of eye-movement
and saccade control show a reverse pattern: an increase in errors
without a compensatory slow-down in RT (Caspi et al., 2004; Ludwig
et al., 2005). This is consistent with the idea that the employment of
competition is contingent on the specificity of the system. For exam-
ple, independent models could underlie mechanisms like saccade
control, where speed may be prioritized over accuracy. Future re-
search is needed to examine if response competition is a general
property of the decision system and whether it depends on task
demands (for example accuracy vs. speed emphasis).

Competition, both of the input and response type is often asso-
ciated with optimality. For example, the variant of the diffusion
model which involves a type of feed-forward competition (Ma-
zurek et al., 2003), has been argued to be optimal (Bogacz et al.,
2006; Gold & Shadlen, 2000, 2001; Wald, 1947), in the sense that
it provides the fastest RTs for a given accuracy level or, vice versa,
the highest accuracy for a given RT. In our simulations (Figures 6,
9, and 13), the decision criteria for all models were set so that they
produce similar accuracies for all difficulty levels. Since optimal-
ity (in the sense above) implies the fastest RTs for a given
accuracy, the model that predicts the fastest RTs in our simulations
can be considered as the most optimal one. As can be clearly seen
in Figures 6, 9, and 13, the MMN diffusion model produces the
fastest RTs over most ranges. This conclusion needs to be quali-
fied, however, as we only examined a small set of choice models,
and since the proof of the diffusion model as optimal in the sense
above only applies to specific situations, such as those that involve
binary decisions with a single level of stimulus difficulty. How-
ever, more general optimal decision mechanisms have been pro-
posed recently, which address multiple choice (Bogacz, 2009;
Ditterich, 2010) and that still rely on some type of competitive
interactions. We further qualify this by noting that a comprehen-
sive discussion of optimality should also take into account the
resources available to the organism (J. R. Anderson, 1990).

One of the reasons that competition leads to such efficient
decision is that it allows the decision mechanism to integrate more
information for difficult decision trials (slower RTs) and integrate

15 Alternatively, it is also possible that interpreting priors as uncorrelated
versus correlated starting points could be dependent on the specific task
demands and the stimuli used. For example, 1D stimuli might be more
conductive to anti-correlation in starting points, while independent, spa-
tially separated stimuli might result in uncorrelated starting points.
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less information for easy ones (faster RTs). Competitive mecha-
nisms achieve this tradeoff without any on-line monitoring of
difficulty or adjustments to thresholds. Such monitoring mecha-
nisms which allow for rapid on-line (and within trial) adjustments
of thresholds could allow race models to exhibit many of the
characteristics of competitive models. Note, however, that the
online evaluation of stimulus difficulty requires some process of
evidence comparison (e.g., Vickers’s balance-of evidence; Vick-
ers, 1979), which, when feeding back into the decision process,
would make such adjusted-race models not independent. Within
the LCA model, for example, efficiency is enhanced by applying
lateral inhibition to an otherwise independent race architecture
(Bogacz et al., 2007; see also, Van Ravenzwaaij, Van der Maas, &
Wagenmakers, 2011).

To conclude, we demonstrated that progress toward distinguish-
ing between different classes of models can be achieved by fol-
lowing several theoretical and methodological steps including (a)
a taxonomy of model space that generates distinct mutually exclu-
sive categories along a single dimension (e.g., independence vs.
competition); (b) deliberate choice of manipulations that drive
strong inference experimentation (Jewett, 2005; Platt, 1964); and
(c) a coalition of statistical measures consisting of data fits, infer-
ential statistics, and prediction space mapping. The success of such
distinctions may often depend on the resolution of other, adjacent
processes. For example, distinguishing between input and response
competition may ultimately dependent on first accounting for the
mechanism through which prior information affects the initial
conditions of the decision process. We propose that the best
account for our results is that perceptual decision mechanisms are
intrinsically competitive and that independent models are unable to
account for these data. The results also provide some constraints
on input competition models and suggest that competition is more
likely to take place at the accumulator or response level. Future
research is needed to extend the set of models examined to addi-
tional instances of input and response-competition models. For
example, one needs to examine other input-competition models, in
which the inhibition is not the average input of the other alterna-
tives but, rather, a more complex function, as well as other re-
sponse competition models (e.g., the attractor model Wang, 2008;
Albantakis & Deco, 2009).16

Some steps in this direction were done in recent work. For
example, decisions based on nonstationary (time-varying) evi-
dence can distinguish between a FFI and LCA models (Tsetsos et
al., 2011, 2012; see also Zhou, Wong-Lin, & Holmes, 2009).
Additional studies could examine multialternative choice with
variable set size (randomized within blocks), which is likely to
probe the presence of inhibition-rescaling with set size, in the
FFI-model. Finally, this methodology could be extended to exam-
ine other properties of the decision mechanism, such as leaky
versus perfect integration, absolute versus relative stopping rules,
and noisy versus ballistic integration.

16 Another interesting class of response-competition corresponds to top-
down models, in which the accumulated evidence in each accumulator
draws attention (by some gain increment) to the incoming input from the
corresponding choice alternative. We thank an anonymous reviewer for
this suggestion.
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Appendix A

Accounting for Nonlinear Psychophysical Transformations

In this Appendix we address the issue of the robustness of our
results when faced with nonlinear transformations of inputs, prior
to their introduction into the model. For simplicity, simulation
results presented in the article correspond to a linear relation
between physical stimuli strengths and model inputs. However, as
mentioned in the discussion, one could argue that this correspon-
dence is not realistic, since neural encoding is often characterized
by a saturation of firing rates at higher activation levels. These
types of saturating functions have often been described by loga-
rithmic or power law transformations (Fechner, 1877; Stevens,
1957). Brightness is also believed to be a saturating perceptual
dimension with an exponent of about 0.5 (Stevens, 1957). Thus,
for this argument we assume that if our stimuli do go through some
sort of transformation it will be a monotonically increasing func-
tion whose derivative is monotonically decreasing to zero such as
a logarithmic or power law (exp � 0.5) transformation.

How, then, would the introduction of such a function affect
model predictions and the interpretation of our data? We present
simulations comparing linear versus logarithmic versus power law
versions of the models used in our study. This nonlinearity issue,
however, is only relevant to the first and last studies since in our
second study only prior knowledge was manipulated and stimuli
strengths did not change throughout the experiment. Therefore, the
issue of psychophysical transformations is, in the case of Study 2,
reduced to a simple matter of scaling and does not require special
notice.

Figure A1 illustrates the effects of nonlinear transformations on
model predictions for Experiment 1. The five different models
discussed in our article are simulated for the linear, logarithmic,
and power law transformations. Decision criteria for all models
were set such as to produce nearly identical accuracies for all
difficulty levels (see Table A1). As can be seen, model predictions
remain qualitatively the same despite some variance in the mag-
nitude of the effects.

Figure A2 illustrates the effects of nonlinear transformations on
model predictions for Experiment 2. As before, the five different
models discussed in our article are simulated for the linear, loga-
rithmic and power law (exp � 0.5) transformations. Decision
criteria for all models were set such as to produce nearly identical
accuracies for the neutral condition (see Table A1).

As can be seen, all model predictions remain qualitatively the
same except for the normalized race model which predicts a slight
slowdown in the double boost condition, compared to the neutral
condition, when subject to nonlinear transformations. This result is
due to the way the nonlinear transformations affect the ratio
between the target and nontarget inputs. This ratio was intention-
ally kept constant in the original, linear, simulation, hence predict-
ing a null effect for the double boost manipulation. However, for
monotonic, concave functions the ratio shifts in favor of the
nontarget alternative the stronger the inputs become due to dimin-
ishing sensitivity at higher intensities. As a result the input to the
target alternative is reduced resulting in the observed slowdown

(Appendices continue)
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Table A1
Decision Criteria Used for the Different Models in Appendix A

Experiment 1 Experiment 3

Variable Linear Log Power Linear Log Power

Race (independent) 50 33 90 35 34 65
Race (normalized) 60 16 35 38 35 60
FFI diffusion 21 10 85
MMN 5.5 2.4 2.5 5 4.3 3.6
LCA 12 6 9.5 11 7 10

Note. FFI � feed-forward inhibition; MMN � max minus next; LCA � leaky competing accumulator. Each model was assigned three different decision
criteria for each experiment—one for the linear case, one for the logarithmic transformation, and one for the power transformation—resulting in a total
of six different decision criteria values for each model.

(Appendices continue)

Figure A1. Study 1 simulation results, with linear (top), logarithmic (middle), and power (bottom) transfor-
mations applied to the inputs prior to accumulation. Mean inputs to the four choice alternatives were manipulated
such that I1 � 2 remained constant throughout the simulation while I2 increased from 1.1 to 1.9 in steps of 0.1
and I3 � I4 decreased from 1.1 to 0.7 in steps of 0.05. For both the logarithmic and power transformation all input
values were increased by 1, and noise was not allowed to drive input values below 1. This was done to avoid
irregularities in the transformation for values between 0 and 1. LCA � leaky competing accumulator; FFI �
feed-forward inhibition.
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Appendix B

Data Fitting Methods

To evaluate the models’ ability to account for response time dis-
tributions and accuracy of the data we used simulated data from the
models and fit it to empirical data. To optimize model parameters and
to determine how well the models fit the data we minimized the
chi-square statistic (Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx,
2002; REF) through a SIMPLEX algorithm (Nelder & Mead, 1965),
as implemented by the “fminsearch” function in MATLAB.

As a target for the optimization process we calculated the 0.1, 0.3,
0.5, 0.7, and 0.9 response time (RT) quantiles and accuracy for each
experimental condition (easy/difficult) and for each type of response
(correct/error) resulting in four quantile sets. For each such set, sim-
ulated RT data were then grouped into six bins confined by the
empirical RT quantiles. This procedure resulted in 12 bins per con-
dition (six correct and six error). For each condition we calculated the
proportion of trials (out of the total number of trials in that condition)
that fall within the bounds of each bin. These proportions are equiv-
alent to the probability for a response to end up in a particular bin. The

proportions were then multiplied by the probability for a correct
response and the probability for an error (1 � p (correct)) to create the
correct and error proportions, respectively. Naturally, for each condi-
tion these proportions summed to one.

The chi-square statistic was calculated as the sum, over all bins in
all conditions, of the differences between the proportions predicted by
the model (Mi) and the empirical (target) proportions (Ei), divided by
the target proportion (Ei). Since the RT quantiles that divide the bins
are calculated from the empirical data, the target proportions (Ei) are
always 0.1, 0.2, 0.2, 0.2, 0.2, and 0.1 multiplied by the probability for
that type of response (correct/error). For example, if the accuracy in a
particular condition was 90% then the target proportions would be
0.09, 0.18, 0.18, 0.18, 0.18, and 0.09 for the correct responses and
0.01, 0.02, 0.02, 0.02, 0.02, and 0.01 for the error responses.

Chi �
�Ei � Mi�2

Ei
.

(Appendices continue)

Figure A2. Study 3 simulation results, with linear (top), logarithmic (middle), and power (bottom) transfor-
mations applied to the inputs prior to accumulation. Mean inputs to the four choice alternatives were manipulated
such that I1 � 2 remained constant throughout the simulation while I2 increased from 1.1 to 1.9 in steps of 0.1
and I3 � I4 decreased from 1.1 to 0.7 in steps of 0.05. For both the logarithmic and power transformation all input
values were increased by 1, and noise was not allowed to drive input values below 1. This was done to avoid
irregularities in the transformation for values between 0 and 1. RT � response time; LCA � leaky competing
accumulator; FFI � feed-forward inhibition; Race(ind) � race (independent); Race(norm) � race (normalized).
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Optimizing the models to predict binned response proportions
allows us to test the models on their ability to simultaneously
account for RT distributions and accuracies.

Model Parameters

All the models we used in this study belong to the sequential
sampling family and therefore had several common characteristics
and assumptions. In the context of simulations and data fitting
these shared components translate into model parameters that span
across the various model architectures. The most common trait of
sequential sampling models is the accumulation of stochastic ev-
idence over time to a response criterion (Cr). The classic diffusion
model (Ratcliff, 1979) for two alternative forced choice (2AFC)
tasks implements one accumulator that accumulates evidence to-
ward two response criteria, an upper bound, and a lower bound.
However, since the task in this study is a four alternative forced
choice, we implemented two variants of the classic diffusion
model that can be easily extended to N 
 2 alternatives. These
variants, the feed-forward inhibition (FFI) and the max minus next
(MMN), are, in fact, equivalent to the diffusion model for N � 2
alternatives but diverge for N 
 2. The MMN and FFI are more
like race models in the sense that the accumulation process is
driven by N accumulators which race toward a common response
criteria. Thus all our models share the assumption of N � 4
accumulators (X1, X2, X3, and X4) that accumulate evidence
toward a common response criteria (Cr). We did not allow indi-
vidual response criteria to vary independently for each alternative
since the stimulus locations were randomly intermixed and there-
fore participants had no way of knowing a priori which location is
associated with which alternative.

Another common assumption is that the N � 4 accumulators are
driven by N � 4 separate evidence sources or inputs (I1, I2, I3, and
I4). Traditionally, input parameters are left free to vary either
separately for each difficulty condition or commonly for manipu-
lations that do not alter the strength of the evidence such as speed
versus accuracy instructions. However, unlike traditional data fit-
ting, one of our main goals was to constrain the models directly to
the physical stimuli without the added freedom of fitting the input
parameters to the data. During the experiment we had complete
control over the exact brightness level presented to the participant
on each individual frame and therefore also over the mean and
standard deviation of the stimulus brightness. Thus, throughout all
the simulations and data fitting in this article inputs to the models
were constrained to the exact magnitudes of the physical stimuli
presented to the participants. More specifically, for the purpose of

fitting the results of Experiment 1, mean input strengths (or drift
rates) for the easy condition were modeled as I1

= � 0.4, I2
= � 0.2,

I3
= � 0., and I4

= � 0.2 and for the difficult condition as I1
= � 0.4,

I2
= � 0.3, I3

= � 0.15, and I4
= � 0.15. Throughout the course of a

simulated trial (i.e., for each time step) the true inputs Ii are
calculated by repeatedly perturbing the mean input rates Ii

= by a
Gaussian noise random variable �i � N(0, 0.1) that is truncated at
�0.1 and –0.1 such that Ii � Ii

= � �i. Thus, �i represents the
minimal within trial noise in the process, which is intrinsic to the
stimulus and thus external to the processing of the perceptual/
decision/response (or any other nondecision component) stage. In
addition to the fixed mean stimulus noise variable �i, we also
added another Gaussian noise random variable εi � (0, �) where
� is a free parameter. In the models, εi stands for noise that is
intrinsic to the process and therefore, represents the stochastic
nature of the human cognitive and perceptual processing itself and
not the stochastic nature of the stimulus.

In order for sequential sampling models to be able to correctly
describe the form of RT distributions it is common practice to add
some sources of between trial variability. One source of between
trial variability, starting point variability (si), was applied to all
models in the same manner. In all our simulations the accumula-
tion process for each alternative began at an arbitrary baseline
activation level of 0.4 to which we added a uniformly distributed
random variable �i � U(0, si). All models, except for the leaky
competing accumulator (LCA), also required an additional drift
rate variability parameter (dvi) to account well for the form of
response time distributions. This was implemented in the models
as a Gaussian random variable ij � N(0, dvij) that is drawn once
for each trial j and added to all drift rates Ii for the duration of
simulation trial j. The race model predicted distributions that were
slightly too symmetrical so following Ratcliff and Smith (2004)
we augmented it with a parameter for between trial variability in
response criterion �. Best fit for the race model was achieved when
response criteria were drawn from an exponential distribution
EXP(�) with mean �. The LCA model also required two additional
parameters for leak (�) and inhibition (	). Finally, we needed to
transform all simulated RTs (expressed as discreet time steps) to
real world RTs (expressed in milliseconds). To this end, all model
outputs (RT=) were transformed using a nondecision time param-
eter (Tnd) and a time step parameter (Ts) such that RT � Ts �
RT= � Tnd. The nondecision time parameter (Tnd) corresponds to
the time it takes to process all nondecision components like per-
ceptual and response processes. Ts is a scaling parameter that
transforms decision time from model time steps to milliseconds.

(Appendices continue)
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Appendix C

Simplified Fits for Main RT Effect and Accuracy

In addition to the regular fits to quantile proportion data, the
feed-forward inhibition and race models were also fit to simple
mean response time (RT) and accuracy data. All fitting methods
were identical except for the error function. The error for this fit was
calculated as ((RT_delta(model)-RT_delta(data)) ˆ 2)/RT_delta

(data) � ((AC(model)-AC(data)) ˆ 2)/AC(data), where RT_delta is
the difference in RT between the easy and difficult conditions
(equivalent to neutral and incongruent in Experiment 2). Results
are displayed in Figure C1. As can be seen, neither model can
predict a negative effect as is observed in the data.

Figure C1. Simplified fits of the race (top row) and feed-forward inhibition (FFI; bottom row) models for
Experiment 1 (left column) and Experiment 2 (right column). Circles denote 10 runs of the model with the final
parameters. X’s denote the main RT effect averaged over participants, with error bars denoting two standard
errors (horizontal) and (AC�(1-AC)/N)0̂.5 (vertical).

(Appendices continue)
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Appendix D

Parameter Ranges for Delta Probability Scatter Plots

Received June 27, 2011
Revision received August 20, 2012

Accepted August 20, 2012 �

Table D1

Model Parameter Dv Cr � s Tnd Ts Cv � 	 S0 TndVar

Experiment 1
Race min 0 10 0 0 150 5 5

max 0.1 31 2 8 600 20 15
best-fit 0.042 19.047 0.364 5.215 417 12.05 7.023

FFI min 0 6 0 0 200 10
max 0.1 14 1 2 600 24
best-fit 0.001 6.73 0.52 0.865 585 18.336

MMN min 0 2 0 0 200 10
max 0.1 6 2 4 1,000 20
best-fit 0.013 3.313 0.422 0.915 726 14.64

LCA min 0.5 0 0 700 20 0 0
max 2.5 0.5 0.3 1,000 30 0.5 0.5
best-fit 0.844 0.189 0.154 749 28.593 0.391 0.391

Experiment 2
Race min 0 15 0 3 100 5 5 1

max 0.1 40 1 15 325 15 15 12
best-fit 0.02 35.58 0.511 10.072 109 8.221 11.759 2.221

FFI min 0 5 0 0 2 0 3 1 50
max 0.09 9 1.5 5 4.25 6 5 3.5 250
best-fit 0.06 7.139 0.919 4.746 409 4.06 3.424 1.704 176

MMN min 0 5 0 4 200 1 0 50
max 0.1 13 2 10 400 25 5 250
best-fit 0.02 10.49 0.828 8.36 375 3.332 2.05 145

LCA min 5.5 0.3 0 200 1 0.14 0.15 1.5 100
max 7 1.5 5 400 12 0.16 0.25 3 200
best-fit 6.635 0.79 4.625 318 2.762 0.149 0.173 1.727 153

Note. Dv � drift rate; Cr � criterion; � � internal noise; s � starting point variation; Tnd � nondecision time; TS � step size; Cv � criterion variability;
	 � inhibition; � � leak; S0 � change to starting point of cued alternative; TndVar � nondecision time variance; FFI � feed-forward inhibition;
MMN � max minus next; LCA � leaky competing accumulator.
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